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In  this article we demonstrate tha t  the solutions of a certain class of non-linear elliptic 

systems are smooth in the interior of the domain. One example of this class of equations 

is the system 

(0.1) d iv(0([Vs[2)Vs~)=0 l ~ k ~ < m ,  

where ~ is a smooth positive function satisfying the ellipticity condition o(Q) + 2~'(Q)q > 0, 

V denotes the gradient, and [Vs[2 = ~ = 1  ]Vskl 2. This type of system arises as the Euler-  

Lagrange equations for the stat ionary points of an energy integral which has an intrinsic 

definition on maps between two Riemannian manifolds; the equations are therefore of 

geometric interest. However, the method of proof also applies to the equations of non-linear 

Hodge theory, which have been studied by L. M. and R. B. Sibner 19]. These are systems 

of equations for a closed p-form so, deo = 0  and 

(0.2) ~(o(I~l~) ~) = 0, 

where ~ must satisfy the same ellipticity condition givcn earlier. The proof is presented in 

a form which covers both cases. 

We shall prove regularity in the interior for solutions of systems which do not depend 

explicitly on either the independent variable or the functions, but only on the derivatives 

of the functions. An extension to a more general class of systems of the same type with 

smooth dependence on dependent and independent variables will be important  for inte- 

grals which arise in Riemannian geometry and probably can be carried out without any 

radically different techniques. Homogeneous Dirichlet and Neumann boundary value 

problems may be treated by reflection; however, the regularity up to the boundary for 

(1) Research supported under National Science Foundation contract MPS73-08821 A02. 
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non-homogeneous boundary value problems cannot be proved using the techniques given 

in this paper. 

The results of this paper are an extension of the Nash-De Giorgi-Moser results on the 

regularity of solutions of single non-linear equations to solutions of certain types of systems. 

We also allow a weakening of the ellipticity condition, so our results are new when applied 

to single equations. The method of proof is to exhibit an auxiliary function for the system 

which is subharmonic. Then estimates of Moser [7] for subsolutions and supersolutions are 

used to get a strong maximum principle. From here a perturbation theorem similar to 

theorems of Almgren [1] and Morrey [6] gives sufficient continuity for the linear theory of 

the regularity of solutions of elliptic systems to be applicable. 

The author is grateful to J. Moser and L. M. Sibner for their interest, encouragement 

and suggestions. Due to them, the original lengthy and unwieldy proof was shortened, the 

notation simplified, and the theorem generalized. 

Section 1: Statement o[ the theorem 

We assume that  an elliptic complex of a particularly simple kind has been given. Let  

V~ (i = - 1 ,  0, 1, 2) be finite dimensional vector spaces and A(i) a differential operator of 

first order in n independent variables with constant coefficients from functions with values 

in V~ to functions with values in V~+ r Let Dt=O/ax~. Then if u: R n-,. Vt, A(i)u: R n--)- Vt+x 

is given by 

A(i)u= ~. Ak(i)D~u 
k - 1  

where Ak(i) EL( V~, V~+I). The symbol a(A (i)), is a linear map from elements :~ = (rq, r~ 2 ..... u,)  

of R" into L(V~, V~+I) given by 

a(A(i), r~) = ~ :~kAk(i) 
k - 1  

and the complex {A(i)} is elliptic if the symbol sequence 

V-1 a ( A ( -  1), z~) Vo g(A(O), ~!. Vx or(A(1), z~) V2 

is exact for all ~ : 0 .  

The dual sequence consists of dual operators A(i)* from sections of V*+I to V~, A(i)*v = 

~=lAk(i)*Dkv. We shall assume an inner product on the V~ has been given, so V* may be 

identified with V~. The dual complex is elliptic if the original complex is. 

Let w be a function on a domain D ~  R" with values in VI. Q= Io~12. Let V and V z =A 
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be the ordinary gradient and Laplace operators respectively. These may be considered as 

operators on Vi by  coordinatewise action. In addition, ~ will be a continuously differenti- 

able non-negative real-valued function on the positive reals. We are interested in solutions 

of the equations 

(1.1) A(0)*(Q(Q)~o) = 0, 

A(1)oJ =0.  

In  the case Q = 1, this is a linear system and local existence and regularity follow from 

theorems on elliptic complexes. From the linear theory, we know we may locally write 

eo =A(O)q~ with A ( -  1)*~ =0, and the equations become a system for ~ [3]. 

MAI~ THEOREM. Let (A(i)} be an elliptic complex such that 

(1.2) A(0)A(0)* +A(1)*A(1) = h.  

I /  in addition ~ is continuous, di//erentiable /or Q >0, and satisfies the uni/orm eUipticity 

and growth conditions/or some K > 0, p >~ 0, a > 0 and C ~> 0: 

(1.3) K-I(Q + C)" < e(Q) + 2QQ'(Q) < K(Q + C) ~, 

(1.4) IQ'(QI)QI-~'(Q2)Q~ I ~< K(Q~ +Q2 +C)~-~(Q~-Q2) a, 

then any weak solution co in a domain D c  R n o/the equations 

A(0)*(e(Q)eo) = 0; A(1)w = 0 

which lies in the space L2~+2(D) is HSlder continuous in the interior o/ D. 

Given growth conditions (1.3) for ~, w EL2r+~(D, V1) is the natural space in which to 

obtain solutions of (1.1). The existence of solutions may often be obtained by a variational 

principle from the integral SDG(Q)dx, where G'=~ and co is subject to the constraint 

A(1)oJ =0. 

Condition (1.3) implies the following condition for a possibly larger constant KI 

This is a more useful form of the ellipticity condition. 

(1.3)' K(Q + C) p >1 e(Q) + 2~'(Q)Q >/K-I(Q + C) ~ 

K(Q + C) p >1 ~(Q) >1 K-I(Q + C) ~ 

[Qe'(Q)I < K(Q+C) ~ 

To apply the theorem to equation (0.2), we take V~ = Ap_ 1-t R' ,  A (i) ~- d (exterior differ- 

entiation) and A(i)* =d* =& The application of the main theorem to (0.1) is only slightly 
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more complicated. We let eo=Vs=(VSl,  Vs 2 ..... Vs~), which will have nm components. 

