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Introduction 

Let H denote a complete simply connected Riemannian manifold of nonpositive 

sectional curvature, and let I(H) denote the group of isometries of H. In this paper we 

consider density properties of subgroups D~_I(H) that satisfy the duality condition 

(defined below), These density properties also yield characterizations of Riemannian 

symmetric spaces of noncompact type and results about lattices in H that strengthen 

several of the results of  [ 11 ] and [ 15]. If H is a symmetric space of noncompact type and 

if D is a subgroup of Io(H), then the duality condition for D is implied by the Selberg 

property (S) for D [20, pp. 4-6] or [10]. A partial converse is obtained in [10]. It is an 

interesting question whether the two conditions are equivalent in this context. 

Our density results are very similar to those of [5]. In Proposition 4.2 we obtain a 

differential geometric version of the Borel density theorem (cf. Corollary 4.2 of [5]): 

Let H admit no Euclidean de Rham factor, and let G~_I(H) be a subgroup whose 

normalizer D in I(H) satisfies the duality condition. Then either (1) G is discrete or (2) 

there exist manifolds Hi , / /2  such that (a) H is isometric to the Riemannian product 

HlXH2, (b) H1 is a symmetric space of noncompact type, (c) ((~)0=Io(Hl) and (d) 

there exists a discrete subgroup B~_I(Hz), whose normalizer in 1(//2) satisfies the 

duality condition, such that Io(HO• is a subgroup of t) of finite index in 0 .  Using the 

result just quoted or the main theorem of section 3 we then obtain the following 

decomposition of a manifold H whose isometry group I(H) satisfies the duality condi- 

tion (Proposition 4.1): Let I(H) satisfy the duality condition. Then there exist manifolds 

H0, Ht and H2, two of which may have dimension zero, such that (1) H is isometric to 
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the Riemannian product Ho•215 (2) H0 is a Euclidean space, (3) H1 is a 

symmetric space of noncompact type and (4) 1(112) is discrete but satisfies the duality 

condition. 

We now define both the duality condition and the property (S) in a way that will 

make apparent the close relationship of the two conditions. If G is a topological group 

then a subgroup F of G is said to satisfy property (S) in G if for every neighborhood U 

of the identity in G and every element of g E G there exists an integer n>0 such that 

gnE U. F. U [5]. Following [12] one may define the property (S) equivalently as follows. 

Let F _ G  be a subgroup and let the left coset space G/F be given the quotient topology. 

Left translations act by homeomorphisms on G/F. A point x E G/F is a nonwandering 

point for a left translation T e if for every open set U containing x there exists a 

sequence of integers nk diverging to +oo such that [(Tg)nk(U)] N U is nonempty for 

every k. The group F determines a nonwandering set g2(G,F)={gEG: every-point 

x E G/F is nonwandering relative to the left translation Tg}. Then F satisfies property 

(S) if and only if f2(G, F)=G. 

Now let H be a complete simply connected Riemannian manifold of nonpositive 

sectional curvature, and let D~_I(H) be a subgroup. Using the notation of [16] we say 

that D satisfies the duality condition if for every geodesic 7 of H there exists a sequence 

{q0n} c_D such that q0~ p--.),(~) and q~-i (p)___~),(_ oo) as n---~ ~ for any point p E H. Follow- 

ing [1] or [2] we restate this condition in equivalent form. For each group D~_I(H), we 

define a nonwandering set Q(D)~_T~ H given by f2(D)={vE T~ H: for any open set O 

containing v there exist sequences {~,}~_D and {t~}~_R such that t , ~ + ~  and 

[(tpn). Tt, (O)] n O is nonempty for every n}. Here T1H denotes the unit tangent bundle 

of H and { Tt} denotes the geodesic flow in T~ H. One may then show by the argument o f  

Proposition 3.7 of [13] that D satisfies the duality condition if and only if f2(D)=T1H. 

If F is a subgroup of a topological group G such that the quotient space G/F admits 

a finite G-invariant measure that is positive on open sets then F satisfies the property 

(S). Similarly if F_~I(H) is a subgroup such that the quotient space H/F is a smooth 

manifold of finite volume (either compact or noncompact), then F satisfies the duality 

condition. In fact if D_~I(H) is a subgroup such that H/D is a smooth manifold, then D 

satisfies the duality condition if and only if every vector in Tl(H/D) is nonwandering 

relative to the geodesic flow. 

The main result of the paper lies in section 3 but we omit a statement here since the 

corollaries are of greater interest. Two corollaries have been stated already and we now 

present others, beginning with some results on lattices. A group F_~I(H) is a lattice if 

the quotient space H/F is a smooth manifold of finite Riemannian volume, and F is 
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uniform or nonuniform according to whether H/F is compact or noncompact. A lattice 

F is reducible if H/F admits a finite Riemannian cover that is reducible (can be 

expressed as the Riemannian product of two manifolds of positive dimension). A lattice 

F is irreducible if it is not reducible. 

The existence of irreducible lattices in reducible Riemannian symmetric spaces of 

noncompact type is well known. See for example [4] and [28, p. 64]. Surprisingly, 

irreducible lattices do not occur in reducible spaces H that are not Riemannian 

symmetric. More precisely, we establish the following (Proposition 4.5), which is a 

corollary of the more comprehensive Proposition 4.4: Let H be a reducible space with 

no Euclidean de Rham factor and let F be a lattice in H. If F is irreducible then H is a 

symmetric space of noncompact type. 

Irreducible uniform lattices F* in a reducible symmetric space H* of noncompact 

type also satisfy a certain rigidity property. Let F be a lattice in an arbitrary space H 

such that F is isomorphic as a group to F*. Then the quotient manifolds H/F and H*/F* 

are isometric up to a normalization of the H*-metric provided that H and H* satisfy 

certain conditions on their de Rham factorizations. See Proposition 4.6 for a precise 

statement. These conditions on the de Rham factorization of H and H* may in fact be 

unnecessary. If so, one would then have a more general version of Mostow's rigidity 

theorem for irreducible uniform lattices in a reducible symmetric space of noncompact 

type. 

Finally one may apply the main result of section 3 to answer some questions posed 

in [11] that concern the characterization of symmetric spaces of noncompact type. In 

particular (Proposition 4.8), we show that if H is an irreducible manifold whose 

isometry group I(H) satisfies the duality condition, then either I(H) is discrete or H is a 

symmetric space of noncompact type. 

We describe the organization of the paper. Section 1 contains preliminary material. 

In section 2, we prove a "sandwich" lemma that generalizes the "flat strip" lemma of 

[16] or [29] from two complete geodesics whose Hausdorff distance is bounded to two 

complete totally geodesic submanifolds of arbitrary dimension whose Hausdorff dis- 

tance is bounded. This lemma allows us to show that under certain conditions a 

complete totally geodesic submanifold B of H is a leaf of a parallel foliation N 

(Proposition 2.2). Consequently, if B* is a leaf of the orthogonal foliation N • , then H is 

isometric to the Riemannian product of B and B* by the de Rham decomposition 

theorem. 

In section 3 we use the decomposition result in Proposition 2.2 of section 2 to 

prove the main theorem. If G~_I(H) is the group that appears in the statement of the 
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theorem, then we let B denote the set of points in H that are fixed by K, a maximal 

compact subgroup of G. The set B is a complete totally geodesic submanifold of H to 

which one can apply Proposition 2.2 and obtain the main theorem. 

In section 4, we present applications of the main result of section 3, several of 

which have been described above. We conclude with some appendices. At various 

points, especially in section 3, we have omitted or deferred proofs of some lemmas to 

clarify the exposition. Omitted proofs may be found in the appendices. 

We take this opportunity to correct some inaccuracies in [11], notably in the 

statements of Proposition 2.5, Proposition 4.10, Theorem 4.5 and in the proofs of 

Proposition 4.12 and Theorem 4.13. Instead of proving or assuming as the case may be 

that a Lie group G of isometries of H is noncompact and semisimple we should be 

proving or assuming that the group G is semisimple with no compact factors. The 

necessary modifications are provided by Lemmas 3.1 and 3.2 of this paper. 

Finally, we wish to acknowledge the influence of the ideas of M. Goto and M. 

Goto [17] and of E. Heintze [19]. In both cases the totally geodesic submanifold B of H 

that consists of the points in H fixed by K, a maximal compact subgroup of a 

semisimple isometry group G, plays a major role in some kind of decomposition of H. 

This manifold B also plays a major role in the proof of our main result in section 3. 

Heintze in fact sketched the idea for a proof of the main theorem in section 3 in the case 

that G=I0(H) and I(H) contains a uniform lattice F. 

Section 1. Preliminaries 

All Riemannian manifolds in this paper will be assumed to be complete, connected and 

C ~ and to have nonpositive sectional curvature. M will denote a nonsimply connected 

manifold a n d / / a  simply connected manifold, sometimes referred to as a Hadamard 

manifold. All geodesics in both H and M will be assumed to have unit speed. Tl H, 

T1 M will denote the unit tangent bundles of H, M. I(H) will denote the isometry group 

of H and I0(H) the connected component of I(H) that contains the identity. 

For manifolds of nonpositive sectional curvature we shall assume the notation, 

definitions and basic facts found in [16] and in shorter form in [11, pp. 76-78] or section 

1 of  [15]. 

Duality condition 

This is a condition on subgroups D of I(H) and is closely related to the Selberg property 

(S) for subgroups of a topological group G. See the introduction for a definition and 
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discussion of both properties. We remark again that if G=I0(H), where H is a Rieman- 

nian symmetric space Of noncompact type, then any subgroup D~_Io(H) that satisfies 

property (S) must also satisfy the duality condition [10], [20]. A partial converse is 

given in [10]. Whether the two properties are equivalent in this context is interesting 

and unknown. 

