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1. Introduction 

It is by now well-known that for  any l < s < 2 ,  L,(0, 1) contains  a subspace which is 

isometrically isomorphic to Is. This of  course implies that for any m =  1,2 . . . .  and any 

e>0,  I m is l+e- i somorphic  to a subspace of l~ if n=n(e ,s ,m)  is sufficiently large. 

Theorem 1, the result of  this paper,  states that n can be of  order  m; i.e., that n can be 

chosen smaller than fl-lrn for  some constant  fl=fl(e,s)>O. This complements  the 

theorem of  Figiel, Lindenstrauss  and Milman [4] (cf. also [2], [3] for a somewhat  

weaker  result) which treated the case s=2.  

Actually the p roof  of  Theorem 1 yields more than the above-mentioned result. 

First, it shows for 0 < s < 2  and 0 < r < s  with r~<l, that for every  e>0,  I m is l+e-  

isomorphic to a subspace of I n if m<.fln, where [3=fl(e, s, r )>0  is a constant independent  

of  n. Secondly,  the condition that the range of  the isomorphism be l~ can be relaxed. 

What is needed is that the range be an r-normed space which possesses a basis (ei)i'= 1 so 

that for all scalars (bi)i"=l, 

The proof  of  Theorem I, like the earlier proof  of the s=2  case in [4], [2], [3], [5] and 

[11], is probabilistic in nature.  A schematic outline of  the usual argument specialized to 

the case l < s < 2  and r = l  goes like this: For  appropriate m and n, one defines a 

probability space (f2, P) and a random linear operator  or matrix A =A~o (co E f2) from l~ 
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into L]' (=1]' with the Lrnormalizat ion) .  It is important that for each x E. I m, HAxlJl is, on 

the average, close to Ix[s, the norm of x in lsm; say, 

IEllAxtll-[xlsl ~< elxls. 

Now it is a standard fact that for small e>0, if 1HAXlil-lXM<~e for all x in an e-net of the 

unit sphere of I m, then IIIAxHl-lxlst<--3etxts for all xEl~ (see Lemma 3). Equally 

standard is the fact that the unit sphere of an m-dimensional normed space contains an 

e-net of cardinality at most exp (2me-~) (cf. Lemma 2). Thus, in order to conclude the 

proof of the embedding theorem, it is sufficient to prove (and this is the main step) a 

distributional inequality which guarantees that for x E I m, 

P[I IIAxlI1-EIIAxlIII >I elxls] < exp ( - 2 e  -1 m). 

In [2], [3] and [11] the probability space is ( - 1 ,  I}  n 'm with equal mass assigned to 
_ m m _ _  n ,  m each point, and A~o is defined for x-Ei=  1 biei E l 2 and co-{eij}i=l.j=l by 

A~ox= ~ ~ ei,jbjei. 
i=1 j=l 

Notice that the entries in this random matrix are independent. Although we use a more 

complicated probability space and the random matrix we use does not have indepen- 

dent entries, the approach in [11] which uses a distributional inequality for general 

martingales also works in the present situation. 

For  the most part we use standard Banach space theory notation, as may be found 

in [6]. Since it is convenient for us to use the Lr-normalization in the range of the 

random matrix and the/s-normalization in the domain of the random matrix, we define 

for 

X = ~ c t i e i E R  n 
i=1 

(where (ei)in=l are the unit vectors in R n) and for 0 < p < ~ ,  

( Rn, I1 lip) is denoted by L~ and (R n, [. [p) by l~. 
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We also need the " w e a k  lp" norm o n  R n, defined for x=EiL ~ o~ie i by 

Ixl , = m a x  a* i l/p, 
1 <<.i<<.n 

where (a*)inl is the decreasing rearrangement  of  (lail)i~l. The space (R n, [" [p, oo ) is 

denoted by lp, ~. 

For  0<r~< 1, an r-norm is a non-negatively valued function, I1 II, on a vector  space 

which is 0 only at 0 and satisfies the axioms Haxll=lal Ilxll, IIx+YlIr<~Ilxtlr+IlYll r" The most  

basic example of  an r-norm is, of  course I1" IIr" 
I f  f is a measurable function on a measure space, f *  is used to denote  the 

decreasing rearrangement  of  Ill. 

