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0. Introduction

In this paper we will present a new approach to the invariant subspace problem for
Banach spaces. Our main result will be that there exists a Banach space B and an
operator T on B such that T has only trivial invariant subspaces. We feel though that the
ideas of the approach can be used also to prove results about existence of invariant
subspaces. As an example of this, see [1]. In Section 1 we give the general ideas of the
approach. In this section we also reduce the problem of proving our main result to the
problem of proving Theorem 1.3. In Section 2 we prove an inequality which will be the
basic tool in the construction. In Section 3 we first reduce the problem of proving
Theorem 1.3 to the problem of proving 6 statements. These statements contain a
parameter k. We first give lemmas and propositions which give these statements for
k=1 and k=2. We then give the induction hypothesis and the lemmas and propositions
which give the statements for all positive integers k. In Section 4, finally, we give
proofs of Theorem 1.2 of Section 1 and of the lemmas and propositions of Section 3. An
outline of this construction was presented in Enflo [2]. This version is the same—ex-
cept for some changes in the presentation—as was given in Enflo [3]. The author
wishes to thank professor Enrico Bombieri for suggesting these changes.

1. Outline of the proof

We will below construct an operator with only trivial invariant subspaces on a Banach
space. The Banach space in this example will be constructed at the same time as the
operator and will be non-reflexive. There are very serious difficulties in carrying out a
similar construction in a reflexive Banach space. So we feel that the construction gives
some weak support to the conjecture that every operator on a Hilbert space has a non-
trivial invariant subspace. We now turn to the basic considerations behind this ap-
proach. It is clear that every operator with a cyclic vector on a Banach space can be
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represented as multiplication by x on the set of polynomials under some norm. So what
we will do is to construct a norm on the space of polynomials and prove that
multiplication by x under this norm has only trivial invariant subspaces. Our next basic
consideration is based on the fact that one can have an operator with a dense set of
cyclic vectors without having all vectors cyclic. In order to be able to make some limit
procedure work we will construct the operator so that it has the following property:

(1.1) Let 1 be a cyclic vector of norm 1 in B. Let (p)) be a sequence which is dense
on the unit sphere of B. For everyj and every m there is a positive number C; ,, such
that for every p, with |p/—p,|[<1/2™** there is a polynomial K(T) in T with
I(D)|op=<C;j, m such that ||(T)p,—1||<1/2™. 1t is easily verified that such a T has only
trivial invariant subspaces.

It follows easily from the fact that the spectrum of an operator is non-empy that
there is no operator for which C;, m depends only on j or only on m.

If we have the operator T represented as multiplication by x, then I(T) will just be
multiplication by the polynomial /. From now on we shall identify B with the closure of
the vector space of all polynomials with real (or complex) coefficients under a suitable
norm || ||. This leads us to the next basic consideration. Assume that we have a norm || ||
on the space of pblynomials. Assume that p is a polynomial of norm 1 and assume that
llp—1||<e and ||l|jop=<K. This gives that for every polynomial » we have the inequality

|\Al|—KVp|| < |lhip—h- 1|} < €l{Allop-
And this implies that

if [Pl <l then [1p] > L2 (1.2)

In order that the operator also satisfies (1.1) it is of course necessary that the
inequality ||4p||=|/4||/2K holds uniformly in p in every ball of size £16 on the unit
sphere. (At least if we put e=1/2™.)

There is a sense in which the inequality (1.2) is sufficient for p to be moved close to
1 by a polynomial with small operator norm. This is given by our Theorem 1.2 below.
In order to describe this theorem we have to tell something about the way that we
construct the final norm. It should be pointed out that this sufficiency of (1.2) depends
on the fact that the norm constructed is non-reflexive. We do not know whether
anything similar can be done in a reflexive space.

Consider all pairs (g, €) where g is an arbitrary polynomial whose coefficients have
real and imaginary parts rational, and ¢ is of form 2%, We enumerate all such pairs and
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call the sequence (q,, £,). We also insist that for a fixed g, if n,n,,... are all the
integers such that g,=gq, then €1, >€p,>Ep, ... . Also we assume degg,<n.

Our construction will be completely determined by a sequence of polynomials /,,
and constants C,>2. [}, ..., and Cj, ..., C, will determine a number o, inductively
as explained below and we define a sequence of norms as in the following definitions.

Definition 1. For any polynomial p, consider all representations
=L a‘-,ﬂx"lf‘ lf" and put

Plopn = nf . |, 4 [2(C L[ ... (CJL 1,

where ||, denotes the usual /; norm equal to the sum of the absolute values of the
coefficients.

Remark. In the final norm the operator x will have norm =2, and multiplication by
lk norm $Ck‘lk‘1.

Definition 2. For any p, consider all representations
p= r+2 S(.a,q.-1).
1

Put |p|"=inf|r|;+Z |Slop . £x- Put |p|°=|p|;, and let a; be determined inductively
by the condition ja, qif '=1.

Remark. |y o, qr—1|"<g; and clearly the operator norm of multiplication by g is
|glop »- We see that | |” is the maximal norm satisfying the following four properties:

M ["=<lh

Q) hagr—1|"<er, k=1,2,...n,

3) lglop = |g|0Pm

@ |xlop<2.

Observe that | |” and | |,, , are decreasing sequences of norms and hence converge
to some pseudo-norms. We write || ||=lim| |".

THEOREM 1.1. Assume that (C,) and (l,) are sequences which define norms | |" as
above and assume that there are sequences of positive numbers D, 7 and L,, 7/ so
that the following holds:
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(@) |p|™ is constant for m =(degp)—1. In particular \q,|™ is constant for m =Zn—1.
(II) For any n, consider all k<n such that ¢,=¢, and |axqi—ay, q,,|(”‘”<e,,/16.
Let K be the least such k. Then |l,|,=Lg, C,=Dx.

Then the resulting limit norm defines a space B, for which multiplication by x has

no invariant subspace.

Proof. Let q be an element of B, which we recall is the closure of all polynomials
and ||g||=1. Let & be a fixed negative power of 2. Choose increasing n; such that ¢, =¢
and a,, g, —q in B. We can even insist that ||la,, g,,—q||<¢/64.

Hence for k>1,

|(nko1) £

Iank an-‘anl qnl = ”ank an_anl qnl” < _3_2—’

so by (), C,<max,<, D, and |, |;<max,<, L. so that |l,|op, is bounded
<A. Therefore
W, a— U<l @, 4.~ 1+l (a—a, g,
set llnk|opn,( ”q_ank an”
<e¢+Allg—a, g,
Letting & tend to infinity, we see that 1 is within distance ¢ of the space generated
by ¢ and hence, letting e—0, we see that 1 is in that space and hence it equals B.

We will now drop o, in our notation so when it is clear from the context we will
denote a; g, by g and assume g [ '=1.

Definition 3. ord p=degree of lowest order term of the polynomial p.

Definition 4. Let f be a positive real valued function defined on (0, ©). We say that
I=X;=0a;x" is more lacunary than f if
ord! = ny=f0)
and

n;=fln;_,) for every j.

Our next theorem which we prove in Section 4, shows that, under the assumption
of an inequality similar to (1.2) we can satisfy condition (I) as soon as the polynomials
l, are lacunary enough.
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THEOREM 1.2. Let Iy, ..., I, Cy,...,Cyn be given with C,>2. Assume for all h and
some B that

|h| pN 1 Iho
< — h Nzl
e e vl

Then, given K>4B/ep .1, there exists a lacunarity function f such that if

(1) |l1v+1|1 =K,
(2) the lacunarity of Iy, =,
3) Cyi>2,

then with this choice of ly,, and C,.,, we have

gV =lg|¥ for all g with degg<N.

We now assume that we have two sequences D, 7« and L, /. Assume that
| "~ is defined. We will then define | |* according to the following rule: consider all
k<n such that g=¢, and |qi—q.|""'<e,/16. Let K be the least such k. Then
ll.i=Lg, C,=Dg. If this rule is fulfilled for all n<N, we say that | |V is defined in a
compatible way from the sequences D, and L,. If for every N, | |V is defined in a
compatible way from the sequences D, and L,, then obviously condition (II) of
Theorem 1.1 is fulfilled. Our next theorem combined with Theorem 1.2 will now enable
us to get also the condition (I) of Theorem 1.1 fulfilled. We first make

Definition 5. A growth function F is a function that for every n and every 3n-tuple
Dy,...,D,, L,..,L, lL,...,I, gives a positive number F(D,,...,D, L,,...,L,,
li,...,1,), and for every n and every (3n+2)-tuple Dy,...,Dp41, LiyeoisLysts Ly oenly
gives a lacunarity function f and a positive number 6. We say that the sequence
{D,,L,,1,,C,} grows faster than F if

(1) I, and C, are defined in a compatible way from the sequences D,, and L,, for
every k.

(2) For every n, D,y and L, , are >F(D,,...,D,, L,,...,L,, 1y, ...,1,).

(3) For every n the lacunarity of /,,,=f and the moduli of the coefficients of /,,,
are <0 where f and & are given by the growth function applied to D,,...,D,41,
Ly,...;Loiy, byl

- We will, by slight abuse of language, say that a number depends only on | |”* thus
meaning that it is determined by D,,...,D,,, Ly,...,L., l1, ...l Cis ooy Crpe (ObVi-
ously different such sequences could give the same | |”.)
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We now have

THEOREM 1.3. There is a growth function F such that if {D,,L,,1,,C,} grows
faster than F, then for every n there exists B, depending only on | |"™!, such that for
all N=n

N sn |h|opN 1 . N lhlo
- —= —_—<— ly |hgl” =
lga—gq,|" < T and T imply  |hq| B

n n

We now combine this theorem with Theorem 1.2 to give also (I) of Theorem 1.1.
The main difficulty in the construction is to prove Theorem 1.3. This will be done in the
following sections. '

Completion of the construction assuming Theorem 1.3.

For every N=0, choose Ly, and

(A)
D, ., > max {F(Dl,...,Dn,L,,...,L,,,I,,...,l,,),4BN+,/eN+1}.
Now we assume that
for every r<N we have defined L,,...,L,,D,,...,D,1,,...,1,C,,...,C,
(A")

according to (A) and the growth function F.

Assuming this we will choose Iy, by the following considerations (B)~(E):
Take the smallest n<N+1 such that |gy.,—¢,/V<e,/16 and e,=ex+;. Then by
Theorem 1.3

| op & 1 A
Rt L o gy, VL
|A| En+1 n

By the compatibility assumption and (A) we now choose
|lN+lll =Ln>4Bn/8n‘ (B)
Cyi1=D,>2. ©

By Theorem 1.2 by choosing Iy, lacunary enough we then get

lp|¥ = |p|¥*! for degree p<N. (D)
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We choose Iy, more lacunary and with smaller moduli of the coefficients than
what is given by

FD,, .. Dyoys Ly cos Ligaps s oees 1. (E)

By choosing the sequence {D,, L,, l,, C,} according to (A}«(E), we thus get the
following: {D,, L,, l,, C,} is compatible by (B) and (C) and it grows faster than F by
(A), (A") and (E) so it satisfies the assumptions of Theorem 1.3.