Now let H=H~ •215 • k>-2 be a Riemannian product of Hadamard mani- 

folds. One may show without difficulty that the duality condition is preserved by the 

projection homomorphisms pi onto l(Hi), 1 <.i<.k. To explain more precisely we consid- 

er a group D~_I(H) that leaves invariant the foliations of H corresponding to the factors 

Hi, 1 <.i<.k. Each element go of D can be written go =go lx (t72 X . . .  X gok, where goi E I(Hi) for 

l<.i<.k, and we obtain projection homomorphisms Pi: D~I(Hi)  given by pi(go)=goi. It is 

not difficult to show that if D satisfies the duality condition in H, then Di=pi(D) 

satisfies the duality condition in H; for l<~i<.k. In general, the groups Di will not be 

discrete even if D is discrete. 

If H=HlXH2x . . .  xHk, k~2, is a nontrivial Riemannian product and if D~_I(H) is 

any subgroup, then there exists a subgroup D* ~D of finite index in D whose elements 

leave invariant the foliations of H corresponding to the factors Hi, l<~i<-k. To see this 

we observe that if go E 1(/4) is an arbitrary element then go permutes the foliations of H 

corresponding to the factors in the de Rham decomposition of H [24, p. 192]. In 

particular any group D~_I(H) admits a finite index subgroup D* whose elements leave 

invariant all of the de Rham foliations. If H=H1 x.. .  xHk is any Riemannian product 

decomposition of a Hadamard manifold H, then each factor H; is isometric to the 

Riemannian product of some finite collection of de Rham factors of H and the foliation 

of H that corresponds to/4,, is the orthogonal direct sum of some finite collection of the 

de Rham foliations of H. In particular, the subgroup D* leaves invariant each foliation 

of H corresponding to a factor H;, 1 <<.i~k. Using this argument, we note that if D=-I(H) 

then D**=I(HOx ... xI(Hk) has finite index in D. 

For reasons partly explained in the preceding two paragraphs, it is often necessary 

to shift consideration from a given group D~_I(H) to a suitable subgroup D* of finite 

index in D. In such a situation the following result is useful 

PROPOSITION. Let H be a Hadamard manifold and let D~I(H) be a subgroup 

that satisfies the duality condition. I f  D* is a subgroup o lD with finite index in D, then 

D* satisfies the duality condition. 

Proof. See Appendix I. 

4-822906 Acta Mathernatica 149 
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Symmetric spaces of noncompact type 

We conclude section 1 with a quick summary of the basic facts about Riemannian 

symmetric spaces that we need in this paper. The facts described below are due to E. 

Caftan [6], [7], [8], [9]. They may also be found in [21, pp. 121-125; 156-159; 173-174; 

205; 214-219] and [30, pp. 232-247]. 

A (real) Lie algebra 9 is semisimple if the bilinear Killing form B: (X, Y)--~ 

Tr(adX ad Y) is nondegenerate on ~. A semisimple Lie algebra g is compact if B is 

negative definite on g. A noncompact semisimple Lie algebra 9 admits a Cartan 

decomposition; that is, there exists a subalgebra f and a vector subspace ~ such that 

g = f O ~ ,  [f, ~]___ ~ ,  [~, ~]~_f, B is negative definite on f and positive definite on ~ .  

A Riemannian manifold N is a Riemannian symmetric space if for each point q E N 

the locally defined geodesic symmetry Sq: expq(X)--->expq(-X),XE Tq(N), extends to 

a global isometry of N. Let G be a connected semisimple Lie group with noncompact 

Lie algebra 9, and let g = f O ~  be a Cartan decomposition. If K is a Lie subgroup of G 

with Lie algebra 3, then the left coset space G/K is a Hadamard manifold and a 

Riemannian symmetric space of the noncompact type relative to any G-invariant 

Riemannian metric. The tangent space to G/K at eK may be identified with the vector 

subspace ~ and the geodesics starting at eK have the form t~->exp(tX)K for X E ~ .  

Moreover, r(G)=I0(G/K), where for g E G, z-(g) is the left translation by g. 

If G, K are as above then there is an essentially unique G-invariant Riemannian 

metric on G/K. Identifying the tangent space at eK with ~ implies that the G-invariant 

metrics on G/K are in one-one correspondence with the ad(f)-invariant inner products 

Q on ~ ,  those inner products Q such that Q(ad Z(Y), X ) = -  Q(Y, ad Z(X)) for Z E f and 

X, YE ~.  If 9 is simple then any ad(f) invariant inner product on ~ is of the form 2B for 

some ~.>0, where B is the Killing form of 9. In general, 9 is a direct sum @7=1~i, where 

{gi}7=l are the simple ideals of g. Any Cartan decomposition 9 = f O ~  is of the form 

f= Oi~lf i and ~ =  Oj"=1~ i, where 9i=fi(~i is a Cartan decomposition for 9i. Any ad(f)- 

invariant inner product Q on ~ is of the form Q= EiL~2iB;, where 2i>0 and Bi=B on 

~i, zero on ~j  for j:~i. 

We conclude the section with a special case that arises later. If G is a noncompact, 

connected semisimple Lie group with finite center and if K is a maximal compact 

subgroup of G, then the coset space G/K is a Riemannian symmetric space of the 

noncompact type. One shows that the Lie algebra f of K is a maximal compact 

subalgebra of ~ and hence part of a Caftan decomposition for ~. In this case, it is 

known that any two maximal compact subgroups of G are conjugate in G, and this 

conjugacy induces a conjugacy of the corresponding Lie algebras in g. 
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Section 2. The Sandwich lemma 

Our model for this result is the following. Let 7~,72 be two maximal geodesics of H 

such that 71(~)=72(oo) and 71(-~176 Then it is known by Lemma 5.1 of [16] or 

[29] that 71 and 72 bound a f iat strip; that is, there exists a number c>0 and an 

isometric, totally geodesic imbedding F:R• such that F(t,O)=71(t) and 

F(t,c)=Tz(t) for suitable parametrizations of 71,72 and all t ER. The number 

c=d(71 t, 72)=d(72 t, 71) for every t E R. The result of this section is a generalization of 

the result just quoted. We present two applications of the "Sandwich lemma" that will 

be useful in the proof of the main theorem. 

If B is any  complete, totally geodesic submanifold of H, then one may naturally 

include B(~) as a subset of H(~). Given a point xEB(~) let x be written as 7(oo) for 

some geodesic 7 of B. Since B is totally geodesic the curve 7 is also a geodesic of H and 

determines a point x*=7(o~) in H(~). The map x ~ x *  imbeds B(~) as a subset of H(~). 

We are now ready to state the lemma. 

LEMMA 2.1. Let B1, B 2 be distinct complete, totally geodesic submanifolds o f  H 

such that BI(~)=B2(oo)~_H(~). Then there exists a number c>0 and an isometric, 

totally geodesic imbedding F:BI• such that F(b,O)=b for all bEB1 and 

F(B1 • {c})--B2. 

The proof will involve some intermediate results. We recall that if B is any totally 

geodesic submanifold of H, then by Lemma 3.2 of [3] there is a unique perpendicular 

geodesic from a point not on B to B. 

SUBLEMMA 1. For each bEBI  let V(b) denote the unit vector tangent to the 

unique perpendicular geodesic from b to B2. Then 

(i) there exists a constant c>0 such that d(b, Bz)=d(b' ,BO=c for every b EB1, 

b' EB2, 

(ii) V is a C ~ normal vector field on Bj, 

(iii) B2 = {expb (cV(b)) : b E B1 }. 

Proof. To establish (i) it suffices to show that given b EBl we have 

d(b, B2)<-d(b',B2) for any point b' EBl. Let b, b' EBI be given and assume that b#:b'. 

Let 7 be the unit speed geodesic of H such that V(0)=b and V(t0)=b ', where to=d(b, b'). 

Note that 7(R)~_B1 since B1 is totally geodesic and contains both b and b'. Now let b* 

be the foot of b on 92, and let 7* be the unit speed geodesic of H such that V*(0)=b* 

and 7*(~)=V(~). It follows that 7*(R)~B2 since B2 is totally geodesic and 
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B2(~)=Bl(oa). By Theorem 4.1 of [3] the function f(O=d2(yt, y *) is a C = convex 

function and f is bounded above for t~>0 since ~,, ~,* are asymptotic. Hence, f(t) is 

nonincreasing in t and we see that d2(b',B2)=d2(~,to,B2)<~d2(Vto,~,*)~d2(~,O,v*)= 
d2(b, b*)=d2(b, B2). Since b, b' are arbitrary points in B1, it follows that b~d(b, B2) is 

constant on B1. Similarly b*~d(b*, Bi) is constant on B2. 

We prove (ii) and (iii). It follows from the previous paragraph that any perpendicu- 

lar from BI to B2 or from B2 to B~ is mutually perpendicular to both B1 and B2. 

Hence the unit vector field V is a normal vector field on B~. Moreover 

B2={expb(cV(b):bEBl}, where c>0 is the constant of (i). Finally, cV=(exp)-l(B2), 
where exp•177 is a diffeomorphism by Lemma 3.1 of [3]--~,-Bi L denotes the 

normal bundle of B1. It follows that cV and hence V is a C a vector field on B~. 

SUBLEMMA 2. Let P2 : H---->B2 be the orthogonal projection. I f  ~(t) is a unit speed 
geodesic in BI, then V*(t)=(P2ov)(t)=expyt(cV(vt)) is a unit speed geodesic in B2, 

and ~, y* bound a flat strip in H. 

Proof. Let P1 :H--->BI be the orthogonal projection on Bi. The fact that any 

perpendicular from B~ to Bz or from B2 to B1 is a mutual perpendicular implies that 

PloP2 and P2oP1 are the identity maps when restricted to B~ and B2. Hence 

P2:Br->B2 and PI:Bz--->BI are diffeomorphisms. By Lemma 3.2 of [3] we know that 

d(Pl b, P1 b')<-d(b, b') and d(Pza, P2 a')<-d(a, a') for all points b, b' in B2 and a, a' in 

B1. It follows that P~ and P2 are distance preserving maps when restricted to B2 and Bi 

and hence are isometries. Therefore 7*(t)=(Pz o ~)(t) is a unit speed geodesic of B2 and 

also of H. By Lemma 5.1 of [16] the geodesics ~,, ~,* bound a flat strip in H since 

d(yt, ~,*t)=--c for all t. 