Finally, we would like to thank Gilles Pisier for a discussion which yielded the 

present  version of  Theorem I. Originally we used only Azuma's  inequality, Proposit ion 

2(i), which led to a p roof  that for  l < s < 2  and for all e>0,  17 l+e-embeds  into ls~/2 (and 

hence uniformly embeds  into l~, by Maurey ' s  theorem [8]) as long as m<~an/logn for a 

certain constant  a(e, s)>0.  Pisier pointed out to us that by substituting the inequality of  

Proposit ion 2(ii) for  Azuma ' s  in our  proof,  we could uniformly embed I m directly 

into l~ provided m<~fln for  a certain constant  fl=fl(s)>O. 

2. The random matrix 

Given positive integers n and m with m<~n, define Q=ff2(n, m) to be the space 

{ - - 1 ,  1}nmx[S(n ) ]  m, (2.1) 

where S(n) is the symmetr ic  group on {1 . . . . .  n}, and endow s with the probability 

measure P which assigns equal mass to each atom. 

Given a fixed sequence al~aE>~...>~an>~O, the entries of  the random nxm-mat r ix  

A=A~, are defined for l<~i<~n, l<~j<~rn, and for 

by 

n m 
0.) = ((Ei,j)i=l,j=l, Jr'l, ~'2 . . . . .  7/'m) ~ ~') 

A,o(i,j) = ei, J a~/O. (2.2) 

For  fixed 0 < r < s < 2  with r<~l, we want  A,o to be, for  some toEg2, a good 

isomorphism from l m into L~. Of course,  the main case is r=  1 and the reader  may want 

to make this substitution on first reading in order  to clean up messy-looking exponents  
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and constants.  In fact, from Maurey ' s  work [8] (which is based on Rosenthal 's  paper 

[10]), it follows formally that if l~' embeds uniformly into Lr ~ for some fixed r < s < 2  

(where m = m ( n )  for  n=  1,2 . . . .  ), then I m embeds uniformly into L~ for all r<s. So for 

1 < s < 2 ,  r=  1 is, essentially, the general case. On the other  hand, the direct embedding 

gives a stronger result than that which can be obtained by applying Maurey ' s  theorem 

in that the embedding into L7 can be taken to be a l+e- isomorphism and the range 

space need  only be a " r a n d o m  Lr ~'' space. 

Notice that the columns of  the random matrix A defined by (2.2) are independent,  

symmetric,  and identically distributed, but entries in the same column of  the matrix are 

not independent.  The sequence (ai)i"= l is chosen so that the columns of  A have 

approximately s-stable distribution; what we need is that m-independent  functions with 

the same distribution as Ae  t, are, in Lr, l+e-equivalent  to the unit vector  basis of  I m. 

That  such a sequence (ai)i~ 1 exists is the content  of our first lemma. 

LEMMA 1. Let  0 < r < s < 2 ,  e>0,  and let g be a symmetric s-stable random variable 

on [0, 1] with I[g[[r = 1. Then there exists a= a(e, r, s)>0 so that for  all positive integers m 

and n with m<-an, i f  y l ,y2 . . . . .  Ym is a sequence o f  independent, symmetric random 

variables such that each [Yi[ (l~<i~<m) has the same distribution as that o f  

Y = 2 ai l[(i-I)/n,i/n] (2.3) 
i=1 

where 

a i = g * ( i )  (l~<i<n), 

then for  all scalars (bj)~= l we have 

Ibjl s <~ g E bjyj ~<(l+e) Ib:ISJ (2.5) 
j= l  j= l  j= l  

Proof. We first show that if r~>l or if s~<l and r>s / ( s+l )  then Elg*-ylr<-Kn r/s-~, 

where K=K(r ,  s) depends on r and s only. For  l<.r<s we use the fact (cf. [7] or [14]) 

that for all t>0  
P(Igl >I t) <<- Ct -s (2.6) 

for some constant  C=C(r, s) to get 

f.O lin Eig,_ylr< E(g,r yr) ~ g,r  

[" l/n 
<<" cris I t-r/Sdt crls(1 r/s)-I nrl~-I 

.19 
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For  s~< 1, s/(s+ 1 )< r<s  we use the fact (cf. [14], p. 54) that the density function p of  

a symmetric s-stable random variable normalized in Lr satisfies the inequality 

for some constant  D=D(r, s). 
Let  

p(t)>-D-It -s-j f o r l t l ~ D  

F(u) = e(Igl ~ u), 

then g*=F -1 and g*'(t)=-l/p(g*(t)), 0~<t~l. Thus [g*'(t)[<~D(g*(t))s+J<~Oc~S+l)/st -(s+l)/s 

as long as g*(t)>-D and 

f l/n (F(D). 1/n l r 1 

dO \ \ n / /  JF(D)-I/n 

<~ cr/s(1-rt-'nnS-'+n-rDrcr(s+l)/s ~t-r~s+l)/s+( [ l g * ( t ) - g * ( t + l ) )  r 
S/ Jl/n \ J F(D)- l/n \ / / 

<~ Kn m-~. 

