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1. Introduction

We shall prove theorems on simultaneous approximation which generalize Roth’s
well-known theorem [3] on rational approximation to a single algebraic irrational o.
Throughout the paper, ||&|| will denote the distance from a real number £ to the nearest

integer.

TEHEOREM 1. Let oy, ..., o, be real algebraic numbers such that 1, ay, ..., o, are linearly
independent over the field Q of rationals. Then for every e >0 there are only finitely many posi-

tive integers q with
llgoall - llgeeell ... llgesall - g™+ < 1. o

COROLLARY. Suppose o, ..., &, € are as above. There are only finitely many n-tuples
(p1/q, .-, Palq) of rationals satisfying

lo — (@)l <g 4™ (i=1,2,...,n). 2)
A dual to Theorem 1 is as follows.

THEOREM 2. Let o, ..., o, & be as in Theorem 1. There are only finitely many n-tuples

of nonzero integers qy, ..., ¢, with

IIQI‘ZI+"'+qn“n"'|qu2"'inl+s<l' 3)

CoROLLARY. Again let oy, ..., a,, € be as in Theorem 1. There are only finitely many
(n +1)-tuples of integers q,, gy, ..., gn, P with g=max (|q,], ..., |g,|) >0 and with

lgroy+ oo +@uon+p|>g7" " 4)
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When n=1, these two theorems are the same, and are in fact Roth’s theorem men-
tioned above. A few years ago [4] I had proved these theorems in the case n=2. Our proofs
will depend on a result of this earlier paper. What is new now is the use of Mahler’s theory

[2] of compound convex bodies,

2. Approximation by algebraic numbers of bounded degree

By algebraic number we shall understand a real algebraic number. Let w be algebraic
of degree at most &, There is a polynomial f(f) =a,t* +... + a,t +a, +0, unique up to a factor
=41, whose coefficients ay, ..., a,, @, are coprime rational integers and which is irreducible
over the rationals, such that f(w)=0. This polynomial is usually called the defining poly-
nomsal of w. Define the keight H(w) of w by

H(w)=max (|ak|,...,|a1|,|a0|). ()

THEOREM 3. Let a be algebraic, k a positive infeger, and ¢>0. There are only finitely

many algebraic numbers w of degree at most k such that
la— | <H(w) *717%. (6)

When k=1, this result reduces again to Roth’s theorem, and when k=2 it had been
proved in [4]. Wirsing had proved () a weaker version of Theorem 3, with —k—1—¢ in
the exponent in (6) replaced by —2k—e.

Theorem 3 may be deduced from Theorem 2 as follows. Let f(f) be the defining poly-
nomial of w. Then f(a)=f(w)+(x—w)f(r)=(x—w)f'(z) where 7 lies between « and w.
Now since « is fixed, and by (6), 7 lies in a bounded interval. Hence |f'(z)| <c¢,(k, w) H(w),
and (6) yields

lao + ... + ago+ ay| < (k, w) H(w)™ . (N

Now if «is not algebraic of degree at most k,then 1, «, ..., o arelinearly independent over
Q, and the corollary to Theorem 2 implies that (7) has only finitely many solutions in in-
tegers ay, ..., 0, Q4.

Suppose now that « is algebraic of degree m where 1<m<k. There are rational in-
tegers d and b;; (0<i<k, 0<j<m—1) such that

dat=bgy+byo+... +bm_ra™ ' (0<i<k).

Putting y,= > oa;b,; (0<j<m—1), we obtain
g Y j 7

() See his paper ““Approximation to algebraic numbers by algebraic numbers of bounded degree”,
to'appear in the report on the number theory institute at Stony Brook, July 1969.
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ly;| <ok, @) H(w) (0<j<m—1) (8)
and [0 Y1t oo+ oy + Y| < (K, o) H(w) ™" (9)

By the corollary to Theorem 2, the inequalities (8), (9) have only the trivial solution
Yo= - =Ypm_1 =0if H(w)islarge. But ;o + ... + @y + ay=d-1 ™ y,,_, +... +¥,), and hence
(7) implies that f(a)=a,o"+... +ay=0 if H(w) is large. But f(«)=0 is possible only if w

is a conjugate of o, and there are only finitely many such conjugates.

