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Par t  of the classical theory of Fuchsian groups is a classification of finitely generated 

Fuchsian groups of the first kind. This classification proceeds roughly as follows. To each 

such Fuchsian group there is assigned a set of integers, called the signature; there is a 

simple set of conditions describing which sets of integers actually occur as signatures of 

Fuchsian groups. Two groups have the same signature if and only if one is a deformation 

of the other; i.e., there is a (quasiconformal) homeomorphism of the disc which conjugates 

one group into the other. The set of groups of a given signature has a real analytic structure, 

and can in a natural  way be regarded as Euclidean n-space factored by a discontinuous 

group. 

In  this paper we give a similar classification for those Kleinian groups which have 

both an invariant region of discontinuity, and which, in their action on hyperbolic 3-space, 

have a finite-sided fundamental  polyhedron. To each such group we assign a signature, 

which is basically a geometric object, but we also give an interpretation of this geometric 

object as a set of integers, similar to the signature of a Fuchsian group. We give a simple 

set of conditions which are necessary and sufficient for such a geometric objec t - -or  set of 

integers-- to be the signature of a Kleinian group. Our main result in this paper is tha t  two 

such Kleinian groups have the same signature if and only if one is a quasiconformal de- 

formation of the other; there arc also weaker results dealing with Kleinian groups which 

have an invariant component and which are assumed only to be finitely generated. Spaces 

of quasiconformal deformations of Kleinian groups in general have been discussed else- 

where by Bers [6], Kra  [13], and Maskit [17]. The special cases arising from these particular 

Kleinian groups will be pursued in a subsequent paper in this series. 
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The basic definitions appear in section 1; many of these appear in [18], but  are repeated 

here for the convenience of the reader. The class Co introduced there is the class of Kleinian 

groups described above; this is proved in section 10. 

The signature of a Kleinian group is defined in sections 2 and 3. The conditions for a 

general "signature" to be that  of a Kleinian group are given in section 4. The proof of our 

main theorem, and several related lesults, appear in sections 5-9. The main ingredients in 

this proof are the decomposition of Kleinian groups [19], and a version of Marden's iso- 

morphism theorem [15], for which we give a purely 2-dimensional proof using an idea due 

to Koebe [12] (see also [18]), and the techniques of quasiconformal deformations due to 

Ahlfors and Bers [4, 7]. 

1. Definitions 

1.1. In this section we give the basic definitions that  are needed to define the signature. 

1.2. We denote the class of finitely generated Kleinian groups which have an invariant 

component by C1; i.e., if GE C1, then there is a connected component A of the set of dis- 

continuity ~(G), so that  g(A)=A for all gEG. 

We remark that  the point in C1 is actually the pair (G, A); Fuchsian groups for example 

have two invariant components. We will however write G E C1, and it is understood that  

we have chosen a particular invariant component A. 

1.3. Let (7 and G* be groups in C1 with invariant components A and A*, respectively. We 

say that G and G* are weakly similar if there is an orientation-preserving homeomorphism 

q~: A-~A*, where g - ~ o g o ~  -1 defines an isomorphism ~F of G onto G*. The mapping ~ is 

called a weak similarity, and ~Ir is called the induced i~omorphism. 

1.4. An isomorphism ~': G~G*, between groups in C1 is called type-preserving if both ~F 

and ~'-1 preserve parabolic elements, and if LF preserves the square of the trace of every 

elliptic element. 

1.5. If ~ is a weak similarity between G and G*, and if the induced isomorphism is type- 

preserving, then ~ is a similarity, and we say that  G and G* are similar. If in addition, 

is quasiconformal or conformal, then we say that  G and G* are quasicon/ormally or con- 

]ormalIy similar. 
One easily sees, using Ahlfors' finiteness theorem [2] and Bers' approximation theorem 

[8], that  G and G* are similar if and only if they are quasiconformally similar. 

1.6. A parabolic element g of a group G E C1 is called accidental if there is a weak similarity 

r so that  90ogo~-~ is not parabolic. 
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1.7. If GE C1, with invariant component A, and H is a subgroup of G, then H has a distin- 

guished invariant component A(H)~ A. 

1.8. A subgroup H of a group GE C1 is called a/actor subgroup if it  satisfies 

(i) A(H) is simply-connected, 

(if) H contains no accidental parabolic elements, 

(iii) H contains every parabolic element of (7 whose fixed point lies in its limit set 

A(H), and 

(iv) H is a maximal subgroup of G satisfying properties (i)-(iii). 

1.9. I t  was shown in [19] that  every factor subgroup of a group in C1 again lies in C1- 

1.10. A group G E C1 whose invariant component is simply connected, and which contains 

no accidental parabolic elements, is called a basic group. 

I t  was shown in [20] (see also Bers [9], and Kra  and Maskit [14]), tha t  every basic 

group H is either elementary (i.e., A(H) is finite), or quasi-Fuchsian (i.e., H is a perhaps 

trivial quasiconformal deformation of a Fuehsian group), or degenerate (i.e., A = ~). 

1.11. A group in C1 is called regular if no factor subgroup is degenerate. The subclass of 

C1 consisting of regular groups is denoted by C0--other characterizations of Co appear 

in [19]; we will show in section 10 that  Co consists of those groups in C1 which have a 

finite-sided fundamental polyhedron. 

1.12. A group in Co for which every factor subgroup is either elementary or Fuchsian is 

called a Koebe group. I t  was shown in [18] that  every group in C1 is conformally similar to 

a unique Koebe group. 

1.13. In general, if A c C = C  U {cr and G is a Kleinian group, then the stabilizer o /A  in G 

is {gE(7]g(A)=A}. 

If H is a subgroup of the Kleinian group (7, and A c 0, then A is precisely invariant 

under H in (7 if h(A)=A for all hEH, and g(A) f iA=O for all g E G - H .  

2. Basic signatures 

2.1. Throughout this section (7 will denote a basic group with invariant component A. 

In this section we recall the definition of the signature of a basic group, and we recall the 

relationship between the signature and the conformal type of the simply connected com- 

ponent A. 
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2.2. By mapping A onto the sphere, plane, or disc, we see that  G is similar to an elementary 

group or to a finitely generated Fuchsian group of the first kind. In  any case, A/G is a 

closed Riemann surface ~q from which a finite number  of points have been removed, and 

the projection map g: A~A/G is branched over at  most finitely many  points. These points 

of ~q over which g is branched together with the points not in ~(A) are called the distinguished 

points of ~. 

To each distinguished point x we associate a branch number v as follows. Let  w be 

the boundary of a disc on ~ which contains x in its interior, and which contains no other 

distinguished point in its closure. A lifting of w determines an elliptic or parabolic element 

of G. We let v be the order of that  element. 

Let  g be the genus of ~, let n be the number  of distinguished points of ~, and let 

vl, ..., vn be the branch numbers of these points. Then the signature of G is the collection 

(g, n; vl ..... vn). 

2.3. The signature is, of course, defined only up to permutat ion of the numbers vl,...,vn, 

and satisfies ff~>0, n>~0, 2 < v ~ <  ~ ,  i -~l ,  ..., n. 

Not every collection of numbers (g, n; Vl ..... ~n) satisfying these inequalities is actually 

the signature of a basic group. The only possible signatures which do not occur are (0, 1; u) 

and (0, 2; ~"1, r2)' Yl:#V2" 

2.4. I f  one knows the signature, then the conformal type  of A is determined. A is elliptic, 

parabolic, or hyperbolic whenever 2 ( g -  1) + ~ n  1 (1 - ( l /~t))  is negative, zero, or positive, 

respectively (here l/co =0). 

