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The study of Kleinian groups, having venerable roots in the work of Poincar4 and Klein, 

has experienced a resurgence in interest in the period following the discovery of the finite- 

ness theorem by L. Ahlfors. This interest has centered about the geometric and function- 

theoretic properties of the sets of discontinuity of finitely generated Kleinian groups. 

Using these recent results and various properties of plane continua, we will discuss the 

structure of the limit sets of finitely generated Kleinian groups. I t  is well known that  the 

limit sets of (non-elementary) Kleinian groups are perfect, nowhere dense and have posi- 

tive capacity. For G a Kleinian group, we denote by A0(G), the residual limit set o/G, 

which we define to be the set of those limit points of G not lying in the boundary of any 

component of the set of discontinuity of G. I t  was classically stated, though incorrect, that  

A0(G) is always void, e.g. in Fricke-Klein ([6] p. 136) we find the following assertion-- 

Wir sehen, dass die beiden Fixpunkte einer hyperbolischen oder loxodromischen Substitution 

stets au] einer und derselben Grenzcurve, d. h. au] einem und demselben geschlossenen Zuge 

der Berandung des 2Vetzes liegen. The error recurs explicitly in Lehner ([8], p. 108). A coun- 

terexample was given by the author in [1]. Indeed, it is shown there that  A0(G ) may have 

positive areal measure when G is an infinitely generated group. 

We are concerned here with the properties of the residual limit set. I t  is shown that  if 

A0(G ) is not void, it has a perfect subset. This is related to the zero-measure problem of 

Ahlfors ([3]). When G is finitely generated, a necessary and sufficient condition for ~ to lie 

in A0(G ) is the existence of a nested sequence of Jordan curves, each lying in the limit set, 

converging to ~. As a corollary we find that  hyperbolic or loxodromic fixpoints lie in A0(G) 

if and only if the two fixed points of the transformation are separated by a Jordan curve 

which lies in the limit set. Perhaps most interesting for finitely generated "groups is the 

A portion of this work has appeared in the author's doctoral dissertation submitted in partial 
fulfillment of the requirements for the degree of Doctor of Philosophy at the Polytechnic Institute of 
Brooklyn. That work was supported by Bell Telephone Laboratories under its Doctoral Support Pro- 
gram. 



128 V~]IA%IAMABIKOFF 

relationship between the triviality of A0(G) and G being a function group, i.e. having an 

invariant component of the set of discontinuity. A0(G) is void if and only if G is a function 

group or has a subgroup of index 2 which is quasi-Fuehsian. Two examples are given of 

groups exhibiting specific properties of A0(G), one for G finitely generated and one infinitely 

generated. 

There is a concept related to that  of residual limit set, namely the relative residual 

limit set. The latter is defined to be 

A0(G, ~ , ) =  (Bd s (G)) -  [.J Bd g2~j(G) 
t 

where s is a component of G and the ~ j  are a complete list of the components of Ex t  ~ .  

I t  follows from recent, but  not ye t  published, work of Maskit that,  for G finitely generated, 

A0(G, s consists of the limit sets of finitely generated totally degenerate groups and 

some discrete set of points. We thus obtain a complete classification of the limit sets of 

finitely generated Kleinian groups. The limit set is a union of quasi-circles (=Bd~t j ) ,  limit 

sets of degenerate groups, the residual limit set and a discrete set. 

The author wishes to express his gratitude to L. Bers, W. J. Harvey and his advi- 

sor, G. G. Weill, for their patient guidance and encouragement, and to B. Maskit for his 

perseverance in criticizing several preliminary drafts of this paper. 

w 1. Preliminaries 

Kleinian groups are discontinuous groups of conformal motions of C, the Riemann 

sphere, and can be identified with certain of the discrete subgroups of PSL(2, C). A formal 

definition follows. 

Let  F denote the group of all MSbius transformations and G be a subgroup of F. 

Both F and G act as topological transformation groups on the space C. We define the orbit 

of a point z 6 C under the action of G to be the set 

Oz= (z']z' =y(z) for some 76G} 

Oz as a subset of C has a derived set, 0~. The limit set of G, A(G), is defined to be 

A(G) = tJ 0'~ 
zeC 

We may then define the ordinary set (or set o/ discontinuity) of G to be 

~(G) = C-A(G).  
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The subgroup G of F is called discontinuous if f~(G) is not void. If G is discontinuous and 

A(G) contains more than two points, G is called Kleinian. This last definition is not standard. 

According to some authors, any discontinuous subgroup of Y is Kleinian. Those we call 

Kleinian are then called non-elementary Kleinian. We assume unless otherwise stated that  

Eft(G). This assumption has no effect on the topological properties under discussion. 

The limit set of a Kleinian group is perfect and nowhere dense. The ordinary set 

f2(G) is open and has one, two or a eountably infinite number of components, f2~. I t  is easily 

shown (Lehner [8] p. 105), that  Bd ~ c A ( G ) .  The statement in the reference incorrectly 

asserts that  A(G) = tJ Bd f2~. We define the residual limit set A0(G) to be 

Ao(G) = A ( G ) -  tJ B d ~ , .  

We shall need the following classical results. 

THEOREM 1.1 (Lehner [8] p. 105). I] G is a Kleinian group, S c  C a closed set contain- 

ing at least two points and invariant under G then S~A(G).  

