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1. Introduction

It is by now well-known that for any 1<<s<2, L(0, 1) contains a subspace which is
isometrically isomorphic to /. This of course implies that for any m=1,2, ... and any
e>0, I is l1+e-isomorphic to a subspace of If if n=nle, s, m) is sufficiently large.
Theorem 1, the result of this paper, states that n can be of order m; i.e., that n can be
chosen smaller than 87 'm for some constant 8=8(e,s)>0. This complements the
theorem of Figiel, Lindenstrauss and Milman [4] (cf. also [2], [3] for a somewhat
weaker result) which treated the case s=2.

Actually the proof of Theorem 1 yields more than the above-mentioned result.
First, it shows for 0<s<2 and 0<r<s with r<1, that for every &>0, [ is 1+e-
isomorphic to a subspace of /" if m<fn, where =8¢, s, r)>0 is a constant independent
of n. Secondly, the condition that the range of the isomorphism be {’ can be relaxed.

What is needed is that the range be an r-normed space which possesses a basis (¢;)_, so
that for all scalars (b)),
n 1/r
=( 2kl -
i=1

The proof of Theorem 1, like the earlier proof of the s=2 case in {4], [2], [3], [5] and
[11], is probabilistic in nature. A schematic outline of the usual argument specialized to
the case 1<s<2 and r=1 goes like this: For appropriate m and n, one defines a
probability space (2, P) and a random linear operator or matrix A=A, (w € Q) from [
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into L} (=1} with the L;-normalization). It is important that for each x €7, ||Ax||, is, on

the average, close to |x|;, the norm of x in [T} say,
|E A1 = xl| < elx]s.

Now it is a standard fact that for small £>0, if |||Ax||; —|x|s|]<¢ for all x in an e-net of the
unit sphere of /7', then |||Ax||;—|x|,|<3¢lx|; for all x€I[ (see Lemma 3). Equally
standard is the fact that the unit sphere of an m-dimensional normed space contains an
e-net of cardinality at most exp 2me™') (cf. Lemma 2). Thus, in order to conclude the
proof of the embedding theorem, it is sufficient to prove (and this is the main step) a
distributional inequality which guarantees that for x€ /7,

P{lIIAxll,~EllAx],| > elx|,] < exp (2" m).

In [2], [3] and [11] the probability space is {—1, 1}"'™ with equal mass assigned to

each point, and A, is defined for x=X7., b,e;€17 and w={¢, }1.T ., by

n m

wa=z & be.

i=1 j=1
Notice that the entries in this random matrix are independent. Although we use a more
complicated probability space and the random matrix we use does not have indepen-
dent entries, the approach in [11] which uses a distributional inequality for general
martingales also works in the present situation.

For the most part we use standard Banach space theory notation, as may be found
in [6]. Since it is convenient for us to use the L,-normalization in the range of the
random matrix and the /,-normalization in the domain of the random matrix, we define
for

n
x= Z a;e;ER"
i=1

(where (e))_, are the unit vectors in R”) and for 0<p<e,

n 1/p
|lxll, =~ (E |a,-|">
i=1
n 1/p
x|, = (2 |
i=1

(R", ||-]l,) is denoted by L; and (R",|-|,) by .
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We also need the ‘“‘weak [ >’ norm on R”, defined for x=X",a,e; b
14 =1 ivi

|x], . = max a}i'?,
I<isn
where (o), is the decreasing rearrangement of (Ja)%,. The space (R", ||, » ) is
denoted by /, ,,
For 0<r<I1, an r-norm is a non-negatively valued function, ||-||, on a vector space
which is 0 only at 0 and satisfies the axioms |lax{|=|a|||x||, |x+y|/"<||x||"+]||y||". The most
basic example of an r-norm is, of course ||-||.-

If f is a measurable function on a measure space, f* is used to denote the
decreasing rearrangement of |f].