By (B) and (C) it also satisfies (II) of Theorem 1.1 and by (D) it satisfies (I) of
Theorem 1.1. Thus for the limit norm multiplication by x has only trivial invariant
subspaces. So in fact Theorems 1.1, 1.2 and 1.3 give

THEOREM 1.4. There is a growth function F such that if {Dp, Ln,l,, C,} grows
faster than F, then lim||* is a norm for which multiplication by x has only trivial
invariant subspaces.

2. An inequality for products of polynomials

Before continuing with the construction, we will use this section to prove the following
theorem which we will need many times in Section 3, where the actual construction
continues.

THEOREM 2.1. Let A, B be homogeneous polynomials in many variables of degree
dy,d,. Then

|AB|, = K(d), d,) |A], B|;-

Remark. The essential point is that K is independent of the number of variables. A
bound depending on the number of variables is trivial since AB+0 is not zero for
A, B%0, and the spaces of all A and B would then be finite dimensional. All norms in
this section are /;-norms.

In order to prove Theorem 2.1, we will analyze a more general situation. Let
Ay, ..., A, denote homogeneous polynomials of fixed degree, but having no restriction
on the number of variables. Let P be a polynomial of n variables of fixed degree which
is ““isobaric’’ so that P(A, ..., A,) is homogeneous of fixed degree. We shall study the
case when P(A,,...,A,) is small.

From now on we consider a sequence of such P, A,,...,A, and drop any index to
denote the term of the sequence. Quantities or polynomials whose norms tend to zero
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are denoted o(1). Bounded quantities are denoted by <<1, and bounded from below by
>>1. If we write |P| we mean the /;-norm of P as a function of n independent variables,
and not |P(A4, ..., A,)|

THEOREM 2.2. Assume

) Al <<, |P|<<1
Q) |P(Ay, ..., A = 0(1).

Then for some subsequences of the P, A, ..., A,, there exist an integer m, polynomials
01, ..., Qn, in m variables and polynomials By, ..., B,, of bounded degree such that

(3) Ai=Q«By, ...,Bm)+o(1), |0 <<1, [B]| <<1.
(4) I.fP(Ql(tly'--vtm)’ seey Qn(th°"atm))=R(tls---,tm)’ then |R| =0(1)-

Remark. The number m and deg B;, deg Q; admit bounds depending only on degA;,
deg P. The polynomials B consist of various derivatives of the A;. Note also that if (3)
and (4) hold, clearly |P(A)|=0(1).

Theorem 2.1 can now be deduced from Theorem 2.2. Assume |A;A,|=0(1), and
A1=0:(B), A,=0Q:(B)) satisfying (3) and (4), and |A;|=1. Then clearly |Q|>>1. But
then Q,(¢) Q,(¢) cannot be o(1), since this violates Theorem 2.1 in the case in which the
number of variables is bounded.

We use the following notation: If R(t,,...,t,) is a polynomial, [R|(|A,],...,|AA]
denotes the value obtained by replacing each coefficient of R by its absolute value and
substituting |4, for f;. If A;=4;B;, and S(¢y, ..., t,)=R@1 11, ..., Amtm), then clearly
|S|(Bi), ..., IBm)=|R|(|A:], ..., |A)). This will be used shortly.

For any polynomial A(z,...) let A? denote 3A/3z;. Now the following lemma is
obvious:

LEMMA 2.1. If A is homogeneous of degree d, L |AP|=d|A|.

We made the convention that all polynomials must have degree >0. For example,
in the following lemma, if degA,=1, the variable A does not occur, but is

treated as a constant.
LeEMMA 2.2. Let

[PAy, ..., A)]" = %A}?=Ri(A,,...,An,A‘P,...,Af?).
k
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Then

D IRIA - |4 14D -, JAPD < K- [PIOA,, ..., 14D

where K depends only on deg P and degA,.

Proof. We can reduce to the case where P is a monomial where the proof is
immediate.
Theorem 2.2 will be derived from Theorem 2.3 below.

THEOREM 2.3. Assume again |A]|<<1, |P|<<1, and let deg A, be maximal among
degA;. Let

P=A1CyA,...,A)+AT ' C\(A,y, ..., A)+...+C(A,, ..., A).

If |CoAz; ...,A)|>>1, then there are Q and B; with degB;<degA,, |Q|<<1,
|Bj<<1, and A\=Q(A,, ..., A, By, ..., By)+0(1). Furthermore, the degree of each mono-
mial in Q(A, B) is equal to degA,.

Proof. Assume first that deg Co>0. Then
[PA,,...,A)]? = A][CyA,, ..., A)]°+AT ...
=R(A,,....,A,,AY, ..., AY).

We have

(1) z I[CO(AZ’ --"An)](i)|>>1’
) L|lPAy, ..., AP =0(1), and
(3 Z|RJ(A,l, ..., |A,,|AP], ...,|AY)<<1.

From (1), (2), and (3) it follows that for some i, if a=|[Co(A2, ..., A,)]?|, then

—é—t|[P(Al, e A9 = o(1)

and

1 i i
;]R,.|(|A,|, s |41 1AD), ., 1AYD<< 1.

If we write AP=4, B, so that |B,)=1, and put S=R/a, it follows that
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S=A{DA,,...A, B)+AT" .., |§|<1,
ID(A,,...,A,,B)|>>1 and |S(4,,...,A,, B)=o(D).

S is a polynomial which, although involving more variables than P, clearly has ‘‘total
degree’” one less than that of P. By induction then the result will follow.

We now handle the case where C, is a constant. In this case
[PANO=AT1(rCy A, P+CP)+AT2 ... Now, if rCoA;+C=0(1), since Co>>1, we have
A1=(rCp)"'C;+0(1) and the result follows. If |rCoA;+C;|>>1, then we have
LJrCyAY+C?>>1 and the proof proceeds as before. Thus Theorem 2.3 is proved.

Now we prove Theorem 2.2. We write, as in the proof of Theorem 2.3,
P=A{CyA,,...,A)+.... If |Co(ts,...,t,)|=0(1), then the first term can clearly be
dropped and we have lowered the degree to which A, appears in P. If
|Co(ta, ..., t)|>>1, and [Co(A, ..., A,)|>>1, then we apply Theorem 2.3. Replacing A;
by Q(A,, ..., A,, B)+o(l) leads to another polynomial R in which A, is absent and
IR(Az, ..., A, B)|=0Q1). If [R(t, ..., t,, u)|=0(1), we are done. If not, apply Theorem 2.3
again to R. Because R has one fewer variable whose degree is degA;, we can deduce
the theorem by induction. If |Cy(,, ..., 1,)|>>1, but |[Cy(A,, ..., A)|=0(1), then C, in-
volves fewer variables, so by induction we can assume A,=Q,(B)+o(1),...,
A,=0,(B)+0(1) satisfying Theorem 2.2. Substituting in P(4,,...,A,), we get a polyno-
mial AT C(Qy(B), ..., Q,(B))+.... Now we have |Co(Qy(?), ...)|=0(1) by the conclusion of
Theorem 2.2, so we can neglect the first term and we have lowered the degree to which
A, appears. The theorem follows again by induction.

Remark. Although the proof proceeds by contradiction, it is possible to reverse the
implications and obtain effective bounds.

From Theorem 2.1 we get the following corollary for the case when the factors are
not homogeneous. Here if A is a polynomial in many variables, let [A],, be the part of A
that has degree <n.

CoOROLLARY. Assume that A and B are polynomials in many variables such that
I[A]n|l = 1’ l[B]mll = 1’ I[A]n+m|1 = K’ |[B]n+m|l sk
then

|[AB],. .|, = a(n, m, K).

n+m
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Proof. Assume n=m. Put A;=the part of A which has degree j. Now there exists
a smallest J1$n such that |4(;);>1/2n and a smallest j,<m<=n such that |B(;)|;=1/2n.
According to Theorem 2.1, put

C=inf K(j, 1)
j<n
Isn

We then have two cases: Either

A

|
|[AB](,', +j2)|1 = 7 -C- an?

and the result is proved, or

1 1
WABlg,4ph <—-C e
In the latter case more than half of the contribution from A(;,B(, is cancelled.
Obviously, this can only be done if either

1 1.1 1
. e
lAL;-1h= 7 ¢ 4n? K+1
or
11,1 1
. 2 C e e,
IBY, -l 22 ¢ an? K+1

So for this case consider now the smallest number j; such that

11 1 1 1
Al. ——— O ——
liAlgoh = 2 2 4n’ K+1 2n

and the smallest number j4 such that

Then we have j3+j,<j;+j><2n.

Now we have again two cases: Either

11 1 Y
llAB](’J*""‘/ ¢ (4n2' K+1 2n 7)

and the result is proved, or we have the opposite inequality. In the latter case we repeat



224 P. ENFLO

the argument above and get js+js<j;+js. This procedure must end after at most 2n—2
steps, since 2<5j;_1+jx. Thus the theorem is proved.

3.

In this section we will give 6 statements which will prove Theorem 1.3. We will then
give lemmas and propositions that prove these 6 statements. Most of these lemmas and
propositions will then be proved in Section 4. Before giving the 6 statements we have to
make some definitions.

Consider the sequence (n, &,). Let 12"=min {¢,, &,, ..., &,}. We put m=fn). We
consider a sequence (a;,a,...,a;) such that a;=(n;,¢,) and &, <én. If e,
<min {g,, &, €3, ..., €, } We say that the pair (a;, @i+1) is a jump.

Assume that | |V is defined in a compatible way. For every k<N we consider the
smallest number, say i, such that |g;—q/|* '<e/16 and &=¢,. We then say that k
belongs to the ith system. So with N given, a system is a subset of the integers
{1,2,...,N}. To every system corresponds an ¢ in an obvious way. To every system
corresponds in an obvious way ¢;, D; and L; and if k belongs to the ith system, the
compatibility assumption gives C,=D;, {li|i=L.

Let a;, as, ..., @z be a sequence of systems such that q; is the n;th system. We will
consider such sequences where &, <¢, and we define jump as for the a’s. Ifaisa
system let b(a) be the number of the system (a is the b(a)th system).