3. Quoting a theorem

Let I be a positive integer greater than 1 and let
M;=Byz+... +fuzx, (1<t<l)

be [ linear forms in X=(w, ..., z;) with algebraic coefficients 8;, of determinant 1. Also let
S be a subset of {1, 2, ..., I}. We say the system {M,, ..., M;; S} is regular if

(i) for every €S, the nonzero elements among f,, ..., f;, are linearly independent
over .

(ii) for every k in 1 <k <, there is an ¢€8 with g, +0.

Now let

Li=oayx+...+ayz; (1<i<l)

again be / linear forms with algebraic coefficients of determinant 1. There exist unique
linear forms M,, ..., M,, the adjoint forms to L,, ..., L;, such that

Lyx) M\ (y) +... + L(X) M (y) = 2,9y +... + 2,9,

for any two vectors X=(2y, ..., &;), Y= (41, ..., #;). The forms M,, ..., M, again have algebraic
coefficients of determinant 1. Let S be a subset of {1, 2, ...,1}. We say the system {L,, ...,
Ly; 8} is proper it {M,, ..., M;; 8} is regular. It is clear that this definition is the same as
the one given in § 1.4 of [4].

We now state Theorem 6 of [4].

TrEOREM A. (“Theorem on the next to last minimum”). Suppose Ly, ..., L;; S are
proper, and A,, ..., A, are positive reals satisfying
A Ay A;=1 (10)

and A; =21 ifi€8. (11}
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The set defined by [Lix)| <4, (1<i<]) (12)

is a parallelopiped of volume 2'; denote its successive minima (in the sense of the Geometry of
Numbers) by Ay, ooy Ai_ys Are
For every § >0 there is then a Qy=@Q4(6; Ly, ..., L;; 8) such that

Ma>@Q0 (13)

if Q >max (4,, ..., 4,,Q,). (14)

4. A corollary to the quoted theorem

CorROLLARY. Let Ly, ...,L;; 8 and A, ..., A, be as in the theorem. Again let 4,, ...,
Ai_y, 4, be the successive minima of the parallelopiped defined by (12). For every ¢ in 0 <§ <1
there is a @, =@Q,(; Ly, ..., L;; S) such that

ha>2Q7° (15)
provided LA, >Q7e  (je8) (16)
and Q>max (4,,...,4,,Qy). (17)

To prove this corollary we need to recall Lemma 7 of [4]:

Lemma 1. (Davenport). Let L,, ...,L, be linear forms of determinant 1, and let

Ays -y Ay be the successive minima of the parallelopiped given by
|Lx)| <1 (i=1,..,0) (18)

Suppose g,, ..., 0, are positive real numbers having

010s---01=1, (19)

01>0.>...20,>0, (20)

9111<92}»2<..- <Ql}-l' (21)

Then, after a suitable permutation of Ly, ... , Ly, the successive minima A1, ..., A of the new
parallelopiped

ol Lix) <l (=1,...,0) (22)

satisfy ph<<i<<gd (=1,...,0. (23)

Here the constants in (23) depend only on 1.
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The corollary is now proved as follows. Let 4, ..., 4, be the successive minima of
the parallelopiped (12). This parallelopiped may also be defined by |Lf (x)| <1 (i=1,...,1)
where L(x)=L,(x)4;! (i=1,...,1). Put

Qo= (M. 22 7 1)*", (24)
0= 90/11, 0= Qo/}m ey 0117 90/11—1: o= 90/11—1- (25)

Then (19), (20) and (21) hold. Applying Lemma 1 to L}, ..., L] we see that there is a
permutation (fy,...,7;) of (1,...,1) such that the successive minima 1;,..., 4 of the pa-

rallelopiped
|Lil< 4,0, (= 4i, say) (1<i<]), (26)
satisfy (23).

