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Introduction

We first summarize the results of this paper for the simplest and most important
special case: the Teichmiiller spaces T(p, n) of surfaces of type (p, n), i.e. closed Riemann
surfaces of genus p with n punctures. The points of T(p, ») are equivalence classes of
orientation preserving homeomorphisms of a fixed surface S, of type (p, n) onto other
such surfaces; two mappings, f, and f,, are considered equivalent if there is a conformal
mapping & such that f; okof, is homotopic to the identity. Homotopy classes of orientation
preserving automorphisms of S, form the modular group Mod (p, n) which acts naturally on
T(p, n), and X(p, n)=T(p, n)/Mod (p, n) is the space of mbduli (conformal equivalence
classes) of surfaces of type (p, n). We assume throughout that 3p —3+x=>0. The space
T(p, n) has a canonical structire of a complex (3p —3 +n)-dimensional manifold, the action
of Mod (p, n) on T(p, n) is holomorphic and properly discontinuous, and X(p,n) is a
normal complex space.

A central result in Teichmiiller space theory asserts that 7'(p, n) admits an essentially
canonical representation as a bounded domain in C*~**". In proving this result [7] one
attaches to every T€7(p, n) a Jordan domain D(r) and a quasi-Fuchsian group G7, both
depending holomorphically on 7, such that 7 is the equivalence class of mappings of §; onto
D(t)/G*. The fiber space F(p,n) over T(p, n) is the set of pairs (7, 2), with 7€T(p, n),
2€ D(1).

We shall show that the group Mod (p, %) can be extended to a group mod (p, ) which
acts holomorphically and properly discontinuously on F(p, ). The quotient Y(p,n)=
F(p, n)/mod (p, ») is & normal complex space and a fiber space over X(p,n) with the

(1) Work partially supported by the National Science Foundation.
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property: the fiber over a point € X(p, n) representing a Riemann surface § is isomorphic
to S/Aut (8) where Aut (8) is the group of all conformal automorphisms of S. For n=0,
the existence of such a fiber space was asserted, without proof, by Teichmiiller [16] and
proved, in a completely different way, by Baily [5].

We shall also establish an isomorphism between 7(p,n--1) and F(p, n) which con-
jugates mod (p, #) into a subgroup of index n+1 of Mod (p, n+1). This implies that
X(p, n+1) is a ramified (»n-+1)-sheeted covering space of ¥ (p, n).

In the last section the isomorphism theorem is used to represent the space 7'(p, n)
for p=0, 1, 2 as Bergman domains, that is as sets of »-tuples of complex numbers (z;, ..., 2,)
determined by the requirement: z, lies in a Jordan domain depending holomorphically on
the variables z,, £<j. It is hoped that this representation will prove useful.

In the body of the paper we deal with a more general case, Teichmiiller spaces T(Q)
and modular groups Mod (@) of arbitrary Fuchsian groups GQ. (If @ does not have a funda-
mental domain of finite non-Euclidean area, 7'(G) is a domain in an infinitely dimensional
complex Banach space and Mod () need not act discontinuousty.) The construction of
the fiber space F((}) and of the extended modular group mod (G) goes through in all
cases. The isomorphism theorem can be stated and proved whenever @ has no elements of
tinite order. We give two proofs of this theorem, one relies on a topological result of
D. B. Epstein [12], the other is self-contained.

The results of this paper have been announced without proof in the survey article

[9]; this article also contains all needed definitions and results and an extensive biblio-

graphy.

I am grateful to I. Kra, D. B. Patterson and C. J. Earle for reading and criticizing
an earlier version of this paper, and to P. Shalen for drawing my attention to Epstein’s
paper.

§ 1. Teichmiiller spaces

In this section we fix our notations and recall some basic definitions and facts.

Let U denote the upper half-plane of the complex plane; we denote by @ the group of
all quasiconformal automorphisms of U, and, for every w€@Q, we denote by K(w) the
dilatation of . The elements w €Q with K(w)=1 form the subgroup Q... of conformal auto-
morphisms of U; it can be identified with the real Mdbius group. It is known that every
®w€Q can be extended, by continuity, to an automorphism of the closure of U in the
extended complex plane C=Cu {cc}; by abuse of language, we shall denote this extension
by the same letter . The elements w€Q normalized by the conditions w(0)=0, w(l)=1,
w(oe)= oo form the subgroup Quom,. Clearly,
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Q = Qnoerconf = Qcoannornn Qconf N Qnorm = 1:

where 1 denotes the trivial group 1={id}.
The set Qo is made into a complete meiric space (but not into a topological group)

by defining the Teichmiiller distance 6 between two elements w and % as
S(w, ) = log K(how™1).

By a Fuchsian group we mean, in this paper, a discrete subgroup @ of Q... The region
of discontinuity Q(G) of G, i.e. the largest open subset of € on which @ acts properly
discontinuously, is either the union of U and the lower halfplane L or a domain containing
UV L; the set A(@) =6—Q(G) is called the limit set of @ and is the set of accumulation
points of orbits of G. The group @ is called of the first or of the second kind according to
whether A(@) coincides with the extended real axis R-RU {0} or not. For instance, the
trivial group 1 is of the second kind.

Let G be a Fuchsian group (this notation will be kept throughout this paper). A qua-
siconformal automorphism o €@ is called compatible with G if wWGw2<Qop;. If 80, WGw1
is a Fuchsian group and is of the first kind if and only if G is, and the mapping g—>wogow1
is a (type preserving) isomorphism. The set of elements w €@ compatible with @ will be
denoted by Q(Q); thus @ =Q(1). We set Qom(G) =Q(&) N Quopm-

Two elements, o and &, of @ will be called equivalent if w|R=d‘)|R. The elements
equivalent to the identity form a normal subgroup @,< Q.. If @ and & are compatible
with a Fuchsian group G of the first kind, then they are equivalent if and only if the
isomorphisms g>wogow! and g—>dogod—" coincide. The equivalence class of w €Q will
be denoted by [cw]. »

The Teichmiiller space T(G) of a Fuchsian group G is the set of equivalence classes
[w] of elements @ €Q,uum(G). The canonical surjection Q(G)—>T(Q) defines a Teichmiiller
distance function d; on 7'(G) and makes T'(G) into a complete metric space. Tn particular,
the universal Teichmiiller space T(1) is the factor group Quom/Q,; it is not, however, a
topological group.

It is clear that if @ and G, <@ are two Fuchsian groups, then 7(G)< T(@,). It turns
out that T'(@) is closed in T(G,) and the embedding 7(G)w> T(G,) is a homeomorphism.
Also, ¢, | T(@) x T(@) < dg; it is not known whether the equality sign holds in general. In
particular, every Teichmiiller space T(G) is a closed subset of the universal Teichmiiller
space T'(1).

Let L, (U) be the usual complex Banach space of (equivalence classes of) bounded
measurable functions, let L, (U), be the open unit ball in L (U), and, for a Fuchsian
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group &, let L (U, G) be the closed linear subspace of L, (U) consisting of elements u
satisfying
19@) ' @)lg'(2) = u(z) for g€G.
Also, let L (U, @), =Ly (U); N L,(U, G).
Every w€Q has a.e. partial derivatives and a Beltrami coefficient u=(0w/[(0Z)/(0w/0z)
which belongs to L (U),; also

1+l
K(w)=
1— |l
where || || is the L, norm. Every u€L,(U), is the Beltrami coefficient of a unique

normalized automorphism w €@Qyq.,; We write

w=wﬂ

and note that w,€Q(G) if and only if u€L (U, G).

Thus there is a canonical bijection L (U, ()= @pnorn(G), which is a homeomorphism,
and there is a continuous surjection ui>[w,] of Ly(U, ), onto T(G) which defines in
T(G) a complex structure (of a ringed space). This is the same structure as the one given by
the embedding 7(@)<= T(1), for L(U) has a continuous projection on L (U, G).

The Teichmiiller space 7(G), with its complex structure, can be realized, canonically,
as a bounded domain of a complex Banach space By(L, G) defined as follows: the elements of
B,(L, G) are holomorphic functions ¢(z) defined in the lower halfplane L, satisfying

the functional equation of quadratic differentials:

P(9(R)g (2)* =p(z) forg€g,
and having a finite norm

lolls =sup ¥2|p(z)| (z=x+iy€EL).

It is clear that By(L, G) is a closed linear subspace of By(L, G,) for every Fuchsian group
G, < @, and it is known that dim By(L, &) <o if and only if @ is finitely generated and
of the first kind.

For every u€L,(U), there is a unique quasiconformal automorphism w of C with
w(0) =0, w(l)=1, w(co)=co, such that w|U has the Beltrami coefficient 4 and w|L is

conformal. We write
w=wk

and denote by @#(z) the Schwarzian derivative of wk(z) in Lt

d d
P gy — 192 = — (wH
" =u"—3u® where u(z) . log dz(w | L).
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By Nehari’s theorem [14], p#€ By(L, 1) and ||p#||5< §. It has been shown that w#|L, w#|R
and @#¢ depend only on [w,], that ¢+ €B,(L, &) if €L (U, @), and that the mapping
[w,]—>@r is a bikolomorphic bijection of T(G) onto a holomorphically convex domain in
By(L, @) containing the open ball of radius 4. From now on we shall identify 7(G) with

its canonical image in By(L, G).

§ 2. Fiber spaces over Teichmiiller spaces

To every point T of the universal Teichmiiller space 7'(1) there is associated an
unbounded Jordan domain D,(t) defined as follows. Let 7=[w,]; since w#(L) depends only
on [w,] and not on the particular choice of u, so does w#(U), the complement of the
closure of w,(L). We set D,(t)=w#U). The bou;ldary of D,(t) is the directed Jordan
curve w#(R); it admits the parametric representation {=w#(z), — oo Sz < co. For every
fixed z€ R, { depends holomorphically on u €L, (U), as follows from the results of [3], and
since w#(z) depends only on 7=[w,], { is, for a fixed z, a holomorphic function of
7€T(G). In this sense D, () depends holomorphically on t.

We also define a bounded Jordan domain D, (1), by the following construction. Let

71(2) and ,(z) be two linearly independent solutions of the ordinary differential equation
2n"(2) +M2)n(z) =0, z2€L 2.1)

normalized by the initial conditions
==L g =my(—i) =0, | (2.2)
and set Wea(z) = 1,(2) [15(z). (2.3)

Then, as is well-known, W# has the Schwarzian derivative @#, so that there is a complex

Msbius transformation f, such that

W = B 0w (2.4)

in L; we use this relation to define Wx(z) for all 2€C, and we set D,(1) = W#(U). The defini-
tion is legitimate since W#(U) is the complement of the closure of Wx(L) and W | L
depends only on [w,].