We will now give 6 statements from which Theorem 1.3 follows easily. We will
then let the propositions of this section prove these 6 statements. To estimate |hglN we
form a representation V of hgq,

hg =v,(l,q,— D+v,(l,g,— D+...+v([ygy—D+v

and the estimate for |hg|" given by this representation V is
V= 2 oo &+ 10l
J

Below we will not assume that V is the best representation of Aq in the sense that it
gives the | [N-norm. It will turn out that when |hgl™ is estimated many different cases
can occur, the number of cases increasing with N. We will now write down a list of all
cases that can occur, we will describe them later.

t 3 * * * * %
(D afg,m3p, a5 g, My, ..., Af_y g, M (2) af g, my g, A3 gy M3 gy s Qg B My G
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() afp,myp,afp, My, ..., AF_, 5, m; g 4 afg,my p, a5, M3 p, ..., My p, O
* nc ! c
() af g, m, 5, Ay ps My p, - My 3, O (6) afp,my 5,3 g, My g, -.0 My g, Of p
* nc ES nc
(D) afig,my p,af g, my g, ..., m, g O ®) afy,myp, a3 p, My p, ..., My g, Ap

In this list the a’s are systems with b(a)<N. The ¢ of the system q;,, is smaller
than the ¢ of the system ;. The m’s correspond to &’s such that 1/2™ is the £ of a;. The
superscripts ¢ and nc correspond to cancelled and non-cancelled and * takes the values
¢ and nc. B and G should suggest bad and good. In this list (2) and (3) are subcases of
(1), (4) is a subcase of (3), (5) and (6) are subcases of (4), (7) and (8) are subcases of (5).
After listing the cases we now turn to the statements. We assume

1

€

8’!
|q—q,,|”<¥, ‘|h|1=1’ |h|opN<

STATEMENT 1. There is a growth function F such that if {D,, L,,1,, C,} grows
faster than F then for every n there is a B,'l depending only on ||"!
such that if |hq|™ is estimated by V then either

case a{’;: The estimate given by V is =B),
or

some case af g, m, occurs with 1/2™ smaller than the ¢ corresponding to aj.

STATEMENT 2. There is a growth function F such that if {D,, L,,!l,, C,} grows
faster than F then for every n there is a B: depending only on

| I"~" such that if case af g, m, occurs when |hg|" is estimated by V then either
case af g, m, g The estimate given by V is =B>

or
case af p, m, g: Some case af g, m, g, a, occurs.

After these statements we can now pass to statements for cases which are
represented by arbitrary long sequences.

STATEMENT 3. There is a growth function F such that, if {D,,L,,1,, C,} grows
faster than F, then for every k=2, n and N, if case af gy, my g, Q5 5, My g, ..., My 5, 0y

occurs when |hql" is estimated then either

case af p, M, p, 03 g, My g, .vvy My g, OF°
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or

b * <
casc C(LB, ml’B, az’B, mzyB, ceny mk,B, (Ik,B
occurs.
STATEMENT 4. There is a growth function F such that, if {D,,L,,l,,C,} grows

faster than F, then for every k=2, n and N, if the case af 5, m, g, Q3 g, M3 gyeves My g, Af°

occurs when |hq[N is estimated then either

* c . i ; ;
case af g, M, g, af g, My 5, ..., My g, Qg : The estimate given by V is =1
or
% * nc
some case af g, M g, Q5 g, My g, ---s My gy Ap B> Myyy
occurs.

STATEMENT 5. There is a growth function F such that, if {D,,L,,1,, C,} grows
faster than F, then for every k=2, n and N, if the case afg,m, p,0;p,M,p,
vy My g, 0§ 5 occurs when |hq™ is estimated then there is an my., such that the
* c
case aj g, My g, Q3 g, My gy -+ My > Qg > My

occurs.

STATEMENT 6. There is a growth function F such that, if {D,,L,,l,, C,} grows
faster than F, then for every k=2, n and N, if the case afgy,m, g,a5p, m,p,

ey My g, OF g, my ., occurs when |hq|N is estimated then either

case ayg, M, g, a5 g, My g, ..., My g, Af g, My, g* The estimate given by V is =1
or
* * *
some Case Q, g, M, g, Az g, M3 gy ---» My By A, Bs My 1, B> T
occurs.

We now prove Theorem 1.3 from these statements. Assume that {D,, L,,l,, C,}
grows faster than F and let B,=min (B}, B?). Let |hg|" be estimated by V. Then by

Statements 1 and 2 either the estimate given by V is 2B, or some case a; 3, m, g, Q,

occurs. Then by Statements 3, 4 and S either the estimate given by V is =1 or some
case a; g, m, g, a, g, M; occurs., In the latter case by Statement 6 either the estimate

given by V is =1 or some case a, g, m, g, q, g, M3 p, a3 occurs. In the latter case we

apply Statements 3, 4 and 5 again and the argument continues in an obvious manner.
Since the a’s are all different and are among the N first systems (we recall
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moreover from above that the ¢ of a;,; is smaller than the ¢ of a;) this process must
eventually stop. We have now in fact proved that if some case a, g, m, 3, @, occurs then
the estimate given by V is =1. Since it is otherwise =B,,, Theorem 1.3 is proved.

Our next task is to give the propositions that prove the Statements 1 and 2. In
order to give these propositions we have to do some preparations. Let [ 1, [ ], operate
on polynomials £ a;x' by means of

[z ]= S

i>r
[2 a,.x'] = 2 ax.
r isr
We start with
LEMMA 3.1. Suppose that | |V is defined in a compatible way. Then for every n
there exist R, and S, depending only on | |"~! such that

£y

16

e 3
lg—q,"" < = I[Q(x)]Rnl1>T and |q|,<S,.

Proof. The existence of S, is obvious since all norms | | are equivalent to | |, and

n—1 € n—1 €y
- <— = <l+—.

To get R, we write

g= qn+2 al’i,kx"i(")(ll q1—1)+...+2 a,,_,,,,,kx"i(")(l"_l g, — D+t
ik

Here
I
M=F .. I" and lj=ﬁ, k| = ky+k,+...+k,_,.
i1
By Sublemma 4.1 of Section 4 we can assume that there is a uniform bound on i+|«|.
Thus there exists R” depending only on | |*~! such that deg(q—1) (x)<R,. We have
en

~t|, =|lg—1" ' > 1——~.
lg—t, =|q—1| T
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Since [1|;<e,/16 we get

E’l 8” 3
S-S 3
lgCNe > 1= 3¢~ 76 > %

We will now always assume ord,>R,,.

We will now define a pre-(n, m)-expansion of a polynomial g in the | [Y-norm and
begin by defining the kth stage of a pre-(n, m)-expansion. The kth stage of a pre-(n, m)-
expansion of g is a polynomial in 4 types of variables, g’s, I's, s’s, t’s. The Oth stage of
the pre-(n, m)-expansion is just g. The first stage of the expansion contains the follow-
ing types of terms gy, 5;, s;1;q;, t. It is in fact a polynomial

q,,+S1(ll q1—1)+S2(12 q2—1)+...+sN(quN—1)+t.

The kth stage of the pre-(n, m)-expansion contains the following types of terms:

s Sjy 1, Jz 12 ,lj,qj,' r<k

@ s, lj1 sj2 - .sjrlj’qp, r<k—1, p<j,
3) 8j, IJ‘ sjz - .sj’lj,sjm, r<k—1

4) 55, lh 5j, Jz"'si,li,t’ r<k-1.

The (k+1)st stage of the pre-(n, m)-expansion is obtained from the kth stage by
replacing ¢’s in the two first types of terms according to the following rules:

For terms of the first type.
Rule A. If g; belongs to the vth system, v<j,, m<j, it is replaced by a’polynomial
q,+5,(, g = D+sy(hba,— D48, (G _1g5-1— 1)+t

Rule B. If g; belong to the j,th system, m<j,, it is replaced by a polynomial
sy q—D+s,(lg,—D+...+s5; (g, —D+e.

For terms of the second type (and the g, that appears in the first stage).

Rule B'. If m<p (m<n), then g, (g,) is replaced by a polynomial
s g, —D+s,(lq,—D+...+s,,(,_, g, — D+t

Moreover, we have the following rule: if a term in the ith stage of the expansion
and a term in the jth stage of the expansion are both of the first type (second type), and
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end with the same [; g; (; ,) then g; (g,) is replaced in the same way for the two
terms when passing to the (i+1)st, (j+1)st stage respectively. If a term of first or
second type ends with ¢, and is replaced according to rule B or B’, it is replaced in the
same way as g, that appears in the first stage.

Since the indices of the ¢’s are going down at every new stage we see that thereis a
final stage of the pre-(n, m)-expansion. We will call this final stage the pre-(n, m)-
expansion of g. We see that the parameter n only refers to g, in the first stage of the
expansion. The parameter m refers to the fact that q,, ¢, ..., g» are not replaced. We
see that to every term s; in the first stage of the expansion corresponds an ¢ namely &;.

In the same way there corresponds an ¢ to every term of the third type, namely g -

We say that a pre-(n, m)-expansion is shortened with respect to /; g, if all terms of
the first type which end with /; g, are not replaced further. Consider the final stage of a
pre-(n, m)-expansion of g which is shortened with respect to I, gx. Let S(, s) [y g, be
the sum of all terms which end with I, g;. We then say that S(, s) is the coefficient of
I qi in the pre-(n, m)-expansion of q. Below we will define other types of shortened
pre-expansions. (For every I, we normalize it by putting [ =[i/|li};.)

From the kth stage of a pre-(n, m)-expansion of g we get the kth stage of an (n, m)-
expansion of ¢ in the following way. For every variable s in the kth stage put

s=Sa, K with M=pl Ly

and every variable ¢ in the kth stage put
1= ax.

With these expressions substituted for s and ¢ we have for replacements according to
rule A

g, = qv+2 ay ;X190 ql—1)+...+2 aN,,.,kx"i("’(quN—l)+2 a,x'
ik . ik i

where this representation shows Iq,;—qvlf"‘<s,,/ 16. For replacements according to
the rules B and B’ the representations should show |g;}"~'=1 and |g,}""'=1.
Obviously every variable s or ¢ that appears in the kth stage of the expansion has
appeared for the first time at some stage j<k as the result of some replacement of some
q. An (n, m)-expansion of q is derived from a pre-(n, m)-expansion of g by making the

15—878289 Acta Mathematica 158. Imprimé le 28 juillet 1987
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substitution above in the final stage and replacing ¢, ¢, ..., g by polynomials in x.
We observe that an (n, m)-expansion of g is a polynomial in x, and I's. By making the
substitution above we get the coefficient of /; g, in an (n, m)-expansion of g. It will be a
polynomial S(x, ). We say that an (n, m)-expansion of g is r-substituted if every [;, j<r
is substituted by a polynomial in x. More generally we say that we make an r-
substitution in a polynomial P(x, [, q, s, f) if the ¢’s and #’s are replaced by polynomials
in x and s’s are substituted by polynomials in x and /;’s with i>r and every [; with i<r is
substituted by a polynomial in x. Let us say that this gives P(x, 1, q, s, )=P'(x,1). We
then say that every monomial out of P'(x,l) is derived from the polynomial
P(x, 1, q,s,t). We will sometimes below use the notation P(x, 1, q, s, )=P(x, [)=P(x),
thus meaning that we get P(x, I).by substituting g’s, s’s, and ¢’s by polynomials in x and
I's and P(x) by substituting I's, ¢’s, s’s, and #’s by polynomials in x.