Let  gl,g2 ..... gm be independent ,  symmetric s-stables with IIg,-[I,.=l and set for 

l<~j~m 
zj = Z ai sign (gj) l[a~<lgjl<ai_,]. 

i=1 

Now the z/'s have the same distribution as the y / s  and, by the fact that ( g j . - @ ~  forms 

a l-unconditional basic sequence in Lr and by H61der's inequality, we get that if 

l~<r<s<2 or s/(s+ l ) < r < s ~  < 1, 

E ~b j (g j - z j )  r ~ <<_ Ib:lrElgi-zjl r 
j= l  j= l  

= ~ Ibj[rg[g*-Yl r ~ Kn r/s-I ~ Ibjl r 
j= l  j=l  

f m \ (s-r)ls ~ g ~ - ~ )  (j=~llbjls)r/s. 

So for all 6>0  there exists an a > 0  such that if m/n<a 

E bj(gj-zj) <~ 6 Ib~PI . 
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The monotonicity of the function 99(r)=(Elf[r) I/r implies that the same conclusion holds 

for all r, s, 0 < r < s < 2 .  The conclusion of the lemma follows now from the fact that 

+ 
j= l  j= l  

Returning now to the random matrix A defined by (2.2) and (2.4), we check that 

E IIAxllr~lxl+ for all x E l~ So suppose a=a(e ,  r, s)>0 satisfies the conclusion of Lemma 

1 and m<~an and fix x=~j~ 1 bjejE 17. Then 

EllAxlI~r = En- '  E r= e bj,~l, j 
i=1 j= l  j= l  

The random variables el, J a~/1)(1 <-j<~m) on f2 are independent and symmetric; more- 

over, the common distribution of their absolute values is the same as that of " y "  in 

(2.3), thus from Lemma 1 we have 

(1-e)rlx I r <~ E Ilax I1~-< (1 + e)rlx I~. (2.7) 

We now state a distributional inequality, to be proved in Section 2, which allows 

us to select an w E f2 for which l lAoxll~lxls for all xE I m. (In the notation of Proposi- 

tion 1, set x=(b)j=l and ]l'll=ll'llr. Then for w=(e, :r) E gL 

~bj~  ei i' IIAo, xll~ = el,jab~i) 
j= l  i=1 

which is not the same asf(w).  Of c o u r s e , f  and Ilmxll r have the same distribution, which 

is all that we need. We state Proposition 1 f o r f r a t h e r  than for IIAxll~in order to simplify 

notation in its proof.) 

PROPOSITION I. Let  0<r~<l<p<2,  let m and n be positive integers, and let g2 be 

given by (2.1). Suppose that II II is an r-norm on Rn,(bj)r~=l ER m and al>~a2>-...>~an>~O. 

Define for  w = (e. Jr) E if2 

Then for  all t>O 
i'- ! 

P t l f - E f l  >I tl < 2 e x p  I -4 -+dp  e l(a,b)L,,2=,12% " max Ilekll-r+/ (2.8) 
L l<~k<~n 1 

where p - ~ + q - J = l  and ~Sp>O depends only on p. 
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To apply Proposition 1, we need two standard lemmas involving &nets of the unit 

sphere. By a &net of a subset, U, of an r-normed space (X, I1tl) we mean a subset M of 

U such that for all x E U, 

inf IIx-yll ~ ~< 6. 
yEM 

LEMMA 2. Le t  (X, llll) be an r-normed space (0<r~l)  of  dimension m and 

suppose that 0<6. Then the unit sphere o f  X contains a &net  o f  cardinality at most  

exp (2r- 16- i m). 

Proof. Let M be a subset of the unit sphere of X maximal with respect to 

"llx--Yllr~6 for all distinct points x, y in M".  M is obviously a &net of the unit sphere 

and the open balls (relative to the metric Ilx-yll r) of radius 6/2 around the points of M 

are pairwise disjoint and contained in B(1+6/2), the open ball around the origin of 

radius 1+6/2. Consequently, 

card M- vol B(6/2) <. vol B(I + 6/2). 