Finally, we would like to thank Gilles Pisier for a discussion which yielded the
present version of Theorem 1. Originally we used only Azuma’s inequality, Proposition
2(i), which led to a proof that for 1<s<2 and for all £>0, /" 1+¢-embeds into 7, (and
hence uniformly embeds into /], by Maurey’s theorem [8]) as long as m<an/logn for a
certain constant a(g, s)>0. Pisier pointed out to us that by substituting the inequality of
Proposition 2(ii) for Azuma’s in our proof, we could uniformly embed [ directly

into /] provided m=<fn for a certain constant 8=0(s)>0.

2. The random matrix

Given positive integers n and m with m=<n, define Q=Q(n, m) to be the space
{—1, 1}""x[Sm)]™, (2.1)

where S(n) is the symmetric group on {1,...,n}, and endow Q with the probability
measure P which assigns equal mass to each atom.

Given a fixed sequence a,;=a,=...>qa,=0, the entries of the random nXm-matrix
A=A, are defined for 1<i<n, 1<j<m, and for

©=((& )iz 21 15 Tys -5 T,) EQ
by
A0 )) =€, 2.2)

For fixed 0<r<s<2 with r<1, we want A, to be, for some w€Q, a good
isomorphism from [ into L]. Of course, the main case is r=1 and the reader may want
to make this substitution on first reading in order to clean up messy-looking exponents
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and constants. In fact, from Maurey’s work [8] (which is based on Rosenthal’s paper
[10]), it follows formally that if /" embeds uniformly into L for some fixed r<s<2
(where m=m(n) for n=1,2,...), then II' embeds uniformly into L for all r<s. So for
1<s<2, r=1 is, essentially, the general case. On the other hand, the direct embedding
gives a stronger result than that which can be obtained by applying Maurey’s theorem
in that the embedding into L can be taken to be a 1+¢-isomorphism and the range
space need only be a ‘‘random L’ space.

Notice that the columns of the random matrix A defined by (2.2) are independent,
symmetric, and identically distributed, but entries in the same column of the matrix are
not independent. The sequence (a)., is chosen so that the columns of A have
approximately s-stable distribution; what we need is that m-independent functions with
the same distribution as Ae, are, in L,, 1+¢-equivalent to the unit vector basis of [

That such a sequence (a)}_; exists is the content of our first lemma.

LEMMA 1. Let O<r<s<2, >0, and let g be a symmetric s-stable random variable
on [0, 1] with ||g||,=1. Then there exists a=ale, r, s)>0 so that for all positive integers m
and n with m<an, if y1,¥2,...,¥m 18 a sequence of independent, symmetric random
variables such that each |y)| (1<i<m) has the same distribution as that of

y= 2 a; 1y, im) 2.3)
=1

where

i

4]

=g (L) (1ssi<n),
n

then for all scalars (b)iL, we have
m /s m r\ Ur m 1/s
(1-¢) <2 |bj|S> < (E > by, ) <(1+e) <2 |bj|‘> 2.5)
=1 Jj=1 j=1

Proof. We first show that if r=1 or if s<1 and r>s/(s+1) then E|g*—y|'<Kn"*"!,
where K=K(r, s) depends on r and s only. For 1<r<s we use the fact (cf. [7] or [14])
that for all >0

Pg|=n<Cr (2.6)

for some constant C=C(r, s) to get
i/n

Elg*—y|'< E(g¥—y" < J g*
0

1/n
< Cr/s J t—r/sdt — CV/S(I _r/s)—l nr/s——l.
\]
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For s<1, s/(s+1)<r<s we use the fact (cf. [14], p. 54) that the density function p of
a symmetric s-stable random variable normalized in L, satisfies the inequality

p()=D7't*"" for =D

for some constant D=D(r, s).