As for a polynomial g we can define pre-m-expansion of V. We only need 1
parameter m since we do not use that g is close to g,. The first stage of such a pre-m-
expansion is the polynomial v,(l;g;—1)+uy(laga—1)+...+un(Ingn—1)+v. The re-
placements of g’s are then done in exactly the same way as for pre-(n, m)-expansion
of q.

Let S(/, s) be the coefficient of I, g, in a pre-(n, m)-expansion of g and V(, s) the
coefficient of I, g, in a pre-m-expansion of V. We then say that AS(l, s)—V(l, s) is the
coefficient of I, g, in hq—V, with a pre-(n, m)-expansion of g and a pre-m-expansion
of V.

Before going into the propositions of this section we will discuss growth functions
in somewhat more detail. We say that a growth function is trivial up to the jth stage if it
gives the value 1 for all 3m-tuples, m<(j, and gives the function f of lacunarity =1 and
d=1 for all 3m+2)-tuples, m<j. We say that two growth functions F, and F, coincide
up to the jth stage if they give the same values for all 3m-tuples and (3m+2)-tuples,
m<j. We say F, dominates F, if for all 3m-tuples F(Dy,...,D,,, Ly, ....,Lp, L1, ..., 1)
2F)Dyy...,Dp, Ly, ..., L, 1, ...,1,,) and for all (3m+2)-tuples we have for the
lacunarity functions f; and f; and the d’s, 8, and J,, that f;(x)=f5(x) for all x€ER™ and
01=<$0,. In the propositions and lemmas of this section we will meet different growth
functions and so in order to have the assumptions of all propositions and lemmas
fulfilled with the sequence {D,, L,, [,, C,,} we have to know that there is one growth
function which dominates all of them. We now go into these considerations.

Let as above (a;, as, ..., ax) be a sequence of systems such that l/2""'=sb(ai)<eb(a'__l).

We will also consider sequences (ay,..., @, my,,) where &,,)<¢y, , and 12™<
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1/2'""=e,,(ak). For such a sequence we consider

M={m1, msp,..., mk} (resp. {ml, veey My, mk+1}).

Let % be the set of a;’s such that (q;, a;,,) is a jump—that is

e,,(ajﬂ)<m1n (&1, €55 .eey sb(aj)),

€U and (ap, M) is @ jump if 12™'<min(ey, &, ..., &y,)- Let HoM be defined in
the following way: m, € H(m, € H) and if m;€ H, let i<j be the largest number such
that min (¢, &,, ..., £4,))<1/2", then also m;€ H.

We now observe:

(BA) Given a set M there are only finitely many different sets & and H that are
derived from sequences (ay, ..., ay) or (ay, ..., A, M) With g5)=1/2""

For a sequence (qy, ..., a,, m,, ) we define N(a,, ..., a,, m,,,) to be the sequence of
M;, %, Hj, j<k+1 for the subsequences (a;,qy, ...,q), j<k, and M, U, H;,, be
the M, U, H of (ay, ..., a;, m;,,).

We define N(ay, ..., ax) to be the sequence of M;, Uj, H,, j<k, and with the system

a; as the (k+1)st element of the sequences. Below we will have a family of growth
functions

Fray,.ap 304 Frg oom, o

We assume that if
Ny, ...,a) =N(b,,...,0) N(,...,a,m,)=N(b,,...,b,m.,)

then
N R FN(bl ..... ) (FN(al,...,a,‘,mkH) = FN(bl,...,bk,mkH))'

We now have a family of growth functions Fy, .y and Fyg o m,., Which

......

satisfy the following:

GAD If (ay_, a) ((ay, my,y)) is ajump Fye o) (Fy, coincides with

(@gseees Qg My 1 q)
F Ny oo Bpy) (F N(a,,...,ak)) up to the (b(ay)—1)st stage ((b(my41)—1)st stage) and depends

only on N(ay, ..., a0 (N(@y, ..., & mys)) and | 79977 P07,
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(BA2) If (a;_y, ap) ((ay, my, ) is not a jump F Ny, Fn,....apm,,)) coincides

, )

with F NGy, ...a,_ysmy) UP 1O the (b(a;)—1)st stage (the (b(m;.)—1)st stage) and depends

only on N(ay, ..., a0 (N(ay, ..., &, my.)) and | [P ( 7).

We now show that for a family of growth functions which satisfies (3A1) and (3A2)
there exists one growth function F which dominates all growth functions of the family.

(3B) In fact the conditions (3A1) and (3A2) give that every Fy agrees with some
Fy,,....ap (OF Fye,,....a, ,.mp) UP 10 (b(mi.1)—1D)st stage, where b(ay)<b(mi.1). Since

b(m)<b(a)<b(my.,,) there are by (3A) and the definition of N only finitely many
such N(ay,...,a,) and N(ay, ..., a,_;, my). Thus there is obviously one growth func-
tion F which dominates all Fp's.

For the next proposition consider a pre-(n, m)-expansion of gq. In the final stage
remove all terms of the third type for which the corresponding £ is <min (ey, ..., ,).
This will be called g’. Similarly we consider a pre-n-expansion of V and define V' by
removing the terms of 3rd type for which the corresponding ¢ is <min (g, &5, ..., £,).

Now two cases can occur, either

1
')y > or llg'Gle )y <

We denote them ai® and af (low degrees of g are not cancelled resp. cancelled). We
will need a couple of more definitions to state our first proposition. We say that a
polynomial Z,¢,, a, ... xy" contains a polynomial T, M, 8o Xy o Xy i My>M,.

Below we will let p,(Z,¢,,a,x;" ... x¥) denote a polynomial £ ¢, b, x;" ... xp
where zaEMlba_aa|<“:ZaEMlaal'

In the next proposition consider an (n—1)-substitution in ¢’ and an (n—1)-substitu-
tion of V'. In the proposition we let a, denote the nth system so b(a;)=n.

PRrROPOSITION a}°, N(a,). For all n, there is a growth function F Neay) which is trivial
up to the (n—1)-st stage and depends only on N(a,) and | |*~' and there are numbers
B, and m depending only on | |"~" such that for all N=n, if ai°occurs then for all V
either

alll,cG: IV]&?B,’.

or
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ai’g: (hq'— V') (x) contains p,(E(x))

where

= o j4 59,
E= Y e, X021
i+lasm

Jizn for all k
with |E(x)|;>B,, and where ji belongs to one of the n—1 first systems for all k.

Proof. We will give a detailed proof in Section 4. The strategy is the following: We
first prove that hq' regarded as a polynomial in x contains py;so(E(x)) like in the
proposition. We then show that if |V] is too small, V' will not interfere very much with

E. To prove that hq' is big we use that |h|,, /||, <1/e, implies that & is essentially a low

op N’

degree polynomial, regarded as a polynomial in x and I’s and that 1[q’(x)],;nl,>1/2 just

says that ¢’ has some concentration on low degrees regarded as a polynomial in x.
To get the Statements 1 and 2 we now study the case af, that is |[g'(x)]g 1 =<1/2.

(1) We first show that with g=g,+ZY s{l,q—~1)+1,

=12
[Z s,w]
j=n R, |1

where the summation is done only over those s{x) for which ¢;zzmin {¢,, &3, ..., &,}.

S L
4

[q'0lg )y < implies

(2) To prove (1) we consider the first stage of a pre-(n, n)-expansion of g,
g=q,+s1(lig1—D+...+sny(Ingn—1)+t. We observe that the ord of every term
s;l;q;, j=n—or of any term derived from such a term in a later stage of the pre-(n, n)-
expansion—is =R, when expanded as a polynomial in x.

We have
n—1
\ [(%ﬁZ silya;— 1)“) ]R
Jj=t n

To see (3) we write for i<N—1, s (x, )=sP(x, D+5P(x, ) where s’(x,]) contains

3
> T 3)

1

only /s with 1<r<n-—1 and every term in s®(x, [) contains an I, with r=n. Then

n—1
ord (Z sP(x) (I, g~ 1)) >R,. )

i=1

n—1
‘ [(qﬁz sV 0 Uq,- 1)+t>]
i=1 R,

We have

3
> ®)

1
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by Lemma 3.1 since the distance between g, and g, +I!s"(x)(;g~1)+t in the
[ I"""-norm is <e,/16.
Now (3) follows from (4) and (5) and (1) follows from (2), (3) and

Jla'6e| <5

(6) We have that the condition [g—g,|[¥<¢,/16 implies L |s],,n &<, /16 and this

J=n
inequality obviously also holds if the summation is extended only over those j for which
g=min {¢,, &, ..., Ex}.

Now (1) and (6) give that if |[q'(x)]RN]l <1, there is on average in j a bound on

IS 1opA/ls;]; for j=n.

We have
8’!
e > 50| <, Elslopn< 2 elslopn < T
=n j=n Jj=
eze, 1 e2¢, tjaen
Thus
1
s} s—
2 50| <7g
elaen 1
and so by (1)
1
)
S; (x) >—,
29 3

So with &,=1/2" there is a smallest m,>m, such that for m, we have

) 1.1
2 '@ >3 e 3.1)

j=zn
m-
=12 2 1

We then say that the case af 3, m, occurs.

Remark. The argument above gives the reason for the requirement
[g—qn|N<e,/16. The factor 1/16 in &,/16 gives the existence of an m,>m, with

Z “)(X) > l l

my—m
o 8 9™ v’

&= 12" 1

and it is important for the argument that we do not have m,<m,.
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(3.2) We recall that b(m) is the smallest j such that £;=1/2". In order to give the
next lemma and proposition we have to take into account not-only s; but the coefficient
SAx, D) of l;g; in a (b(m;)—1)-substituted (n, b(m,))-expansion of g, g=1/2", To do
this we first consider the coefficient of [;q; in a pre-(n, b(m,))-expansion of q. The
terms of this coefficient have the forms

5, ljl... lf,v.si,’ rzl, ji>5h>..>j,_1>j=bm,).

We put

5; (%, D boos; (x 1)) L s h= Lol Px, D.

We say that every term (monomial) out of ljl lj_lP(x, D is derived from sjllj1 li,-l 5; -
Now consider in S{x, [) those terms which contain at most r’ different I’s (or I's) with
index >j. Every such terms is obviously derived from a term s; I; ... s; with r'<r~—1.

Let K; , be the sum of those terms out of Sy(x, ) which

(1) do not contain any /; (or ;) with both i>j and i belonging to a system with
number =b(m,),

(2) contain at most r different I’s (or I’s) with index >j.