V_I=O , V o = R "  , V I = R m x R  ~ and V 2 = R ~ •  A Rn). Let A ( 0 ) = V = d  (by which we 

mean m copies of d on functions) and A(1)=d  (also m copies on 1-forms). Then A(0)* =~, 

which on 1-forms over R n is simply div. Since to =ds, A(1)eo =dw = 0  and equation (0.1) 

becomes A(0)*(~(Q)w)=0. This gives the following two theorems. 

THEOREM. Let sEL[P+e(D, R ~) be a weak solution in D o/ the equation 

div(o([Vs]3) Vsk)=0,  1 ~<k<m.  

I / ~  satisfies the ellipticity and growth conditions (1.3) and (1.4), then s has HSlder continuous 

first derivatives in the interior o / D .  

T H E 0 R S M. Let eo be a p-/orm over a domain D c R ~ such that the coordinates o / w  lie 

in L2~+2(D). I / co  is a weak solution o/ the  equations 

=o; 

and i/Q satisfies (1.3) and (1.4), then eo is H61der continuous in the interior o I D. 

As a corollary, there is an important  application to single equations which follows. 

This is a new result in the case [d/[ is not bounded away from zero. 

T H n 0 R E M. Let / EL[ ~ 2(D, R) be a weak solution to the equation d* ] d/[~d/= O, 0 < p < ~ .  

Then / has HSlder continuous derivatives in the interior o / D .  

We now show that  if we assume hypotheses (1.2) and (1.3) and sufficient differentia- 

bility of ~o, then some increasing function of Q is subharmonic. In  fact, the following 

computation can be carried out if (Q +C)~/2oJ has square integrable weak derivatives. 

First we note that: 

(co, A(e(Q ) oJ)) = ~ (D,(o~, D~(e,(Q ) ~))  - (D t w, D,(e(Q ) co))) 

(1.5) = ~ D~((w, o~)Q'(Q)D~(Q) + e(Q)(w, n~ r 
t 

(1.6) - ~ ((~(Q)(D~a~, n~o~) + e'(Q)(D~w, aO D~Q ). 
t 

Since Q =(o~, w), the first term (1.5) becomes 

D,((�89 + Q~'(Q))D, Q)=  AH(Q), 
| 

where we define H by 

(1.7) H'(Q) = �89 +Qe'(Q). 
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The term (1.6) can be estimated by (1.3)' 

Q(Q)(D, ca, D, co) + 2q'(Q)(D, o), co) 2 >~ K-I(Q + C)~[Vca 12, 

where [Vca[2=~t (D,w, D,o.)). As a result 

@, A(e(Q)w)) >~ AH(Q) -K-~(Q + C) vlVeol~. 
From (1.2) 

A(~(Q)w) = (A(0)A(0)* + A(1)*A(1))(e(Q)co) = A(1)*A(1)(~)(Q)ca). 

Since A(1)o~ =0,  A(1)9~o = ~ k  Ak(1)wDkq ~ = Bo, cf �9 

0 = (ca, A(~(Q)ca))- (ca, A(1)*A(1)(o(Q)Ca)) 

>>. A H  (Q) - B *  B~(e(Q) ) - K-~(C2 + C ) q  Vca ] 

= L~ H(Q) - K-~(Q + C)V I Vca ] 2, 

where we have defined the operator L~ as 

, {~je'(Q) ) (1.8) L~ = k.JZ D~(akjD,) = A - B~,\ D-r~,A~, . 

'Q q( )'-'1"ca (1.9) a~j = Ski- ~ ( ~  ~ , ~  ) , Aj(1) ca). 

Since A = A(O) A(0)* + A(1 )*A(1 ), for n-vectors ~ = (re x . . . . .  re~) 

:~((o, co) = ~. (ca(Ak(O)A,(O)* + Ak(1)*A,(1)) w) ~kz  j 
Lk  

>1 ~ (Ak(1) ca, Aj(1) ca)rexre~. 
1, k 

This implies from (1.3)' and (1.9) tha t  if s is negative 

Lk 

and 

in the case tha t  ~'(Q) is positive. 

H'(Q) •] 
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(1.10) TI-IEOR~M. Let ca be a solution o/equation (1.1) in D and assume (1.2) and (1.3)' 

are valid. I]  (Q+C)vl~ca has weak derivatives which are ~quare integrable in D, then H{Q) 

i8 subharmonic. There exists a symmetrix elliptic operator L~ with bounded measureable 

coefficients given by 

~.kz~a~k rek ~< (1 + 2K ~) Ire [3 by the same reasoning. We have the following theorem as 

a result of this computation.  
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Lo = 5 
k,, 

where 
(p2(1 + 2K 2) ) ~ ak~ g~rej ~> g2/(2K2), 

k.l 

such that/or any smooth positive/unction v 2 with support on the interior o / D  we have 

fD y~Lo, H(Q)dx >~ K-, fo y~(O + K)'[Vo~]' dx. 

Sevfion 2: Subsolufions of elliptic equations 

I n  this section we shall state two results of Moser [7] on subsolutions and supersolutions 

of elliptic equations and give an application, Theorem 2.3, which shows t h a t  the  s trong 

max imum principle is t rue for subsolutions. 

The estimates which we are interested in are for the uniformly elliptic operator  L of 

second order in self-adjoint form 

Lu = ~ Dj(ajk(x)Dku ) 
Lk 

in a domain D c  R n. a m =akj are bounded measureable funct ions and  

k,t 

for some constant  2. The constants  in this section will all depend on 2. By  a subsolution 

we mean a measureable funct ion u on D with weak derivatives in L ~ such tha t  for all 

smooth non-negative functions ~ with support  in the interior of D 

o v L u  dx ~ O. 

We say u is a supersolution if - u  is a subsolution. I n  this section, B(x, r) denotes the ball 

of radius r about  the point  x. 