We show now that f, depends only on [w,], and that this dependence is holomorphic.
Near z= —¢ we have that w#(z)=a+b(z+12) +c{z+17)2+... where a==0, b==0; here. a, b, ¢
depend holomorphically on u, and depend only on [w,], since w#|L depends only.on [w,].
On the other hand, by (2.1), (2.2) and (2.3) we have, near z= —1, that We(z)=(z+4)" +
b(z+1)+ é(z+1)2+.... Hence ﬂﬂ(t) - [t + (b2 — ac)]/(bt — ab). This proves the assertion. We
conclude, as before that D,(t) depends holorﬂorpikicalfy on 7.
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Now let ¢ be a Fuchsian group. The unbounded fiber space F,(Q) over T(G) is the
set of pairs (7, z) with T€T((), 2€ D,(7); the bounded fiber space Fy(R) is the set of pairs
(7, z) with T€T(@R), 2€D,(t); the terminology will be justified below. Both fiber spaces
are subsets of By(L, G)@C and restrictions to T(G) of the wniversal fiber spaces F, (1), F,(1).
There is a canonical bijection F,(GF)—F,(G) which takes a point (t,2)€F (G), with
7=[w,], into the point (7, B,(2)) of Fy(G).

THEOREM 1. The fiber spaces F,(G) and F (G) are domains, the canonical bijection
F (G~ F (@) is biholomorphic, and F (@) 1s bounded.

Proof. For every u€L,(U),, the function

!
2= [—%W" (E—Cf—;)] » lel<t
is holomorphic and univalent, and x(0)=0, »'(0)=1. By Koebe’s one-quarter theorem,
[x()| =% for || =1. Therefore | We(z)| <2 for z€R. Hence Dy([w,])=W#U) lies in the
disc |z| <2. Thus F,(1) is a bounded set in By(L, 1)®C.

To show that F,(() is a domain it is enough to show that it is open, and this requires
to demonstrate the following. For every u,€L.(U, G,), and every z,€ D,([w,,]) there are
positive numbers g, and ¢, such that, for every €L (U, &) with [j»}| =1, and for every t€C
with [t <e,, the disc |z—z,| <&, lies in Dy({w,, +]). Let £,>0 be so small that the disc
|z —2zo| < 2e, lies in Dy([w w))- It is enough to find an &, such that, for all ¥ and ¢ as above,
and for all z€R, one has | W, (x) — W4, (x)| <g5. We choose an &>0 so small that for
v as above and for || <e, uy+WwE€L,(U, G),. For every z €R the holomorphic function of £,
W yostn (€)= W, (), vanishes for £=0 and has a modulus not exceeding 4 for |t| <e. By
Schwarz’ lemma the desired inequality holds with ¢, =¢s,/4.

The other assertion of the theorem follows from the fact, established above, that
. in equation (2.4) depends holomorphically on [w,]€ T(@).

Often there is no need to distinguish between the two isomorphic fiber spaces, and one

writes simply F(G).

§ 3. The universal modular group

Every w€@ induces an automorphism w, of Q.. defined as follows: if wW€Q .y,

s+ (w) is the unique element of Q... which can be written as
Wi (w) = qowoe™! (“chonf)~ (3.1)

Note that « depends on w. Each w, is an isometry and a holomorphic mapping of @,qm;
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and since [wy(w)] depends only on [w] and on [w], w, may be considered as an (isometric and
holomorphic) automorphism [w], of 7'(1), which depends only on [w] and maps [w]€T (1)
into [ws (w)]. The group of all these automorphisms is called the universal modular group
and is denoted by Mod (1); it can be identified with the factor group @/@,. It turns out
that the action of Mod (1) on 7'(1) can be extended to an action on the fiber space (1)

over T'(1) which respects the fiber space structure.

THEOREM 2. The group Mod (1) operates on F (1), as a group of holomorphic auto-
morphisms, according to the rule: if w €Q, w—w, for some u€L,(U),, and z€ D, ([w,]) =wH(U),
then

[w]s ([w,], 2) = ([w,], £) (3.2)
where v€ L (U), with w,(w,) =w, (3.3)
and Z= wrowo (wk)1(z). (3.4)

(The action of Mod (1) on Fy(1) is defined similarly.)

The proof is somewhat long and will be broken up into several lemmas.

Lemwma 3.1. The mapping 22 defined by (3.4) is a conformal bijection of D, ([w,])
onto D,([w,]) and depends only on the equivalence classes [w,], and [w] (and not on the
particular choices of yu and ).

Proof. Let h, be defined by
w,, = h,owr| U, (3.5)

then h,: D,([w,])~>U is a conformal bijection since w, and w#] U have the same Beltrami

»
coefficient u. This bijection keeps 0, 1, oo fixed, hence it depends only on [w,]. Similarly,

w,=h,ow?| U, and the conformal bijection h,: D,([w,])— U depends only on [w,] = [w«(w,)]
and thus only on [w,] and [w]. Now, by (3.4) and (3.3),

2=h;'ow,0wow, oh,=h, e(axow,ow )omow, ok, =h, Toxoh,.

Since €Qns, and o clearly depends only on [w,] and [w], the assertion follows.
Lemma 3.1 implies that the right side of (3.2) depends only on [w], [w,] and z.

LeMMA 3.2, For u and z as in Theorem 3, and for w,, w,€Q, we have
[w;0w;]« ([wp]’ 2)= [w1]*°[w2]*([w,u]; 2).

The proof is by a direct verification and is left to the reader. The lemma implies that
Mod (1) is a group of bijections of F,(1).

Lemma 3.3. Bvery [w]s is a continuous self-mapping of F,(1).
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Proof. Since it is known that the restriction of [w], on the ‘‘first coordinate” [w),]
is an isometric self-mapping of 7'(1), it suffices to prove the following. Let w be fixed and
let u, p;,j=1,2, ..., be elements in L (U), such that lim 61([wﬂj], [w,])=0. For every j,
and for z€wr(U), set £,=w"iowo (w')~1(z), where w, = wx{wy,). Then lim £;=£, uniformly
on compact subsets of we(U).

Since £; depends only on the equivalence class [w, ] we loose no generality in assuming
that lim §(w W ) =0; then also lim 5(w,,i, w,)=0. Using standard properties of quasi-
conformal mappings one verifies that w*/, (w"/)~! and w' converge, uniformly on compact

gets, to w#, (we)~1 and w, respectively. Whence the assertion.

LeEMMA 3.4. Let t>0, be a holomorphic mapping of the disc |t| <e in € into Ly(U);.
There is an &y, 0<e,<e, and a holomorphic mapping t+p; of |t| <e, into Ly(U), such
that (i) uyz), €U s, for |t] <ey, a real analytic function of x=Rez, y=Imz, and, for
every compact set A U and every integer n >0, the modult of u; and its partial x and y
derivatives up to the order n are bounded on A by a constant depending only on A and n,
and (i) [u;]=[0o:] for |t] <&,

Proof. There are constants 6, and 0 such that 0<f,<1, 0<6<4}, and if T€L(U)
and ||z]] <6y, then [l¢7[|5<6 (here | || is the L, norm, [[||5 the norm defined in §1, and
@* the Schwarzian derivative of w7 |L).

Write the given w,, in the form we,=w,o0...0w, where 0;€Ly(U), and [lo,]| <0s,
j=1,..,r. This is easily done; observe, for instance, that for every aELw(U) with
lle]l <k <1, we have that ws=w,owss where ||z|[<ki|o|| with &k, 0<k <1, depending
only‘on k. i

‘Next, set 7;(z) = —2y%¢%(2). Then 7,EL,(U),, |7,]| <6, and by the Ahlfors-Weill
lemma (cf. [4]), @i =Y, so that [w,;,] =[w,,]. We define u, by the condition w, =wy,0...0w, .
Then [w,,] = [ws,]-

Now let &5, 0< g, <e be so small that, for |¢| <&, if we define 7, € L(U), by the require-
ment: wm=watow;01, then ||n,]| <0, so that [[¢™|| <0. Set {;(z) = — 2y*¢™ (%), and define u,
by the requirement: w, =w;,0w,, Then the mapping t>7, is holomorphic and so are
the mappings ¢—>(, and t—>pu,. Also, [w]=[w,], by the Ahlfors-Weill lemma, so that
[w,,]= [wy,0 wy]= [wy,0ws,] = [wo].

Thus #>u, satisfies condition (ii). Noting that the numbers |, .., [¢%| and
™| are all bounded by the same constant 6 <}, one verifies that condition (i) is also

satisfied.

LemMA 3.5. For a fized w€Q and for a fixed (relevant) z, the number % defined by
(3.4) depends holomorphically on p€L(U),.
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Proof. It is required to prove the following. Let ¢ u, be a holomorphic mapping of the
disc [t|<e in € into L, (U),. Let zy€w* (U) and let gy, 0<gy<e, be so small that
zo€w (U) for |t| <g, Let wy, = wx (w,) and, for z€w"(U), set

2= gy(z)= wowo (W) 1(z). (3.6)

Then t>¢,(z,) is a holomorphic function of ¢ near ¢=0.

In view of Lemmas 3.1 and 3.4 we may assume that ¢ u, has property (i) of Lemma
3.4. The Beltrami equation dw't/0Z = u,(z) (0w"t/éz) is an elliptic system of two first order
partial differential equations for the real and imaginary parts of w*. This system is
uniformly elliptic as long as ||u,|| is bounded away from 1. Under this hypothesis the
solutions w*(z) are uniformly bounded on compact sets in U. Using standard theory of
elliptic partial differential equations we conclude from property (i) that, for [t]<s,,
wht(z) is real analytic in « and y and the partial derivatives of w" (z), up to any given
order, are uniformly bounded on compact subsets of U. It is known (cf. [3]) that, for any
fixed z€ U, the number w't(z) depends holomorphically on u, and hence on ¢. In view of

the remark made above, the same is true of the partial derivatives of w"(z). For instance,

ow' (2) i Wzt R) —w(z)
ox Rarn—0 h

is a holomorphic function of ¢, since the limit is attained uniformly in ¢.

Next, the Beltrami coefficient v, of ws(w,) depends holomorphically on u, (as is
known and easy to check) and hence on ¢. Therefore w" (z) is, for every fixed z€ U, a holo-
morphic function of ¢; it is uniformly bounded for |t] <&, and z restricted to a compact
set in U.