THEOREM 1.2 (Lehner [8] p. 73). A convergent sequence o/M6bius trans/ormations con- 

verges either to a constant or to a MSbius trans/ormation. In  the latter case, the convergence is 

uni]orm on compact sets avoiding the pole o/the limit trans/ormation. 

THEOREM 1.3 (Lehner [8] p. 103). I /  G is a Kleinian group and 2EA(G), then 2EO'z 

(i) /or each z Ef2(G) and (if) each z eAiG) with at most one exception. (The exception only occurs 

/or elementary groups, but we will not need this/act.) 

The modern results tha t  we will need are more geometric in nature. 

THeOReM 1.4 (Ahlfors [3], with complements in Bers [5] and Greenberg [7]). I] G 

is a finitely generated Kleinian group, then ~(G)]G is a/inite union o /Riemann sur/aces o/ 

/inite type. 

If G is a Kleinian group and A c C, we denote by  GA the stability subgroup of A. If  A 

is a component f~  of f~(G), we will frequently write G~ instead of Ga s. 

T H E O R ~ ~t 1.5 (Ahlfors [4]). I / G  is a/initely generated Kleinian group, then G~= Ga s is 

also a ]initely generated Kleinian group and ~t  is a component (o/the ordinary set) o] G ~. 

If  ~ is a component of G, we define a complementary component off2~ to be a com- 

ponent of f2(G~) -~i. 

THWOR~M 1.6 (Aecola [2]). I] f2~ is a component o /a  Kleinian group G, then every 

com21ementary component o / ~  is simply connected. 

9 - -  732904 Acta mathematica 130. I m p r i m 6  le 1 F6vr i e r  1973 



130 W I L L I A M  A B I K O F F  

A quasi-circle is the image of a circle under a quasi-conformal homeomorphism of the 

sphere. A quasi-Fuchsian group is a group which leaves a Jordan curve invariant. We will 

call a group q-Fuchsian if it is a finitely generated quasi-Fuehsian group, whose limit set is 

exactly the invariant  Jordan  curve, i.e. is quasi-Fuchsian of the first kind. The limit set of 

a q-Fuchsian group will be called a q-circle. 

THEOREM 1.7. (Maskit [10]). A /initely generated Kleinian group with two invariant 

components is q-Fuchsian. 

I f  G has one or two components then A0(G)=0 .  Thus the generic group considered 

here has infinitely many  components. Let  f2~ be a component of G, a finitely generated 

Kleinian group, and G~ be its stability group. I f  ~/~j is a complementary component of f/~, 

then the subgroup G~j of G~ which stabilizes f/~j is q-Fuehsian, by  Theorems 1.5 and 1.7. 

I n  which case we define the q-circle C~j =A(Gij ) to be a separator of G. We denote by  S =S(G), 

the set o/separators of G with the obvious definition. 

PROPOSITION 1.1. 1[ G is a /initely generated Kleinian group whose ordinary set is 

not connected then 
A(G) = 13 C 

CeS(G) 

where S(G) is the set o/ separators o~ G. 

Pro@ Since f~(G) is not connected there exists at  least one component possessing a 

complementary component. The boundary of this complementary component is a q-circle 

lying in S(G), and therefore S(G) is not void. S(G) is invariant  under the action of G, hence 

by  Theorem 1.1 the right hand side contains the left. The reverse containment follows 

easily since each point lying in an element of S(G) must  lie in A(G) and A(G) is closed. 

I f  IeA0(G), then t~C for any CeS(G) since the q-circles C were chosen to lie in the 

boundaries of the components, f/~. Thus, by  Theorem 1.2, for each t 6A0(G) there is a se- 

quence (C~) of q-circles in S(G) and points z, 6 Ci, such tha t  the z~ converge to i .  We define 

LI(G ) to be the set of ;t 6Ao(G) having such a sequence (C~) with the additional property 

tha t  ;t 6 In t  C~ for each i. We then let L2(G)=A0(G)-LI(G). 

PROPOSITION 1.2. I /  G is a/initely generated Kleinian group, then there is at most a 

/inite number o/q-circles in S( G) which are pairwise inequivalent under the action o/G. 

Pro@ There is at  most  a finite number  of pairwise inequivalent components 

f21, ... f2j by  Theorem 1,4. By applying Theorem 1.5 and again Theorem 1.4, each of these 

has a t  most a finite number of pairwise inequivMent complementary components. Each of 
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the q-circles in S(G) is the  common boundary  of one of the f2~ and of one of the comple- 

men ta ry  components  of ~ .  Only finitely m a n y  of the complementary  components,  hence 

only finitely m a n y  of the  q-circles in S(G), are pairwise inequivalent.  

The following results f rom plane topology are extracted directly f rom W h y b u r n  [11]. 

The page numbers  given refer to  t ha t  book. 

T~EOREM 1.8 (Zoretti, p. 109). I / K  I is a component el K S which is a compact subset 

o] the plane, then there exists a Jordan curve J enclosing K1, such that J N K = 0  and each point 

o / J  is at distance less than s /re in  K r 

An irreducible continuum M with proper ty  P is a cont inuum satisfying proper ty  P such 

tha t  no proper  subcont inuum of M satisfies p roper ty  P.  

THEOREm 1.9 (p. 17). I /  K is any closed subset o / a  continuum M, then M contains 

an irreducible subcontinuum containing K. 

I f  a and b are points, in a set M, then  by  an e-chain in M between a and b we mean 

a finite set of points in M 
a = xl, x2, x3, ..., x,  = b 

such tha t  the distance between x~ and x~+ 1 is less t han  e. 