3. Signatures 

3.1. In  this section we define the signature of a group in C r  We define the signature pri- 

marily as a geometric object; this is closely related to the definition given in [21] which 

unfortunately is not quite correct. 

3.2. We start  by recalling some of the results of [19]. 

Let G be a group in CI- Then G contains only finitely many  conjugacy classes of factor  

subgroups; each factor subgroup is finitely generated, and hence is a basic group. 

On S =A/G, there is a finite set of simple disjoint loops w 1 ..... wk. Each connected 

component of the preimage of (w 1 U ... U wk} is stabilized either by a finite cyclic group, 

in which case it is a loop, or it is stabilized by a parabolic cyclic group, in which case it 

becomes a loop after we adjoin the parabolic fixed point. We will from here on regard the 

connected components of the preimage of {w 1 U ... U w~} as being loops; they are called 

structure loops. 
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Two structure loops may  be tangent  at  a parabolic fixed point; otherwise they are 

simple and disjoint. They divide A into regions called structure regions. 

For each structure region A, there is exactly one factor subgroup H, so tha t  A is 

precisely invariant under H in G. 

For each factor subgroup H, there is at  least one structure region A so tha t  A is 

precisely invariant  under H in G. 

Two factor subgroups of G are conjugate in G if and only if the structure regions they 

stabilize are equivalent under G. 

Every  structure loop W lies on the boundary of two structure regions A and A' 

stabilized by  H and H ' ,  respectively. Then J = H  N H' is the stabilizer of W, and if J is 

non-triviM, then J is a maximal  elliptic or parabolic cyclic subgroup of G. 

The loop W bounds topological discs B '  D A and B ~  A'; the disc B is precisely invariant  

under J in H, and the disc B '  is precisely invariant  under J in H ' .  

3.3. We remark at  this point tha t  while the factor subgroups are intrinsically defined, the 

loops w: ..... wk are in general not even unique up to homology. The properties of these 

loops tha t  we will use are all given above. I t  is clear tha t  these properties are not affected 

by minor deformations, hence we can assume tha t  every structure loop is smooth, except 

perhaps at  a parabolic fixed point. 

3.4. The signature of G is the collection (g; K), where g is the genus of A/G (by Ahlfors' 

finiteness theorem [2], g < ~ ) ,  and K is the 2-complex described below. 

Let H1, ..., H 8 be a complete list of non-conjugate factor subgroups of G, and let 

a~ = (g~, n~; utl ..... ~,n~) be the signature of H~. Let  K:  ... . .  K s be disjoint closed orientable 

surfaces, where K~ is of genus g~, and K~ has nl distinguished points on it, labelled with 

the branch numbers ~:  ..... v~nt" The surfaces K:  ... .  , K8 are called the parts of K. We say 

tha t  H~, or any conjugate of H~, lies over K~. 

There are also at most k 1-cells in K. We fix i, and let W be a structure loop lying over 

w~. I f  J ,  the stabilizer of W is trivial, then there is no 1-cell corresponding to w~. I f  I J ]  > 1, 

then let A and A' be the regions on either side of W, and let H and H ' ,  respectively, be 

their stabilizers, where H lies over Kj, and H '  lies over some K~. Let  B be the topological 

disc bounded by  W where B ~  A', and let B '  be the other topological disc bounded by W. 

Then B is precisely invariant under J in H, and so, after appropriate conjugation in G, B 

projects to a disc on A(H)/H, which we identify with K~, and this disc contains exactly 

one distinguished point with branch number  ]J l"  Similarly B '  projects to a disc on K z, 

where this disc also contains exactly one distinguished point of order ]J l"  Thus w, picks 

out a distinguished point on some Kj, and a distinguished point on some K~, where both 
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distinguished points have branch number ]J l"  In  this case, K contains a 1-cell called a 

connector, where the end points of the connector are the two distinguished points picked out 

by  w~, and the connectors are otherwise disjoint from the parts  of K, and from each other. 

3.5. Looking at  the orientation near W, one easily sees tha t  the two endpoints of any  

connector are distinct. 

I t  was also shown in [19] tha t  G could be successively built up using the combination 

theorems [22, 23]. In  the g roup /~  generated by  H and H ' ,  not only does W not bound a 

disc which is precisely invariant  under J in/~,  but J does not correspond to a distinguished 

point in A(/r/)//~, and so there is no disc precisely invariant  under J in /~,  whose boundary 

lies in A. We conclude tha t  each distinguished point of each par t  of K is the endpoint 

of at  most one connector. 

3.6. We remark next tha t  the connectors establish a partial pairing among the distinguished 

points of the parts of K. This pairing satisfies the following: 

(i) A distinguished point is paired with at  most one other distinguished point. 

(ii) A distinguished point cannot be paired with itself. 

(iii) Two distinguished points can be paired only if they have the same branch number. 

We also note that  a connector can have its two endpoints on the same or on different 

parts of K; in particular, K may  or may  not be connected. 

3.7. I t  is also worth remarking--here  again we use the step by step construction of the 

group using the combination theorems (see [19]), tha t  K can be constructed directly from 

A/G, once we know the branch points of the projection g: A~A/G, and we know the loops 

w 1 ..... w~ and the orders of their lifting. 

Let ~q be the closed Riemann surface containing A/G. Let xl ..... xn be the distinguished 

points on ~q, where x~ has branch number  ui; i.e., xt is either not in A/G, in which case 

u~ = co, or ~ is branched to order ~ over x~. 

Let w 1 ... .  , w~ be the loops on A/G; we regard these loops as lying on ~q, and we remark 

that  they do not pass through any of the distinguished points. Each loop wt defines, by  

lifting to A, a conjugacy class of elements of G; let g~ be the order of any element in tha t  

class (note that  this element is parabolic if a i r  ~ ) .  

We cut ~q along the loops w I ... . .  wk, and pass discs through the resulting boundary 

loops as follows. If  ~t = 1 then we just cut S along w~, and sew in two disjoint discs along 

the resultant boundary loops. I f  ~ >  1, then we again cut and sew in disjoint discs, but  
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now we consider the centers of these discs to be distinguished points of order az, and we 

adjoin a connector with its endpoints at these two distinguished points. 

The resultant 2-complex is K. 

3.8. The 2-complex K is of course defined only up to homeomorphism. We will regard two 

2-complexes as being the same if there is a branch number  preserving homeomorphism 

between them. 

3.9. The signature can also be regarded as a set of numbers. We write a = (g; (~1 ..... as; P), 

where again g is the genus of A/G, at is the signature of H i - - t h e  a~ are called the /ac tor  

signatures, and P is a ~ nt • ~ n~ symmetric incidence matrix,  with at  most one 1 in any 

row, which describes the pairing of 3.6. 

Of course r is defined only up to permutat ions of the (~, and permutat ions of the ~j,  

for fixed i. Each such permutat ion yields a different partial pairing matrix P. 

We will interchangeably use the different versions of the signature a. 

3.10. As we have defined it, the signature appears to depend on the choice of the loops 

w~, ..., w k. In  fact, as we will show in section 5, the signature depends only on the similarity 

class of the group in C1. 

3.11. One might t ry  to define the connectors in terms of intersections of factor subgroups, 

as was unfortunately suggested in [21]. I f  there is a connector with one endpoint on Ks 

and the other on Kj, where the distinguished points have branch number v, then there is 

a conjugate H '  of Hj  so that  H,  n Hj  is a maximal elliptic or parabolic cyclic subgroup of 

order v. 