Finally, let {o= (w*)~1(z,), let r be a number with 0<r<Im {,, and let O, be the
image under w" of the circle ¢ =Co+rei0, 0< 0<27z. Then O, is a smooth Jordan curve,
and if |¢] is small enough, z, lies in the domain interior to ;. We restrict ourselves to such
¢t and apply Cauchy’s formula to the holomorphic function zr>g,(z), cf. Lemma 3.1.
Noting (3.6) we have that ' ’

_1 (e
9:(%) 2m’fct z—2,

dag

_ 1 fz" giow™ (o + re®®) ow'(Z, + re'd)
271 Jo wh(Cy+re®) —~z, of
1 [P wow(ly+re®) owt(C,+ re'®) 0

C 2mi J, wh(Ey+ re®) — 2z, o0

This formula exhibits.g,(z,) as a holomorphic function of ¢.
7— 1732904, Acta mathematica. 130. Imprimé le 1 Février 1973,
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This lemma implies that the mapping [wl.: F,(1)—F,(1) is holomorphic. Theorem 2

is now proved. The verification of the following theorem is trivial.

THEOREM 3. Let G be a Fuchsian group and let w € Q). Then [w]s| F(G) is an
isomorphism of F(G) onto F(wGw™1).

Here F may be interpreted as either F, or F,. By an isomorphism we mean a biholo-
morphice bijection which respects the fiber space structure. In particular [w]. maps T(G)
holomorphically onto T(wGw™). It is easy to check that this latter mapping is a
Teichmiiller isometry in the following sense: the J; distance is taken into the dg,
distance, &; =wGw™.

The mappings [w]s|T(G) and [w].|F(G), for w€Q(R), are called allowable iso-

morphisms.

- § 4. Modular groups

Let N(G) and N (G) be the normalizers of G in @ and in Qupy, respectively. The
extended modular group mod (G) of a Fuchsian group @ is defined as the subgroup of the
universal modular group Mod (1) induced by N(G); thus mod (@) can be identified with
the quotient N(G)/(N(@)NQ,). In view of Theorem 3 the elements of mod (@) induce
allowable automorphisms of F,(G), and also of Fy(@).

Let €N ,o(G). Then the coset [x] contains no elements of @, distinet from a.
We may therefore, by abuse of language, identify [«] and [«], with «. Hence G may be
considered as a subgroup of mod (&), a normal subgroup, of course. The modular group
Mod (&) of @ is defined as the factor group

Mod () =mod (&)/G =~ (N(@/(N(6) N @y))/G (1)

The element of Mod (@) induced by w€N(G) will be denoted by <w).
One verifies easily that, forge G and w €Quorm(H), one has g, (w) =w. Hence [g]« | 7(@) =id,
and, by Theorem 3, every element {w)> of Mod (@) induces an allowable automorphism

[w]e| T(G) of T(G). However, the action of Mod (@) on T(G) need not be effective; a
non-neutral element of Mod (¢) may induce the identity mapping on 7'(G).

THEOREM 5. Let w€Q(G) and G=wGw=2. The allowable isomorphism T(G)—T(G),
F(G)~> F(Q) conjugate the actions of Mod (@) and of mod (Q) into those of Mod (G) and of
mod (G).

The proof is clear.

THEOREM 6. The action of Mod (G) on T(G) is effective if G is of the first kind and its
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signature is not (0, 3; vy, vy, v5) with at least two of the v; equal, (1, 1;%), (1, 2,»,v) or (2, 0).
The action of mod (@) on F(() is always effective.
Before proving this theorem we recall how one defines the signature
(P, M; 1, Vo vees Vi)

of a finitely generated Fuchsian group of the first kind. The number p is the genus of
U/@, n is the number of non-conjugate maximal elliptic or parabolic subgroups of &, and
Y1, ..., ¥, r6 the orders of these subgroups, arranged in ascending order. If G has no torsion,

the only possible value for a »; is oo and the signature is determined by the type

(p, m)

of G. We recall that dim 7'(G)=3p—3+n. The only restrictions on the signature of a
Fuchsian group are: p=0, 20, 2<y;<o0 and 2p—24+n—(1/y)—...—(1/3,)>0.

Proof of Theorem 5. Assume that the action of Mod (@) on T'(G) is not effective. This
means that there is an wy€@(H) such that

[xowows'] =[w] for all wEQuom(F), % EQcons depending on w, (4.2)
[we] +=[g] for all g€G. 4.3)

Applying (4.2) to w=id we obtain that [xow~']=[id]. Hence we may assume that wy=c,

so that
Wo ENconf(G) -G. (44)

One sees by (4.4) that w, induces a conformal self-mapping 0=id of U/G such that the

diagram
v—2 .y
J } (4.5)
0
yle UG

is commutative. Here (and hereafter) unmarked vertical arrows denote natural projec-
tions. One sees from (4.3) that 0 moves a point over which the covering U~U/@ is
ramified of order » into another such point. This implies already that if the type of G is
(0, 3) or (1, 2), two of the orders » must be equal.

Now consider some w€ T'(G), and let « be determined from (4.2). One checks at once
that o« € N(wGw!). Also o ¢wGw1, for otherwise there would be a g,€G witha =wogow?
and (4.2) would imply that [w,]=[g,], contradicting (4.3). As before, « induces a conformal
self-mapping of UjwGw" distinct from the identity and preserving the orders of rami-
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fication of the covering U—U/wGw='. But if 0<dim 7'(G@) <o and the type of @ is not
(0, 3), (1, 1), (1,2) or (2,0), then one can find a w€T(G) so that U/wGw admits no
such conformal automorphisms. One sees this by noticing that a “general” compact Riemann
surface of genus p>2, a torus with »>2 “general” punctures, and a sphere punctured at
n>3 “‘general” points admit no non-trivial conformal automorphisms.

Assume now that (4.2) and (4.3) holds. To complete the proof we must show that for
w and » in L (U, G),, connected by the relation w, =w.(w,), the equality

2=z (4.6)

cannot hold for all z€w#(U); here £ is given by equation (3.4). But we have [w,]=[w,]
by (4.2) and therefore we—uw. If (4.6) holds for all z€w#(U), then w#|U =wrowy|U or
wo=id which contradicts (4.3).

Remark. Theorem 5 could be strengthened if the following statement were true.
Every Riemann surface which is not the three times punctured sphere, a once punctured
torus, or a closed surface of genus 2, and which does not admit a continuous group of
conformal automorphisms, is quasiconformally equivalent to a Riemann surface which
admits no non-trivial conformal automorphisms whatsoever.

This sounds quite reasonable, but I know of no proof.

TuEorREM 7. If dim T(GF)< oo, then the groups Mod (@) and mod (@) act properly
discontinuously on T(G) and F(Q), respectively.

Proof. We may assume that dim 7'(¢) >0, otherwise T(@) is a point, F (G)=U and
mod (&) a Fuchsian group. It is enough to prove that the groups in question are discrete.

The discreteness of Mod (G) is a classical result of Fricke. Nevertheless we sketch a
proof, for the convenience of the reader.

Since dim 7'(G) < oo, the group @ has in U a fundamental domain which is compact
except for finitely many ‘“parabolic ‘cusp‘s”. Using this one shows easily that for every
A >0 there are only finitely many non-conjugate hyperbolic elements g€ G such that the
non-Euclidean distance between some point z€ U and the point g(z) is less than 4. This

implies that the set :
{t|t= (trace (9))2, g€G} is discrete. 4.7)

~Let gy, 9o, -+, g, be-a set of generators for G chosen so that g; and g, are hyperbolic, the
fixed points of g, being separated by those of g,. Such generators exist since dim 7'(G) > 0.
One can find a finite set'I' of words yy, 7y, ..., ¥s in gy, ..., ¢, such that the sequence

{(trace (y,))?} determines the sequence {g,}, except for a conjugation in @y
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Assume now that {w,} =N(G) is such that lim {w,> ([w])} =lim [w.(w)]=[w] for
every wE€T(G). In particular lim [w,«(id)]=[id], so that there are elements o, €EQ.pne

with o, 000 €@y, and lim [a,0w~1]=[id]. Hence, for every g€(,
lim (trace (x,0w;, 0gow,0u,"))* = (trace (g))%.
In view of (4.7) we have, for »n large and g€T,
(trace (w;logow,))? = (trace (g))%.

Recalling how I' has been chosen we see that there exist elements B, € Qs such that,

for n large and g€ G,
wy’ ogown:ﬁnogoﬂ;]‘

This implies that [w,']=[f,]. Without changing [w,] We may assume that w, =85, so that
0 €N one(G). Since Nooyi(G)/G is known to be finite (this follows from the hypothesis
that dim 7'(G) <o) we conclude that {w,> ([w])=[w] for all w€T(G) and all large ». Thus
Mod (@) is discrete.

Now let {w,}<N(G) be such that

lim [w,]« (7, 2)= (7,2) for (T, 2)EF,(G). (4.8)

Let u€L (U, G), let v,€L,(U, @), be such that w, =w,s(w,), and let £, be determined

by the relation
2, =wrow,0(w") 1 (z), z€w*(U),

cf. equation (3.4). Now relation (4.8), for v =[w,], reads
lim [w, ]=[w,], limZ2,=2. (4.9)

By the previous argument we know that [w,]=[Vn], V€N cene (@) and [w,, ]=[w,] for

large n. For such » we may assume, without changing £,, that w,=1y,, and w, =wW,, S0

/‘7
that w» =wk, £, =wroy,o (wr)1(z). Thus the second equation (4.9) implies that lim y,(z) ==
for 2€U. Since Ny (@) is known to be a Fuchsian group we conclude that g, =id, 2,=2
for large n.

Thus [w,]+(t, 2) = (7, 2) for large n. This shows that mod (G) is discrete.

§ 5. Fiber spaces over moduli spaces

In this section we consider only finitely generated Fuchsian groups G of the first kind.
Given two such groups, G and G, the existence of a w EQ(G) with wGw ™ = G is equivalent to
the condition that ¢ and G have the same signature. If this condition is satisfied, then
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there exists a w €Quom (@) such that wGw1 is conjugate to G (in the group Qeone). Further-
more, if w and @ are two elements of @,,n(@), then the groups wGw- and HGW are
conjugate if and only if there is a w€Q(QF) with w, (w)="®.