Suppose first that 4; <1 for some i€ 8. Since for 1€ S,
A; =A19,_‘1 > A{Ql—l _ 3»14‘1,-961 > Q—é{(%)eal

by (16), we have g,> @ %P, On the other hand, 4,4,... 4, << 1, whence g, << (A;_1/4,)*".
Thus 4;_1/4;>> @ %2, and (15) holds provided @ is large.

The other possibility is that 4] >1 for every ¢€ §. We may then apply the theorem
on the next to last minimum to the parallelopiped (26). Thus 4;_;>@~%®" provided
Q>max (@y, A1, ..., 4]). Or, put differently, we have

Moy > QoD (27)

if Q> max (Q,, A'/*") (28)

with A’ =max (4y,...,4;). On the other, hand, by (23), we have ;-3 <<g;_1 Aj-1 = 0y <<

(Ai=2/A)". In conjunction with (27) this implies that A;_1/A;>> Q@ %2, hence that ;_,>
4970 if Q is large.

It remains to be shown that (16) and (17) imply (28). Put 4 =max (4,, ..., 4;). We

have 4’ < Afor-y = AX_1/oo<< AAi_1/4y << AT, since 211 2,_; <<1. Further by (16) we
have A4, > Q%@ whence

A'<<Aﬂ.l—l<<Al+le/2.
Thus (17) implies that

Q> AVEQE > (A1 QPRUED QIS -, 47114D
provided @, is large.

5. The compounds of linear forms

Suppose £>1 and let 0, 7, ... denote subsets of {1, 2, ..., k}. Write ¢’ for the complement,
of gin {1, 2, ..., k}. Define (—1)” by
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(—1)7=TI(-1). (29)
jeo

For any integer p with 1<p <k, let C(k, p) consist of all sets o with exactly p elements.

Then C(k, p) consists of I(p) = (1];) sets o.

Let Li=oeux1+...+oz,kxk (7:=1"'-:k) (30)

be k linear forms of determinant 1 in X=(zy, ..., %;). Let p with 1<p <k be fixed at the
moment. For every o¢€C0(k, p), 1€C(k, p), write oy, for the (p x p)-determinant formed
from all ith rows with ¢€¢ and all jth columns with j €7 of the matrix («;;). We shall con-
struct linear forms L® in vectors x*) with I(p) components which are denoted by z, where
T€0(k, p). Namely, for every o €C(k, p), we put

LP(xP)= 2 tgr¥s 3L

teC(k,p)

We call these linear forms the pth compounds of Ly, ..., L,. There are exactly I(p) such pth
compounds.

Again, for every o in C(k, p), put

P = 3 (=17 (=1 opp X (32)

7€ C(k,p)

Let ¢ be the basis vector whose component 2, =1, and all of whose other components
are zero. Then for any 7,, 7, in C(k, p), one has

L) 1P (6 - {1 o

o€ Clk, 1) 0 otherwise.

This follows from Laplace’s rule on the expansion of determinants, applied to the deter-
minant [e;;] (1<¢, j<k). It follows immediately that

S LPE®) ﬁgp)(y(p))E S TeYo-

oeC(k,p) oeCk,p)

We have therefore shown the following result, which is essentially equivalent with Mahler’s
remark in [2, § 18].

Lemma 2. The system of linear forms LY where o €C(k, p) and the system of forms
L® where 0 € C(k, p) are adjoint to each other.

Throughout the rest of this section let pin 1 <p <kandl=I(p) be fixed. The inequalities

IL|<l @E=1,...,k) (33)
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define a parallelopiped II in E*. Since Ly, ..., L, have determinant 1, it follows from deter-
minant theory that the I forms LP(x?) with ¢ €C(k, p) again have determinant 1. In

particular these [ linear forms are linearly independent. Hence the inequalities
|ILP <1 (o€ Clk, p) (34)

define a certain parallelopiped TI® in E’. This parallelopiped is in general not exactly
the same as Mahler’s pth compound of II, but as Mahler points out in [2, § 21], it is closely
related to it.