For Fuchsian groups, there is a one-to-one correspondence between distinguished 

points and conjugacy classes of maximal elliptic and parabolic cyclic subgroups. Hence 

if every factor subgroup of G is non-elementary, the partial pairing matr ix  is determined 

by the intersections of factor subgroups. 

However, the odd dihedral groups (i.e., the finite basic groups with signature (0, 3; 

2, 2, n), n odd) have only one conjugacy class of elements of order 2; likewise, the finite 

basic group with signature (0, 3; 2, 3, 3) has only one conjugacy class of elements of order 

3. For groups which contain sufficiently many  of these triangle groups as factor subgroups, 

the signature need not be determined by the intersections of factor subgroups. A particular 

example is given below. 

Let  S be a closed Riemann surface of genus 5, and let Pl: S I ~ S  be the highest regular 

covering of S for which each of the loops indicated in figure 1, when raised to the indicated 
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power lifts to a loop. We can realize this covering by  a group G1 in C 1  [24]. Then G 1 has 

signature (5; K1), where K 1 is shown in figure 2. 

| 

Fig. 1. :Fig. 2. 

We similarly define G 2 by  the system of loops and powers given in figure 3, and observe 

tha t  G~ has signature (5; Ks), where K s is shown in figure 4. 

i 
i 

Fig. 3. Fig. 4. 

The two groups G 1 and G s have the same factor signatures, and the same intersection 

of factor  subgroups- - in  both  G 1 and G s every element of order 2 is in the intersection of 

four non-conjugate factor  subgroups, but  the groups have different signatures. 

4. Admlssable signatures 

4.1. Not  every pair (g; K), where g ~> 0, and K is as in 3.4-3.6 is the signature of a group in 

Ca. In  this section we give a set of necessary and sufficient conditions for this to be so. 

4.2. We already have two conditions for factor  signatures: 

(i) a ~ ( 0 ,  1; ~), i ~ 1  . . . . .  s, and 

(ii) a ~ . ( 0 ,  2; ~1, v2), ul*u2, i = 1 .. . . .  s. 

4.3. Since each factor subgroup is maximal,  if any  one of them is trivial, it  mus t  be the 

only one. Hence, 

(iii) if for some i, at=(O, 0), then 1 =i=s. 
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4.4. I f  a factor subgroup H,  is cyclic, then its factor signature is a, = (0, 2; v, v). If  a dis- 

tinguished point on the corresponding part  K~ is paired with some other distinguished 

point, then there is another factor subgroup H', so tha t  H~ N H '  is a non-trivial maximal  

cyclic subgroup in G. We conclude tha t  H' =H, and so the connector with one endpoint 

on K~ also has its other endpoint on K,. 

Let  A, be a structure region stabilized by  H,, and let W be a structure loop on the 

boundary of A ~, where W is also stabilized by  H,  (the existence of the connector guarantees 

tha t  there is such a loop). Then as we observed above, the structure region A'  on the other 

side of W is also stabilized by H~, and so there is another structure loop W' on the boundary 

of A~, where W' is stabilized by H~, and there is an element gEG-H, ,  which commutes 

with H. We note tha t  if H is parabolic, then the maximal i ty  of H precludes the existence 

of such an element g. 

We summarize the above in the following two conditions: 

(iv) If  some part  has factor signature (0, 2; v, ~), then any connector with one endpoint 

on this par t  also has its other endpoint on this part.  

(v) I f  some par t  has factor signature (0, 2; co, oo), then no connector has an endpoint 

on this part.  

4.5. Similar to the above, we observe that  if H and H' are distinct factor subgroups of G, 

each having signature (0, 3; 2, 2, oo), then H and H '  cannot have a common parabolic 

element. For if they did, the subgroup generated by H and H' would be the basic group of 

signature (0, 4; 2, 2, 2, 2) and this would contradict the maximali ty  of both H and H'. 

We restate the above in terms of the signature. 

(vi) I f  some par t  K~ has factor signature (0, 3; 2, 2, oo) and some other par t  Kj  has 

factor signature (0, 3; 2, 2, co), then there is no connector connecting the distinguished 

point with branch number c~ on Kt, with the distinguished point with branch number 

oo on K t. 

4.6. We let p be the number of connected components of K, and we let m be the number  

of connectors in K. Let g(K) be the genus of K; i.e., if we replace each connector by a tube, 

then we get a disjoint union of closed orientable surfaces; g(K) is the sum of the genera of 

these surfaces. 

One easily sees tha t  
g(K) = ~ 1  g~ + m -  (8 - p ) .  

I t  was shown in [19] that  g >~g(K). This yields the last condition: 

(vii) t =g -g(K) >10. 
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4.7. A signature satisfying (i)-(vii) is called admissable. We have proven half of 

T ~ E O R E ~  1. A signature a=(g; K) is the signature o/a  group in C1 i] and only i / i t  is 

admissible. 

With minor adaptations, the proof of the second half of this theorem is given by the 

constructions in [20] and [24]. One needs to verify, as one builds up the group using the 

combination theorems, tha t  the admissability conditions rule out all cases of two basic 

groups being combined to yield a larger basic group, and tha t  the factor subgroups of the 

combined groups are precisely the conjugates of the factor subgroups of the smaller groups. 

The first of these facts is easy, and the second was verified in [19]. 

5. Independence of signature 

5.1. In  this section we prove that  the signature depends only on the similarity class of a 

group in C1, and we will prove the converse in section 6. We state the result as 

T H ~ o ~ s ~  2. Two groups G and G* in CI are similar i/ and only i~ they have the same 

signature. 

5.2. For the remainder of this section we assume tha t  G and G* are similar groups in CI, 

where G has signature (g; K), and G* has signature (g*; K*). 

5.3. The fact that  G and G* are similar gives us at once that  g* =g. Further,  it was shown 

in [18] that  similarities preserve factor subgroups; hence K and K* have the same parts, 

with the same factor signatures. 

The only thing remaining is to show that  the connectors are the same. If  there is a 

connector in K, then it is defined by  a structure loop W in A, whose stabilizer J is non- 

trivial. Let AI and A2 be the structure regions on either side of W, and for i= l ,  2, let H,  

be the factor subgroup which stabilizes A,. 

Let ~0: A-~A* be the similarity, and let ~F: G-~G* be the isomorphism induced by ~. 

For i = 1, 2, let H* =~(H~).  

5.4. We first take up the case that  H~=H,. This can occur only if H=H~=H2 is cyclic; 

i.e., H = J .  In  this case, Ax has two structure loops W and W' on its boundary which are 

both invariant  under H. The element of G which maps W onto W' commutes with H. Thus 

H* is finite and there is a loxodromic element of G* which commutes with H*; hence the 

fixed points of H* are not in A*. Thus each of the two distinguished points of A(H*)[H* 
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are paired with something, but  as observed in 4.4, they can only be paired with each 

other. 

5.5. We now assume that  H 1 ~ H  2. In  this case, since J is a non-trivial common maximal  

cyclic subgroup, neither H 1 nor H 2 can be cyclic. 

One easily observes tha t  each non-cyclic factor subgroup stabilizes a unique struc- 

ture region. Let  A~ be the structure region stabilized by  H~, i = 1, 2. 

5.6. We know tha t  H~ ~ H i  = J *  is non-trivial; it suffices to show that  there is an element 

g* E G*, so that  ~*  =g*(A*)~At, and so tha t  there is a structure loop W* on the common 

boundary of ~ and At,  where W* is stabilized by J*. 

Let  W* be the structure loop on the boundary of A~ which separates A~" from A~; 

similarly, let W*2 be the structure loop on the boundary of At  which separates A* from At.  