Since B(ts)=tl/rB(s) for any s, t>0 and dimX=m, we conclude 

card M ~< [2(1 + 6/2) /6]  m/r = (1 + 2/6)  m/r <~ exp (2r- J 6- I m). Q.E.D. 

LEMMA 3. Suppose that (X, IIll) is an s-normed space (0<s~<l), (Y, IIll) is an r- 

normed space (0<r~<l) and T:X--+Y is a continuous linear operator. Suppose that 

0<e, 6< 1 are such that for  some 6s/r-net, M,  o f  the unit sphere o f  X and all x E M we 

have 
1-e<~[Tx[r <~ l+e.  

Then for  all x in the unit sphere o f  X we have 

1 - 2 6 - e  <~lTx[r<~ 1+6 1-6 ~ (1 +e). (2.9) 

Proof. Given x in the unit sphere of X, write 

X = Xo+ Z anX n 
n=l 

~ s ~ s n / r  with (x,)n=0___M and u-~an-~o for n= 1,2, . . . .  Then 

I l T x l r - l T x o l r l < - l T x - T x d  = a n lanlrlTxnlr <~ (1 + e ) .  
n=l n=l 

A trivial computation now yields the desired conclusion. Q.E.D. 

6-822906 Acta Mathematica 149 
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We can now prove  the main result. 

THEOREM 1. Let  r>0 ,  and suppose that 0 < r < s < 2  with r<~l. Then there exists 

f l=fl(r ,r ,s)>O so that i f  m and n are positive integers with m<~fln, then I m is l + r -  

isomorphic to a subspace o f  L~. 

Proof. For  a value of  e=e(r ,  r )>0  to be specified later, we take a=a(e,  r, s) from 

L e m m a  1 and let O<fl<.a be such that fl also satisfies another  numerical inequality 

which comes up later. Now fix m<.fln and let g, (ai)i~=l, ~2, and A be as in Lem m a  1, so 

that for all x E I m, 

(1 -e)Ixl~ ~< EIIaxll~ <~ (1 +e)Ixl~. (2.10) 

Now fix any x=Em=l bieiC l~' with Ixls=l. Recalling the distributional inequality for s- 

stable variables ment ioned at the beginning of  the proof  of  Lemma 1, we see that the 

ai 's defined by (2.4) satisfy 

a i <~ C1/Snl /S i  - I / s  

For  some constant  C=C(r,  s). Using this and the easy observat ion that 

S 

if the x / s  are disjointly supported vectors  in Is, ~, we get 

s, n s ~ <~ Cnl(t )i=lls,~ = Cn. ](aib)i=l,j=lL,~n m ~ < ib L ~](ai).=,]~ ' .-1/,, 
j = l  

Assume that r>s/2 and set p=s /r  so that 1 < p < 2 .  Applying Proposit ion 1 we get for  

any x E/~, Ixls= 1, 

P[I Ilaxll;-Ellaxllrrl t> E] ~< 2 exp ( - ~ ,  Eqf-rq/sn -rq(I/s- l/r)) 

= 2 exp ( - 6 p  eqcr/<r-~)n) 

so that (since m<~fln<-an; a from Lem m a  1) 

e[1-2E ~< Ilaxll~ ~< 1 +2~]/> 1 -2  exp ( - ~  Fflfr/(r-S)n). 

Using L e m m a  2, pick an d/r-net of  the unit sphere of  I m with card M~< 

exp (2r-le-~/rm). Then 
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r_ .~  P[  1 -  2e ~< IIAxtlr- 1 +2e for all x E M] I> 1 -2  exp (2r-le-S/rm-6, 6qcr/(r-S)n) 

hence, by Lemma 3, 

[ ~ 4 e  e ~< ( l+e)( l+2e) ,x[: f o r a l l x E I  m] e Ixl2 ~< [[Axllr ~ 1 - e  

/> 1 - 2 exp [(2r-le - " f l -  6, e q C/('- s)) n ]. 

Thus if we choose e=e(r, r)>0 and fl=fl(e, r, s)>0 sufficiently small, we get for m<-fln 
that 

P[(1-3) Ixl  [[Axllr 4(1 +~r){x[~ 

This completes the proof in the case r>s/2. 