Denote the successive minima of Il by 4,, ..., 4, and for every ¢ write

Ae=114. (35)

iea
There is an ordering oy, 03, ..., o, of the [ =I(p) elements ¢ of C(k, p) such that
he, 2, <o < Aoy
Denote the successive minima of II® by »,, v,, ..., ¥;.
TrrorEM B. (Mahler.) One has
y<<l,<<y (1<j<i(p)) (36)
with the constants in << only depending on k.

Proof. This follows from Theorem 3 in [2] together with Mahler’s remarks at the begin-
ning of [2, § 21] which show that the successive minima of II®) and of the pth compound of
IT differ only by bounded factors.

Now let A4, ..., 4, be positive reals with

A A,.. A,=1. (37)
Then if we put A,=T14, (38)
ieo
we have I1 4,=1. (39)
ceC(k.p)
The inequalities | Ly ®|<4;, @G=1,..., k)y (40)

define a parallelopiped I1, in E¥, and the inequalities
|ILPxP)| <4, (o€O(k,p)) (41)

define a parallelopiped I19 in B’
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COROLLARY TO THEOREM B. Define A, (1<i<k), A, (c€C(, p)), v; (1<:<lI) as
above, but with reference to I1, and TP instead of to I1 and II®. Then one has again

v <<l <<w (1<i<Up). (42)

Proof. This follows from an application of Theorem B to the forms L} = A‘lLl

6. Special linear forms

Suppose now that «;, ..., «, are algebraic, and 1, &, ... , &, linearly independent over

the rationals. Put
k=n+1 (43)
and Ly (%)= 2~ 0y 2y Ly(X) =3 — o> -+ 5 L (X) = 2 — oo L (X) = . (44)

For every p in 1 <p<n==k—1, there are I(p) compound forms LY (x¥) with o€ C(k, p).
Let S consist of those ¢€ C(k, p) which contain the integer k.

LEMMA 3. The forms L (x) with o€ C(k, p) together with S® form a proper system.

Proof. By the definition of proper systems we have to show that the adjoint forms of
LY form a regular system with S®. Hence in view of Lemma 2 we have to show that the
forms LY where 0 €C(k, p) together with S® form a regular system. Now except for the
signs of the coefficients and the notation for the variables, the forms L{” are the same as
the forms L&, We have to show that L~ * with ¢€C(k, p) together with §® form a
regular system. Let S*® consist of all sets ¢’ with ¢€S8®. Replacing p by k—p we thus
have to show that for every pin 1<p<k—1=n,

L® with g€ C(k, p), 8

form a regular system. Note that S consists precisely of all 0 €C(k, p) which do not con-
tain the integer k.
Suppose now that ¢ €3, Then with the special forms given by (44) we have

L((’p) (X(D)) =2, +‘é i R (45)

Here o —i+k denotes the set obtained from o by removing its element 7 and adding the
integer k. The summands here have signs + or —, but there is no need to evaluate these
signs. From (45) it follows that except for their signs, the nonzero coefficients of L{? are

1 and the numbers «; with ¢ €¢. These numbers form a subset of 1, «,, ..., «,, and hence they
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are linearly independent over the rationals. Thus condition (i) in the definition of regular
systems is satisfied. It also is clear that for every 7 in C(k, p) there is a 0 €3® such that the
coefficient of z; in LY is not zero. Hence (ii) holds.

7. Special parallelopipeds
LeMMA 4. Assume that oy, ..., o, are algebraic, and 1, o, ..., o, linearly independent
over the rationals. Put k=n+ 1 and define Ly(X), ..., Li(X) by (44). Suppose A, ..., A, are posi-

tive and have
A4, ... 4, =1 (46)

and A,<1, .., A,<1; A,>1. (47)
Let Ay, ..., 2 be the successive minima of the parallelopiped 11, given by
|L(x)| <4, (=1, ..., k). (48)
Then for every 6 >0 there is a Qy=0Q4(8, &y, ..., &) such that
A,>Q-8 (49)
provided @ > max (4,, Q,). (50)

Proof. Our proof will be by induction on ». When n=1 we may apply Theorem 4
with =2, L,, L, and S={2}. It follows that A,=A1,_,>@~% provided Q>max (4,, Q).