Let
F(u) = P(g| = u),

then g*=F"" and g*'()=—1/p(g*(t)), 0<t<1. Thus |g*'(1)|<D(g*())**'<DcV* Vs V"
as long as g*(9)=D and

Un F(D)—1in N (\\r
Elg*—y's f g*(t)’+f (g*(t)—g*<t+—>> +J (g*(t)—g*<t+—>>
0 Un h F(D)—1/n R
—1 ®© 1 r
< Cr/s<1_£> nr/s—l+n—rDrCr(s+1)/sf t—r(s+l)/s+ <f g*(t)—g*<t+i>)
s ln F(D)~lin h

~1
< Cr/s<1_£> nr/s—1+DrCr(s+1)/s(r(s+])/s_1)—lnr/s—l+g*<F(D)_i> n'
N n

< Knr/s—l'
Let g,g>,...,8n» be independent, symmetric s-stables with ||g]|,=1 and set for
1sjs=m

n
7= Z a,sign (gj) l[a’_<,gj‘<ai_]].
i=1
Now the z;’s have the same distribution as the y;’s and, by the fact that (g;,—z);.; forms

a l-unconditional basic sequence in L, and by Holder’s inequality, we get that if
I<sr<s<2 or s/(s+1)<r<s<l,
=

E |bj|rE|gj_Zj|r

IANGE

2 bigi—z)
j=1

J

ijIrElg*_ylr < Knr/s——l 2 lbj|r

1 Jj=1

It
.ME

J

m (s—r)s U s ls
K<;) Sbl)
j=1

So for all 6>0 there exists an a>0 such that if m/n<a

(E ' r>wsa(2 |bj|s) "

Z big;—z)
Jj=1

A
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The monotonicity of the function ¢(r)=(E|f |’)”’ implies that the same conclusion holds
for all r, s, 0<r<s<2. The conclusion of the lemma follows now from the fact that

m r m tls
E|D bg =<E W) . Q.E.D.
j=1 j=1

Returning now to the random matrix A defined by (2.2) and (2.4), we check that
E||Ax||,=~|x|, for all x€I So suppose a=a(g, r, s)>0 satisfies the conclusion of Lemma

1 and m=<an and fix x=E7 b.e,€IT. Then

J=1%0%]
r
Zbguan(z) =E

Jj=1

E||Ax||= En™"' 2

i=1

The random variables ¢, ; ) (1<j<m) on Q are independent and symmetric; more-
over, the common dlstrlbutlon of their absolute values is the same as that of “‘y”’ in
(2.3), thus from Lemma 1 we have

(1—-e)|x[[<E|Ax|;< (1+e)|x[. Q@.7)

We now state a distributional inequality, to be proved in Section 2, which allows
us to select an w €Q for which ||A, x||.=|x|, for all x€'. (In the notation of Proposi-

tion 1, set x=(b)2, and ||-||=[{-||,. Then for w=(¢, 7) €Q,

n

m
Eb 2811 n(D €;
j=t

A, xIl7 =

’

which is not the same as f(w). Of course, fand ||Ax||, have the same distribution, which
is all that we need. We state Proposition 1 for frather than for ||Ax|/in order to simplify
notation in its proof.)

PROPOSITION 1. Let 0<r<1<p<?2, let m and n be positive integers, and let Q be
given by (2.1). Suppose that ||-|| is an r-norm on R",(b)[_, ER" and a,2za,=...2a,=0.
Define for o=(c, 1) E€Q

fAw) =

m n
Ebzgu n(t)
j: =

Then for all t>0
Pl|f-Ef|=1] s267(1’[ 4790, t"[(a; b)) 2 1|r—prqoo'lmf<x ”ekquJ (2.8)

-1

where p~'+q~'=1 and 6,>0 depends only on p.
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To apply Proposition 1, we need two standard lemmas involving d-nets of the unit
sphere. By a d-net of a subset, U, of an r-normed space (X, ||-||) we mean a subset M of
U such that for all x€ U,

inf |lx—y||" <.
yEM

LEMMA 2. Let (X,||'|]) be an r-normed space (0<r<1) of dimension m and
suppose that 0<d. Then the unit sphere of X contains a o-net of cardinality at most
expr-10 ' m).