(2.1) THEOREM (Moser, [7]). I / u  is a subsolution in D, then u is bounded in the interior o/ 

D. In  particular, i /B (x ,  2r) ~ D, then/or every fl > 1 there exists a constant c(fl) such that 

( f u  l \11~ 
ess max u(y) < e(fl) r-"  u~dx| . 
yEB(x, r) (Y)>0 

yGB(x,2r) 

(2.2) THeOReM.  I /  U > 0  is a supersolution in B(x, 4r), then /or O<f l<n / (n -2 ) ,  there 

exists a constant e'(fl) such that 

( r - n f B ~ x . s r ) u ' d x ) l l f l ~ c ' ( ~ ) e : s m i n u ( Y )  �9 
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W e  have  res t a t ed  these  theorems  of Moser to  hold in a bal l  of a r b i t r a r y  radius .  We  now 

give the  ana logy  of (2.2) for subsolut ions,  which can be seen to  be a s t rong m a x i m u m  

principle.  

(2.3) THEOREM. I /  u < M  is a subsolution in D, then u cannot take on its m a x i m u m  at an 

interior point unless it is constant in D. I n  addition, i/ B(x,  4 r ) c  D, then ]or 0 < fl < n/ ( n -  2) 

there exists a constant c'(fl) such that 

(f .  r -n ( m -  u)~dx| < c ' ( f l ) (m-  ess m a x  u(y)) 
(x. 8r) yeB(x, r) 

where  m = ess max  u(y). 
yeB(x,4r) 

Proo/. W e  shall  der ive  the  inequa l i t y  first.  Since u is a subsolut ion,  m - u  is a 

supersolut ion and  posi t ive  in  the  ball  of rad ius  4r a b o u t  x. ess m i n ~ , ( x . r ) ( m - u ) ( y ) =  

m-essmax~Gs(~.r)u(y)  and  the  inequa l i t y  follows f rom (2.2} appl ied  to  m - u .  F r o m  the  

inequal i ty ,  we see t h a t  if M = e s s  max~EDu(y) is t a k e n  on a t  an  in te r ior  po in t  x, and  if r is 

the  d i s tance  from this  in ter ior  po in t  x to the  b o u n d a r y  of D, then  u = M a lmos t  everywhere  

in B(x,  r/4). I t  follows t h a t  u = M a lmos t  everywhere  in D. 

W e  now show t h a t  a s l ight ly  weaker  def in i t ion  of a subsolu t ion  is possible.  I n  fact ,  

L u  can be def ined as a d i s t r i bu t ion  if u has  weak der iva t ives  which lie in a n y  L ~ space if 

1 < p  ~< 2. I n  general  i t  is no t  possible to  work with  these  classes of subsolut ions  or super-  

solutions.  However ,  if u is posi t ive,  u = w  k+x for 0<k~ .< l ,  and  w has  weak de r iva t ives  

in L ~, t hen  u has  weak de r iva t ives  in some L v space, we can def ine Lu,  and  we ob ta in  a 

r egu la r i ty  resul t  for th is  class of subsolut ions.  The  l emma we prove  is s imi lar  to  a s tep  in 

the  proof  of (2.1). The a pr ior i  e s t imates  are the  same, b u t  we need to  check to  be sure we 

can f ind tes t  funct ions  in the  correct  classes. 

(2.4) LEM~A.  Let u = w  k+l, 0 < k < l ,  and assume that w has weak derivatives which lie in 

L 2 in B(x, 2r). I / / o r  all smooth posi t ive/unctions v 2 with support in the interior o / B ( x ,  2r), u 

satisfies 

f B(z.2r)v2L~dx >/0 

then/or  0 < ~ < 1 / ( n -  2), w 1+~ has weak derivatives in L ~ in B(x,  r) and there exists a constant 

c 1 such that 

Proo[. W e  prove  the  l e m m a  for the  funct ion w(ry + x ) = ~ ( y ) .  B y  this  change of var i-  

ables, we see t h a t  we m a y  assume r ~ 1 and  x = O. B y  add ing  a smal l  pos i t ive  cons tan t  to u, 
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we may  assume tha t  w is bounded away from 0. Also, from the Sobolev inequalities, 

wEL2(I+~)(B(2)), D~w ~+1 = (k+ l)wkD~w lies in some L ~ space, and Dj(auDtw k+l) is defined 

as a distribution as claimed. Since w is strictly positive, 

-(k+l)-lf. wLudx=(k+l) 'f. ~D,y~auD, w~+ldx 
(2) (2) t , t  

[ ~ Dt ~fa u wkD~ w dx 
JB (2) | .1 

[ ~ (D~(~fwk)auD~w -kyrw 1 kD~wa~:D~w)dx. 
j B  (2) ~.J 

If  yJ is a smooth positive function, then this integral is negative by  assumption. From a 

closure argument, if ~pw k has weak derivatives in L ~ and (y)wk)w -1 is bounded, then this 

integral is still negative. Let  7 be a smooth positive function which is 1 on B(1) and has 

support in B(2). F ( w ) = m i n  (w1+~% Mw). Then the test function ~o=Tw-kF(w) is suffi- 

ciently differentiable for the inequality to hold. Substituting this into the above equation 

and differentiating, we find for k ~< 1 tha t  

2ctfw 7w~D~wauDlwdx <~ [ F(w)~D, yauDwdx 
2:r M t,1 J B(2) ~,./ 

fB \ 1 / 2 /  C ~ m a x ~ '  (e)F(w)Zdx) U, , . ,  (Z D, wa, ,D ,w) ' d , ) " ' , ,  

<~ c, w2+'~'dxl | |  2 (D,w)~dx 
~(.,) / \ js(2) J 

where ~s(e)w~+4~dx is bounded by the Sobolev theory and c~ depends only on ~ and the 

bound 2 for the coefficients. Since this bound is independent of M, this gives the constant 

c 1 =c; 2(1 + a) -~ from the computation 

f ~,(x),~(D'wl+')'dz<2-~(l+a)'f ,(2) w2"~D'wa"D'wdx',., 

(2.5) LEMMA. Theorem (2.1) holds i/ u = w  TM is subharmonic and w has weak derivatives 
which are square integrable in D. 