It follows from Theorem 3 that 7'(G) and F(G) are determined up to isomorphisms by
the signature (p, #; vy, ..., ¥,) of G. So are, by Theorem 5, the groups Mod (@) and mod (G).
The notations 7'(p, n; vy, ..., v), F(p, %; vy, ..., v), Mod (p, 7 vy, ..., ¥,), mod (P, 05 ¥y, ..., ¥,)
are therefore legitimate. We may also denote the quotients

X(6) = T(G)/Mod (&), Y(&) = F(G)/mod (&)

by X(p, n; vy, ...,7%,) and Y(p,n; v, ..., v,), respectively. Observe that X(p, n; v, ..., »,) is
the space of moduli (conjugacy classes) of Fuchsian groups of signature (p, n; vy, ..., v,).

By Theorem 7, and by a general theorem of H. Cartan [11], X(@) and Y(G) are
normal complex spaces. Recalling the definition of the action of mod (G) on F(G), we see
that there is a natural holomorphic surjection Y(@)—>X(Y), induced by the mapping
(T, 2)>2 of F(@) onto T(G).

Lemma 5.1. Let u€L(U, G),. The inverse image X, of the point [w,] under the
mapping Y(G)—~X(G) is isomorphic to the quotient U[N goni(w,Gw;).

Proof. We interpret Y(@) as F,(G)/mod (G). In view of Theorems 3 and 5 we loose no
generality in assuming that [w,]=[id] or even that 0. We must therefore consider the
subgroup I' of mod (@) which keeps the fiber ([id], z), z€ U of F,(G) over the point [id] € 7(G)
fixed and determine the quotient Zy= D ([id})/T'=U/T". Now, an element 0 € N(G) induces
an element [w]. €T if and only if [w], ([id])=[id], i.e., if and only if there is an a2 €Qq¢
such that [exow™1]=[id], i.e., if and only if [l ={0)s, ®E N on:i(GF). Hence Zg=U/N (@),
as agserted.

We can reformulate the result as

TuEoREM 8. There is a normal complex fiber space over the space of moduli of Fuchsian
groups with signature (p,n; vy, ..., v,), the fiber over a point representing the conjugacy

class of a group G being isomorphic to U[N ,oni(@).

If @ has no torsion, we write T'(p, #), ..., Y(p, n) instead of T(p, n; vy, ..., v,) ete.
It is known that 7'(p, n), Mod (p, n) and X(p, ») are the Teichmiiller space, the modular
group and the space of moduli, respectively, of compact Riemann surfaces of genus p
with » punctures, as defined in the introduction. It is also known ([10], cf. also [13]) that

there are canonical isomorphisms

T(p, n; vy, oo, 1) > Tp, )
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which induce isomorphisms between Mod (p, n; 4, ..., »,) and subgroups of Mod (p, n).

It follows from classical uniformization theory that there are canonical bijections
X(p, n; vy, vy v,) = X(p, 05 P4, ..., By) (6.1)

whenever the signatures are such that y,=v,; if and only if #,=#,,,. It is also easy to see
that there are canonical surjections

X(p, n; vy, .., v,) = X(p, n). (5.2)

It is not difficult to show that (5.1) is biholomorphic and (5.2) is a finitely many
sheeted ramified holomorphic covering.
We note that Theorem 8 has the following

CoroLLARY. There exists a normal complex fiber space Y(p,n) over the space
X(p, n) of modult of compact Riemann surfaces of genus p with n punctures such that the fiber
over a point of X (p, n) representing the conformal equivalence class of a Riemann surface S
18 isomorphic to S[Aut (S) where Aut (S} is the group of all conformal self-mappings of S.

For n=0 this was conjectured by Teichmiiller [16] and proved, in an entirely
different way, by Baily [5].

§ 6. The isomorphism theorem

In this and the following sections we consider only torsion free Fuchsian groups.
We shall show that for such a group G the fiber space F(G) is isomorphic to a
Teichmiiller space 7'(G) for another Fuchsian group G.

TarorEM 9. Let G be a torsion free Fuchsian group, a a point in U, d the image of a
under the natural projection U—>U|Q. Let G be another torsion free Fuchsian group and
u: UG- (U|Q) —{d} a conformal bijection. Then there is a canonical isomorphism (biholo-
morphic bijection) T(G)— F(G).

Before proving the theorem we make some remarks which will be used also in the

following section.

Remark 1. We recall that a punciure P of a Riemann surface S is defined by a domain
D< 8§ and a conformal bijection § of D onto the unit disc punctured at the origin (the
domain 0<|[{|<1) such that a sequence {P,}<S, with lim §(P;)=0, diverges on S.

Any such sequence is said to converge to P. There is an obvious equivalence relation and a
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natural way of topologizing the union of § and the set of its punctures, and of making this
union into a Riemann surface.

Now assume that S=U/T", I a Fuchsian group. Then there is a natural one-to-one
correspondence between the punctures P of § and the 'éonjugacy classes of maximal
parabolic subgroups I'y of I', defined as follows. Let A be a fundamental region of T’y
in U, and let z, be the fixed point of the parabolic generator of I';. The subgroup I,
belongs to P if, given any sequence {z;} = A with lim z; =z, the image of this sequence
under the natural projection U—U/I" converges to P.

Under the hypotheses of Theorem 7, there is a distinguished puncture of U|G which
may be denoted by u—(d).

Remark 2. We recall that an open arc of an ideal boundary curve of a Riemann surface
S is defined by a domain D<=S and a conformal bijection § of D onto the unit disc with
the property: any sequence {P,}<.D for which {=1im 0(P;) exists, diverges on S if and
only if Im £ >0, |£| =1; such a sequence is said to converge to a point on an ideal boundary
curve. There is an obvious equivalence relation and a natural way of topologizing the
union of § and its ideal boundary curves.

Now assume that S=U/I', I' a Fuchsian group. Then the ideal boundary curves of
S can be identified with the components of (iﬁ—A(I’))/F, and the projection U—U/I’
extends, by continuity, to a mapping (UUR)—-AI)—=[(UU fl)——A(F)]/F. Note that T’
is of the first kind if and only if U/I' has no ideal boundary curves.

Remark 3. Under the hypotheses of Theorem 7, if G and d are given, the point a is
determined but for an action of G. We denote the set of all points g(a), g€@G, by A. This
set is determined by ¢ and d; it is infinite except if G'=1. The choice of G and d determines
G up to a conjugation in the group Qo of real Mébius transformations. To find @, choose
a holomorphic universal covering v: U~ U — 4 and let G consist of all ¥ €Qsons for which v(2)

and voy(z) are always G equivalent. Then there is a commutative diagram

v
U U-4

l 6.1)
(U—-4)/G=(U|&)—{d}

w

Ul@

where unmarked vertical arrows denote natural projections. Clearly, » is a conformal

bijection. There is an exact sequence

1>V @—t g (6.2)

where V is the covering group of v, and
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voy =g(y)ov for y€G. (6.3)

Conversely, given G, a, @ and w, there is exactly one v satisfying the above conditions.
Indeed, since » can be lifted to a conformal bijection between the universal covering
surfaces of U/G and of (U — A4)/@, and since the covering U — 4 ->(U — 4)/G is subordinated

to a universal covering, we have a commutative diagram

U—" U ——2(U~ 4)
l T~ l (6.4)
UlG * *(U—4)/G

where « €@, and vy, v; are holomorphic universal coverings. Now set v=vg400; then
(6.4) becomes (6.1).
In proving Theorem 7 we shall work with the unbounded fiber space F (@). The proof

will be given in a sequence of lemmas.

LemMa 6.1. If G=1, V=G is a cyclic group with a parabolic generator. If G =1,

V contains infinitely many hyperbolic elements with distinct fixed points.

Proof. If G/=1, then U—A=U —{a}. This implies the first statement. If G=1, the
fundamental group of U — A, which is isomorphic to V<@ is infinitely generated. This

implies the second statement.

Lemma 6.2. The groups G, G and V are either all three of the first kind or all three of the
second kind. In all cases, A(V)=A(G). If G is of the second kind the diagram (6.1) extends
by continuity to the diagram

UU@R—AE) —— (U~ 4) U (R~ A(@))
(6.5)

u

[UUR-A@)E [(U-A4)u R—-ADG

(by abuse of language we do not distinguish between u, v and their continuous extensions).

The assertion of the lemma follows from Remark 2 above and from the following two
observations. The ideal boundary curves of (U/@)— {4} can be identified with those of
U/@, by means of the mapping «. The ideal boundary curves of U — 4 are the components
of fi—A(G), since A(G) is the set of accumulation points of 4.
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LevMmaA 6.3. The mapping R: L (U, G~ F (@) which sends a vE€L (U, G); into
([w,], w(a)) € F(G) is a holomorphic surjection. The complex structure of F,(G) could have

been defined by means of this surjection.

Proof. Let v€L, (U, @), be given and let A be a simply connected fundamental
domain for the group G¥=w*G{uw”)-! in D, ([w,])=w?(U) with a smooth boundary and
containing w” () in its interior. One can deform the mapping w* in the interior of A, and
then, correspondingly, in all fundamental regions wogo (w?)-1(A), g €G, which are equiva-
lent to A, so that the new mapping remains quasiconformal and has a Beltrami coefficient
6€ L, (U, @), with [w,]=[w,], and w’(a) is equal to a given point in A. Using this remark
one verifies easily that B is a surjection.

The other statements of the lemma follow from the fact that w¥(a) is a holomorphic
function of v€L(U, @), and that the differential of L. (U, G),~ T(G) is, at each point,

surjective, and its kernel has a complementary subspace.

LeMMA 6.4. The mapping R: L(U, G),~T(Q) x U which sends @ vELo(U, G), into
the pair ([w,], w,{(a)) is a real analytic surjection and there is a real analytic bijection,
I: F (@)~ T(Q)x U with R =IoR.
Proof. We have that w,=h,ow?|U where h, is the conformal mapping of D,([w,])=
w’(U) onto U normalized by the conditions %,(0)=0, A,(1)=1, h,(oo)=co, ef. the proof

of Lemma 3.1. Since h, depends only on [w,],

Fu(@)3([w], 2) '—l> ([w.], B (2)ET(G) x U

is a bijection and lo R=R. The rest at the proof is left to the reader. Note that w,(a)
is known to depend real analytically (though not holomorphically) on v€L_(U, G);.