Proof. Let M be a subset of the unit sphere of X maximal with respect to
“|lx=y|"=0 for all distinct points x,y in M’’. M is obviously a d-net of the unit sphere
and the open balls (relative to the metric ||x—y||") of radius 6/2 around the points of M
are pairwise disjoint and contained in B(1+4/2), the open ball around the origin of
radius 14+0/2. Consequently,

card M - vol B(6/2) < vol B(1+4/2).
Since B(ts)=t""B(s) for any s, >0 and dim X=m, we conclude
card M < [2(1+6/2)/81™ = (1+2/8)™"" < exp (2r~'6~'m). Q.E.D.

LEMMA 3. Suppose that (X, ||-|) is an s-normed space (0<s<1), (Y,||-||) is an r-
normed space (0<r<1) and T: X—Y is a continuous linear operator. Suppose that

0<e, 0<1 are such that for some 8"-net, M, of the unit sphere of X and all x€ M we

have
I—e<s|TH s 1+e.

Then for all x in the unit sphere of X we have

1-20—¢
1-90

re 140
< |Tx| sm(lﬂ). 2.9

Proof. Given x in the unit sphere of X, write

o
X = x0+2 a,x,
n=1

with (x,)"_,cM and OSaf,sés"/’ for n=1,2,.... Then
T (T | < [Te—Tyf = | S a, T, s2|a,,|'1rxnrslié(1+g).
n=1 n=1 -

A trivial computation now yields the desired conclusion. Q.E.D.

6-822906 Acta Mathematica 149



78 W. B. JOHNSON AND G. SCHECHTMAN

We can now prove the main result.

THEOREM 1. Let t>0, and suppose that 0<r<s<2 with r<\1. Then there exists
B=pB(,r, $)>0 so that if m and n are positive integers with m<fn, then I is 1+1-

isomorphic to a subspace of L.

Proof. For a value of e=¢(z, r)>0 to be specified later, we take a=af(e, r, s) from
Lemma 1 and let 0<f<a be such that § also satisfies another numerical inequality
which comes up later. Now fix m<pn and let g, (a)_,, Q, and A be as in Lemma 1, so

that for all x€/[,

(1—¢) |x|! < E||Ax||, < (1+¢&) |x[;. 2.10)

Now fix any x=X., b;e,EIT with |x|;=1. Recalling the distributional inequality for s-

[

stable variables mentioned at the beginning of the proof of Lemma 1, we see that the
a;’s defined by (2.4) satisfy

a; < Cl/snl/sl'—l/s

For some constant C=C(r, s). Using this and the easy observation that
2 S 2 il

if the x;’s are disjointly supported vectors in [, ., we get

s
s

m
@ b)y Sols < D 1B @i 2 o < Ol [ . = C.
j=1
Assume that r>s/2 and set p=s/r so that 1<<p<2. Applying Proposition 1 we get for
any x€l”, |x,=1,
P[||lAx|[;—E||Ax||;| = e] < 2exp(—6, e/ C " nra/s~ 1)
— 2exp(—6,£1C" )
so that (since m<fn<an; a from Lemma 1)
P[1-2e < ||Ax|[, < 1+2¢] = 1-2exp(—8,£7C""n).

Using Lemma 2, pick an &"-net of the unit sphere of [* with card M<

exp(2r e m). Then
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P[1-2e<||Ax];<1+2¢ forall xEM]=1-2exp(2r ‘e "m—6,e'C"" 9n)

hence, by Lemma 3,

P[ =2 | <l <

(1+e)(142¢) el
1—¢ 1—¢ s

for all x€ l;"]
=1-2exp[(2r e B~6,62C"" ) n].

Thus if we choose e=&(z, ¥)>0 and B=8(e, r, 5)>0 sufficiently small, we get for m=<pn
that

P[(1-9) x|, <||Axl|, <(1+9) x|, for all x€I"] >%. o1n
This completes the proof in the case r>s/2.