A set M is well chained if for every e > 0 there is an s-chain between any  two points of M. 

T~EOREM 1.11 (p. 15). A compact set is connected i /and  only i / i t  is well chained. 

A plane cont inuum M will be called an E-continuum if for every e >0 ,  M contains at  

most  a finite number  of components  having diameter  greater  than  e. 

THEOREM 1.12 (p. 113). A plane continuum M is locally connected i /and  only i / i t  is 

an E-continuum and every component o / M  has a locally connected boundary. 

The following result  is essential to  the discussion of L2(G ). 

THEOREM 1.13 (p. 114). I /  19 EM, a locally connected plane continuum, but p does not 

lie on the boundary o / a n y  component o / M ,  then/or any e > 0, M contains a Jordan curve o/ 

diameter less than s enclosing p. 

A metric space X has property S if for each e > 0 M can be wri t ten as a finite union of 

connected sets of diameter  less t h a n  e. 

T~EORWM 1.14 (p. 20). I /  X has property S, it is locally connected. 

THEOREM 1.15 (p. 107). I / I V  is a locally connected continuum in the plane and a and 
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b are points lying in dif/erent complementary components o / N ,  then there exists a Jordan 

curve J c 17 separating a and b. 

A trivial modification of the proof given in the reference, allows us to assume J is part  

of the boundary of the unbounded complementary component of N. 

w 2. Description o| the residual limit set 

In this section we will prove three technical theorems on the residual limit sets of finitely 

generated Kleinian groups which we apply in the following two sections. The first states 

tha t  a residual limit point ~ is either contained in a nested sequene of q-circles or lies in the 

same component of A(G) as does a q-circle. The second gives some separation properties of 

separators. The third theorem gives some properties of a subgroup of G related to a fixed 

EL2(G). 

If A is a connected subset of the limit set, we denote by z(A) =go(A) the component of 

A(G) which contains A. Throughout this section, G denotes a finitely generated Kleinian 

group. 

T H E O R ~  2.1. If  G is a [initely generated Kleinian group then 

AdO) c L1 (G) u [ U z(c)]. 
CeS(G) 

Proof. Without  loss of generality we may assume tha t  A(G) is a compact subset of the 

plane. If 2 EA0(G), then, by Theorem 1.8, for e > 0 there exists a Jordan curve J~ such that: 

(i) g(2) ~ In t  J 

(ii) J n A(G) = 

(iii) d(z, Z(2)) <e  for all z on the curve J.  

Setting ~ = l / n  we get a sequence (J~) of Jordan curves converging to )~(2). Since each curve 

does not meet the limit set, J~cf2(G) and the conneetedness of J~ imply the existence of a 

component f~n for which J ~ c  g2~. We examine the following cases: 

Case 1: If infinitely many of the J~ l i e in  distinct components, then)t  lies in the com- 

plementary component f2~k of f~ .  Thus the q-circles C~, of which there are infinitely 

many, all contain ~ in their interiors. This is precisely the condition tha t  )L lie in LI(G). 

Case 2: If only finitely many J~ lie in distinct components, then, by passing to a 

subsequence, again denoted J~. each J .  is contained in the same component ~0- Since 
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~Bd ~0' 2 lies in a complementary component ~Ol of ~o- I f  C is the corresponding q- 

circle, then Jn converges to z(C). But  Jn also converges to z(~t). Thus Z(~t)=x(C). Since 

C is a separator for G, the theorem is proved. 

LEMMA 1.2. I /  ~ E~(G), the diameters of the separators in S(G) [orm a null sequence. 

Proo/. Let {Q} be a list of the separators in S(G). By Proposition 1.2, they fall into 

finitely many  equivalence classes, where C~ ~ Cj if there is a ~ C G such tha t  y(Ci) = Cj. Clearly, 

it suffices to show tha t  the diameters of the separators in an equivalence class form a null 

sequence. I f  this is not true, then there exists a subsequence, again denoted {C=}, of equiva- 

lent separators whose diameters are strictly bigger than some number  d >0.  We assume 

C==yn(Co) , yaE G. By conjugation and passing to another subsequence, we may  assume 

tha t  y~(Ext C o ) c I n t  C 0. I t  follows, from Montel's theorem, tha t  {7~} is a normal family 

and has a convergent subsequence {7~,}. By Theorem 1.2 and discreteness of G, {7,,} con- 

verges uniformly to a constant on C o U Ex t  Co, in particular on C 0. So diam (C~)-+0, which 

contradicts the assumption. 

LEMMA 2.2. I /  c~E~(G) and C1, C2ES(G), then either C 2 c E x t  C 1 or C ~ c I n t C  1. 

(Separators don't cross each other.) 

Proo/. By definition, C 1 and C~ lie in the boundaries of components, say ~1 and ~ 

respectively, of G. I f  C 1 and C 2 are distinct and C 2 intersects both Ex t  C 1 and In t  C1, 

then there exist points ~t 1 C Bd s NExt  C 1 and ~2 C Bd s N In t  C 1. Since s is connected, 

f22c~(G ) and C 1 c A(G), this is clearly impossible and the lemma is established. 