LeMMA 6.5. There is a linear isometric bijection g: L (U, G~ Lo(U, Q) defined by the
condition: v=p(u) tf and only if
v(0(2)) v'(2) v () = pu(2), (6.6)
or equivalently, if and only if there is a commutative diagram

Wy

U U

v " (6.7)

U—4 __w_”_:wL"“_,wv(U_A)

where v, is a holomorphic universal covering. If so, then the covering group of v, is w, Vwy 1
(By abuse of language we do not distinguish between w, and w,|U —A4.)
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Proof. If v€L,(U), u in (6.6) is well defined. If g €L (U) is given, » is also well
defined, since if v(£) = v(z), then £ =y(z) for some y € V, and hence v’(z) = v'(y(2))y’(2) so that

pl) 0 () [0'(8) = () v (v () [ (y(2)
= uly(@) [2'(2) [0 ()] @) [ (&) = () v' () [ (2)-
Let v€EL (U, @), and assume that (6.6) holds. We have, by (6.2) and (6.3), that to every
y €@ there is a g €G with v(y(2)) =g(v(2)), ¥'((2))y’(2) =9’ (v(2))v'(z). Hence, by (6.6),
uy@) 7' @)Y @) =vgw@)g (v(2) v'(2) ¢ (v(2)) v'(2) = ¥ (0(2)) ¥ (2) [V (2) = p(2),
so that u€L. (U, @). One computes similarly that if (6.6) holds, and u€L,(U, @), then
v€EL(U, G). Tt is clear that ¢ is linear and norm preserving.

For a given u €L,(U, G),, define » by (6.6) and lift the mapping w,| U — 4 to universal

covering surfaces. This yields a commutative diagram

w

U U
Ul lﬁ (6.8)
U-A4 " w, (U — 4)

where @ is a holomorphic universal covering. Here we may replace 4 by dox and @ by a0,

where o €Quon;. One computes that w is quasiconformal and that w;/w, =u. Hence there is a
unique o such that a'ow=w,. With this «, set v,=%oa; then (6.8) becomes (6.7).

The existence of the commutative diagram (6.7), with a holomorphic v, implies
relation (6.6); the proof is a calculation.

From (6.7) we see that a y €@ satisfies v,oy=v, if and only if w,ovow, oy =
w,ovow, ", that is, if and only if vow; oyow,—v. This is so if and only if w; oyow,EV.
Hence w, Vw,; 1 is the covering group of Uy

LeMMA 6.6. Let p, and u; be elements of Lo(U,G); with [w,]=[w,], and set
vo=0(tho), ¥1=0(1t;). Then Ry)=Rw»).

Proof. Since [wy,]={[w,], w,0yow, =w,opow, for all y€G. In particular, the
groups w,, Vw;! and w, Vw,' coincide, so that w, (U—A4) and w, (U —A4) are con-
formally equivalent (cf. the preceding lemma). We have therefore the commutative
diagram

U Wi ' U ! U

vl V V’ l” 6.9)

(U = 4)2 s 0, (U — A) %, (U — 4)<222(U = 4)
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where « is a conformal bijection. Since A is discrete in U, so are w,,(4) and w,,(4), and
we conclude, by the theorem on removable singularities, that o is (the restriction of) an
element of Q.opne-

It follows from Lemma 6.2 that if @ is of the second kind the above diagram extends
by continuity to the following

UU®R-A@) 2 U R—Aw,Gosl) UV (R—AG)

vj V Ve [,, (6.10)
W, oL

g — w,,o(U#) - wyl([]#) ¢_ﬂ"_..U#

where U# = (UUR)—(4U A@)).

By hypothesis, w;!ow,, commutes with all elements of ¢. By (6.9) and (6.3) it follows
that w;,'oxow, commutes with all elements of @, hence leaves all fixed points of hyper-
bolic elements of ¢ fixed, hence leaves all points of A(G) fixed. By hypothesis,
wplow,, leaves every point of R fixed, and it follows from (6.10) that w;.'oxow,, leaves
every point of fi—A(G) fixed. Thus w;oloocow,,olfi=id. Since w,, and w,, leave 0, 1, o
fixed so does «. Hence o =id and we conclude that [w,,]=[w,,].

Observe now that the point ¢ may be considered as a puncture on U —~4 =o(U), and
let I'y be a maximal parabolic subgroup of ¥V belonging to this puncture (cf. Remark 1
above). Let v, be a generator of I'). To simplify writing, assume that y,(z) =2+1 (this
can be achieved conjugating G in Q). Let A denote the region 0 <Rez<1, Im z>0.
If {z;} is a sequence in A with lim [z;] = co, then lim v(z;)=a. Set A’ =wy ow,, (A).
Since w, ow,, is an automorphism of U U R which commutes with all elements of ¢, A’ is
also a fundamental region for I'y in U. For every sequence {z;}<A’ with lim |2’| = o,

we have that lim »(2;) =a. Noting that o =id, we obtain from (6.9), for n=1,2, ...
vow,low, (in) =w; ow, ov(in).

For n-— oo this yields a =w;, ow,, (a) on w,, (@) =w,, (a). This completes the proof of Lemma
6.6.

LEMMA 6.7. There is a holomorphic surjection T(G)~ F (@) which, for every u €L (U, G)

takes [w,]) into R(o(u)). If this surjection is injective, it is biholomorphic.

This follows at once from Lemmas 6.3, 6.4, 6.5, and 6.6.

We now prove Theorem 7 for the special case G=1.
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Lemma 6.8. If G=1 the surjection T(G)— F,(Q) is injective.
Proof. To simplify writing we assume (without loss of generality, cf. Lemma 6.1)
that ¢ =¢ and that v: U—U --{¢} is chosen as

142

v(2)=1 (6.11)

1 — ezm'z :

Let p€L,(U, &), and v=p(u). Then v,: U—U —{w,(¢)} must be of the form v,=cov
with o€Q,.,e and (i) =w,(s). The group V=@ is generated by z->z+1 and w, satisties
wy(2+1) =w,(z) +¢, with some ¢>0. Setting =0 we see that ¢c=1. We use the con-
tinuous extension of the commutative diagram (6.7), noting that A(G)={ce}. For 0<z <1
we obtain that w,(—cotmx)=a(—cot mw,(x)). Letting z—>0 we obtain a(ce)= oo, so

that
o(z) = v(z) Im w,(3) + Re w,(¢). (6.12)

For 0<z <1 we obtain from (6.7), (6.11) and (6.12) that
w,( —cot wx) = — (cot mw,(x)) Im w,(s) + Re w,(1).

Thus the knowledge of Ry =([w,], w,(i)) determines w,(x) for 0<z<1 and hence for
all z€R.

The rest of the proof of Theorem 9 will be based on a topological theorem by D. B.
Epstein which asserts that an automorphism of an orientable surface with base point
which is homotopic to the identity is isotopic to the identity ([12], p. 101). Actually we

need only a weak corollary of this result which we state as

Lemma 6.9. Let 8 be a Riemann surface which is not homeomorphic to the sphere,
the plane, the punctured plane or to a torus. Let €S and let 0 be a topological orientation-

preserving automorphism of S with 0(d) =4. Assume that 0 is homotopic to the identity by a

homotopy which leaves G fized. Then 6|8 --{d} is homotopic to the identity.
In §§ 8 and 9 we shall give a proof of Theorem 9 which does not assume Lemma 6.9.
LEMMA 6.10. The surjection T(G)—F(G) is injective.

Proof. We assume that G'==1, otherwise there is nothing to prove (c¢f. Lemmas 6.1 and
6.8). Since G =1, we loose no generality in assuming that 0,1, oo are among the fixed points
of elements of G; this can be achieved by conjugating G in Q. (cf. Lemma 6.2).

Now let u, and p, be two elements of L (U, @), and set v,=p(u,), »; =0(1;). Assume
that R(’Vo) = R(v,). We must show that [w,]= (W]
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Our hypothesis implies that w,0gow;,’ =w,ogow,' for all g€G, so that the two
groups, w,,Gw;;' and w,, Gw;,!, are the same; we denote this group by G,. The hypothesis
also implies that w, (a) =w,,(a), wy,(4)=w,, (4); we denote this point and this set by a,
and A,, respectively. Finally, the hypothesis implies that w, ow;' commutes with all
elements of @,. Let 4, denote the image of @, under the projection U—U/G,.

Now we construct the dhlfors homotopy &, between w, ow;' and the identity: for
every t, 0<¢<1, and for every z€U, &(z) is that point on the non-Euclidean segment
joining w,,0w;;}(2) to z which divides the non-Euclidean length of this segment in the ratio
t/(1 —t). Then &,(z) depends continuously on (f,z) and, for every g€G, d4(g(2)) =g(d«(2)).
Hence there is, for every ¢, a commutative diagram

Wy

U — U

l 1 (6.13)

Uje,—2 . vja,

which, for t=0, becomes

1

w,, 0 Wy,

s S
l 1 (6.14)
vig,—2 . uja,

where o, is a homeomorphism onto. For ¢ =1 we have w, =id, &, =id. Now &, is & homotopy
of w,ow;! into the identity keeping a, fixed, so that w,; is a homotopy of w, into the
identity keeping d, fixed. By Lemma 6.9 there is a homotopy Q, of w,|(U/G,)—{a,}
into the identity. Using Lemma 6.5 {cf. diagram (6.7)) and restricting diagram (6.13) we

construct the commutative diagram

U Wy, Wey U
/Ullll v Jvﬂo
- - 1
- a2 U= 2 4, @10
1 U— 4)/6, 1
(U — )/, —— ol W= AN (U—4,)/6,

Using the outer square of this diagram we lift the homotopy €2, and obtain, for each ¢

the commutative diagram
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A

U Q‘ U
v.‘l: J J /Ulln
(6.16)
U—-4, U—-A,
] -
Q
(U_Av)/Gv (U—Ar)/Gv

where ﬁt (2) depends continuously on (¢, 2), ﬁo =wow., Qu=we| (U —4,)/G,, Q,=id, and
7 denotes the natural projection.