We are now ready to prove Lemma 2.1. Let B1,B2 be distinct complete, totally 

geodesic submanifolds of H with B~(oo)=B2(~). Let V be the C = unit normal vector 

field defined on B~ as in Sublemma 1. Let c>0 be the value of the constant functions 

b~->d(b, B2) and b'~->d(b', BO, where b E B1 and b' E B2. Define a map F:  B1 • [0, c]-->H 

by F(b, t)=expb(tV(b)). Clearly F is C = and F is one-one since each point of H has a 

unique closest point on B1. Moreover F(BI • {c})=B2 by the earlier sublemmas. Any 

geodesic in B~ x [0, c] of the form t~-~,(b, to+t) is clearly carried by F into a geodesic of H 

of the same speed that is mutually perpendicular to B~ and BE. To prove that F is an 

isometric totally geodesic imbedding it suffices to show that if 7(s)=(y~(s), to+as) is a 

constant speed geodesic in B1 x [0, c] with IlY] (0)11 >0, then (Fo),) (s) is a geodesic in H 
with the same speed as V. We may assume without loss of generality that V has unit 

speed. If I[)'~ (0)[l=fl>0 then o*(s)=Vl(S/fl) is a unit speed geodesic in B~. If we define 
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G:R•  c]---~H by G(s, t)=eXpo.s(tV(o*s)), then G is a totally geodesic, isometric 

imbedding by Sublemma 2 and Lemma 5.1 of [16]. Now (Fo7)(s)=F(yls ,  t0+as) = 

exp~,s ([to+as]V0q s)) =G(fls, to+as). Therefore (Fo Y) (s) is a geodesic of H since 

s~(flS, to+as) is a geodesic of R• c]. Note that l=l17'(0)]12=flz+a 2. Hence 

]](Foy)' (0)[12=flZlla, ~/Osll2+azlla , O/~tll2---fl2d-a2= l. This completes the proof of 

Lemma 2.1. 

Riemannian product decompositions 

We apply the lemma above to obtain two results that have some independent interest. 

Here they are applied to the main theorem of the next section and to the last two results 

of section 4. 

PROPOSITION 2.2. Let B ~ H  be a complete totally geodesic submanifold and let 

X=B(oo)~H(oo). Let D=(q0EI(H):q0(X)=X}. I f  L(D)=H(oo) then there exists a com- 

plete, totally geodesic submanifold B' o f  H such that H is isometric to the Riemannian 

product o f  B and B'. 

COROLLARY 2.3. Let F~I(H) be a subgroup such that F leaves invariant a 

complete totally geodesic submanifold B o f  H and L(F)=B(oo). Let D be the normalizer 

of  F in I(H). I f  L(D)=H(oo) then there exists a Riemannian product decomposition 

Hi • o f  H such that (i) Hl(~)=B(oo) and B is one of  the leaves o f  the decomposition, 

(ii) every element q~ E D has the form Cpl • 92, cpi E l(Hi) for i= 1,2, (iii) every element Y E F 

has the form y=71•  some Yl EI(H0. 

We prove the corollary first, assuming the result of Proposition 2.2. Let 

X=B(oo)~H(oo). Since D normalizes F it follows that q?X=X for every cpED. By 

Proposition 2.2 there exists a Riemannian product decomposition H~• of H such 

that HI(~)=B(oo)=X. The proof of Proposition 2.2 will show that B is one of the leaves 

of the parallel foliation of H corresponding to H~ and will show also that D leaves 

invariant the foliations of H corresponding to H~ and H2. Hence every element q0 of D 

can be written qo=qolxq92, where qgiEI(Hi) for i=1,2. 

We show that every element in F can be written 7=y~x{1} for some y~EI(H~). 

For i= I, 2 let D;, Fi denote the subgroups of I(Hi) that consist of the ith components of 

the elements q? of D, F in the expression q~= q~ • cp2. The totally geodesic submanifold B 

can be identified with H1 • {P2} for some P2 ~ H2 and P2 is fixed by every element of F2 

since F leaves B invariant. The fixed points of F2 in H2 form a closed convex set that 
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contains the orbit Dz(p2) since F is normal in D and hence F; is normal in D; for i= 1,2. 

The fact that L(D)=H(~) implies that L(Di)=Hi(~) for i= 1,2 and therefore F 2 fixes 

every point of H2, the smallest, closed convex set that contains Dz(P2). Therefore 

F2= (1} and the corollary is proved. 

We now prove Proposition 2.2. Let H*--{p E H: there exists a complete, totally 

geodesic submanifold B*~_H with p EB* and B*(~)=B(~)=X}. The submanifold B* 

containing p is unique as one may see by inspection or by applying Lemma 2.1. The 

main step of the proof is to show that H*=H. We then define a foliation N in H by 

letting N(p) be the tangent space at p to Bp, the complete, totally geodesic submanifold 

with p EBb, and Bp(OO)=X. Finally, we show that N is a parallel foliation in H. Hence 

the orthogonal distribution N • is also a parallel foliation and if B, B' are maximal 

integral manifolds of N, N • through a fixed point p of H, then H is isometric to the 

Riemannian Product B• by the de Rham decomposition theorem [24, p. 187]. 

Since L(D)=H(~) it will follow that H*=H when we show that H* is invariant 

under D, closed and convex in H. By hypothesis H*~_B is nonempty and clearly H* is 

invariant under D; if p* E H* then p* EB* where B* is totally geodesic with B*(~)=X 

and hence q~p E q~B* with (cpB*) (o~)=cpB*(oo)=q~X=X for every cp ED. We show that H* 

is closed in H. Let {p,}_~H* be a sequence converging to a point p E H. Let B, be the 

unique complete, totally geodesic submanifold of H with P, E B, and B,(~)=X. By the 

lemma above, the manifolds B, have the same dimension k~>l for every n. Let 
{a~,), (,) .... a k } be an orthonormal basis for Tp,(Bn) for every n. Passing to a subsequence 

let aln)--->aiETp(H) as n--->+~ for every l<.i<~k. Then {al . . . . .  ak} is an orthonormal 

subset of TpH. Let V be the span of {al . . . . .  ak} in TpH and let Bp=expp(V). It is 

routine to show that Bp is complete and totally geodesic with Bp(~)=X, which shows 

that H* is closed in H. 

We show next that H* is a convex subset of H. Let p, q be any two points of H*, 
and let r be an interior point of the geodesic segment joining p to q. Let Bp, Bq be the 

complete totally geodesic submanifolds of H such that pEBp, qEBq and 

Bp(oo)=Bq(~)=X. By the Sandwich lemma there exists a number c>0 and an isomet- 

ric, totally geodesic imbedding F:Bp• c]--->H such that F(b, 0)=b for all b EBp and 

F(Bpx{c})=Bq. Choose a point p'  EBp such that q=F(p', c). Let 71 : [0, c]--->Bp be the 

constant speed geodesic of H such that y1(0)=p and 71(c)=p'. Let 7(s)=(yl(S),S), a 
geodesic in B1• Then o(s)=(Foy)(s ) is that geodesic in H with o(0)=p and 

a(c)=q. Hence r=o(so) for some SoE(O,c). Therefore, rEBso={F(p*,so):p*EBp}, 
Since F is a totally geodesic isometric imbedding it follows that Bt = {F(p*, t) :p* EBp} 
is a complete, totally geodesic submanifold of H for every tE [0, c]. Since d(p*,Bt)=t 
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for every  tE[0,  c] it follows that Bt(~)=Bp(oo)=X for every  tE[0,  c]. Hence  

r E Bso~_H*, which proves  that H* is a convex  subset of H. Finally, we conclude that 

H * = H  since L(D)=H(oo) and H* is closed, convex and invariant under  D. 

We now define a parallel foliation N in H. For  each p E H let N(p) = Tp(Bp), where 

Bp is the unique complete  totally geodesic submanifold of  H with p E Bp and Bp(~)--X. 

Then N(p) has the same dimension for each p by Lem m a  2.1. 

We show first that  N is a C = distribution in H. Fix a complete,  totally geodesic 

submanifold B of  H such that B(oo)=X and let B • denote the normal bundle of  B in H.  

By L e m m a  3.1 of  [3] the map e x p : B •  is a diffeomorphism. Using the two 

sublemmas of  L e m m a  2.1, it is easy to prove the following 

LEMMA 2.4. Let  ~ E B  • be arbitrary. Then there exists a C ~ normal vector f ield V 

on B such that (1) V(p)=~, where p is the point o f  attachment o f  ~, (2) Vv V=O for any 

vector v tangent to B, (3) B '={expq (V(q ) ) :qEB}  is a complete totally geodesic 

submanifold o f  H with B'(oo)=X. 

Now we construct  C ~ unit vec tor  fields E1 . . . . .  Er, where r is the codimension of  B 

in H, such that E; is normal to B and VvE;=0 for each vector  v tangent to B and each i. 

We then define a diffeomorphism F:B• given by F(p,~)=expp(~ir=~iEi(P)),  

where ~=(~1 . . . . .  ~r). By L e m m a  2.4 the submanifolds Bq, q E H coincide with the sets 

F(B, ~), ~ E R r. It follows that the distribution N is C ~ 

We now prove  that the distribution N defined above is parallel; that is for every  

locally defined C ~ vector  field Z with values in N and for every  vector  v tangent to H 

the vector  VvZ is tangent to N. Le t  Z be such a vector  field and let v be a vec tor  

tangent to H at p. If  vEN(p)  then VvZEN(p)  since Bp is totally geodesic in H. It 

suffices to prove  that Vo Z E N(p) if v E N(p) • ~ Tp(H). 