Put

= 1, o2l €)™ ..l Cp)™.

estopN

: ’Zai,ax"l';‘...l;”

We now have

o ki 44 i . . .
LeMMA 3.2, LK) Jeuopn <227 Limy_1 Diymy—1» Where the summation ¥; is ex

tended over all j for which the corresponding ¢ is 1/2™.

This can be proved by induction on r by considering the observation (3.2). We give
a complete proof in Section 4. With this preparation we can now define a semigood
coefficient S(x, /) of [,q;, &;=1/2™, assuming that the case af g, m, occurs.

We now let S, ((x, ]) denote those terms out of s{"(x, [) which contain only I's with
indices from the b(m,)—1 first systems. We say that S{(x, ]) is semigood if

s('l) my—m
J—I—f %N <100-4™™ (D

lsz(x)ll
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| s('2)| | §@ §@ .
AL LietopN - png LIV gre all < 100-4™ ™. 0)
|si ‘1 |55 stop v |55 }op
| Oll/i l 0|°PN (3)
[s°h 27 |5 oo 2
1 1 1
Z2——— 4
ISJ(JC)|1 4 g Y “)
K, estopn < I5/0)], 827 22" Ly -1 Dy -1 10" ©)

Let the weight of S, be w(S)=|s{(x);.

In the next lemma we consider also a (b(m;)—1)-substituted representation of 4,
say h(x, ). That is, we consider an & with |i(x)|;=1 and |h|o, v<1/e, and we consider a
representation h=X, a, XI\"...[\¥ for which |2, ,a; XTI ... Wlesiopn<1/€,. In this re-

l a l a l a I a
presentation of & we substitute every [; with i<b(m,)—1 by a polynomial in x. So in
h(x, D) every I has index =b(m,).
In the next lemma we let

5 (S i)

la|=ry

denote the following terms out of the product h(x, ) S{x, D):
In every i“”=i§:") lgl’) ... we have
P

(A) a;taz+...ta,=n.

B) i1, iz, ..., i, are all >j.

(C) iy, i3, ..., i, all belong to the b(m,)—1 first systems.

(D) For every k,,, l<m<s, in i‘ﬂ)=f£‘) I(,fz’) f,ﬁ‘)we have k,,<j

LEMMA af g, m,, N(a), m,). For all (a;,m,) there is a growth funct;’on FI'V(al,mz)

which is trivial up to the (b(my)—1)-st stage and which depends only on N(a,, m;) and
| P! an integer ny, and a positive number E, depending only on | "™ such that if

{Dp, Ly, 1, C,} grows faster than F Fra, > and the caseaq$ g, m, occurs when lhg|" is

estimated by V. then there is an ri<n;, such that for

2 I "’(E C(a),i,(ﬂ)xii(ﬂ )>
la|=r LB
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we have
ifB)
2 Cla),i, " [

i, (8) estop N)

<2 C(a),i’(ﬂ)xii(ﬂ)> (X)

LB

Els@),= D, (

jal=r,

5>

lal=r

1

1
Zillsj(x)h.

Proof. We give a detailed proof later. The ideas are the following.
The condition |h|, v/|h|,<1/e, on h gives that h has a representation which has its main
weight on low degrees (and early systems) regarded as a polynomial in x and I's. The
condition (1) on s; in the definition of semigood coefficient shows that the same holds
for 5;. So by the theorem on multiplication of polynomials in many variables hs; is big
as a polynomial in x and P's and so also |hs{x)|; is big. On the other hand the
submultiplicativity of estop N-norms give a bound on |hs;|.., n- The extra complica-
tions in the statement and proof of Lemma af 5, m,, N(a,, m,) are due to the fact that we
consider 4S; instead of ks;.

Now consider V and let V{x, I) be the (b(m,)—1)-substituted coefficient of l;gjina
b(m,)-expansion of V. Let

> i‘a’<2 d(a),,.,(ﬂ,x"i‘m) (3.3)

lal=r; L6

denote the terms out of A(x,l) Six,)—Vjx,]), which fulfill (A)«(D) above (as for
h(x, ) Si(x, I)).
We now say that h(x, [) S{x, D—=Vix, 1) is a good coefficient of liq; if

laj=r, ( estop N)
estop N)

<L
10 |a|=,
1

Z (.~ C@,i@) X1
@)

ing)
E C(a),i,(ﬂ)xi(ﬂ
i’(ﬂ)

and
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2

|a|=’1 1)
<L (\ (= cwio®®) o) )
1 1

We say that |s/(x)|, is the weight of this good coefficient.
We now have

(4@~ C@.1.0) x1P (x)
i’ (ﬂ)

ProrosiTiON af g, my, N(a,, m,). For all (a,, m,) there is a growth function F, Neay, m;)
which is trivial up to the (b(my)—1)-st stage and which depends only on N(a,, m;) and
| lb(m’)”l, and a number B(m,) depending only on| Ib(m’)_l such that if {D,, L, 1,,C,}
grows faster than Fyg ., and the case af g, m, occurs when |hql" is estimated by V

then either
VIV
ai,g> My, gt |V]ex=B(m,)
aj g, M, g: the sum of the weights of good coefficients of Lq’s, &= 127, is

1 11

> .
2m2—ml 8 2

Proof. The strategy is the following. If |V|Y is very small, then the dg.ip's are

est

almost the same as the ¢, ; ® S- This gives many good coefficients.

Remark. We observe that the estimates and growth functions in Lemma
aj g, m,, N(a,, m,) and Proposition aj g» My, N(a;,m,) are uniform in a, as long as
Sb(al)= 12m™,

(3.4) If af 3, m, g occurs, let D be the sum of the weights of good coefficients of
ligi’s, &=1/2™. Among the systems a, @, ,,q, ... b(a, )<b(a, )<...for which the
corresponding ¢ is 1/2™, there is a first system, say a, ,=a,, for which the sum of the

weights of good coefficients of /;g/’s, j€a,, is >D/2°. We then say that the case
aj g, My g, a, OCCUTS.

We will now study the case af of Proposition aj®y,, and then consider how
s » Iy

much we have proved of the Statements 1-6. We will first define the cancellation

effect.
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Q.5 If P\yy,...,¥)=La, ,y"and Py(y,,...,y,)=La, ,y*,a=(a,,...,a,),y=y,....¥,)
and g; ,+0 for all terms in the summation are two polynomials we say that the
cancellation effect of P, on P, is L4la, o] where the summation is extended only over
those a for which a; , is #0. Let §(1/%) and V(1/2) denote the sum of those terms of
the 3rd type in a pre-(n, m)-expansion of g and a pre-n-expansion of V for which the
corresponding ¢ is 1/2'. Let S(1/%) (x) and V(1/2)(x) denote the same sums after having
been substituted as polynomials in x. If ai°g occurs we know by Proposition a',‘fN(a‘) that
(hq'—V')(x) contains P,,,(E). Since on the other hand (hg—V)(x)=0, we have that
there is a smallest j say m,, 1/2™*<min (e, ..., £,)<1/2"" such that the cancellation effect
of hS(1/2™) (x)~V(1/2™) (x) on E(x) is >|E(x)|,/2-2™ ™. We then say that the case
ai’g, m, occurs.

In the next proposition we assume that we have an (n, b(m;))-expansion of g and a
b(my)-expansion of V and a representation h(x,I) of h with |h|;=1, |h|,~<1/¢,and
that all of these are (b(m,)—1)-substituted. We consider the (b(m3)-1)-substituted
coefficients S(x,]) and V(x,]) of /,g;'s,e,=1/2".

Below we put hSi(x,)—Vix,D=Six, D+Six,]) where Six,]) consists of those
terms which either are of degree >m, defined in Proposition a}’y,in [7s or contain an
l; with i from a system with number =b(m,). Below we consider S{x) (which we get
from S(x, [) by substituting the I’s by polynomials in x).

PrOPOSITION &1y, m,, N(a;, m,). For all n and my there is a growth function
F Niay,m;) which coincides with F N, 4P 10 the (b(my)—1)-st stage and which depends

b(my)—1

only on N(ay,m,) and | | such that if {L,, Dy, ln, C,} grows faster than Fyeq, )

and the case aig, m, occurs when |hq|" is estimated by V then either
nc . N
a1 My, 6* [View>1
or

a}°g, m, : The sum of the cancellation effects of all monomials xXI°=P,(x) of all
SAx, s on E(x) is <|E(x)|,/(10-2-2™"™),

Proof. The proposition is a simple consequence of the fact that the I’s behave like
independent variables. We give a detailed proof in Section 4.

(3.6) Let T{x, ) consist of the following monomials out of ASj(x, )—V{(x, ): Those
which are of degree <m in [;’s with i>j, and for which every [; with i>j is from one of
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the b(m,)—1 first system. If |V|¥ <1, then by the previous proposition the cancellation

est

effect of [E(AS x, - Vix, D—Tix, )] (x) on E(x) is-

|Ex)),
10-2.2™™

-and so the cancellation effect of [Z; T{x, D] (x) on E(x) is

oo IE®, o B

10 2.2'”2_'"1 10 2.2’"2’”‘1 )
We now have

Lemma 3.3. If |VIY,<1 in the previous proposition, then

2 ‘T;(X, l—)festopN =2 E Ll’yznllz)_l -Dl’)(":lz)-l 2™
J rem
= Kb(mz)—l'

Proof. This can be proved by considering the different stages of the pre-expansions
of g and V and the terms of Tj(x, ]) derived from them. We give details in Section 4.

With (3.6) and Lemma 3.3. we now give

Definition. We say that hS{x, )—V{x,]) is a good coefficient of /;q; in hg—V if

Kypy-1°100 )
b(my) ]B"l [[Tx, D] (%),

_13“ 2.9™ T

(l) |];{(x’ i)lestopN =

3.7

’

, B, 1
2 I[I}(x: i)] (x)|1 BWW

(3.8) If T{x, ) tulfills (1) and (2) of (3.7), let T} {(x,]) be the terms out of T{x, )
which are of degree r in I's with index >j. Let r; be the smallest number such that
T}, , ()], =(1/m)| T{x)| ,—obviously E,<. T} (x,D=Tjx,). We say that [T}, (x); is
the weight of this coefficient.

(3.9) If aig, m,  occurs let D be the sum of the weights of good coefficients of
Lgys, €=1/2". There is among the systems az 1,0z 2,02 3... (a2 1)<b(a3,>)
<...for which the corresponding ¢ is 1/2™a first, say a, ,=a,, for which the sum of the
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weights of good coefficients of [;g;’s, j€a,, is >D/2°. We then say that the case
aj’p, My, @, Occurs.

We have now in fact proved the Statements 1 and 2. To see this we first observe
that there is one growth function F which dominates all growth functions in the
previous propositions.