Since A* and At  are both invariant under J*, it follows tha t  W*, W~, and any structure 

region lying between them, are all invariant under J*. 

We assume that  there are one or more structure regions lying between W~ and W* 2" 

I f  necessary, we replace A* by  some transform of it, so we can assume that  none of these 

structure regions are equivalent to A~' under G*. 

Let A* * s be the structure lying between W~' and W*~, where W1 lies on the boundary of 

A~. Let  W*3 be the structure loop on the boundary of A'a, where Wi separates A~ from At.  

Let H i  be the stabilizer of A*s. Since Ai  has two structure loops on its boundary which 

are invariant under J * c  H* 8, but  which are not equivalent under H~, we must  have either 

that  H*8 has signature (0, 3; 2, 2, n), n odd, IJ*l =2,  or tha t  H*8 has signature (0, 3; 2, 3, 3), 

IJ*l =3. 

5.7. Now let H a = ~ - l ( H i ) ,  and let A a be the structure region stabilized by H a. Note tha t  

H a N HI =Ha n H2=J, and so A a has a t  least one structure loop on its boundary which is 

stabilized by  J .  

There are two possibilities as to the relative positions of A1, A 2 and Aa, but  the argu- 

ment  is the same in both cases; we assume tha t  A 1 lies between A~ and A s. Then A 1 has 

two structure loops on its boundary stabilized by J ;  we conclude tha t  H 1 is also a finite 

non-cyclic group. 

5.8. We remark at  this point that  the statement tha t  W bounds a disc which is precisely 

invariant  under J in say H 1 is equivalent to the s ta tement  tha t  W is precisely invariant  

under J in H 1 and tha t  all the translates of W under H 1 - J  lie on the same side of W. 

We note next tha t  there is a structure loop W4 on the boundary of A 1 which is in- 
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variant  under J and which separates the elliptic fixed points of H a - J  from the elliptic 

fixed points and limit points of H 1 - J  and H ~ - J .  

We conclude tha t  ~(Wa) is invariant  under J* and separates the fixed points of H~ - J *  

from the fixed points and limit points of H* - J *  and H~ - J * .  

Let  B* be the topological disc bounded by ~(W4) which does not contain any of the 

fixed points of H ~ - J * .  Moving only inside B*, we can deform ~(W4) to a new loop W*, 

where W* projects to a power of a simple loop, W* is invariant  under J*, and W* intersects 

both W~ and W~. Then, looking only at  A(H~), we can extend W* N A*a to obtain a path  V* 

H* * connecting the fixed points of J*, where V* projects to a simple pa th  on A( a)/H3. One 

easily sees tha t  this is not possible for any of the possibilities listed in 5.6 for H~ and J*. 

6. Signatures and similarities 

6.1, In  this section we prove the second half of Theorem 2. We assume throughout this 

section that  G and G* are given groups in C1, with the same signature a = (g; K); our goal 

is to prove tha t  G and G* are similar. The proof procedes in a step-by-step fashion, with 

the similarity V defined first on one structure region, then on neighboring ones. 

6.2. We call two structure regions, A 1 and A 2 immediately connected if there is a structure 

loop W lying on the boundary of both A 1 and A2, where the stabilizer of W is non-trivial. 

Two structure regions are connected if they can be connected by a finite chain of 

immediately connected regions. 

Modulo the action of G, there are exactly p connectedness classes of structure regions, 

where p is the number of connected components of K. 

6.3. If  H is any subgroup of G, a decent/undamental domain D/or  H is a connected set 

bounded by a finite number  of smooth arcs, where no two points of D are equivalent under 

H; every point of A(H) is equivalent to some point of D; every structure loop which inter- 

sects D either lies in the interior of D, or it intersects ~D A A(H) in exactly two points; if 

two structure loops are equivalent under H,  then at most one of them intersects D. 

I t  is clear that  every factor subgroup of G has a decent fundamental  domain. 

6.4. We first remark tha t  if H c  G and H * c  G* are factor subgroups lying over the same 

part  of K, then there is a similarity ~: A(H)-~A(H*), where ~ preserves the endpoints of 

connectors. 

6.5. Our first goal is to define a similarity on A(H), where H is the stabilizer of a connected 

class of structure regions. 
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Let  K~, ..., K~ be the parts of a connected component L1 of K, where the ordering 

K~ ..... K r has been chosen so that  there is a connector cl connecting K~ to K1, there is 

a connector c s connecting Ka to K1 U K s, etc. Let  d~ ....  , dq be the connectors of L~ other 

than Cl, ..., c , - r  

6.6. We choose some structure region A1, with stabilizer H1, where H 1 lies over K r Simi- 

larly for G*, we choose some structure region A~, with stabilizer H~, also lying over K r  

We have already observed that  there is a similarity TI: A(H1)-~A(H*). 

We choose a decent fundamental  domain D 1 for H 1. 

Corresponding to the connector ci which joins K s to K1, there is a structure loop W~ 

which intersects D1, where the structure region A s on the other side of W1 lies over Ks, 

and where the order of J~, the stabilizer of W 1 is equal to the branch number of either end- 

point of cl. 

As above, we choose a decent fundamental  domain D s for H 2 where W1 is one of the 

structure loops intersecting Ds, and so tha t  D 1 N W~ = D 2 N Wr 

We observe that  (H1, Hs),  the group generated by  H~ and H z is formed from H 1 and 

Hs by  using combination theorem I [22]; in particular, D 1 N D2 is a fundamental  domain 

for the action of (H1, H2) on A((H1, Hs)). 

I t  is clear tha t  we can invariantly deform ~ ,  so tha t  D* =~1(D1) is a decent fundamen- 

tal domain for H*. Then there is a structure loop W~' which intersects D~, where the stabi- 

lizer H* of the structure region A~, on the other side of W~, lies over Ks, and where the 

stabilizer of W~ has the same order as J1. 

Since H s and H~ both lie over K 2, there is a similarity ~2: A(Hs)-~A(H*), and this 

similarity can be chosen so that  ~2OJlOq~ 1 =J* .  We invariantly deform ~2 so tha t  ~s(W2) = 

W*, ~zl W1 = ~ 1  W1, and so that  D~ =~2(D2) is a decent fundamental  domain for G*. 

We now define the similarity ~ls: A((H1, H2) )~A((H~,  H~)). If  z E D N  At ,  then we 

set ~l~(Z) =?~(z); if zE W N D, then we set ~lS(Z) =cf~(z) =q~s(z). As defined, ~ s  is continuous 

in D. I f  z~](D), ] ~ J ,  then we set ~(z)=]*O~l~Oj-~(z),  where ~*=~1o~o~  1 = ~ s o ] o ~  ~. 

Every  other point z ~ A ( ( H ~ ,  H s )  ) lies in some g(D) = g ,  ogn_~o ... og~(D), where the g~ alter- 

nately belong to H ~ - J  and H s - J ;  for such a point, we set 

~ l s ( z )  * * = gnog, ,_ lo  ... og*o~f l sog{ lo  ... ognl(Z), 

where g~ is either ~01OgiO(~l 1, or  ~02og~o(p2 1, whichever is defined. 

Using combination theorem 1 again, we see that  D* = D~ N D.~ is a fundamental  do- 

main for the action of (H~, H~) on its invariant  component, and that  (H~, H*~ is the free 

product of H~ and H~ with amalgamated subgroup J*. Hence ~12 is a weak similarity. 
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The admissability criteria for the signature guarantee tha t  (H1, H2) is not elementary. 

An easy adaptat ion of the argument  in [25] (see [18]) shows tha t  every parabolic element 

of (HI ,  H~) is conjugate to some element of H 1 or of H~; similarly every parabolic element 

of (H*, H~)  is conjugate to some element of H* or of H~. Hence ~12 is a similarity. 