Let  v E N(p) • be given. Let  {~1 . . . . .  ~k} be an orthonormal basis for N(p) and let 

~i(t), 1 <<.i<~k, denote  the vector  field along the geodesic Yo obtained by parallel transla- 

t ion  of  ~i=~;(0) in H along 7~. We show first that ~;(t) E N(~,o t) for every  t and every  i. 

Fix a number  t. Le t  B* denote  Byvt and let PB*" H---~B* denote the orthogonal 

projection. For  each integer i let ai(s) denote  the unit speed geodesic with initial 

velocity ~i and let fli(s)=PB*(aiS). By Sublemma 2 of Lem m a  2.1, it follows that fli is a 

unit speed geodesic of  H and a~,fl~ bound a flat strip in H.  In particular fl~(0) is the 

parallel translate in H of  a'(0)=~i along )% It follows that ~i(t)=fl[(O)ENO'o t). 

Let  Z be a C ~ vector  field with values in N that is defined in a neighborhood o f p .  

By the preceding paragraph {~l(t) . . . . .  ~k(t)} is an orthonormal  basis of N(~,o t) for every  

t. Hence ,  we can find C ~ functions f l ,  . . . ,fk defined in a neighborhood of zero in R 
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such that (Z o Yo) (t) = E ~= ~ f,-(t) ~;(t). Therefore, V~ Z =  E ~=~f~ (0) ~i(0) E N(p) since the vec- 

tor fields ~i a r e  parallel along Yo. Hence,  the distribution N is parallel in H. The proof of 

the proposition is now completed in the manner indicated earlier. 

Section 3. The  main  result  

THEOREM. Let H be a Hadamard manifold with no Euclidean de Rham factor. 

Let G be a closed connected nonidentity subgroup of  1(tl) whose normalizer in I(H) 

satisfies the duality condition. Let A=Fix(G)N H(~) .  Then there exists a Riemannian 

product decomposition H=H1 • such that 

(1) Hi is a symmetric space of  noncompact type and G=Io(HO, 

(2) n2(oo)=A. 

By Fix(G) we mean {pEtrI=HUH(~):q~p=p for all q0EG}. The proof of  the 

theorem requires several lemmas and for the sake of clarity we only state the lemmas 

now and prove them later. Let  G satisfy the hypotheses of the theorem. 

LEMMA 3.1. G is a semisimpte Lie group with trivial center, and G contains no 

compact normal subgroup except the identity. 

LEMMA 3.2. G can be expressed as a direct product GI•215 where each 

subgroup ai is noncompact, connected, simple, normal in G and closed in I(H). 

LEMMA 3.3. Let ~ denote the Lie algebra of  G, regarded as the set of  Killing 

vector fields on H. Let xEH(oo) be a point such that IlXll 2 is nonincreasing on every 

geodesic in x for every XE g. Then x~Fix(G)  NH(oo). 

We remark that if X is an element of  the abstract Lie algebra fi, then X may be 

regarded as a Killing vector field on H whose flow transformations are (exp(tX)}. 

Moreover,  if X=  Y+Z in the abstract Lie algebra ~, then X(p)= Y(p)+Z(p) for all p E H 

since X(p)=dp(X), where p : G---~H is given by p(g)=g(p). Regarding XE ~ as a Killing 

vector field on H it follows from Lemma 5.3 of [3] that IlSll 2 is a c = convex function on 

H. Furthermore,  by Proposition 9.8 of  [3] we see that if IlSll 2 is nonincreasing on one 

geodesic belonging to x, then IIXII 2 is nonincreasing on every geodesic belonging to x. 

LEMMA 3.4. Let K be a maximal compact subgroup of  G. l f  K has a unique fixed 

point in H, then H is a symmetric space o f  noncompact type and G=I0(H). 

LEMMA 3.5. Let K be a maximal compact subgroup of  G, and let F = F i x  (K) NH. 

Then Fix (K) N H ( ~ ) = F i x  (G) tl H ( ~ ) = F ( ~ ) .  
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We remark that F is a closed totally geodesic submanifold of H by Theorem 5.1 of 

[23, p. 59]. Hence, it makes sense to speak of F(~) as a subset of H(~). We are now 

ready to prove the theorem. We first consider the case that A=Fix (G) N H(o~) is empty. 

By Lemma 3.5 it follows that K has a unique fixed point in H, and by Lemma 3.4 we 

see that H is a symmetric space of noncompact type and G=Io(H). The theorem is 

proved in the case that A is empty. 

Now suppose that A is nonempty. If q~ is an arbitrary element of D, the normalizer 

of G in I(H), then q~ leaves invariant the set A. By Lemma 3.5 A=F(~) ,  where F=  

F ix (K)nH is a closed totally geodesic submanifold of H. By Proposition 2.2, there 

exists a Riemannian product decomposition H=Hj • 2 such that H2(oo)=A. It remains 

to show that H~ is a symmetric space of noncompact type and G=Io(HO=Io(H~)x 
{1}~_I(H). 

Since G~_Io(H)=Io(HO• we may write g=gt• for each gEG, where 

giE Io(Hi) for i= 1; 2. We assert that G=_Io(HO• { 1 }. If this were not the case, then we 

could find an element g=gl• such that gz4:{1}. Let xEHz(oo)=A be given 

arbitrarily and let 7(t)=(P~, )'z(t)) be a geodesic belonging to x, where ~2 is a geodesic of 

//2. By hypothesis g oT=(g~(pl), g2 ~ is asymptotic to 7 since g fixes x. Therefore 

g2 o 7z is asymptotic to ~2 and g2 fixes x. By the argument used in the proof of Proposi- 

tion 2.3 of [11], we see that g2 is a Clifford translation of H2 and by Theorem 1 of [29] 

142 admits an Euclidean de Rham factor, contradicting our hypothesis that H has no 

Euclidean de Rham factor. Therefore G~_Io(H 0 • { 1 }. 
Regarding G as a subgroup of Io(H 0 it follows that Fix (G) N H~(oo)= {Fix (G) N 

H(o0)} N HI(oD)=H2(~)N Hl(O0) is empty. As soon as we prove that the normalizer of G 

in I(H1) satisfies the duality condition in H1, we will conclude by Lemmas 3.4 and 3.5 

that H~ is a symmetric space of noncompact type and G= lo(H O. This will complete the 

proof of the theorem except for the proofs of the supporting lemmas. 

The subgroup I(H1)• has finite index in I(H) by the discussion of section 1. If 

D denotes the normalizer of G in I(H), then D*=D N {I(HO• has finite index in 

D. Therefore D* satisfies the duality condition in H by the proposition of Appendix I 

since D satisfies the duality condition. If D~=p~(D*), where pl :D*--~I(HO is the 

projection homomorphism, then DT satisfies the duality condition in H~ by the discus- 

sion of section I. Moreover D~ normalizes G~ Io(H ~) since D* normalizes G regarded 

as a subgroup of I(H). It follows that the normalizer of G in I(HI) satisfies the duality 

condition. 

We now prove the Lemmas 3.1 through 3.5. 
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Proof of Lemrna 3.1. By Theorem 2.4 of [11] every element in the center of G is a 

Clifford translation of H. If I(H) admitted any nonidentity Clifford translations then H 

would admit an Euclidean de Rham factor by Theorem 1 of [29], contrary to our 

hypothesis on H. Therefore the center of G is trivial. Similarly one argues as in the 

proof of Proposition 2.5 of [11] to show that G is semisimple. 

We show that G admits no compact normal subgroups except the identity. Let N 

be a compact normal subgroup of G. If N is discrete then N lies in the center of G since 

t~--~exp(tX)q~exp(-tX) is a curve that lies in N for all c~EN and all XEq,  the Lie 

algebra of G. Since G is centerless, we need only consider the case that N is a Lie 

group of positive dimension. It suffices to prove that No, the connected component of 

N that contains the identity, is trivial. 

Let D* denote the normalizer of No in I(H). The first step is to prove that D* 

satisfies the duality condition. Assuming this fact for the moment we show that No 

fixes every point of H and hence is the identity. Since N is compact it follows from a 

theorem of E. Cartan [21, p. 75] that N has a fixed point p in H. The set of points S 

fixed by No is nonempty, closed, convex in H and invariant under D*. Since D* 

satisfies the duality condition, it follows that L(D*)=H(~). Therefore the unit vectors 

at p tangent to a geodesic from p to a point of D*(p) are dense in the unit sphere of 

Tp(/-/). It now follows from the properties of S listed above that S=H and hence 

m0={l). 
We prove that D* satisfies the duality condition. Observe that No is also normal in 

G and hence its Lie algebra go is an ideal of .q. A semisimple Lie algebra 0 has only 

finitely many ideals; ~ has only finitely many simple ideals (whose direct sum is ~) and 

every ideal of ~is a direct sum of simple ideals of ~ [21, pp. 121-122]. Every element of 

D, the normalizer of G in I(H), induces an inner automorphism of 0 that permutes the 

ideals of ,q. Therefore the subgroup /) of D whose elements act as the identity 

permutation on the ideals of 0 has finite index in D. Hence /) satisfies the duality 

condition since D satisfies the duality condition by hypothesis. If qJ is any element o f / )  

then I~: ~ ~ leaves invariant ~0 and it is routine to show that q9 normalizes No, the 

unique connected Lie subgroup of G with Lie algebra ~0. Hence /)c_D* and D* 

satisfies the duality condition. 

Proof of Lemma 3.2. The result follows by means of well known arguments from 

Lemma 3.1. 