Proo]. By successive applications of (2.4), we show tha t  u has square integrable weak 

derivatives in the interior of D, and we may  apply (2.1) in the interior of D. 

Section 3: Weak differentiability and boundedness o|  eo 

In  this section we derive a preliminary regularity result which shows tha t  o) is suffi- 

ciently differentiable for (1.10) to be valid and for (2.5) to apply to H. In  this section and 
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the following section, we shall get estimates in B(x, r), the ball of radius r about a point x. 

By considering the expanded function oS(y)=(ry+x), which also solves the differential 

equation, we see that  it will always be sufficient to prove these estimates for x=O and 

r = 1. The constants in this section depend on the constant K of (1.3)'. This result is similar 

to Morrey [5], Theorem 1.11.1, with a slight weakening of ellipticity conditions. 

(3.1) LEMMA. Let eo be a solution o/(1.1) in B(x, 2r), and assume that (1.2) and (1.3) are 

valid ]or this equation. I /  

then (Q + C)"/2oo has weak derivatives which are square integrable in B(x, r) and there exists a 

constant k 1 such that 

<~ kl r - 2 f  Q2(Q + C)Vdx. 
J B(x,2r) 

Proo/. Assume B(x, r)= B(1). We use a difference quotient method. From the theory 

of elliptic complexes, we may write ~o =A(0)~ for A ( -  1)*~ =0, where ~0 has weak deriva- 

tives in L 2(p ~1)(B(3/2)) with norm bounded by some constant times the norm of a) in L 2(p ~ L) 

Let  Ah. ,u=(u(x+he,)-u(x))h -1 be a difference quotient in the ith direction. Also recall 

that  A(0) has constant coefficients. Then if ~o is a smooth function with support in B(312) 

which is 1 on B(1) 

0-- f - ~v (Ah.,~v, Ah.,(A(O)*(~o(Q)oJ)))dx 
B(812) 

f (A(0) ~ A ^ . ~ '  Aa.i(~o(Q)co})dx 
B(~I2) 

~'+ fB(a/2)~V~(Ah.,r Aa.~{~(Q) o)))dx-  2 max [V~P[fB(3/.))I Aa.,~0] 

Let  co;t---co § co and Q~= Ico~12. Then 

(Ah.~co, A~L.~(e(Q ) co)) 

I x ~(QJl)I Ah., (.0 [ 2 §  Q'(Q,t)((.o),, Ah,|(.o)2d,~ ~ U i  [ 1 (Q). § C) pd,~[ Ah. t (.DI2. 
do  do  
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Also 

' Ahj(~(Q)~ = ]f~ (e(Q~)Aa.,w+2~(Q~)(to~,Ahaco)w~)d~l<~2Kf2 (Qa+C)Pd,~lAh.,eo'. 

From these three inequalities we have 

Using HSlder's inequality, we find 

]f we let ~ go to zero and sum over the index i, we get 

For the purposes of the following theorem, we assume that  H has been chosen with 

H(0) =C, so in particular, H is nonnegative. Note that  if H(Q) is bounded, then Q is also 

bounded, from the definition of H (1.7). 

(3.2) THEOREM. Let to be a solution o/ (1.1) in B(x, 4r) and assume (1.2) and (1.3) are valid. 

I/~B(x.~,)Q~+ldx< cr then H has weak derivatives which lie in L 2 in B(x, 2r), H is bounded 

in the interior o[ B(x, 2r), and there exists k s with 

max H(Q(y)) <~ k2r-" f (Q + C)P+ldx. 
y~B(x.r) JB(x .4r )  

Proo]. Again we assume that  B(x, r)= B(1). By (3.1), (Q + C)~/~(o has weak derivatives 

in LZ(B(2)). Checking the growth conditions on H and H', this implies that  H 1/2 will have 

weak derivatives in L2(B(2)). In addition, the hypotheses of (1.10) are satisfied, and H is 

a subsolution. By Lemma (2.5) we may apply (2.1) to get for 1 <fl < n/(n-2)  

(f ; max H(Q) <~ c(fl) H(Q)~dx , 
yEB(1) B(2) 

which from the Sobolev inequalities is bounded by some constant times the term 

f Br + dx. H(Q)) 

l VH(Q)II~ I = I H (Q)-I+2H'(Q)( to, V eo)t ~< 2(p + 1)II2KSt2(Q § C)~'z t V w l, 
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where we have  used (1.7) and (1.3)'. However ,  in (3.1) we have  an es t imate  for the  in tegra l  

of this t e rm squared over  B(2) in te rms  of SB(4)(Q + C) ~+ldx as required. 

As the last pa r t  of this section we derive a second es t imate  for (Q + C)~/2Vco. 

(3.3) LEMMA. Let eo satis/y (1.1) in B(x, 2r) and assume that (1.2) and (1.3) are valid. I/  
M=max~Es(x.2r)Q(y), then there exists a constant k 3 such that 

f B(~:)(Q + C)~lVcol~dx4 kar -2 f ,(~ ~ H(M) -  H(Q)dx. 

Proo/. Let  B(x, r)= B(1). 

(3.4) H(M) - H(Q) = f2 H'()~M + (1 - it) Q) d).(M - Q) 

K - I : ~  (/tM + (1 - i t )  Q q- C)Pd~(M- Q) >1 ( (p + 1)(K))- I (M + C)~(M - Q). 

Choose ~v to be a posit ive smooth  funct ion which is 1 on B(1) and has suppor t  in B(2). 