The above lemma contains the separation property which is peculiar to finitely gener- 

ated groups and allows us to prove the remaining results of this section. The following 

notion is then meaningful in the context of separators. We define a set of Jordan curves 

C in C to be spherical nest if for every three curves C1, C2, C a in C one of the three, say C1, 

has the property tha t  C 2 and Ca lie in distinct closed regions complementary to C 1. C is said 

to be a spherical nest rel (Zl, z~) if for each C E C zl and z 2 lie in distinct open regions comple- 

mentary  to C. I f  C is a spherical nest rel (z~, z2) then C E C is maximal if the component D, 

of C - C  containing z2, intersects no element of C. 

We now proceed to consider subcontinua of A(G) and their stability groups. I f  2 EL~(G), 

then, by  Proposition 1.1, we can choose a sequence of separators having~ as an accumula- 

tion point. The next  theorem shows tha t  this sequence may  be chosen to consist of maximal  

separators and discusses their properties. 
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T~EOR~M 2.2. I/2EL~(G) and both z and ~ are in ~(G) then: 

(i) the/amily o/separators which separate z and 2 /orm a ]inite spherical nest tel (z, 2), 

denoted C(z). 

(ii) C(z) contains a maximal element C(z) (which is, o/course, a separator). 

(iii) C(z) c Z(2). 

(iv) i / z '  E~(G) and lie in the same region complementary to C(z) as does z, then C(z)= C(z'). 

(v) (J {C(z): zE ~(G)} accumulates at 2. 

Proo/. Lemma 2.2 yields that  the family of separators separating z and 2 is a spherical 

nest rel (z, 2), denoted C(z). Since connectedness is a conjugation invariant, the proof of 

case 2 of Theorem 2.1 tells us that  C(z) contains a separator in Z(2) (send z to c~). In par- 

ticular, C(z) is not void. If C(z) contained infinitely many separators, it would contain a 

subsequence of separators, each of whose interior would contain 2. Thus 2 ELI(G ). Thus 

C(z) is a finite spherical nest rel (z, 2) and therefore contains, by  Lemma 2.2, a maximal 

element C(z). We denote the component of C -  C(z) containing z by B(z). (C: C E C(z)} 

B(z). But some C o E C(z) lies in Z(2). Plane separation then demands that  C(z) lie in Z(2), 

and we have proved (i), (ii) and (iii). 

To prove (iv) we note that  C(z) E C(z') for each z' E B(z). If C(z) =~ C(z'), then C(z) ~ B(z') 

and B(z)c  B(z'). Thus C(z')E C(z) and we contradict the maximality of C(z). 

Since 2 does not lie on any separator we can find a sequence zn~2 , z~ E ~(G) for which 

C(zn) are distinct. Since diam C(z~) is a null sequence, [J C(zn) accumulates at 2. 

Since C~-~C(z~)E {C(z): z E ~(G)} we have proved (v) and the proof of the theorem is 

complete. 

For 2 EL~(G), we define 7Tl(2) to be the set of maximal separators/or 2. Formally: 

~(2)  = {C E S(G) : C = C(z) for some z E ~(G) and fixed 2}. 

(The dependence of C(z) on 2 has been suppressed in the previous discussion.) The web o/2, 

(I)(2) is the closure of the set of maximal separators for 2. The web subgroup o/2, H(2), is the 

subgroup of G which stabilizes (I)(2). In the previous theorem we showed (I)(2) contains 2 

and infinitely many separators, each lying in Z(2). I t  follows that  (I)(2)~ Z(2) since g(2) is a 

continuum. We cannot prove directly tha t  the web of 2 is connected. To do so we first note 

that  there is an irreducible subcontinuum ~)(2) of Z(2) which contains (P(2). This follows from 

Theorem 1.9 since Z(2) is a continuum and (I)(2) is closed. In the following two lemmas 

show qb(2) cannot contain any points other than those in 0(2). 

L~MMA 2.3. Let {C~} be a list o/the maximal separators in ~(2)  and D~ the component 

o /~  - Cn which contains 2. Then r = n D--n. 
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Proo/. Assume 2 = oo. Then D ~ = E x t  C n. The Cn have disjoint interiors by Lemma 2.2. 

Thus Dn ~ C~ for each m =~ n, hence for all m, since C~ = Bd Dn. Thus 0(2) ~ D~ for each n. 

If z ~ ( [ ' i D n ) - r  ) then z lies at  a uniformly positive distance ~rom Int  C n for eachn.  

We may assume x ~ ~(G) since ~(G) is dense in C. But  then there is a maximal separator 

C~ E~(2)  for which z ~ C -  (D~). This is a contradiction. 

L]~M~A 2.4. (P(2)=0(2). 

Proo/. In  the notation of the previous lemma if z E (~(2)-r there exists D~ such 

that  z f i C - ~ .  Since ~)(2)is well-chained (Theorem 1.11) so is ~)(2)N (C=UExt Cn)= 

q)(2) N Dn---. Thus (~(2) N D,  is a proper subcontinuum of ~)(2) containing 0(2) which yields a 

contradiction. 

LEMMA 2.5. At most countably many 2 ~L2(G ) have distinct webs, r 

Proo/. If there are uncountably many distinct r for 2EL2(G ), then there is a 

CoES(G ) such that  CoE~(2 ) N~/(2') where r1 6 2  If ~ ( 2 ) = ~ ( ~ ' )  then ~ and 2' 

would have identical webs, so we may assume that  there is a separator C~jETtl(2) - ~ ( 2 ' ) ,  

C~j = (Bd f)~) N (Bd f2~j) where f2~ and ~2~ have the usual meaning. 