Proof of Lemma 3.3. Let y be a geodesic belonging to x with p=y(0). Let X~:0 in 

be an arbitrary Killing vector field. By hypothesis the convex function I[X]] z is nonin- 
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creasing on 7. Define a C ~ variation F :  RxR--->H by F(s, t)=exp(tX)(yp.~s). Note that 

F(s,O)=~,pxS for  all s E R .  The curves t~F(s ,  t) are integral curves of  X and hence 

[[X(F(s, t))ll-~llX(F(s, 0))ll=f(s), which is independent  o.f t. By hypothesisf(s)=llX(ypxs)ll 
is nonincreasing in s. 

Fix t~0  and define 7,(s)=F(s,t). Then [[x(Tts)H=f(s) for all (s,t). The curve 

u~F(s ,  u), O~u~t, has constant  speed f(s) by the previous paragraph. Therefore  the 

curve has length [t[f(s) and since it joins y,~ s to 7~ s we conclude that d(vpx s, 7ts) << - 
Itlf(s)<~ltlf(O) for all s~>O. It follows that 7p~ and 7, are asymptotic geodesics for each 

tER .  Hence  exp(tX) fixes x for  each t E R  and XE ~ since yt=exp(tX)oyp~. 

The elements e x p ( t X ) : t E R ,  X Eg  all fix x by the work above and cover  a 

neighborhood U of  the identity in G. Since U generates G, it follows that G fixes x. 

Proof of  Lemma 3.4. We show first that L(G)=H(oo). Let  D denote the normalizer 

of  G in I(H), and let x E H ( ~ )  be given. Since D satisfies the duality condition we may 

choose a sequence {q~n}~_D so that rpnp---~x as n---~+ ~.  The groups q~, Krp~ I are maximal 

compact  subgroups of  G. The maximal compact  subgroups of  G are all conjugate by 

elements of  G [21, p. 218] and hence we can choose g, E G so that q~Kcp~l=g~Kg~ 1 for 

every  n. Le t  p E H be the fixed point of  K. If  hn=g~Jcp, then h, Kh~=K for every  n and 

it follows that K fixes each point hn(p). Hence  hn(p)=p and g,(p)=qJ,(p) for every  n 

since K has a unique fixed point in H by hypothesis.  Finally 

x=lim,_~q~,(p)=limn_~=g,(p), which shows that L(G)=H(oo) since x was arbitrarily 

chosen. 

Now let H* be the orbit G(p). Clearly K is the stability group of  G at p and hence 

H* is diffeomorphic to the coset  space G/K. Relative to the G-invariant metric induced 

from H the closed submanifold H* is in fact a Riemannian symmetric space of  

noncompact  type by the discussion of  section 1. To conclude that H * = H  it suffices to 

prove that dim H*--d im H. The fact that G acts effectively and transitively on H =  G/K 
will then imply by [21, p. 207] that G=I0(H).  G acts effectively on G/K by Lemma 3.1 

since the kernel of  the obvious map G--.Io(G/K) is a closed normal subgroup of G that 

is contained in K. 

We prove that d i m H * = d i m H  by a contradiction argument. Suppose that 

dimH*=k<dimH, and let V= Tp(H*)~_Tp(H). Let  V"  denote the orthogonal comple- 

ment of  V in Tp(H). Define disjoint closed subsets C, C* in H ( ~ )  as follows: Le t  

C={7~(~) : vE V} and let C*={Tv(~) : vE V• We assume that v is a unit vector  in the 

definitions above.  Clearly C, C* are both nonempty since V, V z are both nonempty.  

We assert that C, C* are both invar iant  under  G. Obviously V and V • are both 
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invariant under dK= {q~, : q~ E K} since K fixes p. It follows that K leaves both C and C* 

invariant. By Theorem 4.5 of [11], G(x)=K(x) for every x in L(G)=H(oo). Hence G 

leaves both C and C* invariant. 

Now choose x E C* arbitrarily. We assert that H* is contained in the horosphere 

L(p, x). Assuming for the moment that this has been established, we derive a contradic- 

tion and conclude that d imH=dimH*.  Let z=ypx(-Oo). Since L(G)=H(oo) we can 

choose a sequence {gn}cG such that gnp---~z, which implies that ~p(x, g,p)---~er. How- 

ever, the fact that H*~L(p, x) means that <~p(x, g,p)<<.Jr/2 for every n by the law of 

cosines [16, p. 57]. 

We now show that H*=G(p)~L(p,x). Let gEG be given and let tv-->gt be a 

C ~ curve in G with g0={1} and gl=g. Let cr(t)=gt(p). Now ~o~t)(V(tTt, x),cr'(t))= 

~p(V(p, gilx),(g~l),cr'(t))=Jr/2 for every t since gtlxEC * and (gt~),cr'(t)E 

Tp(H*) = V. Let F(t) = 0Co o) (t), where f is the Busemann function at x such that tip) =0. 

(For a definition and properties of Busemann functions see section 3 of [16] and section 

2 of [14].) Finally F'(t)=(focr)' (t)=(o'(t), gradf(crt))=-(cr'(t), V(crt, x))=-O by the ob- 

servation above and Proposition 3.5 of [16]. Thus F(t)=F(O)=f(p)=O and it follows that 

o(t) EL(p, x) for every t. In particular g(p)=o(1) EL(p, x), which proves that H*=G(p)c  

L(P, x). This completes the proof of Lemma 3.4. 

Proof of Lemma 3.5. We show first that F(oo)=Fix (K) N H(oo). The set F is a closed 

totally geodesic submanifold of H by Theorem 5.1 of [23, p. 59]. One may see directly 

that if p, q are distinct points of F, then the entire maximal geodesic ~pq is contained in 

F. It follows that F(oo)~_Fix (K) N H(oo). Now let x E Fix (K) N H(oo) be given. The set F 

is nonempty by a theorem of E. Cartan. Fix a point p E F and let cp E K be chosen 

arbitrarily. Then qg(Tpx)=Ycppq~x=Ypx , and hence q~ fixes every point of Ypx since q~ fixes p. 

It follows that xEF(oo), which proves that F(oo)=Fix(K)NH(oo). This set is empty if 

and only if F is a single point in H. 

We show that Fix (G)nH(oo)=Fix (K)nH(oo). First we reduce the problem to the 

case that G is simple. Let G = G  1 •  m be the direct product decomposition of 

Lemma 3.2. If D i is the normalizer of Gi in I(H), then D; satisfies the duality condition 

by the argument used in the last part of the proof of Lemma 3.1. If Pi : G-->Gi is the 

natural projection homomorphism, then Ki=pi(K) is a maximal compact subgroup of 

G; and K is the direct product K=Kjx...• Observe that Fix(K)NH(oo)= 

niml Fix (Ki) I"111(oo) and Fix (G) n H(oo)= Nim__l Fix (G  i) f3 H(oo). It therefore suffices to 

prove that Fix (G;) N H(oo)=Fix (Ki) N H(oo) for every i. 

By the previous paragraph we need only consider the case that G is a noncompact, 
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connected, closed, simple subgroup of I(H) whose normalizer D in I(H) satisfies the 

duality condition. Clearly Fix(G)NH(oo)~_Fix(K)flH(oo) since K~_G. Now let 

xEFix(K)NH(oo) be given. We shall use Lemma 3.3 to show that xEFix(G)NH(oo), 
which will complete the proof of Lemma 3.5. 

Let f denote the Lie algebra of K, and let ~3 denote the orthogonal complement of f in 

.q relative to the Killing form B. By the discussion of section 1, ~q=f@~ is a Cartan 

decomposition of ~; in particular, B is negative definite on f and positive definite on ~ .  

Choose a point p E F=F ix  (K)O H. By the work above ypx(R)~F and hence X - 0  on the 

maximal geodesic Ypx for every XEf.  To prove that xEFix(G)nH(oo) it now suffices 

by Lemma 3.3 and the remarks following its statement to show that [[XI[ 2 is nonincreas- 

ing on ypx for every XE~3. In fact we need only show that [[XI[ 2 is bounded above on 

y,x[0, oo) for every XE ~3 since tIXI] 2 is a convex function on H. 

The proof involves several steps and the fact that G is a simple group is crucial, 

particularly in steps 1 and 3. 

Step 1. For any point q EF=Fix  (K)N H the orbit G(q) is a Riemannian symmetric 

space of the noncompact type relative to the metric induced from H. Moreover, there 

exists a positive number 2=2(q) such that [[X[12(q)=2B(X, X) for every XE ~3. 

Step 2. If D denotes the normalizer of G in I(H) and N the normalizer of K in D, 

then N leaves the manifold F invariant. 

Step 3. Let X E ~ and q~ E N be arbitrary. T h e n  I IXll2(q~q) = I lXll2(q) for all q E F. 

Assuming for the moment that these facts have been verified, we complete the 

proof of Lemma 3.5. Let XE ~ ,  x E Fix (K) flH(oo) and p EF be chosen. We show that 

IlSll 2 is bounded above on ypx[O, oo), which will prove the lemma. We assume also that 

X:#0. The remainder of the proof is still quite detailed so we present an outline now. 

Since L(D)=H(oo) we may choose a sequence {q~n}~_D so that q~np---~x. Next we show 

that there exists a sequence {Zn}~_~ such that IlZn(P)ll--IlZn(cpnp)ll=l for every n. 

Passing to a subsequence we let {Zn) converge to ZE ~.  We show that IIz(p)tt---1 and 

IIz(y x t)ll ~<1 for all t~>0. Returning now to the arbitrarily chosen element XE ~3 we use 

Step 1 to conclude that IIX(q)ll--allZ(q)ll for all qEF, where a=IIX(Q)II/IIZ(Q)II-- 
{B(X,X)/B(Z,Z)}I/2 is positive and does not depend on qEF.  Finally 

IIx(~,~ t)ll=alIz(~,~ t)h ~a for all t~>0 since ypx(R)~_F. This will complete the proof of 

Lemma 3.5. 