F r o m  (1.10) we have  

f s(2)y~(Q + C)'lVwI'dx <~ K f ,~ ~2L~Hdx 

f ,  VeB~(Ve [/~0))] dx. = K v22[A(H- H0) - 2B~(* - 
(2) 

= Kf.( tav2(H - Ho) - 2B*( 1/~ B~,V 2) (V~ - [/~0)] dx, 

where H = H(Q), ~ =~(Q), H 0 = H(M) and ~)0 = Q(M). We es t imate  

K f .(z)AlP2( H- Ho)dx ~ K,(w) f o(2)(H- Ho)dx, 

where K 1 depends on K and ~v. To es t imate  the  second pa r t  of the last integral,  d i f ferent ia te  

out  

B*(]/~ Bo~ y~2) = ~ D,((A,(1) co, Aa(1) o~) V~Dk v2 ~) 
| 

Iv2( 2)lQ + 21v  l Iv.,I VQ(V  + V~:iQ~ ') 

-~ Ks(v2) Q(Q + C) ~/2 + Ka(~) l/~)l Vw[ (Q + C)P/2v2. 

We use (1.3)' to get  the  last inequali ty.  Also [/~- U~o ~ VK(M + C) ~/2, or use the mean  value 

theorem to get  

Q([/~ - V~o) = Qe-~:~(Q)'(Q)(M - Q) <<- (M - Q) [/-~ (M + C) p:2. 
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Finally we can estimate 

- f~,,B:(r Bo ~o 2) (r - ~ ) d x  

K:<w) f:<:) <M + C)'<M-Q)dx + K:<W) K f:<2 I Vogl<Q + c)": Qdx. 

H61der's inequal i ty  on the last term will complete the estimate. 

Section 4: A perturbation theorem 

In  this section we prove tha t  if co is sufficiently close to a constant  o90, then  w will be 

H61der continuous in a smaller domain.  The proof is derived from similar proofs of theorems 

of Almgren [1] and Morrey [6]. The original est imate is improved as the domain  is shrunk 

down to a point. There is an addit ional  difficulty which occurs when C = 0  in (1.3). I n  this 

case, the system fails to be elliptic at  points where Q = 0. The trick is to obtain sufficiently 

uniform estimates to cover this ease. I n  general the proof would be very  much simplified 

if we were to assume C ~ 0 .  

(4.1) THEOREM. Let o9 be a bounded solution o/ (1.1) in B(2) and assume that (1.2), (1.3) 

and (1.4) are valid. Let IO912=Q ~ M and assume that there exists a constant vector o9 o such 

that /or ]o9012=Qo, Q o + C > ~ ( M  +C). Then there exist positive constants e, and k 4 which 

depend on K,  p,  ~ and 0 < ~7 < 1 and not on M or C such that i/ 

f ,(2)} - ogo}2dx < + E ( M  C), o9 

then o9 is H61der continuous in the ball o/ radius 1 with 

(a) max log(x) - og(y)} < k,}x - y]l~"(M + C) ~2 
x~ B(1), y~B(I) 

(h) max leo(x) - o9o} ~ k4(M + C) 1/2 
x, yGB(1) 

(c) (Q+C)>~O]2(M+C) for xEB(1).  

The proof is via a series of lemmas. Throughout  we shall assume tha t  the hypotheses 

of Theorem (4.1) are satisfied and the constants  K, C, p and a are the constants  appearing 

in (1.3)' and (1.4). The constants  in this section will depend on these plus dimensionali ty 

constants  such as norm estimates f rom the Sobolev inequalities and the volume of the 

uni t  ball in n space. Throughout  M will denote the max imum of Q and we assume Q0 = 

[~oo[Z~<M. Also we assume the constant  a of (1.4) satisfies a~<2 / (n -2 ) .  Condition (1.4) 

is used only to prove inequali ty (4.4). 
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The perturbation technique uses estimates on the linearized equations at  a constant 

eo 0. We approximate the non-linear system A(0)*(Q(Q)co)=0 by the linearization at ~oo, 

which is divided by the constant ~)(Q0) to make the estimates uniform. 

A(0)*'(05) = A(0)*(o5 + 2~'/Q(Q0)(05, wo)~o0). 

We call this linear operator with constant coefficients A(0)*' because it is just an adjoint 

taken with regard to the inner product (o~1, w2)' =(col, co2) ~ 2~'/~(Qo) (co0, Wl) (coo, co2) , which 

will always be positive definite for Q0~0. We would like to find a solution to the system 

A(0)*'05 =0, A(1)05 =0  with the tangential boundary values of ~o-~o o. However, it is an 

unnecessary complication to deal with boundary value problems for elliptic complexes 

and we go to the related system. Therefore we observe that  we may write ~o=A(0)T, 

A( - 1)*~ =0  and co 0 =A(0)~0, A( - 1)*~o =0. Although we may not be able to do this glob- 

ally, we certainly can find ~ and ~o so that  this is valid in the unit ball. Then T is a solu- 

tion of the elliptic system 

A(O)*(~(Q)/~(Qo)A(O)q~ +A(  - 1)A( - 1)*q = 0. 

We look for solutions of the linearized system 

A(0)*'A(0)~ +A( - 1)A( - 1)*~ = 0 

with the Dirichlet boundary values of ~ - q 0 ,  let 05 =A(0)~ and estimate 05- (~o-wo)' 

(4.2) LEMMA. Let 05 =A(0)~, where ~ is a solution o[ the linearized system 

(A(0)*'A(0) +A( - 1)A( -1)*)#  = 0 

in B(1), such that ~ has the Dirichlet boundary 05 values o/q~ Cfo on the boundary o/ B(l). 