6.7. If  L x has a third par t  K s, then the connector c~ has an endpoint lying on K 1 U K 2. 

Hence, there is a structure loop We, which intersects D~ N D~ where J~, the stabilizer of 

W~ is non-trivial, and where Hs, the stabilizer of the structure region A s lying on the 

other side of W2, lies over K z. We procede exactly as above and find H~, which also lies 

over Ks, and we find decent fundamental  domains D s for Hs, D*s for H~, and we find a 

similarity q~2s: A(<H1, H2, Hs>)-~A(<H~, H~, H~>), where~123(D 1 N Dz N Da) = D* N D*o N D~. 

Continuing as above, after r - 1 steps we obtain similar subgroups Hr+ 1 = <H 1 ....  , H,>, 

and * <H~, * where We also have decent fundamen- H~+I . . . . .  Hr> =~r+l(Hr+l), ~r+l = q l  ....... 

tal domains D,+I = D1 fl ... fl Dr for H,+ 1, and D*+I =q0r+x(D,+l), for H*+I. 

Corresponding to the connector dl, we can find structure loops U~ and V1, where U 1 

and VI both intersect the boundary of Dr+i, and U 1 and V1 are equivalent under the 

action of G, but not under the action of Hr+ 1. Then there is an element [1 E G -  H,+ 1, where 

/ I ( U 0  = V1. 

There are in fact several such elements in G; we choose/'1 and deform Dr+ 1 in the neigh- 

borhood of V1, so that/1(U1 fl Dr+i) = V1 n Dr+ 1. 

Since ~0~ ..... ~r have been chosen to preserve the endpoints of connectors, there are 

structure loops U~, V* intersecting D*+I, where ~r+l conjugates the stabilizer I 1 of U 1 onto 

the stabilizer I~ of U~', and q~r+l conjugates the stabilizer J1 of V 1 onto the stabilizer J ]  

of V~. There is also an e lement /7  in * * D r  ~ 1 G -H~+I  which maps U* onto V~. We deform * 

near V~' so tha t /*(V~ f~ D*~+I)= V~ D * / ) r + l .  

We now invariantly deform ~or+ 1 so tha t  ~or+x(U 1) * * D * = U1 , {J0r+l(V1) = V1,  {JPr+l( r+l) = D~+I, 

and so tha t  ~0r+xl U x conjugates ]x into ]~. 

We observe tha t  Hr+z, the group generated by Hr+: and/1  is formed using combina. 

tion theorem I I  [23]. Similarly, H*~+~, the group generated by  H*+I and ]~ is formed using 

combination theorem II .  We conclude tha t  D,+~, the connected par t  of Dr+ x cut out by 

Dr+l U 1 and V~ is a decent fundamental  domain for Hr+~; the connected par t  D'r+2 of * 

cut out by  U~ and V~ is a decent fundamental  domain for * �9 Hr+2, there is an isomorphism 

ux2 of Hr+ ~ onto H'r+2, where 

~F(9) =~0r+logo~0~+11 for gEH,+I, and xF([1) ---/~. 

We define ~,+2 in the obvious fashion by restricting ~0r+ 1 to Dr+ 2, and then using the 
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isomorphism ~ .  As in the preceding case, the argument of [25] is easily adapted to show 

that  ~r+2 is actually a similarity. 

6.8. We repeat the above argument q times until we arrive at a group, which we now call 

G1, a decent fundamental domain E 1 for G1, and a similarity Y~s between G 1 and G*, where 

v,)I(E1) is a decent fundamental domain for G~*. 

We note that  G 1 lies over all of L1; more precisely, every factor subgroup contained in 

G 1 lies over some part of L 1, and G 1 stabilizes an entire connectedness class of structure 

regions lying over L r Let B 1 be the relative interior in A of the union of the closures of 

these structures regions, so that  B I is precisely invariant under G 1 in G. We note that  every 

structure loop which intersects El ,  and which lies on the boundary of B1, is contained in 

the interior of E 1. Such a structure loop is of course stabilized only by the identity. 

From here on we will consider only regions such as B1, which essentially are connected- 

ness classes of structure regions; we call such a region a super structure region, and its 

stabilizer is called a super/actor subgroup. The structure loops on the boundary of a super 

structure region are called super structure loops. 

Repeating the argument of 6.6-6.8, we have shown that if Gf and G~ are super factor 

subgroups of G and G*, respectively, where G~ and G~ lie over the same connected component 

Lf of K, then there is a similarity, which we now call ~ :  A(G~)-~A(G*). 

6.9. Before preceding with the construction of the similarity, we need an auxilliary construc- 

tion in which we change some of the super structure loops. 

There are a total of p connected components of K. If  p > 1, then there is a super struc- 

ture loop in the interior of E 1, where B2, the super structure region on the other side of 

this loop lies over say L 2 ~ L  1. Call the super structure loop W1; let G~ be the stabilizer of 

Bz, and let E~ be a decent fundamental domain for G2, where W I lies in the interior of E z. 

Let W1, U1, ..., Uu be an enumeration of the super structure loops contained in the 

interior of E~. We choose non-intersecting paths V~ connecting Wi to Ut, i = 1 ..... u, where 

except for their endpoints, the V~ are disjoint from all super structure loops. Let W~ be 

the boundary of a small neighborhood of W 1 U U 1 U ... U Uu U V 1 (J ... D Vu, where W~ is 

homologous to W I _  U1 • ... • U~. 

We replace W 1 and its translates under G, by W'I and its translates. 

We observe that  the new set of super structure loops are mutually disjoint, just as the 

old ones were, and so they also divide A into super structure regions, where, except for B 1 

and B2, these new regions are the same as the old ones. For i = 1, 2, G~ is the stabilizer of 

both B~ and B'~, so the relationship between super structure regions and super factor sub- 
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groups remains unchanged. The essential difference is tha t  modulo G2, B~ has only one 

class of super structure loops on its boundary; the loops U x .. . .  , U~ now lie on the boundary 

of B~. We note also tha t  E~ is still a decent fundamental  domain for G~. 

We repeat the above process as often as necessary until we have altered B~ ..... By to 

new super structure regions, which we again call B1, ..., B~, so tha t  for 2 ~< i ~<p, B~ has only 

one class modulo G~ of super structure loops on its boundary. 

We perform the same operations with the super structure loops B* (B* has already 

been chosen, B*2 is chosen so tha t  B~ and B*e have a common super structure loop on their 

boundary, after changing B~ and B*, B~ and B~ have a common super structure loop on 

their boundary, etc.) so tha t  for 2 < i  <p ,  each B~ has only one equivalence class under G* 

of super structure loops on its boundary; there is a super structure loop on the common 

boundary of B* and B*, and this common super structure loop lies in El .  

6.10. Having performed the above operations, we relabel B*2, -.., B*, together with G*2, ..., Gp,* 

so that  for 1 ~<i <p ,  G~ and G* both lie over the same connected component of K. 

6.11. We return now to the construction of the similarity. 

Let W1 be the super structure loop lying in E 1 which separates B 1 from Bz. We observe 

that  G12 = (G1, G2) is formed from G1 and G2 using combination theorem I [22, 25], tha t  

G12 is the free product of G 1 and G2, and that  E12 = E 1 N E 2 is a fundamental  domain- - in  

fact a decent fundamental  domain- - for  G12. 