We begin the proof of the assertions outlined above. Since D satisfies the duality 

condition it follows that L(D)=H(oo) and hence we may choose a sequence {~n}---D 

such that q~np---~x as n--,oo. 
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We construct  a sequence { ~ , } c N  such that q~,(p) lies in the orbit G(~np) for every 

n. The maximal compact  subgroups of  G are all conjugate by elements of G and hence 

we can choose a sequence {gn}~G so that cpnKcp2~=gnKg21. If ~n=g21q~,then ~ lies in 

N, the normalizer  of  K in D. Moreover  q0n=g, ~ so that cpn(p) lies in G(~np). 
Next  we construct  a sequence {Z~}___~3 so that IIZ~(P)ll=llz~(c;~p)ll=l for  every  n. 

By Steps 1 and 2 each orbit G(~np) is a symmetric space of noncompact  type relative to 

the metric induced from H. Moreover  the .map g(~p)~-~,gK is a diffeomorphism of  

G(~np) onto G/K for  every  n since K is the subgroup of G that fixes ~,p.  Now let 7n be 

the unit speed geodesic of  G(~np) such that y~(0)=~,p and y,( t , )=q~p,  where t,, is the 

distance in G(~p) between ~nP and cp, p. Since G(~,p) is isometric to G/K with a 

suitable G-invariant metric it follows from [21, p. 173] that 7,(t)=exp(tZ~)(~,p) for 

some Z ,  ~ with IIZ (  p)]l = 1. Using Step 3 and the fact that Z ,  has constant length 

along integral curves,  we see that IIZ.(q~.p)ll=llzo(~p)ll=llZgp)ll= I for every  n. 

Since IlZn(p)]l=l for every  n we may pass to a subsequence if necessary so that 

{Z~} converges to Z E  ~ with IIZ(p)ll = 1. We show next  that IIz(Tpxt)ll<<.l for all t~>0. Le t  

an be the unit speed geodesic in H with o~(0)=p and a~(s~)=cp~p, where s~= 

d(p, cp.p)---~+~ as n ~ .  Since IIzJI 2 is a convex function in H,  we obtain ILz~(cr~t)ll~ 
max {llZn(o  0)11, IIZ (o  O I I ) =  1 for all t E [0, s.]. Since cpnp---~x it follows that cr t---~yp~t 
as n--* ~ for every  t E R. Since Z~---~Z it follows that 

[]Z(yp ~t)[[=lim IlZo(~011~<l for every  t~>0. 
n----) 

We consider  now the arbitrarily chosen element X E ~ .  We may assume 

that X(p)4=0 for otherwise X ~ 0  on F and in particular on 7p~ by Step 1. Since 

IIZ(P)ll=l we also conclude from Step 1 that IIS(q)ll=allZ(q)ll for every qEF, where 

a=llS(q)ll/ l lZ(q)ll--{n(s,x)/n(z,z)) ~/2 is a positive constant.  Finally, IIg(y~t)ll-- 

al[Z(?% t)ll~<a for  all t~>0 since ~,p~ (R)~F.  By earlier remarks this completes the proof  

of  Lemma  3.5 except  for the verification of  Steps 1 through 3. 

We verify Step 1. For  any point q E H the orbit G(q) is diffeomorphic to the coset  

space G/K*, where K* is the subgroup of  G that fixes q. If q is a point of F then K* ~K ,  

and it follows that K*=K since K* is always compact  and K is a maximal compact  

subgroup of  G by hypothesis .  The elements of  G are isometries of  H and hence act as 

isometries of  G(q) relative to the metric Q induced from H. If Q also denotes the metric 

on G/K induced by the diffeomorphism g(q)~-~gK, then Q is a G-invariant metric on 

G/K. By [21, p. 173] the coset  space G/K equipped with the metric Q is a symmetric 

space of  noncompact  type.  Hence  G(q) with the metric Q is a symmetric space of 

noncompact  type for every  point q E F. 
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The fact that G is simple and the discussion of section 1 (or more precisely 

Theorem 8.2.9 of [30, p. 238]) show that any G-invariant metric on the coset space G/K 

is induced by the inner product 2B on ~ for some positive number 2, where B is the 

Killing form of ft. Let q E F be given and let 2=2(q)>0 be chosen so that G(q) with the 

metric induced from H i s  isometric to G/K with the metric induced from 2B on ~ .  The 

vectors tangent to G(q) at q are precisely the vectors X(q) with X E ~ .  Therefore 

IJX[I2(q)=AB(X, X) for every XE ~ ,  which completes the proof of Step I. 

To verify Step 2, let cp E N, q E F and k E K be given. Then k(cpq)=~k*(q)=cpq, where 

k* =c,v-lkc, v E K. Hence N leaves F invariant. 

We conclude with the proof of Step 3. Let X E ~ ,  q~EN and qEF be given. By 

Steps 1 and 2 the orbits G(q) and G(q~q) are both symmetric spaces of noncompact type 

relative to the metric induced from H. Moreover G(q) and G(~q)=~G(q) are isometric 

since rp is an isometry of H. The proof of Step 1 shows that there exist positive 

constants 21,22 such that G(q) and G(c, vq) are isometric to the coset space G/K with G- 

invariant metrics induced respectively from the inner products 21B, 22B on ~.  It 

follows that 21=)~2 since the coset spaces G/K with the metrics 21B and 22B are iso- 

metric. Therefore, [IxH2(q)=2t B(X, X)=22B(X, X)=[IX[IZ(~q) by Step 1 for every XE ~.  

This completes the proof of Step 3 and of Lemma 3.5. 

Section 4. Applications 

In this section, we apply the main theorem of section 3 to obtain a variety of results 

concerning the structure of isometry groups, lattices, characterizations of symmetric 

spaces and other questions. 

Structure of isometry groups 

PROPOSITION 4.1. Let H be an arbitrary Hadamard manifold such that I(H) 

satisfies the duality condition. Then there exist Hadamard manifolds Ho, Hi, H2, two of 

which may have dimension zero, such that 

(1) H is isometric to the Riemannian product Ho• xH2, 
(2) 1-1o is a Euclidean space, 

(3) HI is a symmetric space of noncompact type, 

(4) 1(1t2) is discrete bat satisfies the duality condition. 

Remark. This and the next two results should be compared to Corollary 4.2 of [5]. 

This result also greatly strengthens Proposition 2.5 of [11]. 
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Proof. We begin by writing H as a Riemannian product Ho• where/40 is the 

Euclidean de Rham factor of H and H* is the Riemannian product of all nonEuclidean 

de Rham factors of H. Then I(H)=I(Ho)• since every isometry of H leaves 

invariant the foliation of H induced by the Euclidean de Rham factor Ho. Let 

p : I(I-I)--.I(H*) denote the projection homomorphism. By the discussion of section 1, 

I(H*)=p(I(H)) satisfies the duality condition since I(H) satisfies the duality condition. 

If I(H*) is discrete then we set Hz=H* and the proposition is proved for the case 

that the factor H1 is missing. Suppose now that I(H*) is not discrete and let G=Io(H*). 

By the main theorem there exists a Riemannian product decomposition H*= H l x H  2 

such that H1 is a symmetric space of noncompact type, G=Io(H 1) and Hz(~)= 

Fix (G) nH*(~)  To complete the proof of proposition it remains only to show that I(H2) 

is discrete and satisfies the duality condition. 

The group I (H  z) is discrete since Io(H*) =I0(Hl) x { 1 }. To show that I(Hz) satisfies 

the duality condition we first observe that I(HOxI(H2) is a subgroup of finite index in 

I(H*) by the discussion of section 1 since every element of I(H*) permutes the 

foliations of H* induced by the de Rham factors of H*. Therefore I (Hl )XI (H z) satisfies 

the duality condition by the proposition of Appendix I. If p : / (H  0 x I(Hz)---~I(H z) is the 

projection homomorphism, then I(H2) satisfies the duality condition by the discussion 

of section 1. This completes the proof of the proposition. 

PROPOSITION 4.2. Let H be an arbitrary Hadamard manifold with no Euclidean 

de Rham factor. Let  G~I(H) be a subgroup whose normalizer D in I(H) satisfies the 

duality condition. Then either 

(1) G is discrete 

o r  

(2) there exist Hadamard manifolds H l, H 2 such that 

(a) H is isometric to the Riema_nnian product H l •  2, 

(b) Hi is a symmetric space o f  noncompact type, 

(c) ((~)o=Io(H0, 

(d) there exists a discrete subgroup B~_I(Hz) whose normalizer in I(H2) 

satisfies the duality cond[tion such that lo(HO• is a subgroup o f  G o f  finite index 

inG.  

Proof. Let G~_I(I-I) be a subgroup whose normalizer D in I(H) satisfies the duality 

condition. Suppose that G is not discrete. Then D also normalizes the closed connected 

group G*=(0)o_=I(H). By applying the main theorem to G* we obtain a Riemannian 

product decomposition H = H  1 •  z such that H~ is a symmetric space of noncompact 
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type and G*=Io(HI). The proof  is complete.  Assertion (2d) follows routinely from 

assertion (2 c). Le t  G be a finite index subgroup of  (~ that leaves invariant the foliations 

of  H induced by H~, H 2, and let B =PE(G), where P2 : t~---->l(Hz) is the projection homo- 

morphism. 

PROPOSITION 4.3. Let H be an irreducible Hadamard manifold, and let G~_I(I-1) 

be a subgroup that satisfies the duality condition. Then either G is discrete or 

((~)0=10(H) and H is a symmetric space of  noncompact type. 

A Riemannian manifold N is said to be reducible if it is the Riemannian product  of  

two manifolds of  positive dimension. N is irreducible if it is not reducible. T h e  

proposit ion above follows immediately from Proposit ion 4.2. 