The case aj; of Statement 1 now follows from Proposition ajy, and the case

af g, m, follows from the discussions above (3.1), (3.5) for *=c or nc. In Statement 2 the

case af 5, m, g follows from Propositions af g, m,, N(a,, m,)and aj’s, m,, N(a;, my). The

b(my)—1

B? here depends in fact only on | | , b(my—1<n. The case afy,m, g, a, follows

from these propositions and (3.4) and (3.9).

If the case a} 5, m, g, a, occurs, *=c or nc, consider for each [;g;,j € a,, which has
a good coefficient a pre-(b(ay), b(as))-expansion of g;. (Since j belongs to the system
with number b(a,) we get g;= Doyt - in the first stage of this preexpansion.) We form

qs, 1, q, ) by removing from the final stage of this preexpansion all terms of the 3rd
type for which the corresponding & is <min{e;, &, ..., Ep@y}- W€ form' gix) by
expanding the s’s, I’s, ¢’s and #’s as polynomials in x. For each j we have either

, 1 , 1
'[qj(x)]R,,mz) T or |[q,(x)]R,,m2, S

(3.10) Let D’ be the sum of the weights of good coefficients of [;g;’s, j€ ay. Let D,
be the sum of the weights of the good coefficients of /;g;’s, j€ a,, for which

I[qf’(x)]Rb(az)l 1 > —;_

and let D, be the sum of the weights for which
1

=—
1

| [qjxx)]Rb(az, 2 .

Then D'=D;+D,. Now if D,=D'/2 we say that the case afg,m, g, a;° occurs and if
D;>D'[2 we say that the case afy,m, g, a5 occurs. These definitions now give the
Statement 3 for k=2.

(3.11) Now we assume that the case af g, m, g, a3 g occurs. For every j with

1

< —
1

l L5 (x)]Rbmz) 2
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consider the smallest m; (obviously 1/2"'1">min(sl,52,...,sb(a2)), m;>m, will follow
from (3.1) such that

1 1
2 ,'sj|l>—'27}‘72 (see (3.1).

8
g=12"

Let w; be the weight of the good coefficient of /;q;. Let m3 be the smallest number
such that L,,,_,, w;>D,2™"™. We then say that the case afy,m,, a5 5, m;yoccurs. This

definition gives Statement 5 for k=2.

We will next give the Statements 4 and 6 for k=2 before going into the induction on
k of the Statements 3-6.
Before the next proposition we will make the

Definition. We will say that a pre-(n,, n,)-expansion of g is shortened with respect
to systems of number =m if every term of the first type which ends with [;g; where j
belongs to a system with number =m is not expanded further.

(3.12) In the next propositions we will assume that the case af g, m, 5, @)° or
i, m, g, a3° occurs when |hgl™ is estimated by V. We consider a pre-(n, b(a))-
expansion of g which is shortened with respect to systems with number =b(a,). Let

L S;liq;+R(s, 1, g, ) be the final stage of this shortened expansion where j belongs to a
system with number =b(a,).

(3.13) We observe that §; need not be the coefficient of [;g; in a pre-(n, b(ay))-
expansion of g, since the terms out of the coefficient which contain an /; with j from a
system with number =b(a,) are missing.

(3.14) We also consider a pre-(n, b(a,))-expansion of V which is shortened with
respect to systems with number =b(ay), let £ V;l;q;+Ry(s, 1, q, t) be the final stage.

From (3.12) and (3.14) we get
hq(s,l,q,0)—V(s,l,q, )= Z(th— V) l:qi+hR(s, l,q,)—R\[fs,1,q,1). (3.15)

For every g; such that /;q; has a good coefficient we now form a pre-(b(a,), (b(a))-
expansion of g; and form g; by removing from this expansion all terms of the third type
where the corresponding is <min (¢, ¢, ..., s,,(az)). Remove also from R and Ry all terms

of 3rd type for which e<min(e,, ¢,, ..., £b(a2))’ thus forming R’ and Ry.
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(3.16) From (3.15) we now define (hq—V)'(s,1,q, 0 by

(ha=VY (5,19, 0) = D (hS~V) g+ >, (hS~V) L,g;+hR'(s,1, ¢, D~Rifs, L4, D)

where the sum (hS;~V))[;q; is extended over those g;'s which have a good coefficient
and for which

(e, > 5

(3.17) In (3.16) we consider the terms (hS;—Vj}[;q}. For every such j consider a
(b(m3)—1)-substitution of hS;—V; and consider the part

DY X P (see 3.3)

lal=r,  m.®

or

T;, (x. D= Z Zm)E i), m, 5y X"I0-

la|=ry

We observe that (3.17) coincides with (3.3), (3.6). The reason is the following:

It follows from (3.13) that every term out of the total coefficient of /;g; in hg—V (in
a pre-(n, b(ay))-expansion of g and a pre-(b(a,))-expansion of V) which is not in
hS;—V;, contains an l; with /=j and i from a system with number =b(a,). This
obviously remains true for (b(m,)—1)-substitutions of AS;—V;, and of the coefficient of
l;gjin hg—-V.

We now make a (b(a,)—1)-substitution in (3.17). Since in [ the index of every [
appearing is >j=b(a,), I remains unchanged when this replacement is done. So we
get

219 diy g X" P =2 diy " 1. G.18)

(@ m, (B) (@) m, ()

'(3.19) Now, using (3.16) we will define (hg— V)’ (x, i) in the following way: In every
term (hS;— V) [;q; make a (b(ay)—1)-substitution of hS;—V; and a (b(ay)—1)-substitu-
tion of gj. In every term (hS;—V))[;q; make a (b(az)—1)-substitution of AS;,—V; and
expand g; as a polynomial in x. In AR'(s, [, q, ) we make a (b(ay)—1)-substitution of .
InR'(s,1, q, 1) and Ri(s, I, q, t) we expand every s as a (b(a,)—1)-substituted polynomi-
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al in x and /. Every ¢ and every g is expanded as a polynomial in x. Every / with index
=b(a,) remains unchanged and every [ with index =(b(ay)—1) is substituted by a
polynomial in x.

(hqg—V)' (x) is defined by expressing every [ in (hg—V)' (x, ]) as a polynomial in x.

(3.20) Here we observe that every g that appears in R'(s,/, g, f) or Ry(s, [, g, t) has
index <b(ay)—1.

The reason is the following: Every term of the first type which ends with /;g;
where g; belongs to a system with number =b(a,) is not expanded further and the term
does not go into R(s, [, q, t) or Ry(s,l, q, ). Thus if a term of the first type is expanded
further g; is replaced by a g with index <b(ay)—1. Moreover if n>b(a,) (obviously
n=+b(q,)) then g,, will be expanded and so in particular g, will not appear in R(s, [, q, 1)
and from the shortened expansion of g, we only get ¢g’s with index <b(a,)—1.

In the next proposition we will let

E= 2 6(2 i(a)E e(a),k,(ﬂ)xklv))

i (@
stand for a polynomial where
(1) I; runs over those /s such that /;,q; has a good coefficient and for which
[4/®]k,, >}

(2) For every j, (a) runs over a subset of the set of (a)’s appearing in (3.17).
(3) Only I’s from the b(a,)—1 first systems appear in I(8) and b(a,)<isj for every J;
there.

We now have

PROPOSITION afg,m, 5,a5°, N(a,,a,). For all (a,,qa,) there is a growth function
Fyeya which coincides with F Neay,m,) UP 10 the (b(ay)—1)-st stage and which depends

only on N(ay,a) and | |b(“2)_l

. blap-1
and numbers By, and n, depending only on | | ! and
J» such that if {L,,D,l,C,} grows faster than F Neay.ap and the case
af g, my g, @y occurs then either
N
af' g, My g, G0 [Vew=1

or
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af g My g, 05%5: (hg—V)' (x) contains p,,(E) where E=L (LT ey, . ¢ ?)
has the properties 1-3 above and in addition
(4) k+|B|<n, for all k and B
(5) |E|;=DBq, Ly, where D is the sum of the weights of the good coefficients of

l;qj’s with j in the system aj.

We give the proof of this in Section 4,
As before it follows from (3B) that there is one growth function which dominates
all growth functions F Ny, ap* Since (hg— V) (x)=0 we have the following:

There is a smallest m, with 1/2™<min (€15 €5 s sb(az)) such that the following holds:
Let in (3.16) S, ; be the sum of the terms of 3rd type in g/—q; which the corresponding
£is 1/2™. Let S and S, be the sum of the terms of 3rd type in R and Ry for which the
corresponding ¢ is 1/2™. Then the cancellation effect of

E
D (hS~V) S, (0)+hS()—Sy(x) onE is >—|m|‘_7.
j 22 3 2

We then say that the case afg,m, g, a}°,m; occurs. So the Proposition
af g, m, g, 45°, N(a,, a,) now gives Statement 4 for k=2.

To get Statement 6 for k=2 we now assume that af 5, m, g, a3y, m; occurs when
lhg|™ is estimated by V. We consider a j€ a, such that l;g; has a good coefficient and
such that |[q/(x)],, )}ls% and mi=ms.

)

(3.18) We define a semigood coefficient of /, q,, £,= 1/2™, in a (b(ms)—1)-substitut-
ed (b(az), b(ms))-expansion of g; like above (see before Lemma 3.2). We now give a
lemma which corresponds to Lemma af g, m,, N(a,,m,): hin Lemma af g, m,, N(a,, m,)
corresponds to the “‘good’ part of the coefficient of /;q; below and S; of Lemma
af g, my, N(a,, m,) corresponds to S below.

Let Si(x,]) be the semi-good coefficient of lrg; in a (b(ms)—1)-substituted

(n, b(ms))-expansion of g;. We observe that the indices of all I’s appearing in Si(x, [)
are <j.

(3.19) Put S8 fx,h=h(x, ) S{x,)—-V{x,)) where Sfx,])and V{x,]) are the
(b(m3)—1)-substituted coefficients of /;q; in the (n, b(m3))- resp. b(ms)-expansions of g
and V and h(x, I) is a (b(m3)— 1)-substituted representation of k. We observe that S{x, )
and V{x, D) would be the same if we instead considered (n, b(m,))- resp. b(m,)-

16—878289 Acta Mathematica 158. Imprimé le 28 juillet 1987
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expansions of g and V. This is since j>>k=b(m;) which gives that the expansions of g's
with index between b(m;) and b(m;) will never contain any /;g;.
In the next lemma let

E [ 2 ”)Zc(w.w),i,(y)ﬂ‘”

laj=r Bl=r, i)

denote the following terms out of the product §, (x, D S,(x,D: For every [“® we have
the conditions A,B and C of semigood coefficients (given after Lemma 3.2).