Similarly, let W~' be the super structure loop in E* which separates B~ from B~. We 

note again that  G~2 = (G~', G*~ is formed using combination theorem I, it is the free product 

E* - E *  N E~ is a decent fundamental  domain for G~.,. of G~ ' andG~,and  12-- 

We deform YJ1 inside E 1 so that  ~l(W1)= W~; we also deform ~2 inside E 2 so tha t  

~2(W1) = W~, and so tha t  ~xl W1 =~21 WI. 

We define the similarity Y~12: A(G12)-~A(G*~) by  setting ~212[(E12 fi E~)=yjt, i = l ,  2, 

and then using the natural  isomorphism between Gx2 and G* 12 to define ~12 on all of 

A(G12). 

We again observe, using [25], tha t  every parabolic element of G12 is conjugate to an 

element of either G 1 or of G 2. Similarly, every parabolic element of G~2 is conjugate to some 

element of G* or G~; hence the isomorphism induced by ~212 is type-preserving, and so ~212 

is a similarity. 

If  p > 2 ,  we repeat the above process until we arrive a t  a subgroup G1...~,=G~,+I , 

which covers all of K. The construction also yields a decent fundamental  domain E~+ 1 for 

G~+I, and a similarity 
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A(G~+I), where ~)~+1" A(Gp+I)  '-> * * E p  + 1 = ~/)p=i-I(Ejo+I) 

is a decent fundamental  domain for * Gp+I" 

We observe tha t  since G~+ 1 lies over all of K, the super structure loops lying in the 

interior of E~+I are necessarily pairwise identified by  elements of G. Similarly, the super 

structure loops lying in the interior of G~+ 1 are pairwise identified by elements of G*. 

6.12. We pause at  this point to remark that  if G were a Schottky group, then K would con- 

sist only of a sphere with no distinguished points, and so in this case, all our constructions 

up to this point, will have been vacuous. 

6.13. There are 2t super structure loops in the interior of E~+I; one easily sees tha t  t =g -g(K),  

as in 4.6. These 2t loops are paired by  elements of G which we label as/1 ..... /5 we label 

these super structure loops as U1, V1 . . . . .  U~, V t where fl(Us) = Vs. 

We observe that  these super structure loops bound a region E~+2, which is a fundamen- 

tal domain for the Schottky group G~+~ generated by fi ..... ft. 

The group ~ = (O~+l, G~+2~ is formed from these groups using combination theorem I 

[22, 25]. Hence (~ is the free product of G~+I and G~+~, and ~ = E~+ I N E~+ 2 is a decent funda- 

mental domain for ~. 

We observe next that  ~ =  A, and so A ( ~ ) c A .  We conclude that  A((~)=A. Since the 

elements of G permute the super structure regions, and since each super structure region 

has the same stabilizer in both G and (~, we conclude tha t  G = ~. 

The remarks above hold equally well for G*. That  is, * E~+I contains 2t super struc- 

ture loops U*, V~, ..., U*, V*'t, for each i = 1 ,  ..., t, there i sane lement /*wi th /* (U*)=V~;  

the region * Ep+e bounded by U* ..... V~ is a fundamental  domain for the Schottky group 

G'p+ 2," G* is the free product, formed using combination theorem I, of G~+I* and G*~+2. 

We have a similarity ~or+x: A(G~+I)-+A(G*+I ), where ~+x(E~+i)=E*+I.  We deform 

~or+ 1 inside Er+ 1 to obtain a new map q0: E~+ x Ep+l, where cf(Us)--=U* , ~0(Vs)= V~, and 

~0ols I Us=l~o~0] Us, i = 1 ,  . . . ,p. Then using the isomorphism between G and G*, we can 

extend ~ to a weak similarity between G and G*. That  q0 is in fact a similarity follows 

from combination theorem I [25]. 

7. Extensions of maps 

7.1. In  this section we restrict our attention to groups in Co, and we show tha t  two groups 

in Co have the same signature if and only if one is a topological deformation of the other. 

7.2, TH~.ORV.M 3. Let G and G* in Co have the same signature. Then there is a quasicon. 

formal homeomorphism tP: ~ ( G ) ~ ( G * ) ,  where ~pogotp-1 defines a type-preserving isomor. 

phism of G onto G*. 

3 -  772902 Acta mathernatica 138. Imprim5 le 5 Mai 1977 



3 4  B. MASKIT 

Proo/. From Theorem 2 it follows tha t  G and G* are similar; we denote the similarity 

by  ~00. 

I t  was shown in [19] tha t  if A~=A is a component of G, then there is a quasi-Fuchsian 

factor subgroup H~ of G so that  A~ and A(H~) are the two components of H~. I t  was also 

shown in [19] tha t  if H t is a quasi-Fuchsian factor subgroup of G, with components A(Ht) 

and A~, then A~ is a component of G. 

Let H 1 ... . .  Hq be a complete list of non-conjugate quasi-Fuchsian factor subgroups of 

G, and let A,=4=A(H~) be the other component of Hi: i = 1  ..... q. As we have already ob- 

served (see also [18]), H~:~ooHlo~9o 1 ... . .  H~=~ooHqoq~ 1 is ~ complete list of non- 

conjugate quasi-Fuchsian factor subgroups of G*. Let A* =A(H~) be the other component 

of H*, i = 1 ..... q. 

By the Nielsen realization theorem [10] (for proof, see Marden [16], or Zieschang [27]), 

for each i = l  ... .  , q, there is a homeomorphism ~,: A~-~A~, where q~ohoq~7~=q~oohoq~ ~ 

for every h ~H~. 

Using Bers' approximation theorem [8], we can assume tha t  To, T~, .-., Tq are all quasi- 

conformal. We define T by ~01A =T0, r  and we define ~0 on the rest of ~ by using 

the action of G, and the isomorphism between G and G*. 

7.3. A homeomorphism ~0: ~ - ~  is called a global homeomorphism. 

T H E o R ~. M 4. Let G and G* be groups in Co, and let q~: ~(G) ~ ~(G*) be a homeomorphism, 

where g~q)ogoq) -1 de/ines an isomorphism o / G  onto G*. Then q) is the restriction o / a  global 

homeomorphism. 

Proo/. We first extend ~0 to the limit sets of factor subgroups. Let  H be a factor 

subgroup of G, and let A be the structure region stabilized by H. Let  W1, ..., W~ be a 

complete list of inequivalent---under H- - s t ruc tu re  loops on the boundary of A. Each W~ 

bounds a topological disc B~ which is precisely invariant under the cyclic group J~ in H. 

We replace ~0 inside B~ by some homeomorphism which agrees with ~0 on W~, which maps 

B~ onto the appropriate topological disc bounded by ~(W~), and which conjugates J~ into 

~ o J i o ~  -I. We then use the action of H and ~ o H o ~  -I to replace ~0 in the translates of 

the B t. 

After the above replacements, we have a new homeomorphism ~' ,  where q~' maps 

~ (H)  onto ~ ( ~ o H o ~ - l ) ,  and Cohos0 -1 =~0'oho(~0') -1, for all hEH.  I f  H is elementary then 

~0' trivially extends to A(H); if H is quasi-Fuchsian, then so is CoHos0 -1, and we can ap- 

proximate ~0' by a quasiconformal homeomorphism [8], and then use [14] to extend ~'  to 

A(H). 
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For zEA(H), we set V(z)=V'(z), and we observe that  V is continuous across A(H) .  

If  z EA(G), but z is not a limit point of any factor subgroup of G, then [19] there is a 

s tructure loop W, and a sequence {gn} of elements of G, so tha t  g~(W) nests about  z; i.e., 

for each n > 1, gn(W) separates z from g,_l(W), and 

lim g~(W) = z. 
n--->QO 

The images q~ogn(W ) have the same separation property,  and it was shown in [22] 

(see also [25] and [18]) that  the loops ~ogn(W) accumulate to a single point w. Set ~(z) = w. 