Then 05 is smooth in the interior o/ B(1) and there exists a constant e 1 such that 

are all bounded by 

I051 ex , m a x  I051 a n d  m a x  Iv051 
(1) X~ B(I/2) X~ B(I/2) 

Proo/. Since the linearized system is elliptic with constant coefficients, the existence, 

uniqueness, and smoothness of ~ follow from the linear theory. From (1.3)', the primed 

inner product satisfies K-l(v,  v)<~(v, v)' ~2K2(v, v) and the ellipticity constants and 

bounds on the system for 05 are uniform. So bounds on the derivatives of ~ and (5 in the 

interior depend only the L2(norm of 05 in B(1). Because ~ minimizes 
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f A(0) ~, A(0)~)'  + A ( -  1)*(5, A ( -  1)*05) dx 
B(1) 

among all functions with the same boundary values, we have 

f. (1) (1) 

f (A(O)(~ - q~o), A(O)(q~ - q%))' + IA( - 1)(~ - ~Oo)[2dx ~< 
j s  (1) 

Our next  goal is to derive an estimate on the L 2 norm of u=~5- (~o-~o0)~A(0) (~ -  

(~ - ~0o) ). Let  G(o), COo) =e(Q)lq(Qo)w -co - (q'lq)(Qo)(C~ ~0 -COo)~O o. Note that  0(Qo) O(eo, wo) 

is simply ~(Q)w minus the constant and linear terms in its Taylor series about w o. 

(4.3) LEMMA. f B(, u2dx<~K2 fB(~)lG(w, Wo),2dx. 

Proo/. A(O)*'(w-eOo)=A(O)*G(eo, wo) and A(O)*'u+A(-1)A(-1)*(p=-A(O)*'(o)- 
eoo)+(A(O)*'A(O)+A(-1)A(-1)*)~--A(O)*G(eo, eOo). Integrating this equation with the 

test function ~ -  (~-~o),  which is zero on the boundary, we get 

f ,~l)(u, u)' + (A(-1)*cp, A(-1)~f)dx= f B(,)(u, a(o~, ~Oo))dx. 

Use the estimate (u, u)' >~K(u, u) and H61der's inequality to get the result. 

(4.4) L~MMA. Let u =Co--(w-090) as defined above, then there exists a constant c 2 such that 

/or Q<~M, Qo<M in B(2) 

f 
Proo]. From the previous lemma, it is sufficient to make estimates on Is(l)[ G(o~,co0) 12dx. 

But the uniformity conditions (1.4) imply that  p(Q)o9 has H61der continuous derivatives 

with a tt61der continuous norm on the order of (Q + C) p-a/2, so we get from the definition 

of q(Qo) a(og, o%), 

q(Qo) I G(w, Wo)[ ~< 2~+*K(Q0 + O + C)r-~/2 Iw - 090 I1+% 

or using (1.3) again 

(4.5) I a(o~, O,o) I < 2~+~K~(Oo + O + V)~-~(Oo + C)~ I o~ -,Oo 11+~. 
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A straightforward pointwise inequality 

(Q + Qo + C)~'/21w - ~ o  I ~ c(P) I(Q + C) ~'/2e~ - (Qu + C)k/~~ I 

for c(p) a combinatorial constant can be derived by approximating (Q+C)~/~o9 by its 

derivative at o) 0 with a remainder term. Let F = (Q + C)~/~o~, F o = F(Qo). In final form 

(4.6) I G(~o, ~o0) I ~< c'(p)K2(Qo + Q + C)q(Qo + C)~'l F - F o I 1 +~'. 

where c'(p)=c(p)22+~ and q = ( p - ( p + l ) o O / 2 .  From the Sobolev imbedding theorems 

(taking r162177  we have 

<~c'(~z)(p+ 1)2 yB(, (Q+ C):"lVwl~ + (Q+  C)2'lw - ~ol~dx. 

However, if we integrate the equation 

f ~ y ,~(w- wo, A(O)A(O)*~(Q)eo)dx=O 
(2) 

by parts and use (1.1), (1.2) and (1.3)', assuming y) has support in B(2) we get an inequality 

similar to (3.1): 

(4 .8)  fB(2,1l)21Vo)12(Q-}-C)Pdx~]cl(~l)) fB(2)(Q§ 

We replace Q and Q0 by M where necessary and put  (4.6), (4.7), (4.8) together to get 

the lemma. 

(4.9) LEMMA. Given a constant vector ~o o, ~o~=Qo, where Qo <~M, Q<.M and (Qo+C)= 

~(M § and SB(~)Iw--~ool2dz=s(M +C). Then [or r<~ �88 there exists a constant vector w, 

and a constant c a depending only on K, p, n such that 

(a) QI=o~<~M 

Proo[. Notice that  if (b) and (e) are true for co 1 and m~>M,  they are also true for 

 l= olVN/l o,I, s o  we need only demonstrate (b) and (c). Let, ~5 be the solution of the 

linearized equation (4.2) in B(1/2). By expansion, we ean assume that  the balls in (4.2) 

1 6 -  772903 Acta mathematica 138. Imprim6 le 30 Juin 1977 
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have been replaced by balls of half the radii. Let  

O)i--('O0~(fB(l/2)dx)-lfB(i/2) (~Odx" 
Then 

] (D2)1- (DO] ~ CI(fB(I/2 ) \1/2 I(D- (Dol dx) , 

so (4.9) (b) is true with c a ~> c 1. 

<~2r~((dx)  max ]VeS]~+ 2 ~ u2dx 
\ , ]  B(r) /xeB(1/4) (1/2) 

~ 2 r ' + 2 f  dxc~f I(D-COo]'dx+~ 'M+-C-)2" (fs(1)](D-(Do,~dx)l+~ , 
J B(1) J B(1/2) " 2 (Q0 ~'- C) 2p+~r 

where (4.2) and (4.8) have been used. Choose 

c3 >~ max (2 f B(l dXCf, 2e,, cl). 