Case 1. If  C~j separates 2 and 2'. Then 2 and 2' lie in distinct complementary compo- 

nents of ~ .  Then for C O to be maximal with respect to 2 (resp. 2') it is necessary that  it 
A 

lie in the same component of C -  Cij as 2 (resp. 2'). But this is impossible. 

Case 2. If C~j does not separate 2 and 2'. Assume 2 and ;t' lie in Ex t  C~j. Since 

Cts ~ ~(2 ' ) .  There is an element of ~/(;t'), say C1, which separates 2' and In t  C~j. C 1 does not 

separate In t  C~j and 2 since C~jET/~(2). Then use the argument of case 1 on C1, and obtain 

a contradiction. Thus we have shown that  if ~ (2 )  N 7ql(s �9 ~,  we have 0(2) =r  

The next  lemma shows that  web subgroups are non-trivial. 

LEM~A 2.6. I /  C~jE~(2), then G~j~H(2). 

Proo]. We wish to show that  if C,jE~Y/(2) and yEG, 7(C~j)=C~j, 7(Int C~j)=Int C~r 

then y(r =01)(2). We assume co Ef)~. Again since r was defined to be the closure of 

those separators in ]ql(2), it suffices to show ~(2)  is invariant under y. 

If not, there is a separator C~,E~?I(2) for which CK, r=v(C~)@~(2). We first note 

that  y is a homeomorphism of In t  C~r and r  C~ U Int  C~r (See figure 1). Since C~t 

separates ~ from the component of (Ext s N In t  C~r which contains 2, the same must be 

true of Cz,~, with respect to (Ext  ~ , )  N In t  C~. Thus 2E~,~ ,  = F ( f ~ ) .  If  C~,f E7//(2) then 

there exists a C o ~ ~(2)  so that,  for each z E f ~ ,  Co = C(z) (in the notation of Theorem 2.2.) 

Since C~, Co, C~,t, is a spherical nest, so is C~r y-l(C0), Cxz. 2 must lie in one of the 
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% 
:Fig. 1. 

open sets Int  C~j N Ext  y-l(Co) or Int  7-1(C0) NExt CK~. In the first case we contradict the 

maximality of CKz with respect to z E~K and in the second, we contradict the maximality 

of C~j with respect to c~. 

We have proved most of the following theorem. 

T ~ O R S M  2.3. I] G is a finitely generated Kleinian group and 2EL2(G), with web 

(O(X) and web subgroup H=H(2) ,  then: 

(i) H is Kleinian 

(ii) A(H) = q)(~) 

(iii) A(H) is connected 

(iv) each component of ~(H) is simply connected and bounded by a q-circle in "m(,~) 

(v) the subgroup of H fixing a component ~ ( H )  o /~ (H)  is finitely generated and q- 

.Fuchsian 

(vi) ~ EA(H) 

(vii) only countably many distinct ~ EL~(G) yield distinct groups H 

(viii).only finitely many ~i(H) are inequivalent under the action of H. 

Proof. 

(i) By Lemma 2.6. H contains the subgroup G,j corresponding to each C,jcaP(2). Thus 

A(H)~A(G~j) =C,j and H is not elementary. Since H c G  it is discontinuous and hence 

Kleinian. 

(ii) Since dp(2) contains more than 2 points, is closed and invariant under H, by Theo- 

rem 1.1, we have A(H)c  6P(2). A(H) is closed and by part (i) contains a set of q-circles dense 

in r hence A(H)~dP(2). 

(iii) follows from part (ii) and Lemma 2.4. 

(iv) Since A(H) is connected, each component of~(H)is  simply connected. If ~,(H) is 
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a component of ~(H) we must show that  Bd ~ ( H )  is a q-circle contained in (I)(2). We may 

assume ~ E~(H)  N ~(G).  Since ~j(G) N ~ ( H )  ~: 0 ,  we have ~ j (G)c~ i (H  ). Further, by 

the construction carried out in Lemma 2.3, there is a q-circle 0 c ~ ( 2 ) w h i c h  separated 

~j(G) from 2. Clearly ~ ( H )  is contained in Ext  0, and (I)(2)c0 U Int  0. I t  follows that  

Bd f~,( H) =0. 

(v) If H~ is the subgroup of H leaving f2t(H ) invariant and Bd ~2~(H) = 0  as in part (iv), 

then H~ leaves 0 fixed, r ES(G), implies r is some C~z corresponding to a subgroup G~z of G. 

In Lemma 2.6 we showed that  GkzcH. Since Gkz is finitely generated and q-Fuchsian, it 

suffices to show Gkz=H~. We note that  H~ contains no elements y : E x t  C-~Int C since 

~ ( H )  is simply-connected and connected and f2(H) - ~ ( H )  has infinitely many components. 

If  such a y did exist then ~ ( H )  and ~(H) -f2~(H) would have to be homeomorphie which 

is impossible. Thus if y EH~, y leaves f2 k invariant, i.e. y EGk and also y leaves ~2~ invariant 

hence lies in G~z. We have shown that  H,=Gkz. 

(vi) follows from (ii) and Theorem 2.1 (v). 

(vii) follows from (ii) and Lemma 2.5. 

(viii) We first prove the following lemma: 

LEMMA 2.7. 1/ at most finitely many q-circles C~j = B d  f2k(H) are pairwise inequivalen$ 

under H, then at most finitely many ~ (H)  are inequivalent under the action o[ H. 