Since ~1 is dense in ~, it suffices to check tha t  ~ is continuous from inside ~,  and this 

is immediate. Since the above construction can also be used to define ~-1, ~ is one-to-one, 

and hence a homeomorphism. 

7.4. We remark tha t  in the s tatement  of Theorem 4, we did not require the isomorphism 

to be type-preserving. We obtain, as a corollary to Theorem 4, tha t  such an isomorphism 

is necessarily type-preserving. 

8. Uniqueness for Koebe groups 

8.1. In  [18] we showed that  a Koebe group is uniquely determined--as  a Koebe g roup - -  

by  its similarity class and by  the conformal structure on A. In  this section we show tha t  a 

Koebe group is uniquely determined--as  a group in Co, by its similarity class and by the 

conformal structure on ~]. 

THEOREM 5. Let G be a Koebe group, and let q) be a global homeomorphism where 

q~oGoq)-l-~G * is a Kleinian group, and where ~[ ~(G) is con/ormal. Then q) is a ]ractional 

linear trans/ormation. 

The remainder of this section is devoted to the proof of Theorem 5. 

8.2. We remark first that  the maximali ty  conditions given in [19] imply tha t  G* E Co. 

We denote the spherical diameter of any set A by dia (A). Let  W 1, W2 .. . .  be a com- 

plete listing of the structure loops of G, then it was shown in [18] tha t  

~t  dia2 (W~) < co. 

LF~MMA 1. Let G* be any group in Co, and let W*, W~, ... be a complete listing o/the 

structure loops o/G*. Then 
~ dia 2 (W*) < oo. 

Proo]. Let  W*, ..., W* be a complete list of inequivalent---under G*--structure loops. 
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We observe tha t  if the stabilizer J~ of W~ is finite, then there are fundamental  domains 

E for J~, and D for G*, and there is a neighborhood N of W~, so that  E fl N = D  N N. Then 

by  Koebe's  Theorem (see [25]), 

~ ,  dia 2 g~(W~) < 

where the g~ range over a complete list of left coset representatives of J j  in G*. 

We now assume that  J~ is parabolic. 

Let  A and A'  be the structure regions on either side of W~, and let H and H' respectively 

be their stabilizers. 

I f  H and H '  are both quasi-Fuchsian, then H and H '  have non-invariant components, 

and so the hypotheses for Koebe's  theorem [25] are valid. 

If, say, H is elementary, then the signature of H is (0, 3; 2, 2, c~) and H '  cannot be 

elementary. Hence H '  is quasi-Fuchsian, and so by  passing to a subgroup of index 2, 

we reduce this ease to the preceding one. 

8.3. We now normalize G so that  ~ EA, ~ lies in the interior of some structure region, and 

is not an elliptic fixed point. 

We also normalize G* so that  near co, 

- -z+o(Izl- ' )  (1) 

We fix some number R so large that  I z I > R is precisely invariant under the identi ty in 

(7, and so tha t  [ z [ > R is contained in the interior of some structure region for G. 

8.4. LEMNA 2. For Izl >2R,  

Proof. We denote the length of W~ by L(W~) and we use D(A) to denote the Euclidean 

diameter of A. 

For each i, we choose a point $~ on W~, and observe that  

V:-; = fw, (~(r (2) 

I t  was shown in [18] that  there is a constant k > 0 so tha t  

L(Wf) <~ kD(W~). (3) 

Combining (2) and (3) with Lemma 1, we obtain 
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< R - l k ( ~  D2(Wi)) I /2(~  D2(gp(Wt))) 1!2 < oo. 

8.5. For the structure region containing the point at  0% we call [z[ = R  the outer structure 

loop; all other loops on its boundary are called inner structure loops. For any other structure 

region A, the outer structure loop is that  loop on the boundary of A which separates A 

from oo; all other structure loops on the boundary of A are inner. 

L E M M A 3. Let A be a structure region/or G with outer structure loop U, and inner struc- 

ture loops Izl, V~ .. . . .  The n / o r  Izl >2R,  

') d~ (q~(~)  d$ 

c - z  -z, jr, 

Proo/. Let H be the stabilizer of A. I f  H is finite, then the sum on the right is 

finite, and our lemma reduces to Cauchy's theorem. 

I f  H has one limit point, then we can assume without loss of generality tha t  this limit 

point is the origin. For r sufficiently small, the circle ]z] =r intersects only inner structure 

loops; for each such intersection, we deform ]z] =r  so tha t  it remains in the closure of 

A, and so tha t  it runs along the shorter arc of the inner structure loops. We call this de- 

formed loop Yr. For each r, 

( _ : ~ - j ~ ,  r  ~, r (4) 

where V1, ..., V~r are the inner structure loops lying between U and V,. 

I t  was shown in [18] tha t  for Koebe groups the ratio of chord to shorter length of 

arc of structure loop is uniformly bounded from below. Hence, 

L( Y , )  < kr. (5) 

Our result in this case follows from Lemma 2, together with (4) and (5). 

I f  H is Fuchsian, then we can assume without loss of generality that  the limit set of 

H is the unit circle. For r > 1 and sufficiently small, we define Yr exactly as above. Equality 

(4) and inequality (5) hold, exactly as above, and so we can conclude tha t  
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where we have used the continuity of q~ up to A(H). Since ~ is holomorphic in [z] < 1, 

the integral on the right is zero. 

8.6. Since every structure loop is the outer structure loop of exactly one structure region, 

we can use Lemmas 2 and 3 to conclude that  for I zl > 2R, 

~,=~ ~ - i  0. (6) 

We combine (1) and (6) to obtain tha t  for Iz[ >2R,  ~(z)=z. Hence ~ is the identity. 

9. Uniqueness 

9.1. In  this section, we prove our main resu l t - - tha t  if two groups in Co have the same signa- 

ture, then one is a quasi-conformal deformation of the other, and we also derive several 

other consequences of Theorem 5. 

Several of the results in this and the next section were announced in [21]. 

9.2. LEMMA 4. Let G and G* be groups in Co, where G is a Koebe group. Let q~: ~ (G ) -~ (G * )  

be a quasicon/ormal homeomorphism, where ~ogo~ -1 de/ines an isomorphism o/(7 onto G*. 

Then q) is the restriction o /a  global quasicon[ormal homeomorphism. 

Proo/. Using the existence of global homeomorphic solutions to the Beltrami equation, 

due to Ahlfors and Bers [4] (see also Bers [7, 8]), there is a global quasiconformal homeo- 

morphism % where y~oG*oy~ -1 = G '  is a group in Co, so tha t  yJo~0 is conformal on all of ~ .  

By Theorem 4, ~po~0 is the restriction of a global homeomorphism. Then by Theorem 5, 

v2o~0 and yJ are both global quasiconformal homeomorphisms, and hence ~0 is also. 

9.3. Our next result is the quasieonformal version of Theorem 4. 

T H e O r E M  6. Let G and G* be groups in Co, and let qJ : ~( G) ~ ~ ( G*) be a quasicon/ormal 

homeomorphism, where ~ogoq~ -1 de/ines an isomorphism o /G onto G*. Then q) is the restric- 

tion o /a  global quasicon/ormal homeomorphism. 