The general case follows formally from the case r>s/2 by iteration. A more elegant
way to finish (which yields a better estimate for ) is to use (2.11) for two different
values ry, r, with s/2<r;,r;<s to select an w € Q so that A, is simultaneously a good
isomorphism form /7' into L; and into L} and use a standard extrapolation argument to

conclude that A4, is also a good isomorphism from /' into L. Q.E.D.

Remarks. (1). 1t follows from a result of Maurey’s [8] and Theorem 1 that for
0<r<s<2 and m<ghn, I’ is K(r, s)-isomorphic to a subspace of //, but we do not know
whether K(r, s) can be taken close to one when r>1.

(2) As is easily seen from the proof, the assumption in Theorem 1 that the range
space is L] can be relaxed a bit. It is enough to assume that the range is an r-normed

space which contains vectors (e)’_, so that for all (b))

=1
n

Zibiei

i=1

This perhaps explains why our proof breaks down when r approaches 2 (i.e. for r>1),
because (2.12) is true for r=2 if the e;’s are all the same unit vector in any Banach
space.

Av

= > |bf. @.12)
i=1

3. The distributional inequality

The main tool for proving Proposition 1 is a martingale inequality which, along with its
proof, was communicated to the authors by Gilles Pisier (part (ii) of Proposition 2).
This inequality is in turn a consequence of Azuma’s martingale inequality (part (i) of



80 W. B. JOHNSON AND G. SCHECHTMAN

Proposition 2) [1], [13]. Versions of Azuma’s inequality have previously been used in
Banach space theory [9], {111, [12].

PROPOSITION 2. Let (d);_, be a uniformly bounded martingale difference se-

quence (i.c., (Zf;, d)i_, is an Le-bounded martingle which has mean zero ).

(i) (Azuma) For all >0,
P[ 34,
k=1
(ii) For all 1<p<?2 and all >0,
p[ S,

k=1
where 1/p+1/q=1 and 6,=(Q2—p)/8p(g+1)4.

2t]<2exp - 42”@”1]-
k=1 .

= t] <2exp [0,/ |(ld L)} -]

Proof. (i) Let E; (1<i<n) be the conditional expectation with respect to the sigma
field generated by d,, d,, ..., d,, so that E;d;=0 for 1<i<j<n. Given any real A, we have

d,») =FE,_,exp (A 2 d,-)
1 i=

n
i= i=1

Eexp (/1

!

n-1
=Eexp </1 > d,.> E,_,exp(id,)

i=1

n—1
<Eexp (/1 > d,.> E, [Ad,+exp(A2d})] (since e*<x+e")
i=1

n~1
=Eexp (/1 z d,.> E,_,exp(A*d®)

i=1

n—1
<expA’||d,||Z Eexp (A > d,.) :

i=1

By iterating the above we obtain

n—1 n
Eexp </l 2 d,-) <exp <12 E ”di“i)‘
i=1 i=1
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Hence for all >0,

P[Z d,= r} = P[exp (z > d,.> > e*’]

<e™ME exp(l Z di) <exp (/12 2 |4 —At).
i=1

i=1

=

Setting A=t/ £, ||d]|%) we get

P[Z d,er] <exp [~12/(2§ ||d,.||i)].
P[—g d= t] <exp [—t2/<2§ “dJli,)]

we get the desired result.
(ii) Assume, without loss of generality, that

Since also

|(||dk||w)z=l|p,w =1

and choose a permutation 7 of {1, ...,n} so that

Il = Il lI*  (1<k=n).

Thus we have for k=1,2,....n,

lld ol < &=

= qN”"] +P[

N N
S D [dplle < D, k™7 < gN™,
k=

1 k=1

Given an integer N<n we have

P[ Sa
k=1

n

2 d:rz(k)

k=N+1

N
z dn(k)

k=1

2(q+l)N”"] sP[

= N“"].