Now assume the truth of the lemma for integers less than =. It will suffice to prove for
every pin 1<p<k—1=n and every 6 >0 that

Me—p> Dy p1a @8 (51)
provided @>max (4,, Q;) where @3=0,(6, oy, ..., x,). Namely, repeated application of
(51) yields 4, >4,Q@~" >>Q~"4. Since § >0 was arbitrary, the lemma follows.

It remains to show (51). Let ¢ be the set in C(k, p) consisting of 1,2, ...,p—1, k.
(Hence o consists of k£ only if p=1). Our first aim is to show that with 4, defined by (38),

we have
LAY > @ (52)

if Q> max (4,,Q,). Ta;ke at first the case when p= 1. Then since there is an integer point
X0 with |Li(x,)| <A 4; (6=1,..., k), it follows that

I<max (L4,,..., 4 4) =44, =4 437,
and (52) is true. Now assume that l <p<n=k—1. Put
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B,=A,/AY? (i€ o). (53)

Then by (46) and (47) we have
gBizBlB2'"B"_1B"= 1 (54)
and B;<1 (1<i<p-—1), B,>1. (65)

By definition of 1, there is an integer point X,+0 with |L(X,)| <4,4; (6=1, ..., k).
Now since II, has volume 2%, the first minimum A, is at most 1 by Minkowski’s theorem.
Hence A4, 4;<1 (i=1,2, ...,n) by (47). Hence in Xo=(y, ..., Z,, %), the last coordinate
x, cannot be zero. Hence the vector y,=(zy, ..., %,_3, %) in E? is not 0. The linear forms

L, with ¢€ ¢ may be interpreted as forms in y= (2, ..., T,_1, 7). We have
|Li(yo)| < A, 4, = 1, A" B, (i€ o).
Thus the parallelopiped in E? defined by
|L(y|<B, (€o)

has a first minimum u, with u, <1, 4%?. ITn view of (54) and (55) it follows from our in-
duction hypothesis that
MAY? = 4, >Q7°

provided @ >max (B, Q5). Since By =A4,/A%? <A,, the inequality (52) is true provided
Q@ =max (4, Q,)-

Recall that SP consists of all o € C(k, p) which contain k. It is clear that (52) is in fact
true for every ¢ € 5"} provided ¢ > max (A4,, @,)-

Let LP(x®) with ¢ €C(k, p) be the pth compound forms of L., ..., L, and define the
parallelopiped II§ by (41). The first minimum v, of I1] satisfies v, >>4;4, ... 4,> >4} by
(42), and hence we have

v Ag>>FA,>>Q " (6€SP)
by (52) provided @ is large. Since §>0 in (52) was arbitrary, we have in fact
1 d,>Q % (g€ 8P) (56)
if Q> max (4,, Q). Here Q4= Q4(d, «y, ..., ;) and I=1(p)= (;;)
We now apply the corollary proved in section 4 to the proper system LY (¢ €C(k, p)),
8@, The inequality (16) now becomes (56), and hence it is true if @ is large. It follows that

-1 >9,Q7° (57)
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provided (17) holds, i.e. provided @ > max (4,(c€ C(k, p)), @;). Since 4, < 4, by (47), the
last condition is fulfilled if @ >max (4,, @;). Now by (42) again we have

V<< Ag-p+1dx-prz--- <<
and V-1 <<Ap—phr-pizhi—pig... e <<w_1.
Thus (57) yields Aiep>> Ao ps1Q7°

if @>max (4,, @,). Since >0 was arbitrary, we therefore have (51) if Q@ >max (4,, @,).

This proves the lemma.