Proo/. I t  was shown in [18] tha t  there is a Koebe group G' similar to G. Using Theorems 

2 and 3, there is a quasiconformal homeomorphism ~o: ~ ( G ' ) - ~ ( G ) ,  where yjog'oy~ -1 

defines an isomorphism of G' onto G. By Lemma 4, yJ and ~0oy~ are both restrictions of 

global quasiconformal homeomorphisms. Hence ~0 is the restriction of a global quasicon- 

formal homeomorphism. 
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9.4. T H ~ OR w M 7. Two groups G and G* in Co have the same signature i / and  only i/ G* 

is a quasicon/ormal de/ormation o/ G (i.e., there is a global quasicon/ormal homeomorphism 

q~ so that G* =~oGo~-l). 

Proo/. If  G* is a quasiconformal deformation of G, then they are similar, and so by 

Theorem 2, they have the same signature. 

If G and G* have the same signature, then by Theorems 3 and 6, G* is a quasiconformal 

deformation of G. 

9.5. Our final application is a conformal version of Theorems 4 and 6. 

THV, ORE~ 8. Let G and G* be groups in Co and let q~: ~ ( G ) ~ ( G * )  be a con/ormal 

homeomorphism, where cpogoq~ -1 de/ines an isomorphism o /G onto G*. Then r is the restric- 

tion o/ a /ractional linear trans/ormation. 

Proo/. I t  is classical that  a quasiconformal homeomorphism which is conformal a.e. 

is in fact conformal. Hence, it suffices to show that  for G E Co, A(G) has 2-dimensional 

measure 0; we prove this in section 10. 

10. Finite sided fundamental polyhedra 

10.1. Every Kleinian group can be regarded as a group of isometries of hyperbolic 3-space, 

and so every Kleinian group has at least one convex fundamental polyhedron. I t  was shown 

in [5] (see also Marden [15]) that  if one convex fundamental polyhedron for G has finitely 

many sides, then they all do. 

Our main result in this section is: 

THV.OREM 9. A group GE C1 lies in Co i /and only if G has a/inite sided/undamental 

polyhedron. 

This theorem was announced in [26], and a proof for B-groups was given by Abikoff [1]. 

10.2. The proof of this theorem makes essential use of the criterion of Beardon and Maskit 

[5]. 
Let x be a fixed point of a parabolic element of the Kleinian group G, and let J be the 

stabilizer of x in G. We say that  x is a cusped parabolic/ixed point if either (i) J has rank 2, 

or (ii) there are two disjoint open circular discs (with boundaries tangent at x), whose union 

is precisely invariant under J in G. 

Let y be a limit point of G. We say that  y is a poin~ o I approximation if there is a 

sequence {gn} of distinct elements of G, and there is a point z E ~,  so that the spherical 

distance d(gn(y), gn(z)) does not converge to 0. 
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THEORE~ (Beardon and Maskit). A Kleinian group G has a/inite sided/undamental 

polyhedron i/ and only i/ every limit point o/ G either is a cusped parabolic fixed point, or 

is a point o/approximation. 

10.3. LEMM_~ 5. Let x be the /ixed point o/ the parabolic element gEGECo. Then x is a 

cusped parabolic/ixed point. 

Proo/. I t  was shown in [19] that  g lies in at  least one factor subgroup H. 

Let J be the stabilizer of x in G. I f  J has rank 2, there is nothing to prove, so we 

assume from here on that  J has rank 1. 

If  H is cyclic, then H corresponds to two distinguished points on A/G; liftings of neigh- 

borhoods of these points yield the required discs. 

I f  H is elementary, but not cyclic, and g goes not lie in any other factor subgroup, 

then the maximal cyclic subgroup containing g represents one distinguished point on 

A/G; lifting a neighborhood of that  point, and then applying an element of order 2 in J 

to the resultant disc, yields a pair of discs with the required property. 

If  H is elementary, but not cyclic, and g also lies in some other factor subgroup H' ,  

then H '  is necessarily quasi-Fuchsian. Let  A' ~ A ( H ' )  be the other component of H', and let 

U be a circular disc in A' which is precisely invariant under J in H' .  Let  j E J  have or- 

der 2; then U U j(U) has the required property. 

If  H is non-elementary, then it is quasi-Fuchsian. If  g does not lie in any other factor 

subgroup, then J0, the maximal cyclic subgroup containing g, represents two distinguished 

points on ~(G); one in A/G, and the other coming from the other component of H. If  g 

lies in H and H' ,  then J0 represents two distinguished points, one each coming from the 

other components of H and H' .  In  either case, appropriate liftings of neighborhoods of 

the two distinguished points yield the required pair of discs. 

10.4. We now prove half of Theorem 9. Let GE C0, and let xEA(G). By Lemma 5, we can 

assume tha t  x is not a parabolic fixed point. 

I t  was shown by Marden [15] (it also follows easily from [5] and standard facts about 

Fuchsian groups) that  quasi-Fuehsian groups have finite-sided fundamental  polyhedra. 

Hence, if xEA(H) for some factor subgroup H, then x is a point of approximation for H, 

and hence for G. 

If  x is not a limit point of any factor subgroup, then [19] there is a structure loop W, 

and there is a sequence (gn} of elements of G so tha t  gn(W) nests about  x (i.e., gn+,(W) 

separates x from gn(W), and g,,(W)~x). We assume without loss of generality tha t  gl = 1; 

then W separates g~l(x) from g~l(W). We choose a point zE W N ~,  and we observe tha t  
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if J ,  the stabilizer of W is finite, then the points {g~l(x)} are bounded away from W, and 

SO 

d(g~(x), gnl(z)) >~ k > 0. 

If  J is parabolic, then we choose a fundamental domain D for J ,  where D is bounded by 

two tangent circles, and we choose j~ E J ,  so that j,~og~l(x)E D. Then by Lemma 5, jnOgni(X) 

is bounded away from W, and so d(],~og~1(x), j,~og~l(z))>~k >0. 

We have shown that if G E Co, then G has a finite sided fundamental polyhedron. 

10.5. We now assume that G E C1 - Co. Then there is a degenerate factor subgroup H in G. 

I t  was shown by Greenberg [l 1] that  degenerate groups do not have finite-sided funda- 

mental polyhedra, hence there is a point x EA(H), where x is not a cusped parabolic fixed 

point of H, and x is not a point of approximation for H. 

Since parabolic fixed points cannot be points of approximation, we can assume that 

x is not a parabolic fixed point. 

Suppose there were a sequence {g~} of distinct elements of G, and a point ~ E ~,  so that  

d(gn(X), gn(~)) ~ k ~> O. 

After passing to an appropriate subsequence, there are two possibilities to consider: 

either the sets (gn(A(H))} are all equal, or they are all distinct. 

Since x is not a point of approximation for H, the sets (g~(A(H))} cannot all be equal. 

We suppose the sets (gn(A(H))} are all distinct. We choose some point z0EA, and 

observe that for each n there are a finite positive number of structure loops which separate 

z o from g~(A(H)); let W~ be the one which lies closest to g~(A(H)). Then the (W~} are all 

distinct. I t  was shown in [22] that under thesc circumstances, the spherical diameter of 

Wn converges to 0. Hence 

d(g~(x), gn(z))~O, for every zeA(H).  

We choose a subsequence, which we again call (gn}, so that  gn(zo)~o. Then [22], 

there is a subsequence, which we again call (g~} so that  g~(z)-~ 0, for all zEr with at 

most one exception. The one exception must be x, which cannot be, for the diameter of 

g~(A(H))~0, and A(H) contains more than one point. 

This concludes the proof of Theorem 9. 

10.6. We combine Theorem 9 with a Theorem of Ahlfors [3] (see also Beardon and Maskit 

[5]), and obtain the following: 

COROLLARY. I /  G E Co, then A(G) has 2-dimensional measure O. 
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