Proo/. We show that  if y6H,  y(C~) =Cry,, C ~ = B d  ~2~(H) and C~, r = B d  ~2~(H), then 

y(~2~(H)) =f2~,(H). If not, then ~ maps f2~(H) into ~2(H) NExt f2r (H) hence onto that  set. 

But then we would have f2~(H), which is connected and simply connected, homeomorphic 

to ~(H) NExt O~,(H), which is not even connected. This is clearly contradictory and the 

lemma is established. 

By Proposition 1.2, we know that  there are at most finitely many q-circles C~cqb(2) 

which are not equivalent under G. If  C~ and Cz are q-circles lying in O(2), and y 6 G for which 

F(Ci) =C2 then it suffices to show FeH, since if so any equivalence under G of q-circles in 

r is also an equivalence under H. 

Since O(2)=A(H) was defined to be the closure of a set of q-circles, ~/(2), it further 

suffices to show that  if C~ ~ ~(2)  then :~(C~j) = C~,f ~ ~/(2). The proof of part (viii) has been 

reduced to the following lemma. 

L E ~ X  2.8. For fixed 2~L~(G), i/ C~rC~,r, C~e)~/(2) and F~G, ~(C~,r)=C~,r, then 

Proo]. (See Figure 2.) Assume 2 e Ext  C~, ~ = (kl), (k'l'), (i]). If  Ce~, is not maximal with 

respect to 2, then there exists C O ~7~/(2) for which 2 and Int  C~,~, lie in different components 
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complementary to C 0. But  then C O separates In t  Ct, s, from In t  Ck, z, (unless C o = Ck, l, we 

consider tha t  case below), 

I f  Co4= Ck, z, 7-1(C0) separates In t  Ckl from C~s and we obtain the same contradiction 

as in Lemma 2.6. I f  Co=Ck, r, 7 : E x t  Ckz-~Int C~,r. But  Y : g ~ - ~ k ' ,  and ~ a l n t  Ckz 

and ~ k , ~ I n t  Ck, z,, so this is impossible. 

The proofs of the lemma and theorem are now complete. 

w 3. The structure of the residual l imit set 

We are now in a position to describe some of the structure of the Residual Limit  Set. 

The first theorem of this section deals with the non-triviality of A0(G ) whenever it is non- 

void. The theorem is applicable to finitely and infinitely generated groups and in asserting 

not tha t  Ao(G) has a perfect subset, we show tha t  measure theoretic questions aboutA0(G ) 

are non-trivial. We then restrict ourselves to finitely generated groups. We derive necessary 

and sufficient conditions for points to lie in A0(G) and restate Theorem 2.1 in a form com- 

patible with the present context. 

T H ~ o t~ E M 3.1. I f  G is a f ini tely or inf ini tely  generated Kle in ian  group with Ao(G) 4:f3 

then: 

1) There is a nonvoid per]ect set PcA0(G),  

2) ~r162 where ~ denotes the cardinality. 

Proo/. 2) follows trivially from 1). We will prove 1). 

Let  B~ = C(~l). B~ is open and A0(G ) = N Gi. A0(G) is either void or dense in A(G), we 

assume the lat ter  and therefore tC(A0(G))>~Lr o. 

Suppose a0, a 1 EA0(G ) and a o 4 = a 1. Then they have disjoint open neighborhoods B'o, B~ 

which are completely contained in B~, since ~1 is compact (on the sphere). Pick the neigh- 
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borhoods to have diameters < 1. Pick distinct points a00 , %1 E B~ and al0 ,all  E B~ and disjoint 

neighborhoods B . . . .  0o, Bol, B10 and Bll each of diameter < 1/2 and with compact closure in 

B2 N B~ (resp. B~ N B~). Continue the process. For each n let 

B '  K n =  U {  .. . . . . . . .  : . . . . .  1}} 
and let K = [1 K, .  

Then since _ K c  Kn_lC B~_I, we have K = [1-~, and is thus compact. K cA0(G ). We 

also have for each n, every point of K is contained in a 1In neighborhood which contains 

infinitely many points of K, or K is dense in itself and therefore perfect. 

Theorem 2.1 may be restated in the following form. 

THE O R ~  2.1'. I / G  is a / in i te ly  generated Kleinian group and ~ EA0(G) then either: 

1) There is a sequence o/q-circles (Ci), each lying in S(G), Ci~ Bd ~t(G)such that {Jr} = 

N lilt  C~, or 

2) )~ lies in the same component o] A(G) as does some C~ES(G), C ~  Bd f~(G). 

Proo/. In Theorem 2 we showed everything stated except tha t  in case 1) {~t} = N Int  Ci. 

I t  is stated there only that  ~ Efl In t  C~. Equality follows directly from Lemma 2.1. 

L E M M A 3.1. I/ ,~ E L 2 (G) and H = H(~) is its web subgroup then A ( H )  is an E-continuum. 

Proo/. The boundaries of the components of H are separators and Lemma 2.1 shows 

that  these diameters form a null sequence. 

LEm~A 3.2. 

(i) A(H) is locally connected. 

(ii) I/~t EAo(G ) then/or each s > 0 there is a Jordan curve J such that 

a) J c A ( H )  

b) ~t EInt J 

e) d(?', ~t) < e / o r  each ] lying on J.  

(iii) A0(H ) =A0(G) N A(H)=L2(G ) N A(H). 

Proo/. 