1 m] > __ for all x E l  s j 2 " (2.11) 

The general case follows formally from the case r>s/2 by iteration. A more elegant 

way to finish (which yields a better estimate for fl) is to use (2.11) for two different 

values ri, r2 with s/2<rl, rz<s to select an w E ff2 so that A~o is simultaneously a good 

isomorphism form I m into L,". and into L~" 2 and use a standard extrapolation argument to 

conclude that A,o is also a good isomorphism from l~ into L~. Q.E.D. 

Remarks. (1). It follows from a result of Maurey 's  [8] and Theorem 1 that for 

0 < r < s < 2  and m~fln,  l'~' is K(r, s)-isomorphic to a subspace of  l~', but we do not know 

whether K(r, s) can be taken close to one when r>  1. 

(2) As is easily seen from the proof, the assumption in Theorem 1 that the range 

space is L7 can be relaxed a bit. It is enough  to assume that the range is an r-normed 

space which contains v e c t o r s  (ei)in=l SO that for all (bi)in=l , 

Av  E + b i e i  = Ib X. 
- i= l  i=1 

(2.12) 

This perhaps explains why our proof breaks down when r approaches 2 (i.e. for r>  1), 

because (2.12) is true for r=2  if the e;'s are all the same unit vector in any Banach 

space. 

3. The distributional inequality 

The main tool for proving Proposition 1 is a martingale inequality which, along with its 

proof, was communicated to the authors by Gilles Pisier (part (ii) of Proposition 2). 

This inequality is in turn a consequence of Azuma's  martingale inequality (part (i) of 
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Proposition 2) [1], [13]. Versions of Azuma's inequality have previously been used in 

Banach space theory [9], [11], [12]. 

PROPOSITION 2. Let (dk)~= I be a uniformly bounded martingale difference se- 

quence (i.e., (E/k=l di)~,= 1 is an L=-bounded martingle which has mean zero ). 

(i) (Azuma) For all t>0, 

P [  ~dkl>>'t]<<'2expl--t2/4~lldkllZ~]'k=~ k=l _ 

(ii) For all l < p < 2  and all t>0, 

[ ~ = 1 1 ]  _ q  nq  P d~ ~>t ~<2exp[ 6pt /l(lfdkl]~)k=i]p~] 

where 1/p+ 1/q= 1 and 6p=(2-p)/8p(q+ 1) q. 

Proof. (i) Let El (l~i~<n) be the conditional expectation with respect to the sigma 

field generated by d~, d 2 . . . . .  d i, so that Eidj=O for l<.i<j<.n. Given any real 2, we have 

Eexp  2 d i =EE,,_lexp 2 d i 

(2 "-J \ ~ E e x p  
\ 

~Eexp ~. di e~247 (since eX<~x+e x2) 

= E exp 2 di En- 1 exp (22dn)2 

<~exp22] ld~ l [~Eexp(2~di ) .  

By iterating the above we obtain 

Eexp  2 d i ~ e x p  22 d i . 
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P[~=j di>~t]=P[exp(2~=ldi)>~eat ] 

~ e-ZtEexp (2 ~=t di) <~exp (2Z ~= lldill2-2t ). 

Setting 2=t/(2 2iL , IIdAlL) we get 

Since also 

P- di~t ~<exp - t  2 2~{[d,.[I 2 
l_ I X  i=1 

we get the desired result. 

(ii) Assume, without loss of generality, that 

I(lldkllgZ=, = 1 

and choose a permutation ~r of  {1 . . . . .  n} so that 

Thus we have for k= ! ,  2 . . . . .  n, 

Jld=tk)H~ ~ k-lip. 

Given an integer N<~n we have 

But 

(l~<k~<n). 

~ (q+ l) N'/q] <~P[ l~= 1 d, rtk) I >~qNl/q]+P[ Ik=~u+l d~(k) I ~ NI/q] �9 

N N N 

z~  [[d~,k)ll= ~< ~ k-'/P < q N'/q, 
k=l k=l  

81 



82 W. B. JOHNSON AND G. SCHECHTMAN 

so we get by Proposition 2 (i), 

P [  I k=~l dk >~(q+l)Nl/q]<~2exp[-N2/q/(4kn_~N+ll[d~(k)H2)] 

~< 2 exp [ N2/q(1 - 2/p )/( 4N ~1- 2/p)] 

= 2 exp [ -  (2-p) N/4p]. 

so that 

If t>-q+ 1, set 

Then 

l <~ N <~ ( q-~)q<~ 2N. 

dk I ~ t ]  ~< P[Ik= ~ dk I ~(q+I)N~/q]<-2expI-(2-p)N/4p] 

~< 2 exp [ - (2-p)  tq/8p(q+ 1)q]. 