LemMa 5. Suppose «y, ..., a, are as in Lemma 4, and put k=n+1. Define linear forms
M,, .., M, by

M(X) =, MyX)==2s ., M (X)=2,, MX)=o0c2,+...+0,%,+2. (68)
Let By, ..., By, be positive numbers with
BB, ... B, =1, (69)
B,>1, .., B,>1, B,.<1. (60)
Write py. ..., i, for the successive minima of the parallelopiped 11p defined by
|Mx)|<B, (i=1,...,k). (61)
For every 6>0 there is a Q3=Q4(5, o, ..., a,) such that
p>Q~° (62)
provided Q > max (B!, Q). (63)

Proof. This lemma is dual to Lemma 4. Write A,=B;! (=1, ..., k). Then (46), (47)
hold. The forms M, ..., M, are adjoint to L, ..., L, given by (44), and hence the forms
M,/B,, ..., My B, are adjoint to L,/A,, ..., L/ A,. Thus if ,, ..., A, are the successive minima

of I1, defined in Lemma 4, then it is well known that
1<<}‘iluk+1—i<<]- (?;=1,...,k). (64:)

(See, e.g., [1]. Another way to prove this is to use the corollary of Theorem B together
with the fact, established in Lemma 2, that M, ..., M, are essentially the (£ —1)-st com-
pounds of Ly, ..., L,. Namely, it follows that ., ; is of the same order of magnitude as

Ay oo Aig Aipq o M, hence as A7)
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By Lemma 4 we have 4,_,>...>1,>1,>Q-%, and hence 1, <<(A, ... 4,_,)"1 << Q".
Thus by (64), u;>>@Q ™. Since >0 was arbitrary, we have in fact (62) provided (63)
holds with & suitably large @,.

8. Proof of the main theorems

The proof of Theorem 1 will be by induction on n. The case n=1 is Roth’s theorem.
Suppose that #>1 and ¢ is a positive integer with

flgell ... lgowl| - ¢* = < 1. (65)
Put k=n+1, n=¢lk, (66)
A=|lgallg" (G=1,...,n), A,=(4,4,...4,)% (67)

Now if one of the numbers 4, ..., 4, were at least 1, say if 4,> k-then

llgoca]l.lgan]| 1+ <1,

and by induction hypothesis this holds for only finitely many integers g. We may therefore
assume that the numbers 4,, ..., 4, are less than 1, and that (46), (47) hold. From (65),
(66) and (67) we have

4= " (lga]l ... llgeall) ™ > g7+ = 7, (68)
and (67) together with Roth’s theorem yields
A< (llgoaf] - llgoal) ™" < ¢ (69)
for large q.
Let py, ..., p, be integers with ||ga)| = |go, — 2} (=1, ...,n), and let X, be the point
(P15 -+ » Pn» ) in E*. Then (67) and (68) imply that

|Li(xo)| < 4ig7" (5=1,...,k), (70)

where L, ..., Ly are the forms given by (44). Thus the parallelopiped II, defined by
|Li(®)| <4, (§=1, ..., k) has a first minimum 1, with 4, <g-7. The number @=g¢*" satisfies
Q> 4, by (69), and we still have 4, <Q-7/®*™, By Lemma 4 this is impossible-if g.and hence
@ is large.

Now let us turn to Theorem 2. Suppose that ¢, ..., ¢, are nonzero integers with

lgroes + - + gurll < |qs --- gl < 1. (71)

We may assume that 0 <g<1. Put
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k=n+1, n=¢lk, 9=|019s.-- ¢l (72)
B=lgld" G=L..,m, B,=(BB;...B)™. (73)

Then (59) and (60) hold if ¢> 1. We have

Bi=q¢"""q1¢5... @] > lery + ... + Gl €| @10s - =l + o ul| @7 (74)
by (71), (72), (73), and Bi'=q"q1q5... 0| <" (75)

by (72), (73).
Let p be the integer with [jg,0 +... + gro,|| = g1 + ... +gn e, + p|, and let X, be the
point (qy, ..., q,, p) in B¥. Then in view of (73), (74) we have

| M (x)|<Big™ (i=1,...,k), (76)

where M,, ..., M, are the forms defined in (58). Thus the parallelopiped Il given by
| Mx)| <B, (i=1, ..., k) has a first minimum g, with H1<g~". The number Q=" satisfies
Q> B;' by (75), and we still have u, <Q-7/®", By Lemma 5 this is impossible unless @
and hence ¢ are small.
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