Lattices 

For  any Hadamard  manifold H a group F _ I ( H )  is a lattice if the quotient space H/F is a 

smooth Riemannian manifold of  finite volume. The lattice F is uniform or nonuniform 

according to whether  H/F is compact  or noncompact .  A lattice F is reducible if the 

manifold H/F has a finite cover  that is reducible as a Riemannian manifold. A lattice F 

is irreducible if it is not reducible.  The next  result greatly strengthens Theorem 4.2 of  

[15]. 

PROPOSITION 4.4.(1) Let H be an arbitrary Hadamard manifold, and let F be an 

irreducible lattice in H that does not contain Clifford translations. Then either 

(1) I(H) is discrete, F has finite index in I(H) and H is irreducible 

or 

(2) H is isometric to the Riemannian product of  a Euclidean space with a symmet- 

ric space of noncompact type. 

Proof. An isometry  cp of  a Hadamard  manifold H is a Clifford translation if the 

displacement function d~ : p-->d(p, ~vp) is constant  in H. See [29] or section 2 of [ 11] for 

further  facts about  Clifford translations. 

By the discussion of  section 1 any lattice satisfies the duality condition and hence 

I(H) satisfies the duality condition. We suppose first that I(H) is discrete and prove the 

remaining assertions of  (1). In this case it is easy to see that F must have finite index in 

(1) See added in proof. 
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I(H). The quotient space H/F has finite volume and hence the quotient space H/I(H), a 

manifold with singularities, must also have finite volume. Since I(H) is discrete this is 

possible only if F has finite index in I(H). For a more detailed argument see the proof of 

Proposition 2.2 of [15]. 

We show next that H is irreducible if I(H) is discrete. Suppose that H is reducible 

and write H=  H~ x. . .  x H  k, a Riemannian product where k>~2 and each Hi is irreducible. 

Note that no manifold H; is a Euclidean space since I(H) is discrete. Let F* be the 

subgroup of F consisting of those elements q~ in F that preserve the foliations of H 

induced by the de Rham factors H,-. Each element q~ in F* can be written q~ = ~ z . . .  x q~, 

where ~CI(Hi). Let PF F*---~I(Hi) be the obvious projection homomorphism, and let F* 

denote p,(F*) for each l~i<~k. The group F* is a lattice since it has finite index in F. 

Hence F* satisfies the duality condition and by the discussion of section I, F* satisfies 

the duality condition for each l<~i<~k. If F* is not discrete for some i, then H; is a 

symmetric space of noncompact type by Proposition 4.3, contradicting the hypothesis 

that I(H) is discrete. Therefore, F* is discrete for every i and it follows by Proposition 

2.2 of [15] that F* is reducible. This implies that F is reducible, contradicting our 

hypothesis. Therefore H is irreducible if I(H) is discrete. 

Suppose now that I(H) is not discrete. By Proposition 4.1, there exists a Rieman- 

nian product decomposition H=HoXH 1 x H  2, where H0 is a Euclidean space, HI is a 

symmetric space of noncompact type and I(H 2) is a discrete group that satisfies the 

duality condition. The proposition will be proved when we show that Hz has dimension 

zero. Suppose that Hz has positive dimension, and let F* be the finite index subgroup 

of F that leaves invariant the foliations of H corresponding to the factors 

H 0, H 1, H 2. Let pi'F*--~I(Hi) be the corresponding projection homomorphisms for 

i=0, 1, 2. Since I(H2) is discrete it follows that F~= P2(I'*) is also discrete. If 

p=po• F*--~I(HoXH O, then F*=p(F*) is discrete by Theorem 4.1 of [15] since F 

contains no Clifford translations. Therefore, F* is reducible by Proposition 2.2 of [15] 

and hence F is reducible, contradicting our hypothesis. Therefore, H2 has dimension 

zero and the proposition is proved. 

PROPOSITION 4.5. Let H be a reducible Hadamard manifold with no Euclidean de 

Rham factor, and let F be a lattice in H. I fF is irreducible then H is a symmetric space 

of  noncompact type. 

Proof. Let F and H be as described above. Since H has no Euclidean de Rham 

factor the lattice F contains no Clifford translations by Theorem 1 of [29]. It now 
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follows immediately from the previous result that H is a symmetric space of  noncom- 

pact type. 

PROPOSITION 4.6.(2) Let H be a reducible symmetric space with no Euclidean de 

Rham factor. Let H* be a reducible Hadamard manifold with no Euclidean de Rham 

factor. Let F be an irreducible uniform lattice in H, and let F* be a uniform lattice in 

H*. I f  F and F* are isomorphic as groups, then H/F and H*/F* are isometric as 

manifolds if  one multiples the metric of  H or H* by a suitable positive constant. 

Remark. The hypothesis  that F* be a uniform lattice is really unnecessary.  For  

topological reasons it follows that if two lattices are isomorphic as groups then either 

both are uniform or both are nonuniform. Moreover ,  the spaces on which they act .as 

isometries have the same dimension. 

Proof. We observe  first that F* has no Clifford translations by Theorem 1 of  [29] 

since H* has no Euclidean de Rham factor. We show next that F* acts irreducibly on 

H*, and it will then follow from Proposit ion 4.4 that H* is a symmetric space of  

noncompact  type. Finally, the rigidity theorem of  Mostow will say that H/F and H*/F* 

are isometric if one multiplies the metric of  H or H* by a suitable positive constant.  

Suppose that F* is a reducible lattice. Then we can find a finite index subgroup F** 

of F,* that is a direct product  of  subgroups F~' and F~. Let  0 : F * ~ F  be an isomorphism. 

If  ( '=0(F**) and Fi=0(F*) for i=1 ,2 ,  then 1~ has finite index in F and I ~ is the direct 

product  of  f'l and f'2- The lattice f" has trivial center  since any central element of  (" 

would be a Clifford translation by Proposit ion 2.3 of  [11], contradicting the hypothesis  

that H has no Euclidean de Rham factor. Therefore ,  by Theorem 2 of [25] or Theorem 2 

of [18] we conclude that H/I" is the Riemannian product  of two manifolds with 

fundamental  groups isomorphic to f', and ['2. This contradicts the hypothesis  that F 

(hence also f') is an irreducible lattice in H. Therefore ,  F* must be an irreducible lattice 

in H*, which completes  the proof  of  the proposit ion in the manner  indicated above. We 

use the form of  the rigidity theorem stated in [26] on p. 133 or on p. 187. 

PROPOSITION 4.7. Let H be a reducible Hadamard manifold with no Euclidean de 

Rham factor. Let F~I (H)  be a lattice that preserves the factors o f  the de Rham 

decomposition o f  H. Then the following conditions are equivalent: 

(1) F is irreducible, 

(2) if  H=H,• is any decomposition of  H as a Riemannian product and if  

(2) See added in proof. 
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pi:F--->l(Hi) are the corresponding projection homomorphisms for i= 1,2, then the 

kernel o f  pi= ( l } for i=i, 2, 

(3) H is a symmetric space of  noncompact type. I f  H=Hj • z is any decomposi- 

tion of  H as a Riemannian product and if pi : F---~I(Hi) are the corresponding projection 

homomorphisms for i= 1,2, then pi(F) ~Io(Hi) for i= 1,2. 

Remarks. (i) The existence of the projections pj, p2 in conditions (2) and (3) is a 

consequence of the fact that if an isometry qJ of H preserves the foliations induced by 

the de Rham factors of H then it preserves the foliations induced by any Riemannian 

product decomposition of H. If H is a Riemannian product H 1 •  z, then each Hi must 

be a Riemannian product of certain de Rham factors of H for i= 1,2. 

(ii) If F is irreducible then H is a symmetric space of noncompact type by 

Proposition 4.5. The Proposition now becomes a known result; see for example the 

corollary of [28, p. 40] or Corollaries 5.21 and 5.23 of [27, pp. 86-87]. For convenience, 

we include a short proof in Appendix II that uses the main theorem of section 3. 

Characterizations of symmetric spaces 

The next three results give solutions to problems 2, 3 and 5 posed at the end of 

[11]. 

PROPOSITION 4.8. Let H be an irreducible Hadamard manifold such that I(H) 

satisfies the duality condition. Then either I(H) is discrete or H is a symmetric space of 

noncompact type. 

Proof. This follows immediately from Proposition 4.3. 

PROPOSITION 4.9. Let H be a Hadamard manifold such that Io(H) satisfies the 

duality condition. Then H is the Riemannian product of  a Euclidean space Ho with a 

symmetric space Hi of  noncompact type (either Ho or Ht may be absent). 

Proof. By Proposition 4.1 we can write H as a Riemannian product Ho• ~ • 

where H0 is a Euclidean space, H1 is a symmetric space of noncompact type and 1(1t2) 

is a discrete group. Clearly Io(H)=Io(Ho)•215 {1} and I0(H) can satisfy the duality 

condition only if the factor/-/2 has dimension zero. This completes the proof. 

PROPOSITION 4.10. I f  I(H) is noncompact and acts minimally on H(oo), then 

either I(H) is discrete or H is a Euclidean space or H is a rank 1 symmetric space of  

noncompact type. 
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Proof. To say that I(H) acts minimally on H(oo) means that every orbit of I(H) in 

H(oo) is dense in H(~). By Theorem 5.7 of [1 l] H is irreducible and by Proposition 4.7 

of [11] the group I(H) satisfies the duality condition. The result now follows from 

Proposition 4.1 and Propositions 4.12 and 4.13 of [l 1]. 

Other applications 

All results in this section have dealt with isometry groups G~_I(H) whose normalizers D 

in I(H) satisfy the duality condition. In some cases one may obtain similar results if one 

replaces the duality condition by the weaker condition that L(D)=H(oo). However, in 

general one must then place additional restrictions on G. We give two examples. The 

first is clearly a variation of the main theorem of section 3. 