The mappings mov,, and mow,, are universal coverings, and v,, v, are universal
coverings of the same domain U — 4,. Hence there is an 9 €@, With v, = v, 07. It follows
easily from Lemma 6.5 and from (6.1), (6.2), (6.3) that the covering groups of mov,, and
mow,, are Gy=w, Gw;! and G,=w,, Gw;}, respectively. We conclude from (6.16) that for
every y€G,, every ¢ and ever z€ U, there is a unique § €G, such that Q,op(2) :;’)oﬁt(z).
Since this ¥ must depend eontinuously on z and on ¢, and G, is discrete, depends only
on y. Since , =id we have nov,,ooQ =70V, =7OoY,, 0. Hence Q 101 1EG, and Q €Qcons-
Now, for every yEG’l, we have w, ow,!oyow,ow,, —QooonO e oonl . Hence

wy, 0wt | A(G, QI|A ). By hypothesis, A(G) contains the points 0, 1, oo; so does
A(@,) since A(Gl)=w,,1 (A(G)). But wﬂ‘,owﬂl leaves 0, 1, o fixed. So does therefore Ql,

and since ﬁl is a Mobius transformation, Ql=1d. Hence
wy, 0wt | A(Gy) =id. (6.17)

Since 521=id, we have that 51€G, Hence v, =v,0n=1v,. Also, G,=G; and
Wy, Vwg! = wy, Vw,l. This latter group will be denoted by V,; it is the covering group

of v,

The upper half of the commutative diagram (6.15) extends, by continuity, to

w ° wl‘xl

(UUR)—A(G,) (U UR)— A&,

vl‘o vl""

~1

(UUR) - (4UAG) — | (guR)—(4UAG)

(by abuse of language we use the old names for the various mappings involved). For z in
some component I of R— A(C,) we have v,,0w,, 0wy (x)=w,,0w;; 00, (¢) =1, (x). Hence
there is a (unique) element y €V, with Wy, 0wy, () =y(x). Since y depends continuously
on x and V, is discrete, y is the same for all x in I. The endpoints of the interval I belong
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to A(G,); we conclude from (6.17) that y leaves these endpoints fixed, so that y(I)=1.
Let I' denote the maximal subgroup of V, which leaves I fixed, so that y €T". Since I" is
isomorphic to the fundamental group of v,,(/), a component of R— A{G,), and all compo-
nents of ﬁ—A(G,,) are homeomorphic to R, I'=1. Thus y =id and we conclude that

w,, 0wt | R— A(Gy) =id. (6.18)

Together with (6.17) this shows that w,,|R=1w,,|R.
Thus Lemma 6.10 is proved, and so is Theorem 9. We note the

CorOLLARY. There is a canonical isomorphism T(p, n-+1)—F(p, n).

§ 7. A relation between modular groups

We recall that by Theorem 6 the extended modular group mod (G) acts effectively on
F(G). By the same theorem, and under the hypotheses of Theorem 9, the modular group
Mod (G) acts effectively on T(G) provided dim 7'(G) < oo and (¢ is not of type (1.1). Indeed,
yle cannot be an (unpunctured) closed sﬁrface of genus 2 (since it has at least one
puncture) or a once punctured torus, or a thrice punctured sphere (since U/G can be

neither an unpunctured torus nor a twice punctured sphere).

THEOREM 10. Under the hypotheses of Theorem 9, the isomorphism T(G)— F(&)
induces an isomorphism between (the action of) a subgroup Mod, (G) of Mod (G) and the
group mod (@).

It U|G is compact, then Mod, (@) =Mod (@). If U/Q has precisely n punctures, the
index of Mod, (G) in Mod (G) 4s n+1.

Note that U/G has precisely n punctures if and only if G has precisely n conjugacy
classes of maximal parabolic subgroups.

Before proving the théorem we note two immediate consequences.

CoroLrLARY 1. The isomorphism. T(p,n+1)~F(p,n) induces an isomorphism

between mod (p, n) and a subgroup of index n+1 of Mod (p, n+1).
CorOLLARY 2. There is a holomorphic surjection
Y(p, n) > X(p, n+1)

which is an isomorphism for n==0, an (n+1)-sheeted ramified covering for n>0.
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Of course, the statement of Corollary 2 is almost self-evident, since a generic point of
Y(p,n) is represented by a Riemann surface of genus p with n punctures and one
distinguished point.

Proof of Theorem 10. Every element () € N(G) induces a quasiconformal automorphism
f: UJG~U|@ such that the diagram

U Q U
l l (1.1)
vie— v

commutes. All quasiconformal automorphism can be so induced. Two elements, Q, and
Q, induce the same f if and only if Q,0Qz1€G. If [Q,]=[Q,), then the induced mappings,
f, and f, are homotopic by a homotopy which leaves the ideal boundary curves of U/¢
pointwise fixed. (Construct an Ahlfors homotopy between £2; and Q,, cf. the proof of
Lemma 6.10 in §6, project in onto U/G and note that the projection extends to
[TV B - A@))¢)

Conversely, if f; and f, are homotopic by a homotopy which leaves the ideal boundary
curves of U/G pointwise fixed, they can be induced by equivalent elements of N(G) (as
is seen by lifting the homotopy to UUR~A(G) via the covering U-U/@}).

Let N,(G) consist of those Q € N(G) which induce mappings f leaving the distinguished
puncture «~1(4) fixed. One sees at once that N,(G) is a group, and can be characterized by
the condition: if Iy is a maximal parabolic subgroup of G, belonging to the distinguished
puncture, so is QI)Q-2. Let Mod, (&) be the subgroup of Mod (G) induced by Ny(@). Tt is
clear that if U/G is compact, No()=G and Mod, (G)=Mod (G), and that if U/@ has
precisely n punctures, U/G has precisely n+1 and [Mod (G): Mod, (G)]=n+1.

Since A is discrete in U, the fundamental group ,(U — 4) is generated by elements
{; corresponding to loops running once around a point a; of A and 0 times around every
point a@=+a; of A. The covering v: U—>U—4 induces an isomorphism between the
covering group V and m,(U —A); under this isomorphism £, corresponds to a generator
¥, of a maximal parabolic subgroup I';= V belonging to the puncture a; of U — 4. Viewed
as subgroups of G all T, belong to the puncture u~1(4). Thus, if Q€ Ny(G), then QVQ-1c 7V,
that is, No(G)= N(V).

It follows that every QE€N,(() induces a quasiconformal automorphism o such that

the following diagram commutes:
8 —732904. Acta mathematica 130, Imprimé le 1 Février 1973.
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Q

U
. l l . (7.2)
_ w

U

y| U-4

This w can be extended, by continuity, to an automorphism of U; by abuse of
language, we denote the extension again by w. For y€@, set y(y)=g, QoyoQ-1=7,
1(7)=4§, cf. relation (6.3). We have that voQoy=wovoy=wogov and also voQoy=
voPoQ = fovoQ = gJowov. Thus wogov=Fowor and since v is onto 4, wog=Jow or
w€N(G). Furthermore, w(a)< 4.

Conversely, let w € N(G) be given, with w(a)<A. Then the restriction |U — 4 can
be lifted to U via v. We obtain the commutative diagram (7.2) and conclude that
QEN((). Indeed, with y€G, g=y(g), wogow™=§ and $€G such that y(#) =g, we have
that voQoy=wovoy=wogov=fowov=fovoQ=voPol) so that Qoon;lo;'J‘leV.
Also, if T'; is & maximal parabolic subgroup of ¥ belonging to the puncture a, QI', Q< ¥V
belongs to the puncture w(a) < 4. Thus I'; < G and QI', Q~*< @ both belong to u—(a), and
QEN(G).

Let N,(G) denote the subgroup of all w € N(G) satisfying w(a)< A. We observe now
that if QEN(G) and w € N (@) are connected by diagram, (1.2), then the isomorphism\T(G)»
F (@) of Theorem 9 transforms the element <Q> of Mod (G) induced by Q into the element
[w]« of mod (G) induced by w.

Indeed, let u €L (U, &), and v =0(u), cf. Lemma 6.5, so that we have the commutative
diagram (6.7). Then ([w,], w?(a)) is the image of [w,] under 7(G)— F,(G). Let a and 8 be ele-
ments of @, such that cow,ow~' and fow 0271 belong t0 Qpopy, and define g €L, (U, )1»
$€L(U, @); by the requirements that w,;:ﬂowko(l—l and w; = cow,ow™t. Then (Q)
sends [w,] into [w;] and [w]s sends ([w,], w*(a)) into ([w;], w’(a)). Our assertion will be

proved once we show that #=p(2), that is, once we establish a commutative diagram

U B U
vl Uy - v,

U—oaow,(4)

P —

|

U-4

(1.3)

with v; a holomorphic universal covering (by abuse of language we write w, instead of
w,| U — 4, ete.). But this is easy, since the first and second square are simply (7.2) and
{6.7). To get the third square let : U—oow,(4) be some holomorphic universal covering

and lift the mapping «| U —w,(4) to obtain a commutative diagram
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a
U ' U
Uy ?
U—w,(4) U—-aow,(d)

where & €Q.ons. Now set v, =0d0&of~1, to obtain (7.3).

It remains to show that for every w€N(®), [w]«€ mod () can be writen as [D]s
with &€N,(H). For a given w, let A be a fundamental polygon for @ in U containing
w(a) as an interior point and containing no points of A4 on its boundary. Then A contains
a unique g,(a) = A4 as an interor point, where ¢g,€G. Let A, be a relatively compact sub-
domain of A containing w(a) and gs(a). There is a w,EN(F) such that wyow(a)=g(a)
and wo| A —Ay=id. Set & =wy0w. Then & EN,(G), [®]=[w] and hence [®]s = [w]s.

§ 8. Standard coordinates

In this section we give a local description of the mapping T(G)- F(G) of Theorem 9
for the case when G is a finitely generated Fuchsian group of the first kind. This descrip-
tion will be used, in the next section, to give a direct proof of the isomorphism theorem.

Throughout the present section we assume that
dim 7(G) =r < oo, (8.1)
We denote by By(U, G) the space of bounded holomorphic quadratic differentials for
G in U. The definition is the same as of the space By(L, @), cf. § 1, in particular relation

(1.1), except that the functions considered are defined in U. Also, in view of (8.1), the

two conditions
sup |y*p(z)| < oo (8.2)

and ff |p(z)| do dy < oo (8.3)
ula

are equivalent (for holomorphic solutions of (1.1); note that the integral in (8.3) is
meaningful since |p|dzdy is G invariant). Of course, dim By(U, @) =r.

The following is a well-known result, sometimes called Teichmiiller’s lemma (cf. [6]).

LEwwma 8.1. Let 6 €L,(U, G). Then for s€C, || small, the condition that the Teichmiiller
distance between [we,| and [id] be o(e), that is that

log K, = o(¢), e+ 0 where K,=inf K(w), w€[w,,] (8.4)

is equivalent to the condition
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ff o(z)p)drdy=0 for all p€ B,y(U, Q). (8.5)
uiq

Note that the integrand opdzdy in (8.5) is @ invariant.