By a successive approximation method we shall show tha t  if e ~  -2p is small, this esti- 

mate will prove as we shrink, the size of the ball B(r) down. We pick a fixed r ~< 1/4 which 

we shall determine later. Let  w~=(D(rfx). Then o k solves (1.1) in B(2), and we choose re- 

cursively the constant approximations. Let w~ and w~ and then w~ +1 =w~ from 

(4.9), or (D~+I is the constant vector which satisfies by {4.9) 

(4.10) (a) I(D~II~<M 

(b) ](Dto-(D~o+l] <~ Ca(f B(2)l(D'-(D~o['dx) 1/2 

(c) f B(1),(Dt+l-(D~+l]~dx= (r) n f .,r)](Dt-(Dil~dx 

<~ca(r2 +r-ne~-e')~ }(D'--(Dhl~dx. 
JB(1 ) 

(4.11) LEMMA. Assume w satisfies (1.1) in B(1) and Q<M, Qo<.M. There exist fixed 
constants r < 1/4 and ca, such that i/ 

f I(D-wo]2dx<~e(M+C), (Qo+C)>~(M+C) 
B(1) 

/or some 8~e~e <~ and ea(r//2)-2r < r n+2, then there exist constant vectors w~ such that 
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(a) I~o~o I s + C >1 ~/2(M + C) 

Proo[. We defined m~ in the iteration (4.10) just described, choosing rc2=1/2 , so 

car-ne~(~/2) -2p < 1/2r. Then if the hypothesis of the lemma are true for i <j ,  we can use (4.10) 

to get (4.11-b, c) for i=]. Then from b for j~<i we get Io)0-o~] <2, 
and we choose the constants so we would still have Iw0[2+C>~ ]~o]2+C-~/2(M+C)>~ 

~/2(M +C). 

(4.12) COROLLARY. Assume thato~ satis/ies (1.1) in B(2), Q<~M, andQo +C>~(M +C)>O. 

There exist /ixed constants e >0, 1/4~>r>0 and c a which are independent o/ M and C such 

that i[ 

f ,(2>leo - OJol2 dx < + 8(M C) 

/or a constant vector leo01 z =Q0, then/or x E B(1) there exist constant vectors eo~ with the/ollowing 

properties: 

(a) fB Ioa-co:J2dx<~ri(n+l)f ]r (x, rt) d B(2) 

(c) I,o'  ~ 2ca(I/r)  mln(''t) Io,-  ,ol2ax , 
(2) 

(d) ([ w~ 12 + C) >! ~/2(M + C). 

Proo]. By translation, we may assume x =0, and since B(x, 1)= B(2), ~,<x.~)lo~ -o~.12dx <~ 

e(M+C). We apply the interaction process just described, letting o~t -w0.- ~ We have just 

shown that  for e and r properly chosen 

f. [~o-m~o[2dx = r In ~ Io~ t -  eOto[2dx ~ r  t(n+l) f 10)--eool2dx 
(x, rf) 3 B(I) J B(1) 

l.,h-./ol--< 2 .,gl<c  2 ,wk-w , 2dx\1 2 k-t k-J B(1) 

~ c3('~lt (Vr)~) (~(1)'(~ - ~ l/2" 

(4.12) (b-c) follow from the fact that  r ~< 1/4, and (4.12-d) follows from (4.11-a). 
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We can now proceed to the  proof of (4.1). By  (4.12-e), o~ is a Cauchy sequence for  

fixed x E B(1), and 

e~(x) = lim e~ = lim o)(y) dy 
~ - ~  ~--~oo , (x. r~) 

holds almost  everywhere. I n  fact, 

(4.13) Io~(x)-o~xl=lim,o~-~o~l<2ca(Vr),(f,~ ]W-Wo,Zdx) 1/2 
l-->-oo (2)  

in particular, for i =0 ,  this verifies (4.l-b) for k4 =2ca~/e. Similarly for (1.4-c): 

Q +  C = I~(x)l 2 + c = lira Ico~[ ~ + v >~ ~?/2(M + C). 
| ~ o O  

For  any  points x, yEB(1)  with r~a< Ix-y]  =~ <rt: 

(4.14) I~(x) - ~(u)l ~< I ~ -  ~'~t+ I~(x) - ~ l +  lo , (u)  - o 4 l  

<<. [~o'~ - ~o: l + 4c, l /~/r(~(~)la,  - O, ol~ dx) 1'' 

where we used (4.13) and the  fact  tha t  r~<~/r. Let  w=(x+y)2 -1 be the point  ha l f -way 

between x and y. 

2c4 ~)- =(r') ~+' c%lZdx. 

We chose C,=2n+l(.fB(1)dz)-l, and used the fact  t ha t  B(w,~/2)cB(x, r')N B(y, r ' )with 
(4.12-c). From the choice of i, r i ( n + l )  <~p~+lr (re+l). Then (4.14) together  with (4.15) gives 

(4.l-a) for the proper choice of k a. 

Section 5: Proo|  of the regularity theorem 

The proof of the main theorem of this paper is based on the fact  that ,  once given a 

ball of radius r on which I~ol~=Q is bounded,  as we shrink the radius of the ball down, 

either the m a x i m um  decreases by  a small factor, or co is sufficiently close to a cons tan t  

vector for the per t rubat ion theorem (4.1) to hold. The final result will be tha t  co is H61der 



R E G U L A R I T Y  F O R  A CLASS O F  N O N - L I N E A R  E L L I P T I C  S Y S T E M S  237 

continuous. At points where Q+C~=O, one can see by the linear regularity theory that  

the HSlder exponent should be arbitrary, and our perturbation method gives directly a 

1/2 estimate. However, at points Q + C =0, we can only show that  the solution lies in some 

HSlder space (one might guess the exponent to be (2 p + l )  -1) and the linear regularity 

theory cannot be used to carry the argument further, since the system fails to be elliptic 

at this point. Since we shall use the uniform estimates in Section 6, they are given in (5.4). 

(5.1) PROPOSITIOn. Let Q be bounded in B(x, r), M(Q)=max~B(x.p)Q(y). Then there exists 

a constant c 5 such that/or 4~ <~ r either: 

(a) M(e)+C<~(1-2 ) (M(4Q)+C)  

or: 
(b) there exists a constant vector 0)0 such that 

e-l(Q0 § C) ~ ---fB(x.Q) 10) -- 09012 < 2cs(M(4e) § C) p+I 

with: 

(c) Qo + C ~> (1 - cj2)2/('+1)(M(4r § C) 

Proo/. By expansion and translation we may assume x = 0  and Q=I ,  M=M(4) .  If 

(5.l-a) is false, then M - M ( 1 ) < ~ ( M + C ) .  maxxGB(p)H(Q)=H(M(~)) and from (1.7) and 

(1.3): 

H ( M ) - H ( M ( 1 ) )  <~ max H ' ( Q ) ( M - M ( 1 ) )  • K ( M + C ) ~ ( M - M ( 1 ) )  < .K~(M+C)  ~+1. 
M(1)-~ Q~ M 

First apply (3.4) and then the strong maximum principle (2.3) for H to get: 

(5.2) f.(1)(Q+CF[V0)]2dx<k3 f.(x,2)H(M(2))-H(Q)dx<~:3 fB(x,.~)H(M)-H(Q)dx 
k 3 c ' (1)(H(M) - H(M(1)) ~< ka c'(1)K~(M + C) ~+1. 