In every I‘ﬁ)=1§f‘),...1,fﬂp), we have (A)) B,+B,+...+8,=r) B)iy,iy,..., i, are all >k
(4

but <j, (Cy)iy, iz, ..., i, all belong to the b(ms)—1 first systems—(since j belongs to a
system with number =b(m;) we get <j instead of <j in (B,). (D,) For every m,,
Is|rss, in [P=[" ... I"* we have m,<k.

In the next lemma let w; denote the weight of the good coefficient of
l;g; and let g;=q, )+ L ;_;5,(,q,—1)+1 be the first stage of the expansion of g;.

In the lemma below, if *=nc, r, is the number given by (3.8) and if *=c, ry is the
number given by Lemma af g, m,, N(q,, a,).

Lemma af 5, m, g, a5 g, my, N(a,, ay, m;). For all (a,, a,, m;) there is a growth func-
tion Fy, o, my Which coincides with Fyq, ., up to the (b(m3)—1)-st stage and which

depends only on N(a,,a,,m;) and | |b(rn3)—l

(and numbers E, and n, depending only on
-1 .

| Ib('"s) ) such that if {D,, L,,1,, C,} grows faster than Fyq . m\and afg,m;g,a; g, m,

occurs then for some ry<n, we have for -

2 [ 2 lw)z C@.®.i X1

|a|=’1 |ﬂ|=’z i,(y)

E,wjsyx)|, = Z 2 ( 2 Clar @i X1

lal=r; Bl=r, \ [i. )

=2

la|=ry |Bj=ry

estop N)

(2 Cla),8).i, xT 7)) (x)

i () 1

1
= Ez wjlsk(x)ll

Proof. The proof of this is essentially the same as the proof of Lemma
af g, m,, N(a,, m,). We give the details in Section 4.
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Now we can use this lemma to define a good partial coefficient of I,q, that
contains l; and define its weight.

Consider again (b(m;)—1)-substituted (n, b(ms))- resp. b(m;)-expansions of g and V
and let S i(x,]) resp. Vi i(x,]) be the coefficients of l,q, in these expansions.
Consider also a (b(m3)—1)-substituted representation h(x, ) of A.

Consider out of h(x,]) S, (x,D—V, (x,]) the terms

62 I 2 g )Zd(a),(ﬂ),i, (y)xii( V

la|=r; 1Bl=r, i @)

where (a) and (8) run through the same sets as in the lemma above. Every ! in [ has
index <k but i and (y) need not run through the same sets as in the lemma above. We
say that

i)
112 [ E Z(ﬁ)Zd(m),(ﬂ),i.(w"ZW
lal=r, 1Bl=r, i,

is a good partial coefficient of /; g, that contains /; with weight wj|s«(x)|; if

(1) Sy {x,]) is a good coefficient of /;q; with weight w;.
(2) Si(x, D) is a semigood coefficient of I, g.

O <522

lal=ry [Bl=r, la|=r l=r,

i)
2 Can @i X I

i, ()

i)
2 (., ) ¥

L@

estopN estopN

and

@ > >

|a|=’1 lﬂ|=’2

SR>

laf=r, Bl=r,

(2 (4,010 €@, @i ) X ) x)

i,
(2 C@,).i,») T 7)) (x)

i (y)

1

In the next proposition let D’ be the suni of the w;’s. The proposition is analogous
to Proposition af g, m,, N(a;, m,).

PROPOSITION af g, m, 5,05 5, M3, N(a,, ay, my). For all (a, a,, m;) there is a growth
Junction Fyg o m) Which coincides with Fyg ., up to the (b(ms)—1)-st stage and
which depends only on N(a,,a,,m;) and | ™" such that if {D,,L,,1,,C,} grows

faster than Fy, o ., and af g, m, g, a; g, myoccurs then either
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* . JvIN
ay, g My, a;,B’ m; G- lvlestal
or
af g, My, a5 5, my : The sum of the weights of good partial coefficients of Leqr's,

£= 1/2™, that contain I’s, j€ay, is

2m3—m2 8 —2—

Proof. The strategy of the proof of this proposition is similar to that of Proposition
aj g, my, N(a,, m,). We give details in Section 4.

(3.20) Let D be the sum of the weights of good partial coefficients of lcg,’s that
contain /’s—assuming that af g, m, g,q5 g, m; p occurs. There is among the systems

03,1503, ..., b(a; 1)<b(ay ,)<...for which the corresponding ¢ is 12™, a first, say
a; ,=a, for which the sum of the weights of good partial coefficients of lyq:’s, k€ as,
that contain [’s, j€ay, is >D/2°. We then say that the case afy,m, p,a; p, M3 5, 03

occurs.

(3.21) It now follows from (3B) that there is one growth function F which domi-
nates all Fy, o ). This gives Statement 6 for k=2.

We now turn to the induction on & to get Statements 3-6. We draw a “‘flow chart”’
(next page) to illustrate how the argument goes.

In the induction hypothesis below we let af g, m, g, af g, M, 5, ..., a, define MAH
and N(ay,...,aq). With M={m;,my,..mJ} we let {m;,m;,....m;, m}
¥{m2, ms, ...,mi} NH. Let l;; denote an ! with gj; in the system a;, (and [y an [ with sk
in the system a,). We assume that |k|,=1, k=L b, ;,x?is a representation of 4 in x, and
I's which shows |h|,,y<1/¢,. We have already proved the induction hypothesis below
for k=1,2,3. We use it below to prove Lemma

A gy oo A go My s N(Qy, oy Oy M)
and Propositions
af gy s @ gs My, N(@y5 oo, Gp 1)

afp, ... a0, N@a,, ..., ap),
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2.
Prove that either
|V|§;t>1 or we can deter-

Choose
e<min (&, €2, ---» Epa))-
Prove that either |VIY, =1
or we can define a good
partial coefficient and

1. weight of good partial co-
If nc occurs, go efficient. In the latter case
to 2. If c occurs, , choose a system a and go
goto3. tol.

mine an E. In the latter
“case go to 4.

3. 5

and to get the induction hypothesis verified for k+1.

Choose 1/2"<egp(q). De-
fine semigood coefficient.

Prove that either |V|},=1

or we can choose a Sys-

Prove product lemma. tem a for which there are
Define good partial coeffi- many good partial coeffi-
cient and weight of good cients. In the latter case,
partial coefficient and go gotol.

to 5.

* nc ’
aF By vres Qpops Myyys N(@ys ooes O my )

Assuming sj;>sj,>sj,>sk, we let

>

forghy ool s 1B

ST Y

@) a,) ;
131'1 lsfz"'lsj, 2 Z( l l( ](ﬂ)E d(a),(ﬂ),i.(y)x‘l(y)

stand for a polynomial where each /*? is a monomial of degree r; in I's from the
b(m;)—1 first systems and the index of every [* appearing is >sj; but >sj;_; (for @
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we have I's from the b(m,;)—1 first systems and with indices >sk but <sj,). For every
sj; or sk we let R{(x, ) bet the coefficient of l; g; in hg—V, in an (n, b(m;))-expansion
of ¢ and a b(m;)-expansion of V which is (b(m;)—1)-substituted. Since
sj,->sk2b(mk)2b(mjl), Ry(x,]) would not change if we consider an (n, b(m;))-expansion
of g and a b(m,)-expansion of V.

We define the coefficient Rdh, s, I, q) of l;; q; in hg—V as follows:

Let S, and V; be the coefficients of [; g; in g and V. Then R;=hSy—Vy;.

Let

Uy, b= D DU o sV LN SR

L by, U,
o gl .-+ L)
TR
be the sum of those terms out of Rx(x,]) which contain the product [ lg,...ly, |
and where [“) is a monomial of degree r,, in I's from the b(m; )—1 first systems and
with indices >sj,, but <sj,,~;. The indices appearing in

E d(a),i, ) x' v

i)
are <s;. We observe that this implies that no /; appears in any monomial fem,
Now consider a pair (mjh_l, mi,.) of adjacent integers of H such that (m; , mi,.) is

also a pair of adjacent integers of M (that is j,=j,_1+1).
Let S4(x,]) be the coefficient of I; in a (b(a,_,), b(m,))-expansion of g,; .

Consider the part

W=l 1,0, > 19 Y g 6

siy sy o Ly
Jaghs soes lay) i, ()

of the product Iy, Ry x, 0)-S,(x, D), with notations as above. With these notations we

can now state the Induction Hypothesis. We work with a fixed N.

INDUCTION HYPOTHESIS. (1) There is a growth function Fyg . o n)such that if
{Dy L1, C,} grows faster than Fyg o ) then it is well defined that the case
af g, My g, OF g, M;, ..., a, occurs when | |V is estimated by V.

(2) There are numbers ny,ny, ..., n, ny, Ey , Es, ..., E,, E;, Gy and G, where n; and
K "™ 50 that

E; depend only upon | |b( and n,, E,, G, and G, depend only upon | |
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with these numbers we have (1), (2), (3), 3, 4, 5 below and the lemmas below.

(3) Now assume that r,,,<n,,, m<k. We assume that it is defined that ly q has a
good partial coefficient Uy(x,]) containing ljlg,...l, and that this implies that
there exist ry, ..., r,, ry such that (1)-(3) below are satisfied.

(a) For every m<k we have for U, (x,])

<E,

estop N eyl l@gls oes |l

ixy)
2 diayi, i X I

L)

iy
2 diayi,n* I
eyl fagls oo la,l Vi )
=rylyseees Ty =1y Ty

1

(b) For every h the coefficient Sy(x, ) is semigood.
(¢c) For every Wi(x, ) and U,(x, ) we have

> < 3

(@y), ... (ay) estop N (@), ....(ap)

ify)
Z CaiH* I

i,(y)

i)
A »—C@.i ) X1
i,(y)

estop N

@) If Uz, D) is a good partial coefficient of lxqu then Uy(x, D) is a good partial
coefficient of l; qq; for every m<r, and the definition of good partial coefficient of
ly,4qsj, is given by the numbers ny,n,...,n, and Ei,E,,...,E,, and Uy,(x,1) is
given by ri,ra, ..., V.

(5) The weight w(U,,) of U,(x,), m=1,2,...,r, k is defined inductively after m as
Jollows.

If (a; —1,a; ) is a jump, then

. wlU,)= 2 Zldi.m|

),....(m) i, ())

If (@ —,a;) is not a jump (that is if jm—1=jm-1) then w(U,)
=W(Up—1) W(S ).

1
LemMa 1L Fw((]k)sz |d; 4| < Gy w(U).
1

For the next lemmas let q; be the pith system for which the ¢ is 1/2™. Assume
first that (a;_,, ay) is not a jump (that is ki—1=j,) and form the sum L . w(U,) where the
summation is extended over all different combinations /g Iy, ... I,; for which

I [q;j'(X)]R"‘“f,’l 1 = %
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For m=1,2, ...,r, k, let Zw(U,,) be the sum where the summation is extended over all

combmatlons ls, by, ... 1y

LemMa 21. If (ax—y, ax) is not a jump, then
1 1 1
E w(Uk) = (2 w(U,)) —i;’: -2—”‘7'"&——1- —l-g
Lemma 31. If (ax-1, ar) is not a jump, then

> wUY= Vv, <2 w(U,)) :

Assuming the induction hypothesis for N(ay, ..., ax_, my) we will by the defini-
tion below verify Statement 3 for those sequences a}y, m, , ..., @

L
21’1;

which give N(a,, ..., a,).