If t~q+ 1, then 

2 exp [ - (2-p)  tq/8p(q+ l) q] t> 2 exp [--(2--p)/8p] >>- 2e -v8 > 1. 

We turn to 

Proof of  Proposition 1. For the convenience of the reader, we recall that 

g2 = { -  1, 1 ),.m • (S(n))m 

and for w= (e, zr) E g2, we define 

f(e, at) = I?,i, j a i e : t / i  ) , 
i=1 

where I1" II is an r-norm on R n, the bj.'s are reals, 

al>~a2>~...>~a,,>~O, 0 < r ~ < l < p < 2 ,  and 1/p+l/q=l.  

In order to apply Proposition 2 we need to define a martingale difference sequence 
which sums to f - E f .  

Q.E.D. 
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Set L = { 1 . . . . .  n} x { 1 . . . . .  m} and linearly order  {0) U L by taking 0 as the first e lement  

and using the Hebrew dictionary order  on L; i.e., 

0 < ( 1 , 1 ) < ( 2 ,  1 ) < . . . < ( n ,  1 ) < ( 1 , 2 ) < . . . < ( n , 2 ) < ( 1 , 3 ) <  . . . .  

We let if0={|  f2} and for ( i , j ) E L  we define a sigma field on f2 by saying that an 

atom of  ~i,j) is determined by specifying the values of  el, k and :rk(/) for all (l, k)<~(i,j). 

Then {~t: t E {0} UL} is an increasing sequence of sigma fields; the first field is trivial 

and the last is the collection of  all subsets of  f~. 

For  (i,j) EL  let (i,j) '  be the immediate predecessor  of  (i,j) in {0} UL and define 

d,j  = E(f[ ~(i,j))--E(fl ~(i,j)') 

so that (d(id))(i,j)6 L is a martingale difference sequence which sums t o f - E f .  Thus the 

conclusion (1.8) of  Proposit ion 1 is an immediate consequence of Proposit ion 2 (ii) and 

the following inequality, valid for  all (i , j)C L: 

IId.j)IL ~ 41a, bjl ~ max Ile~lt'- (3.1) 
l<~k<~n 

For  any fixed ( i , j )E L, fix any atom A in ~, j ) ,  and let M be the collection of  all 

atoms in if(i j) which are contained in A. On A, E( f l~ , j ) ,  ) is the average value o f f  on A, 

and if B is an atom of  ~i j ) ,  then E(flY(i,j)) is on B the average value of  f on B. Thus 

(3.1) will follow once we check that for  all B, C E M  

JAy / ( o ) ) -A v / (~o )  --~ 41a i bjl max Ilekll r. 
l<~k<~n 

So fix B, C E M. Since B and C are both contained in the same atom of  ff0,J)', we have 

that the values of  e,, v and err(u) are specified and equal on B and C for all (u, v)<(i, j) .  

Let  us say that on B, e;,j and :rj(i) are specified by 

Ei, j = EB, 

while on C, eid and ~/(i) are specified by 

Ei, j = EC~ 

:rj( i ) = s 

~j(i) = t. 

We define a one to one cor respondence  from B onto C by defining (e, zt)---~(e*, er*), 

where 
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�9 _ ~ e,,,o, if (u, v) :I: ( i , j )  
e .... - [ e  c, if (u, v) = ( i , j )  

t, if (y, w) = ( i , j )  

* if w = j  and ~ ( y )  = s ,  

Zlw(y), otherwise.  

zrw(y) = t 

Given (e, er)EB,  let z be the unique number  in {1 . . . . .  n} such that zrj(z)=t. I f  t = s  

then of  course  z=i .  I f  t+ s  then z> i  because  Jrj(y)= ~*(y)for  all y < i  and t=Jr*(i). Thus 

[ail>~[azl since al>-az>~...>~an>~O and we have  by the triangle inequality, 

~ , r 

If(e, ~r)-f(g*, Jr*) I <<, bw •y W aye~,~y)-bw ey*, w ay e~.(y) 
w=l y=l 

= I lb je~aies-b jecaie t+bjez , jaze t -b jez , jazes l t  ~ 

<.21b~l ' ( la , l+lazl)  r m a x  IlekH r 
l<~k<~n 

I+r r -,:2 Ibj-ail max Ilekll r. 
t<~k<~n 

The inequality (3.8) now follows by averaging over  (e, Jr) in B. Q.E .D.  
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