PROPOSITION 4. I 1. Let H be an arbitrary Hadamard manifold, and let G~I(H) be 

a closed connected nonidentity Lie subgroup. Assume that L(D)=H(oo), where D is the 

normalizer o f  G in I(H). I f  there exists a point p E H such that the orbit G(p) is a totally 

geodesic submanifold o f  H, then there exists a Riemannian product decomposition 

H = H  1 •  2 such that H1 is homogeneous and G is a transitive subgroup o f  Io(H 0 x { 1 }, 

Remark. If G=I0(H):I:I then we can show also that G=Io(Hj)x(1 } and I(H2) is a 

discrete group such that L(I(H2))=Hz(oo). 

Proof. Let p EH be a point such that B=G(p) is a totally geodesic submanifold of 

H. Since G is closed in I(H) it follows that B is closed as a subset of H and hence B is 

complete as a Riemannian manifold. The result now follows from Corollary 2.3. 

PROPOSITION 4.12. Let G~I(H)  be a subgroup whose center A is nontrivial and 

contains no parabolic isometries. I f  the normalizer D o f  G in I(H) satisfies the 

condition L(D)=H(oo) then 

(1) A consists o f  Clifford translations o f  H, 

(2) There exists a Riemannian product decomposition H=Hj  •  z such that H1 is 

a Euclidean space ofpositioe dimension and A~_I(HO • { 1) is a group o f  translations o f  

H1 such that the quotient space H1/A is compact. 

Remark. If one requires D to satisfy the duality condition and deletes the hypoth- 

esis that A have no parabolic elements, then assertion (1) above becomes Theorem 2.4 

of [ 11 ]. An isometry q~ of H is parabolic if the displacement function d o :p~--~d(p, ~p) has 
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no minimum in H. If  d~ has a positive or zero minimum then q~ is respectively 

hyperbolic or elliptic. 

Proof. Let  A denote the closure of A in I(H). Then fi, is an abelian Lie subgroup of 

1(/4). By Theorem 1' of [18] there exists a flat, totally geodesic submanifold B of H such 

that q~(B)=B for all cp Eft, and the quotient space B/A is compact. The latter assertion 

implies that there exists a compact set C~_B such that B is the union of  the sets cp(C), 

q0 Eft,. If  C has diameter ~<R then for any geodesic ~, orB and any point p E C we can find 

a sequence {cpn)___A such that d(%p, 7~n))~<R for every positive integer n. It follows 

that q0n(p)--~),(o,) as n - - ~ ,  which shows that L(fi,)=B(~). The group D normalizes G 

and hence also normalizes both A and A. We may now apply Corollary 2.3 to conclude 

that there exists a Riemannian product decomposition H = H I •  2 such that 

H1 (~) =B(oo) and A ~_I(H1) • { 1 ). Moreover B is one of the leaves of the foliation of  H 

induced by H1 so  that H~ is a Euclidean space. The quotient space H~/fit is compact 

since B/ft is compact.  It will follow that H~/A is compact once we show that fi, consists 

of  Clifford translations. This step will also complete the proof of the proposition, 

From Proposition 2.3 of [11] and the fact that A is abelian with L(A)=B(~)  we see 

that the displacement function d~: p-->d(p, ~p) is a constant function on B for every 

q0Efi,. Hence each element q~EA acts as a (Clifford) translation on B and since 

fi~_I(HO• { 1) it follows immediately that A consists of Clifford translations of H. 

Appendix I 

We prove the following result stated in section 1: 

PROPOSITION. Let H be a Hadamard manifold and let D~_I(H) be a subgroup that 

satisfies the duality condition. I f  D* is a subgroup of  D with finite index in D, then D* 

satisfies the duality condition. 

Proof. We first need the following 

LEMMA. Let D~I(H) satisfy the duality condition, and let D be a normal sub- 

group o f  D. Then Q(/))___TI H is invariant under {go, : 9  ED}. 

Proof. The set f~(/)) is defined in the introduction. Let  v E Q(/)) and cp E D be given. 

We  show that (cp), v E f2(/)). By definition we can choose sequences (~p,~)c/), {tn}~R 

and {vn}cT iH such that vn--->v, tn--~+~ and (~0n) , Ttvn--->v as  n---~+~. Here {Tt} de- 

notes the geodesic flow. Define ~n=g0~pn for every n: Then q~n=a, go, where an= 
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q0~p. ~ l E/)  for every n. Then (~n), TtnVn~-(~tg)* {(~0n)* LnOn} ''->(q~)* U as n--~+~. O n t h e  

other hand, (~n), Tt. v.=(an)*{(q~)* Tt. vn} = ( a . ) ,  Tt~ , v.} for every n. Since (q~), v.---~ 
(cp), v and (an) , Tt {(cp) , v.}---~(q~), v, where {a.}~_/), it follows that (q~), v E f2(/)). The 

lemma is proved. 

We now prove the proposition. Let D~_I(H) satisfy the duality condition, and let 

D* be a subgroup of finite index. Let  ~ . . . . .  ~ be elements in D such that D is the union 

of the left cosets ~iD*, l<~i<~k. If  n * * -  ~k ~ ta,e-1 then D** is a normal subgroup of 

D and has finite index in D. Since D*~_D** it suffices to prove that D** satisfies the 

duality condition. This is equivalent to proving that ff2(D**)= T1H by the  discussion of 

the introduction. 

Let  A = {v E T1 H :  (qgn) . Tt v---~v as n---~ + o~ for some sequence {q~.} ~ D  and some 

sequence { tn} =R  with t~---> + ~}.  Since D satisfies the duality condition, it follows by 

the argument in [15, p.  464] that A is dense in T1H. It suffices now to show that 

A~_f2(D**) since Q(D**) is a closed subset of T1H. 

Let  yEA be given and choose sequences {q~,}~_D and ( t~}cR such that t . - -*+~ 

and (%), Tt, v--,v as n---~ + ~.  By passing to a subsequence, we can find an element a E D 

and a sequence {~,,}~_D** sUchthat  cp~=aq~ n for every n. Hence (a),(~n) . Ttv"--~t3 o r  

((p.),Tt, v---~(a-1),v as n---~+~. To show that vEff2(D**) it suffices to show that 

(a-~),vEff2(D **) by the lemma above. It will then follow that A~_f2(D**) since v is 

arbitrary. Let  O~T  1H be any neighborhood of (a - l ) ,  v and let vn=(q3n), T~v for every n. 

Choose a positive integer N so that o~EO for all n>~N. Note that v.= 

((~n ( j ~ l ) ,  T(tn_tN) UN for every n~N.  Hence [(q3 c~l) ,  T~t~ ) (O)] 0 0  is nonempty for 

every n~N.  Since tn--tu---~+oo as n----)+ o0 and the neighborhood O is arbitrary, it 

follows that (a - l ) ,  v E ff2(D**). 

Appendix II 

Proof o f  Proposition 4.7. (1)~(3) By Proposition 4.5 H is a symmetric space of 

noncompact  type. Now let H be decomposed into a Riemannian product H I •  z, and 

let Pi: F---~I(H;) be the corresponding projection homomorphisms for i= 1,2. Neither of 

the groups Fi=pi (F) can be discrete for i= 1,2 for otherwise F would be reducible by 

Theorem 4.1 of  [15] and Proposition 2.2 of [15]. Therefore Gi=(f'i) ~ is a closed 

connected Lie subgroup of I(Hi) of positive dimension for i= 1,2. 

We show that Gi=lo(ni) for i= 1,2 and we consider only the case i= 1. By the 

discussion of section 1, FI satisfies the duality condition since F does. Since F~ 
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normalizes G1 it follows from the main theorem of  section 3 that H~ splits as a 

Riemannian product H a x H  e such that G~=Io(Ha). It suffices to show that H~=H~. 
Suppose instead that H e has positive dimension and let p~ : F---~I(H~) and p/~ : F---~I(H e ) 
be the projection homomorphisms. The group F~=p~(F)=p~(F~) satisfies the duality 

condition in H e and is discrete since (Fi)o=Io(H~). If  we let H* denote the Riemannian 

product H a x H  2 and let p* : F---~I(H*) denote the projection homomorphism, then by 

applying Theorem 4.1 of [15] and Proposition 2.2 of [15] to the Riemannian product 

decomposition H=H~xH* we see that F is reducible, contradicting our hypothesis. 

Therefore H e has dimension zero and (FOo=Io(Ha)=Io(Hi). 

The assertion (2)=>(1) follows immediately from the definition of irreducibility of a 

lattice. It remains only to prove that (3)=>(2). Let  H, Hj,H2,Pl and p2 be as in the 

statement of (2), and let N~, N 2 denote the kernels of pj,  P2 respectively. We show only 

that N~ = { 1 }. By definition N~ is a subgroup of F n 1(1t2) and hence is discrete in I(H 2). 
Since N~ is normal in F it follows that N~ =pz(NO is normal in F2=P2(F). By hypothesis 

Fz~Io(Hz) and hence lo(112) normalizes N I. For  each X in the Lie algebra of I0(H2) and 

each q~EN~ the curve t---~exp(tX)cpexp(-tX) lies in N~ and hence must be constant  

since N1 is discrete. Therefore Nl and lo(112) commute and by Proposition 2.3 of [1 I] 

the group Nj consists of Clifford translations. However,  Hz has no Euclidean de Rham 

factor since H does not and therefore/ /2  cannot admit n0nidentity Clifford translations 

by Theorem 1 of [29]. It follows that Ni = { 1 } and similarly we see that N2 = { I }. 

Added in proof. (1) Recently,  we have proved that if H is a Hadamard manifold 

with Euclidean de Rham factor Ho of dimension k~  > 1 then for every lattice F in H the 

subgroup of Clifford translations of F is free abelian of rank k~> 1. In particular if case 

(1) of Proposition 4.4 does not hold then in case (2) H must be isometric to a symmetric 

space of noncompact  type. 

(2) Proposition 4.6 remains true even if one omits the hypothesis on H* concerning 

reducibility and the nonexistence of a Euclidean de Rham factor. Details will appear 

elsewhere. Gromov has proved an even more general result. 
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