(i) Follows from Theorem 1.12 and since A(H) is an E-continuum and the boundary 

of each component of CA(H)=E~(H) is a q-circle hence is locally connected. 

(ii) Follows directly from Theorem 1.13 since if ~t EA0(H), ~t ~ (J Bd E~(H). 

(iii) Follows from Theorem 2.3. 
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THV, OR~.M 3.2. I /  G is a finitely generated Kleinian group and ~ E~(G), then 

(i) 2 ~A0(G) i /and only if there is a nested sequence o/Jordan curves J t cA(G) ,  with diam 

(J,)-~0 and {2} = N Int  J, .  

(ii) I / y  eG is loxodromic or hyperbolic then the fixed points of y lie in Ao(G ) if and only 

i/there is a Jordan curve J c A ( G )  which separates the fixed points of y. 

Proo/. 

(i) If 2 EA0(G), then either 2 eLl(G) or 2 eL2(G). In the first ease we have by definition 

that  there is a sequence of equivalent q-circles whose common interiors contain 4. That  the 

intersection contains only 2 is proved in Theorem 2.1'. If 2 EL2(G), then 2 lies in the corre- 

sponding A0(H ) and the existence of the required Jordan curves follows from the previous 

lemma. 

Conversely suppose the condition is satisfied and 2EBdf~(G).  Let  zE~(G)  and 

d =d(z, 4). Choose k large enough so that  d(Jk) <d. Now Jk N ~ =O,  since JkcA(G)  and ~ 

contains points of both Int  J~ and Ext  Jk, which contradicts ~ being connected. 

(ii) Suppose the fixed points 21 and 22 of y lie in A0(G). Then by (i) we can choose a 

Jordan curve J ~ A ( G )  which separates 21 and 22. Conversely if J c A ( G )  separates 21 and 22, 

then yn~ (j)  is a nested sequence of Jordan curves whose common interiors contain either 

3~1 or 22, say 21. I t  then follows that  22 is contained in the common interiors of y-n~ (j)  and 

as in the latter part  of (i) we get 21, 2~CA0(G). 

We have the immediate corollary. 

COROLT, ARu I /  G is a finitely generated Kleinian group and one of the fixed points 

of a loxodromic or hyperbolic element of G lies in A0(G), then both fixed points lie in A0(G ). 

w 4. Function groups 

Function groups were the earliest discontinuous groups to be studied. That  function 

groups are almost the only finitely generated Kleinian groups for which A0(G ) = O is shown 

in the following theorem. 

TH~,OREM 4.1. If  G is a finitely generated Kleinian group, then A0(G ) = 0  if and 

only i/either 

1) G is a function group, or 

2) G has two components. (In this case G has a subgroup of index 2 which is quasi- 

Fucheian, hence is a/unction group.) 

Proo/. We may assume G is not elementary, since an elementary group is a function 

group for which A(G) is the boundary of the ordinary set, i.e. A0(G ) =~l. One of the implica- 
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tions is trivial. I f  G is a function group, then G has a component ~ ,  which is invariant and 

it therefore follows tha t  the limit set A ( G ) = B d  (~,). Thus 

A 0 (G) --- A(G) - (J Bd (~,) = ~ .  
l 

I f  G has 2 components and is not  a function group, let the stability group of one, hence 

of both, be G 1. I t  is of index 2, which implies A(G) =A(G1). But  G 1 is a function group and 

A0(G1) =A0(G ) =O.  

The converse is proved in the following lemmas. 

LEmMA 4.1. I /  G is not a/unction group and there exists a component ~1 whose bound- 

ary is not a separator, then A0(G) 4 = O. 

Proo/. 

We assume ~ E~ 1. Since G is not a function group, there is an image of ~1 contained 

in a complementary component, ~ n ,  of ~ r  The boundary of s is a separator C l c  Bd (~1). 

Since Bd (~1) does not consist solely of one separator, there is a boundary point ~t of ~1, 

which lies at  positive distance from Cr  The images of s accumulate at  )t, hence there are 

images of C1 inside a complementary component ~1~ at positive distance from ~1~. We have 

thus shown tha t  C 1 has images of itself in both its interior and exterior. We have proved 

the induction step in the following argument.  We assume we have a finite nest of k disjoint 

images of C 1. Let  C~ be tha t  image lying the interiors of all the others. Ck is the image under 

some ~ E G of C1. Since C 1 separates two of its images under G, so does Ck. So In t  Ck contains 

an image of Ck, which is therefore an image of C 1. We have thus obtained ]r § 1 images of 

C~ in a nest, hence infinitely many  in a nest. The intersection of their interiors defines a 

point in A0(G). 

The cases in which LI(G ) ~= O have been considered in the above lemma. We now as- 

sume each component of G is simply connected and has a boundary which is a separator. 

A trivial application of Zoretti 's  Theorem shows thatA(G) is a continuum, and as in w 3, it is 

a locally connected E-continuum. 

LE~MA 4.2. I /  G is not a/unction group and each component o/ G has a single comple- 

mentary component, then, either: 

1) G has exactly two components, or 

2) Ao(G) =~O. 

Proo/. I f  ~(G) has exactly two components then the stability group of e i t he r -hence  

both is a subgroup of index 2 of G. This subgroup is then quasi-Fuchsian. I f  ~(G) has 
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more t h a n  two components,  it has infinitely many.  We assume ~ E~  r We shall first prove 

the  following assertion. 