But

N
E dn(k)
k=1
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so we get by Proposition 2 (i),

P[ ;d ?((I+1)N1/q:|$2exl)[‘NZ/q/<4 2 ”drt(k)Hi>:|
- k=N+1

< 2exp [N¥4(1-2/p)/(4N"1~2P]
=2expl—(Q2—p) N/4p].

If t=q+1, set

so that
1<SN< (—’—)" <2N
g+1
Then '
‘P[ d, ;z]s P[ d, 2(q+1)N”"] <2exp[-(Q2—p) N/dp]
k=1 k=1
<2exp[—(Q2-p)*/8p(g+1)1].

If t<q+1, then

2exp[—Q—p) t9/8p(q+1)9}=2exp[-2—p)/8p]= 2¢ B> 1. Q.E.D.

We turn to

Proof of Proposition 1. For the convenience of the reader, we recall that
Q={-11}""X(S(n)"

and for w=(¢, 1) € Q, we define

R

n
2 bjz &,j i€
j=1

i=1

r

fle, m)=

y

where ||-|| is an -norm on R”, the b;’s are reals,
aGza=...2a,20, 0<r<sl<p<2, and lip+llg=1.

In order to apply Proposition 2 we need to define a martingale difference sequence
which sums to f—Ef.
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Set L={1,...,n}x{1,...,m} and linearly order {0} UL by taking 0 as the first element
and using the Hebrew dictionary order on L; i.e.,

0<(1,D<2,D<...<(n, H<(1,2)<...<(n,2)<(1,3)<....

We let F,={J, Q} and for (i,j) € L we define a sigma field on Q by saying that an
atom of 97(1., P is determined by specifying the values of g, and (D) for all (I, k)<(,j).

Then {%,.t€{0} UL} is an increasing sequence of sigma fields; the first field is trivial
and the last is the collection of all subsets of Q.
For (i,j) €L let (i,j)' be the immediate predecessor of (i,j) in {0} UL and define

d; ;= E(f|F; )—Ef|F; ;)

so that (d; ;)); e, 1s @ martingale difference sequence which sums to f—Ef. Thus the

conclusion (1.8) of Proposition 1 is an immediate consequence of Proposition 2 (ii) and
the following inequality, valid for all (i,j)€L:

lldg; )l < 4la; b max llelt" 3.1

For any fixed (i,j) €L, fix any atom A in &, and let o be the collection of all
atoms in &% ; which are contained in A. On A, E(f|%; jy) is the average value of fon 4,
and if B is an atom of % ;, then E(f|% ;) is on B the average value of f on B. Thus
(3.1) will follow once we check that for all B, CE o

Av flw)— Av flw)| <4|a;b| max |le|".
w€B wEC 1sks

=K=n

So fix B, C€ 4. Since B and C are both contained in the same atom of % ., we have
that the values of ¢, , and 7,(u) are specified and equal on B and C for all (u, v)<(, j).

Let us say that on B, ¢; ; and 7;(i) are specified by

£ ;=€ TLD)=s
while on C, ¢; ; and 7(i) are specified by

& ;=& )=t

We define a one to one correspondence from B onto C by defining (g, m)—(¢e*, 7%),
where
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L [ @G
£u g gC’ lf (u, U) — (l,J)
2 if (v, w)=0(0.j)
woy=1s  itw=j and mO)=t

7, (y), otherwise.

Given (¢, #) EB, let z be the unique number in {1, ..., s} such that 7{z)=¢. If t=5
then of course z=i. If t#s then z>i because 7 (y)=7(y) for all y<i and t=2}(i). Thus

la]=|a,| since a;=a,=...2a,=0 and we have by the triangle inequality,

Zwa &€y ()b €, Ay e

w=1 y=1

r

|fle, m)—fle*, a*)| <

=||bjepa,e,~b,eca,e+b;e, ;a e—be, ;a.el

<2|bf(|a|+|a,]) max [le,}/
I1sksn

<2'+’\b a| max llell".

Isksn

The inequality (3.8) now follows by averaging over (g, 7) in B. Q.E.D.
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