If ¢ satisfies (8.4) and (8.5), it is called locally trivial. (Lemma 8.1 is true, but harder to
prove, also if dim 7'(G) = o0.)

Now let v€L, (U, @), and set G,=w,Qw;; clearly, dim By(U, G,)=r. Let ¢y, ..., ¢,
be a basis in B,(U, G,) which is orthonormal with respect to the Petersson scalar product:

_ 0 if j+k
2 dxdy = 8.6
folG,,y ?1(2) @ (2) dody {1 if j=kF. (8.9)
¥f £, ..., ¢, are complex numbers, then
o(2) =y (L (2) + ... + L9, (2)] (8.7)

belongs to L, (U, G,), to L(U, @), if |{|?+...+|{,|? is small. The mapping
(a5 oo &) [woow, ] (8.8)

is a holomorphic mapping of a neighborhood of the origin in €' into T'(G") which sends the
origin into [w,]. The rank of this mapping at the origin equals to the rank at the origin of the
mapping ({y, ..., &) [we] of €' into T(G,). Applying Lemma 8.1 to the group &, we
see that ¢ cannot be locally trivial without vanishing identically. Hence the rank considered
is 7. Actually more is true; the mapping (8.8) is a bijection of its whole domain of definition,
as is seen from the Ahlfors-Weill lemma, cf. the proof of 6.10 in § 6.

At any rate, {y,...,{, can be used as complex coordinates in a neighborhood of
[w,] in T(@). (These coordinates have been introduced in [6] and studied by Ahlfors in [1].)
We ecall ({5, ..., £,) standard coordinates in T(G) about [w,]. The construction implies

LuEmMmA 8.2. The standard coordinates about a point in T(G) are determined uniquely,

except for a unitary transformation.

From now on we assume that G is torsion free. Let a be a point in U; we shall determine
certain standard complex coordinates in F, (@) near the point ([w,], w"(a)). Let A, be
the G, orbit of w,(a). Then 4,=w,(4) where 4 is the G orbit of a, and 4, is discrete in U.
Let A(2)|dz| be the Poincaré metric in U—A,, that is, the unique complete conformal

Riemannian metric in U — A4, with constant curvature —1. We have that

Hg@) g’ (@) =Az) for g€G,,
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Az) > ?1/, (8.9a)

1
{2 — 2| log |2 — 2|

and Mz)~ for z—>2,€ 4,. (8.9b)
Let ¥, ..., ¥, be a basis in B,(U, G,) orthonormal with respect to a scalar product
based on A; this means that

— if =k
f f z(z)-2‘1fj<z>‘1fk<z>dxdy={0? al (8.10)
vIG, 1 if j=k.

The integrals are meaningful since )r”l",@idx dy is G, invariant; they converge because
of (8.9).

If ¢, ..., t, are complex numbers and

s2)=A2) 2 [, ¥y (2) + ... + ., (2)] (8.11)

then s€L,(U, G,) and s is locally trivial if and only if ¢, =...=f=0. We conclude as
before that the rank of the holomorphic mapping

(s s &) > [wyowy]

at the origin is r, so that ¢, ..., ¢, could be used as complex coordinates in T(G) near [w,].
We call ¢, ..., t, the semi-standard coordinates about [w,] in 7'(@) belonging to the point

w,(a). Our construction implies

Lemma 8.3. The semi-standard coordinates about a point in T(G) belonging to a point

in U, are determined uniquely except for a unitary transformation.

Next, set D=D,([w,])=w"(U), 4*=u*(4), & =wG(w>)™1, so that G” is a discrete
group of complex Mébius transormations mapping D onto itself, and A” is the G¥ orbit of
w¥(a). For z€.D — A4¥, define

__1 g'(2)° 8.12
== e - v @7 (8.12)
. dxdy
Since f sz(z— Ne-w@l >~

the Poincaré series in (8.12) converges uniformly and absolutely on compact subsets of
D —A4», ¥ is holomorphic in D —A4», ¥° has simple poles at all points of 4,



118 LIPMAN BERS

Wg(2))g'(2)2 =F2) for ge@”, (8.13)

and ff [P (2) |da dy < oo.
ic”

Using the conformal mapping
h,= wyo(w): D~U (8.14)

(cf. the proof of Lemma 3.1) we define a function Wy(z), 2€ U — 4,, by the requirement
Wo(h(z)) by (2)2 =Fz);

in view of (8.13) the definition is legitimate. This function is holomorphic in U —4,, has

simple poles at all points of 4,, and, since h,G"h,'=@G,, we have

Vo(g(2)g'(2)2 =Wo(2) for g€G,, (8.15)
Jf | Wy (2)|dady< oo. (8.16)
viG,

From (8.15) and (8.16) one concludes in the usual way (using Fourier series for
W, near parabolic fixed points of G,) that in every fundamental domain for @, in U the
function |y—2¥y(z)| is uniformly bounded except near a point of 4,. This implies that

” A@) 2| Wy (2) Pdwdy < oo. (8.17)
vle,
Hence we can find numbers ¢, ¢,, ..., ¢, and ¢=0, such that the function
Vi1 (R)=c¥y(z) + e, V(@) + ...+ e, Vo (2) (8.18)
satisfies the relations
” A2) 2, 1 ), () dedy=0, §=1,2,...,71, (8.19)
ulG,
and [ et @raeay-1. (8.20)
ule

If (&, ..., Cren) ECTY, set

0(2) =AM2) 2 W1 @) + ...+ &, W (2) + Crs1 Pran (2)] (8.21)

and note that ¢€L (U, G,). We define an element 7€L_ (U, G),, for sufficiently small
values of |{;]2+...+|{,44|2 by the requirement that
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Wy = WO W, (8.22)
and consider the mapping
(C1s o Crpa) o ([wr], w¥(a)) (8.23)
of a neighborhood of the origin in €"*! into F,(G); the image of the origin under this
mapping is (fw,], w*(a)): Since ¢ depends holomorphically on ({y, ..., {ry;) 80 do 7 and w™(a).
Thus the mapping (8.23) is holomorphie.

LevMma 8.4. The rank of the mapping (8.23) at {;=...={, ;=0 is r+1.

Proof. Let (;, ..., t,) be the semi-standard coordinates in 7(G) about the point [w,],
belonging to the point w,(a), and let £,., be a complex number restricted to the neighbor-
hood of w*(a). The mapping (8.23) defines #,, ..., ¢, and £, ., =w?(a) as holomorphic functions

of £, ..., {4y defined near the origin; we must show that

a(tlz coey tr+l)

9y e s Lra) +0 at §=...={41=0.

By construction

ot 0 if j+k .
L= for 1<, k< ==L =0,
o, {1 it =k or 1<7,k<r at {; £re1=0
and it will suffice to show that
ot; .
=0 for j=1,...,r; §3=:..=(4+1=0 (8.24)
6Cr+1
Oy i1 .
and +0 for {;=...=4+1=0. (8.25)
6Cr+1
Define ¢,€ L (U, G,) by i
00(2) = M2) 2,1 (2). (8.26)

Condition (8.24) is equivalent to the requirement that o, be locally trivial. This is so,
in view of Lemma 8.1 and (8.19).

Now define, for ¢€C, |e| sufficiently small, the element 7.€ Ly (U, @) by the require-
ment

Wy, = Wes, O W, .

A well-known (formal but legitimate) calculation of the Beltrami coefficient 7, yields

= m Where 6.0 (z) — O'oowv (Z) awv (z)/az

= — 2
146647 ow, (z)/oz (8.27)

&

Condition (8.25) is equivalent to the following:

ow's(a)
oe

+=0 fore=0,
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or, setting fo=wTeo (w)7,

w0 o (w" (@)

%6 =0 for =0. (8.28)

Now /, is a quasiconformal automorphism of € which leaves 0,1, o fixed. Let 0 be

the Beltrami coefficient of f,,
_ofloz,
of Joz’

then 6|C—D=0
and one computes, using (8.14) and (8.27), that for z€ D,

0(z) =0y (2),  By(2) = 0,0k, (2) by, (2) R, (2)
By a known formula (cf. [18], p. 133 or [2], p. 104)

J‘J‘ 6,(z) dx dy
e~0 p2(z—1) [z —w"(z)]

J‘ Mhy(2) 2 W11 (B, (2)) B (2) B (2) doe dy
22— 1) [z —w(2)]

_ 1 J'J‘ 0o(2) dx dy
7 oeer ) J oy 2z — 1) [z —w'(2)]

where A is a smoothly bounded fundamental domain for G” in D. Since 8,(g(z)) (9" (2)/9'(2) =

ofe(w'(a))
73

0, (2) for g€ &, a simple calculation yields
8fs

f 0y(z) ¥ (2) da dyy = f( Go (b (2)) Wy (hy (2)) | s (2) [P dxc dy

=ff () dxdy ff Mz)~ IP‘r-x~1(Z)IFO( )dxdy:l#o
U/G,, .

where we used (8.26), (8.18), (8.19) and (8.20). Thus (8.28) is proved and so is Lemma 8.4.

The lemma implies that {,...,{,,; can be used as complex coordinates in
neighborhood of the point ([w,], w(a)) in F,(G). We call them standard coordinates about
this point.

Lemma 8.5. The standard coordinates about @ point in F (G) are uniquely determined,
except that the first r coordinates may be subject to a unitary transformation and the (r-1)-st

may be multiplied by a complex number of absolute value 1.

This follows from the construction.

Now we are in a position to state
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Lemvma 8.6. Under the hypotheses of Theorem 9, and for dim T(G)=r <o, the sur-
jection T(G)—~ F,(G) of Lemma 6.7 takes (appropriately chosen) standard coordinates about
any point in T(G) into standard coordinates about the corresponding point in F(Q).

Proof. Let u€L(U, ), and v=p(u), ¢ being the mapping defined in §6.5. Let
¥y, ., ¥,y be the functions used to define the standard coordinates in F,(G) about
([w,], w¥(a)) and let v,: U~U —A4,=w,(U—A4) be the covering map in diagram (6.7).
Then we have that

, 1
U (2)) |0, ()] = "
Next, define the functions

Fi(2) =W, 0,(2)) v (2), j=1,...,7+1.

One verifies by a computation that the ¥, belong to B,(U,§,) where G, =w,Gw;?,
and that
Ty 0 if j+k
ff R CR A dxdy={ !

UIGy 1if j=kF.
Let £y, ..., {41 be complex numbers with small absolute values, let ¢ and 7 be defined by
(8.21) and by (8.22), respectively, and define 6€ Ly, (U, G.,), and £ €L (U, G); by the rela-
tions:

@)=LV @) + .+ & P ()],

and Wy =W50W,.