As in (3.1), this also gives an estimate on ~s(1)[Vvl2dx if we set v=(Q+C)~120). Let vo= 

~(1)v(x)dx(~s(1)dx) -1 and choose (]0)o[ 2 + C)~120) o =v o. We have the pointwise inequality 

(v - v 0, ~o - 0)0) = ((Q + C) '/20) - (Qo+ C)p/20)o, 0) - 0)o) 

i "1 >t 0 (Ito)+ (1 -t)0)oL2+ CF'2]0)-0)o]2dt>~ 2-"2-1(Qo§ 0)0[ 2. 

We then get 

( 5 . 3 )  <Oo § C)P f B(1)I(-D -- 0)o[2dx~. 2P+2 f B(1)]V--Vol2dx 

~< cl JB((1)I Vv ]2 dx <~ 2c~(p + 1 )~k s c'(1) K( M + C) ~+1 

from (5.2), which shows (5.l-b). 
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(5.1-c) will in general have content only when 2 is very small. First we note that  we 

can prove several more pointwise inequalities very directly: 

(Q § C) (p+1)/2 - (Qo + C) <p+l)/2 < Iv - v 0 [ 

(H(M) - H(Q)) 
(M  + C) (p+l)/2 - (Q -~ C) (p+1)/2 < K(p + 1) (M + C) (p+1)/2 " 

Adding, integrating over B(1), and finally applying (5.2) and (5.3) will give: 

( M +  C)(p+I)/2-(Q o . C ) ( ' + ~ ) / 2 ( ( d x )  - "  ' -~ ~ (]/2c5 +~c (1) K)(M + C) (v+~)/2) 
\ J  B(I) / 

for proper choice of c~ from e~. I f  ~ ~< 1, this gives (5.1-c). 

The main regularity theorem now follows from this. I f  x lies in the interior of the 

domain, then by  (3.2) we may  assume that  there exists a ball B(x, r) in the interior of D 

on which H(Q) and therefore Q are bounded, Q ~< M. The bound M will depend on the norm 

~D(Q + C) ~+ldx, the size of the ball B(x, r) and the distance of the ball to the boundary of 

D. Assuming this bound, the following theorem completes the proof: 

(5.4) THEOREM. Let co solve (1.1) in B(x, r), assume (1.2), (1.3) and (1.4) are true and Q <~M 

in B(x, r). Then there exists a smaller ball B(x, r/2) and fixed constants y and k depending 

only on K and p, such that 

]~o(y) -o~(z)  I <. k ] y  - z I~r-r(M + C) ~/2 

/or all y, z e B(x, r/2). 

Proo/. As usual, we may choose x =0  =y,  r = 2, and by translation assume tha t  Q is 

bounded on B(1) by M. Using the constant c 5 of (5.1), we select ~ so small that  

(1 - c J ~ )  >/2 (~ 1)~ = ~(~+1)/2 
and 

~tc52r+x ~ 

where e is the constant of (4.1) with ~ chosen as 1/2. (I t  looks like ~t will be rather small!). 

For this choice of ~t, either (5.l-a) applies, or the perturbation theorem (4.1) can be applied. 

Assume that  (5.l-a) applies to oJ on B(4 -~) for i < j ,  but  that  (5.l-b, c) hold on B(4 -j) 

unless ] = co. The number  ~ is chosen to satisfy 

( 5 . 5 )  V I - ~  = 4 - ~  

For 4-2-*~ ]y[ ~<4 -l  with i < j  we have 

I(.O(0) --0)(y)] < 2VM2 -t < 2(1 -~)'/2(m'~- C) 1/2 

= 2(4-v ~) (M + C) 1/2 < 21+2v ] y ] v(M + C) 1/~. 
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For  ]Yl 4 2-j, the per turbat ion theorem yields, for the expanded function ES(z)=oJ(y) 

with y = 4-  2- Jz 

[~(0) -~ (z )  l < k, [z 1"2(M(4 -j) + C) 1/2 

]C4 [ Z [ 1/~2(1 -~)J/2(M -~ C)1/~ 

Applying this to co, we get 

[~(0) - w(y) [ <~ kt4-~'Jyr lz I1/~-v 2y~'(M + C) 1/2 

k42y~(M + C)1/2. 

Section 6: Bernsteln's theorem 

Growth conditions at  infinity for a solution in all of R n follow easily f rom the uniform 

estimates in (5.4). Here are making use of the fact  t ha t  the constant  k does no t  depend on 

the size of C, which was the difficult par t  of section 4. We  let M ( r ) = m a x x ,  s(r)Q(r) as 

before. The number  will be the same as in section 5, and the proof is a direct  consequence 

of (5.4). 

(6.1) THEOREM. Let Eo be a solution o/ (1.1) in R n and assume (1.2), (1.3) and (1.4) are 

valid. Then there exists a constant ~ > 0 such that i/ 

lira inf r-2rM(r) = 0 

then oo is a constant. 

Proo/. Choose ~ as in (5.4). For  (x, y)E B(r/2) we have 

I o(x)  - ~(y) l < k lx - y I ~r-~(M(r) + C)-2 
Lett ing r-~ ~ we get 

I o~(x) - Eo(y)[ ~< ]c Ix - y [ v lira inf r-V(M(r) § C) 1/2. 

If  the limit is zero, co(x) =w(y)  for all x and y, and co is constant .  
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