(A): I f  s . . . . .  s is any  finite collection of components  of s and J is any  Jo rdan  

curve contained in A(G) such t h a t  A(G)N In* J~=O then  there exists a limit point  

~E( In t  J ) -  [-J~=l Bd  s 

Proo/o/ (A). We suppose (A) is false and ~ is some component ,  distinct f rom thes 

i = 1, ..., N,  and lying in I n t  J .  First  we show tha t  Bd s N Bd ~ ,  mus t  contain a cont inuum 

for some i e {1 ..... N}. I f  not,  then at least for some i e {1 .... , N}, Bd  s N Bd s is uncount-  

able and closed. Parametr ize  both  Bds k and Bds the  maps  ~, and ~k so tha t  the  com- 

mon  points, elements of the intersection, correspond to common values of the parameter .  

The regions bounded by  ~,(t) and ~k(t) for t between the  common points form a countable 

number  of disjoint Jo rdan  regions. Each  of these regions mus t  contain one of the  

~j ,  ] = 1 ..... N since Tk(t) EA(G). This contradiction establishes tha t  Bd  s fi Bd  ~ ,  contains 

a nontr ivial  cont inuum for some i E {1 .. . .  , N}. 

We now suppose Bds fi B d ~ k  contains a non-trivial  subcont inuum of A(G). This 

cont inuum is a closed subset of Bd s and Bd g2,, and lies on a q-circle. I t  follows t h a t  

Bd  ~ ,  = B d  ~ and therefore G mus t  have exact ly the two components  s and s cont ra ry  

to hypothesis.  The existence of the desired limit point  follows f rom this contradiction. 

Using (A), we can find limit points at  positive distance from large components  and a 

fixed Jo rdan  curve contained in A(G). Let  M I = B d  s be the fixed Jo rdan  curve, where 

s is the  component  containing ~ .  Let  ~1 be a point  in s which lies at  a positive distance 

d 1 f rom M 1 and has the following property:  there exists a circle C 1 of radius s 1 < dl/8 about  

~1 intersecting at  least two components  and such tha t  C 1 U In t  C 1 intersects no component  

of diameter  greater than  or equal to  d~/8. This is possible by  (A). Let  {s be a list of those 

components  intersecting C 1 and 

N ~ = C  1 tJ ( ( J B d  s 

Then diam (N1) < dl/2. Since diam (g2'l) forms a null sequence, N 1 has proper ty  S and there- 

fore, by  Theorem 1.14, ~V 1 is locally connected. Then choosing a= co, b Eg2~ we have, by  

Theorem 1.15, t h a t  the boundary  of the complementary  component  of N 1 which contains 

is a Jo rdan  curve M 2. M 2 c A ( G  ) and has diameter  bigger than  dl/4 and less t han  dl/2. 
C 1 c M e 0 In* M2; thus ~t~ E In* M 2 and M 2 N M 1 = •. Since there exist infinitely m a n y  com- 

ponents  of ~(G) in In* M2, by using M k instead of M 1 we can repeat  the  a rgument  indue- 

tively. We get a nested sequence of disjoint Jo rdan  curves in A(G) whose diameters tend to 

zero. The intersection of their  common interiors defines a point  in A0(G ). 
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w 5. Examples 

I t  follows easily from Theorem 4.1, tha t  examples of Kleinian groups having non- 

trivial residual limit sets can be constructed from any finitely generated function group, 

One need only use Klein's combination theorem. This technique was used by the author 

[1] to construct a finitely generated group G for which LI(G ) ~ ) .  We now construct a 

finitely generated Kleinian group G for which L2(G ) =~(D. Consider the circles 

C 1 = {z: d(z, 1) = ~ / 2 }  

c~ = {z: d(z, ~) = V~/2} 

c ~ =  {~: d(z, - ~ )  = V~/2} 

c4 = {z: d(z, - 1) = V~/2} 

Each circle is tangent  to two others. Construct a Fuchsian group of the first kind in each 

circle with four parabolic generators. The fixed points of the generators lie a t  the points 

of tangency and at  the points nearest and farthest from the origin on tha t  circle. Using 

one of Maskit 's combination theorems [9] we see tha t  the group G' generated by  these four 

Fuchsian groups is discontinuous. I f  we take the free product of G~ with the group generated 

by the map 

( 2 -  V~) ~ 
Z ~ Z 

2 

we get a group G. A simple sketch makes it clear tha t  0 EL~(G). 

The second example is of an infinitely generated group for which the conclusions of 

Theorem 3.2 do not hold. More precisely we show tha t  there are residual limit points of 

infinitely generated groups, but none of the required Jordan  curves. We first construct an 

infinitely generated group G' whose limit set consists of non-locally connected continua 

and no other non-trivial continua. This may  be constructed by  taking the free product via 

Klein's Combination Theorem of loxodromie transformations whose isometric circles con- 

verge to every point on a topologist 's sine curve and a Jordan  arc, such tha t  tile union J o f  

the two separates the plane. Some fundamental  region for ~(G')  will then have components 

in both the interior and exterior of tha t  curve. Choose a Ioxodromie transformation y 

whose isometric circle I(y) lies in an interior component of R and such tha t  i(y-1) lies in an 

interior component. The free product G of G' and {y} is Kleinian by  Klein's combination 

theorem and contains no non-trivial components other than  J and its images. Ao(G)~=~ 

since the fixed points of ~ lie in A0(G ). I t  follows tha t  Theorem 3.2 does not hold for infinitely 

generated groups. 
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