There is a universal covering 4: U—~wsow, (U —4) and a commutative diagram

ws
U U
o lv (8.29)
Wy
w,{U—A4) wsow,(U~4)

this is established in the same way as diagram (6.7) in the proof of Lemma 6.5. Diagram
(8.29) and (6.7) yield the commutative diagram

Wz

U—n0n

U-4

which shows that £ =0(7).

This proves the assertion.

Lemma 8.6 contains the desired local deseription.
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§ 9. Direct proof of the isomorphism theorem

We shall now establish Theorem 9 without assuming previous knowledge of the
topological result stated as Lemma 6.9. The proof will also yield this lemma, for the case
when the fundamental group of the surface S is finitely generated.

We begin by proving, as before, Lemmas 6.1-6.8. Next we consider the case
dim 7(@) < oo. Let y €L (U, &), and note that the preimages of the point ([w,]w” (a)) € F(G)
under the mapping T(G)—>F,(G) form a discrete set. Indeed, if u, a€LL(U, G), are
such that g(u)=g(#)=», cf. Lemma 6.5, then the Riemann surfaces Ujw,Gw," and
U/jw; Gw;, are both conformally equivalent to w,(U — A4)jw,Gw;?!, so that wﬂGw;l and
w;, Gw;l are conjugate in Q. Thus [w,] and [w,] are equivalent under the group
Mod (G), which acts discontinuousty on 7(G). The discreteness of every fiber of T(G)-> F(G),
together with Lemma 8.6 imply that T(G)-F,(Q) is an unbounded unramified covering.

Now, F,(G) is homeomorphic to T(G)x U, by Lemma 6.4. Since dim 7(G)< oo,

T(G) is a cell, by a classical theorem of Fricke. In our case, G without torsion, this also
follows from the theory of extremal quasiconformal mapping (cf., for instances [6]).
We conclude that F,(G) is a cell, so that T(G)— F,(G) is an isomorphism.
Now we can prove Lemma 6.9 assuming that S ¢s compact, except perhaps for finitely
A'rr‘wmy punctures. There is no loss of generality in assuming that the automorphism 6 of 8,
which leaves the point 4 fixed, is quasiconformal. Indeed, in view of our hypothesis on 8,
6|8 —{d} is homotopic to a quasiconformal automorphism. We may also assume that
S8=U|G, G a torsion free Fuchsian group, and 4 is the image of some a€U under
U—-U/G. In view of our assumption on 8, dim T(@)<co. There is an wEN(G) such
that the diagram

U U
l l (9.1)
0

UlG

UlG

commutes. Let ®;, 0<{<1 be the homotopy which takes 6 into the identity leaving d

fixed. It lifts, for each ¢, to a mapping Q, such that we have a commutative diagram

Q
U t

U
l (9.2)

o UlG

e
with 0y=0, Qy=w, 0,=id,
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Q,0g0Q; €@ (9.3)
and Qa)cd (9.4)

where A4 is, as in § 6, the @ orbit of a. For t=1, the commutativity of (9.2) implies that
Q,€6. But the commutativity of (9.1) defines w only up to premultiplication by an
element of G. Hence we may replace w by Qi'ow, and Q, by QiloQ,, ie., we may
assume that
Q, =id. (9.5)
Observe that ,(z) depends continuously on (¢, z) €[0, 1] x U. Since the group @ is
discrete, Q0900 depéﬁds only on g €@, and not on t. By (9.5), we have that wogow==g
for all g€@. Since G is of the first kind, we conclude that [w]=[id]. Hence w €Qpom, and
there is a vEL (U, @), with w=[w,], [w,]=[id].
Since 4 is discrete, Q,(a) in (9.4) does not depend on ¢ by (9.5) we have that Q(a)=a;
for t=0, this yields w,(a)=a. Since [w,]=[id] implies that w,=w” we conclude that

w’(@) =a. Thus, for G as in Theorem 9, we have that
T(G)-> F,(G) takes [id] into ([w,], v’ (a)). (9.6)
Now let u=0"1»)ELLU, @), (9.7)

cf. Lemma 6.5. Then we have the commutative diagram

U Y U
”l {vﬂ
w,|U—A (9.8)
U-4 U-4
l 0|(U — 4)/@ l

(U—-A4)]¢ ——————— (U —-4)|G

obtained by combining (6.7) and (9.1), noting that w =w,, w,(4)=A4, and restricting the
latter diagram.

Since by (9.7) and Lemma 6.7, T(G)~ F (G takes [w,] into ([w,], w*(a)) and the
mapping is known to be a bijection, (9.6) implies that [w,]=[id]. Hence there is an Ahlfors
homotopy (cf. the proof of Lemma 6.10) of w, into the identity. Using (9.8) the
Ahlfors homotopy can be projected into a homotopy of 6|(U —4)/G =8|(U|G) — {4} into
the identity. This concludes the argument.

Since Lemma 6.9 is purely topological, we have actually established it whenever §

has a finitely generated fundamental group, since every such surface is homeomorphic to
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a compact Riemann surface with at most finitely many punctures. We can now repeat
the proof of Lemma 6.10 and establish Theorem 9 for all finitely generated groups G.
Now let @ be infinitely generated. There is a sequence of finitely generated subgroups
Gy, G, ..., of G with
1+6G,cGcGyc...,, G=0G,UG,UGU...

We are given the universal covering v: U->U — A with covering group V<@. Let 4,
denote the G; orbit of a, so that

AIC'AZC'A3C"" A=A1UA2UA3U...-

Let v;; U—U —A; be the holomorphic universal covering determined by the conditions:

v;(8) =v(3), vj(3)7’ (¢) >0.

We can repeat the construction of the mapping ¢ given in §6, cf., in particular,
Lemma 6.5. There are uniquely determined torsion free Fuchsian groups V,, G, conformal
bijections w;: U/G,~(U —4,)/@; and exact sequences

1-V; -~ G,-—LG,-% 1,
where V, is the covering group of v;, and
hjoy = y,(y)oh; fory€G,
For every § there is a bijection
05 Lo(U, Gy = Ly(U, Gy);
such that v =g,(u) if and only if
»() (2)) v ()] (2) = p2): (9.9)
Observe that L (U, @)= L(U, G,) for all j.
LEmma 9.1. Let v€L (U, @), and set u;=0p5 () j=1,2,.... Then

lim w, (2) =w,(2) for z€U U R. (9.10)

ji=> 0
Proof. A standard function theoretical argument shows that

limv,(z) =v(z) for z€U
>
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uniformly on compact subsets (cf., for instance, the proof of Lemma 15 in [10]). By (9.9)

and (6.6) we have that
Lim y,(2) = u(z), 2€U.

j—>» oo
Since also ||u,]| =|[v]] <1, the conclusion (9.10) follows (cf., for instance, [3]).

Now we can prove Theorem 9 for G. Let u, 4 €L, (U, G); and assume that y=g(u)
and #=p(a) satisfy [w,]=[w;], w"(a)=w;(a). We must show that [w,]=[w;]. Define
wi=07"'(») ;=07 (%) where g, is the mapping defined above. Since G, is finitely generated
we know that [y, ] =[], for all §. The desired conclusion follows from Lemma 9.1.

§ 10. Teichmiiller spaces of low genus

Let M be a complex manifold and, for every m €M, let A(m) be a Jordan domain in
C. We say that A(m) depends holomorphically on m of there is a continuous mapping
(m, t)—>Z,,(t) of M x R into € such that, for every fixed ¢, Z,,() depends holomorphically on
m and, for every fixed m, {i—Z,,(t) is an orientation preserving homeomorphism of ft onto
the boundary of A{m). (We orient the boundary of a Jordan domain so that the domain
is to the left, and we consider R as the boundary of U.)

Example. Let @ be a Fuchsian group with dim 7(G) <o, Then the Jordan domains
D,([w,]) and D,([w,]), cf. § 2, depend holomorphically on 7= [w,]€ T(G). In the first case,
we can set Z, (t) =w#(t), in the second, Z, () = Wa(t).

A domain 4 <Cr will be called a Bergman domain if either r =0, or >0 and there is a
Bergman domain M<C and, for every m€M, a Jordan domain A(m)C6 depending

holomorphically on m, such that 4 consists of all pairs (m, z) with m€M and z€A(m).

TrrEOREM 11. The Teichmiiller spaces T(p, n) with p=0, n=3, with p=1, n>1,
and with p=2, n=0 can be represented as bounded Bergman domains.

Proof. Let G be a torsion free Fuchsian group such that 7(G) can be identified with
T(p,n). Let G be related to G as in Theorem 9, so that T(@) can be identified with
T(p, n+1). Since F,(G) and F,(@) are isomorphic to T(&), we conclude from the example
above that T'(p, n+1) is a (bounded) Bergman domain if 7'(p,n) is.

Now T'(0, 3) is a point and 7(1, 1) is a Jordan domain. Hence the statement of the
theorem is true for p=0 and p=1. It is also true for p=2 in view of the known

LEMMA 10.1. T(0, 4) is isomorphic to T(1, 1), T(1, 2) to T(0, 5) and T'(0, 6) to T(2, 0).

We sketch a proof, for the sake of completeness, If ¢ is a Fuchsian group with



126 LIPMAN BERS

dim By(L, G)<oo, then T(@)=T(1)N ByL, ). It follows that if G and G< G are
Fuchsian groups with dim 7'(@) =dim T(G) <o, then T(G)=T(G).

Now let ¢ be a Fuchsian group of signature (1, 1; o) [or (1, 1, o0, o), or (2, 0)] so
that 7T(G) may be identified with 7'(1, 1) [or with T'(1, 2), or with T(2, 0)]. Then U/G
admits a conformal involution J which leaves precisely 3 [or precisely 4, or precisely 6]
points fixed. Lifting J to U we obtain a y €@, such that y and G generate a Fuchsian
group G of signature (0, 4; 2, 2, 2, o) [or (0, 5; 2, 2, 2, 2, o), or (0, 6; co, o0, 00, o0, co, 00)],
By the result of [10], 7(G) may be identified with 7(0,4) [or with 7(0,5), or with
T(0, 6)]. In all cases, dim T(@)=dim T(G).

Recently Patterson [15] proved that Lemma 10.1 exhausts all isomorphisms between

distinet spaces 7'(p, n).

Question: Are Teichmiiller spaces T(p, n) with p >2 representable as Bergman domains?
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