Definition (3.21). We assume that the case ay g, My g, ..., Qg OCCUTS,
Then if

> wU)Eo Y wb)

9 (X)]Rb(ﬁk)ll >4

we say that the case afg,m,g,..,a;° occurs. Otherwise we say that the case
af g, my p, .., a; g occurs. Thus, if we can prove that there is one growth function that

dominates all growth functions that appear in the lemmas and propositions below, and
verify the Induction hypothesis for k+1 then this gives Statement 3.

(3.22) Now we assume that the case ajf g, My g, -y az,B occurs. For every sk with

195+ @k, ], <7

consider the smallest m!, such that

E IS (x)ll 8 2m k""‘k

=172 "5k

Let Dg; be the sum of the weights of good partial coefficients of /g, Let my.; be
the smallest number such that
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> w(Uy
> Du>——
MG=My ey 2T
where L w(U,) as above is the sum of the weights of good partial coefficients of
Likqs’s, sk€a;. We then say that the case afjy,m,p,..., a5 g, My, OCCUIS. This
definition gives Statement 5 as a consequence of the induction hypothesis.

In the next lemma we assume that the case af ps My ps e aj g» My occurs. We let
S,x+1) be a semigood coefficient of [, g, ina (b(m,,)—1)-substituted
(b(ay), b(m,,,))-expansion of q,. Let U,(x,]) be a good partial coefficient of [, g, in
hg—V with an (n, b(m,))-expansion of g and b(m,)-expansion of V, which contains

lsj,---lsj, and which is (b(mg.1)—1)-substituted. We observe that since

sk=b(my1)>b(m;) we could as well consider an (n, b(my,))-expansion of g and
b(m,.,)-expansion of V.
We now have

LemMMA afg,m, g, ..., QF gy My, N(@y, ..., ap, my, ). There is a growth function

F;V(alv~~"ak'mk+l) which coincides with Fi,,. up to the (b(m,,,)—1)-st

ey Gpys My)
. by, )1 ,
stage and numbers n,., and E, , depending only on ||(m"”) such that if

{D,.L,1,C,} grows faster than Fi,. ) and the case afy,m, g, ..., q; ps My

w0 Qg My g
occurs then we have the following:
There is an ry,.1<n4y such that if we consider the part

. A a)ia,) a;_y) i
Wei D=1l 0yl > T2 0% Y e X
e fagls o5 @y, lage | L)

=P Ty s P Ty

out of the product I Uy(x, D) Sy+1) (x, ) then we have

ixy)
2 Ca).i, mxl‘

L

(2 C),i, ) xil-(y)) ()

L)

Ek+l'w(Uk)'|S(k+1)(x)|12 2

(@), ..., (@)

>

(@), ..., (ag, )

1
w(Uy- Iss(k+1) (x)ll'
k+1

estopN

1

=
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Here S, is given by

sk = Doapt - FSskan ey D) 1)+ 1

Proof. The proof of this is essentially the same as the proof of Lemma
aj g, My, N(a,, m,). We give details in Section 4.

(3.23) Now consider the part

[ Y D Y (O S e ) (2 diay. i, n X T >=Uk+1(x,7)

(CH PPN [P0 iy

=rpyeees Trpq

out of the coefficient of /¢, ;) .41 in hg—V where we consider (b(m,, )—1)-substituted
(n, b(m,.,))- resb. b(m,.,)-expansions of g and V and a (b(m,, ,—1)-substituted represen-
tation of . Let I“Y ... [T run through the same set as in the lemma above. Every
index appearing in /9 is <s(k+1) but the monomials I’ need not run through the
same set as in the lemma above. We say that Uy+(x, ]) is a good partial coefficient of

L1y Dswsr) that contains 1 L; ... 1 1, with weight w(Upls .y @), if

(1) Ux,D) is a good partial coefficient of Iqy that contains I ...I; with
weight w(Uy).
(2) Sy is @ semigood coefficient of I, 1) Gyu+1)-

> 2 (%(d(“”"‘”_C(am(v)) x Im) 2
o i@y

4]
2 C@.i, (y)xl(

i)

estop N estop N

and

>

(Z(d(uw(y) —Clay,i, () X1 )(X)

i,@)

.

(E Ca,i, (y)xl( ) (x)

i, ()

Let X w(U;) be the sum of the weights of good partial coefficients of [ q.’s,
sk € a,. We now have

PROPOSITION  af g, m, g, ..., O g, My, N(Qy, Oy, oo Oy, My, ). There is a growth

function  Fy up to the

and

010y erapm,y Which  coincides  with Fra,ay....apmp

(b(my,.\)—1)-st stage such that if {D,,L,,1,, C,} grows faster than Fy

Oy, By eves Qg My )

the case a,, ay, ..., a,, m,,, occurs then either

% % . N
Case af p, My g, ..oy OF s My 6 |Vew=1
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or
case afy, M, g, ..., 0f g, My, p: The sum D,,, of the weights of all good partial

coefficients of all Ly ,y)Qyu+y) s containing 1, 1, ... 1’s is

(3.24) The proof of this will be given later in Section 4. If case afp,...,m
occurs, then there is among the systems a,,,,Q;,,...for which ¢ is 1/2™+

a first, say ax41,,, for which the sum of the weights of good partial coefficients for
LiksnyDspsry’s» skt €ayy, is  >D,,,/2>. We then say that the case

@ By eees My gy Gpyy OCCUTS.

(3.25) The Proposition af g, m, g, ..., a5 g, My,p, N@p, ay, ..., q, my,;) and (3.24)
now give Statement 6.

(3.26) In the next proposition we assume that the case afy,m, g, ..., ay occurs
when |hg|V is estimated by V. Let b=max (b(a,), b(ay), ..., b(ay). We say that a pre-
(n, b(a,))-expansion of q (pre-(b(ay))-expansion of V) is shortened with respect to the
case afp,m, g, ..., Ay, if every term which ends with g g, sk € a, of sk belongs to a

system with number >b, is not further expanded. With such a shortened expansion we
get

(hg—V)(h,5,1,q,0)= D, S;L,q;+R,
j

where every j belongs to a system with number >b or to the system ay.

(3.27) In (3.26) we make a pre-(b(ay), b(a,))-expansion of every g;, j€ a, and form
g} by removing all terms of the 3rd type for which the corresponding ¢ is
<min {¢,, &;,.., £pay}. We do this also in R thus forming R'. Now we form the sum

2 Silai+ Y, ;g +R = (hg=VY
j j

by letting the first sum run over all those j in (3.26) for which g/ has a good partial
coefficient and for which |g/(x)| R )|1>% and let the second sum run over the other j’s.
L
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Since for every ¢gj in (3.27) j€a, we change the notation and write
L8;1,q=S4 1. q, when sk runs over the same set as j. By making a (b(ag—1)-
substitution we form (hg—V)’ (x, ).

(3.28) We get (hg— V)’ (x) by substituting all I’s in (hg—V)’ (x, ]) by polynomials in
x. We have for every sk, S, (x, )=Z,U, ,(x, D+R(x,]) where U, ; runs over the good

partial coefficients of I,q, containing [;l;...1;, for different combinations
L1 ... 1

gty by,

We observe that the part

a))iay) a)y(a,) i
1,,.1131.2...1,1.'| |2| l(l‘ (R <Z)d(a)‘i'(y)xi(")>>
..., a, i, ()

=rpear

out of Su(x,]) coincides with the good partial coefficient of [y gy that contains

lg 1y, ... L. This is since in a good partial coefficient none of the sj,,’s or indices in

lomy’s belong to the system a; or to any system with number >b.
We now have

PROPOSITION  af g, m, g, ..., a5, N(a,, ay, ..., a). There is a growth function
Fy,.a,,....aqp Which coincides with Fyg o m, up to the (b(a)—1)-st stage and num-
. blay-1 .

bers By, and n, depending only on || W and N(a,,a,,...,a;) such that if
{D,L,1,C,} grows faster than F Ny, ay.....ap @Nd the case af g, my g, ..., ay° occurs then

either

* nc . N
case af g, My g, ..., A ' |V]ea™>1
or

case af g, M, g, ..., Qg p: (hg—V)' (x) contains p,,(E) with

E= Ek lsk 2 Isil lsjz lsj, z| I (Z(al) i(a')i(ak) 2 €a),i, o in(y)>
N j ay

Sy 5 s oes i, ®

and with
(1) |E|,=D- Bll:(a,‘)'Lb(ajl)'Lb(ajz)"‘Lb(ak) where D is the sum of the weights of good
partial coefficients of I, q,’s containing I 1 ...1

g, Ly -
(2) i+|y|sny for all i and v.
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Proof. The strategy of the proof of this proposition is similar to that of Proposition
afp, my p, @3°, N(a;, a,). We give details in Section 4.

(3.29) For the final proposition we now assume that the case afy,m, g, ..., Q4
occurs. Since (hg—V) (x)=0 we get by the previous proposition that there is a smallest
My, with 12™ min (e, &, ..., Epag)= 1/ such that the cancellation effect of the terms
of 3rd type for which ¢=1/2"' on E(x) is >|E|,/2-2™+'”. We then say that the case

af g, My g -ens Oy, My, OCCUTS.

(3.30) We observe that the set H' given by the sequence afg, ..., a;’g, m,,is not
uniquely de}ermined by the corresponding set H for af g, m, g, ..., a,. We have, howev-
er, obviously the following: If m; € HNH', then mjhEH NH' for h<i. We put
H'={mj1, m,....m;, m,}. Given lLgq;¢€ 12™+, we consider the (b(m,,)—1)-
substituted coefficient S (%, D of l;g; in an (n, b(m,,,))-expansion of hq—V. For every

1. with sj,,Eajr, (and mjr,EH’) and every lsj, lsjz.. 1. 1 such that 1,,-, has a good partial

5, b

coefficient
flapyay) a,_y) a,)z iTy)
Ly, ’sfz"'lsf,,-,l IE| " 9 L T% 0 Y dgy 2T
ay], .5 a,
=rl, I‘r,
containing I, I; ...1; , we consider the terms
" — ay) o)1) ifty)
Ty iy sy = by by - Ly, I el AEUNP A
Jayls s lapl
T
Tht1SMg4 1

out of the coefficient of /;q; where nj,1=rp1+...+r+n.

For every such l; and every I I . ...l. |, consider also the terms
sy S tah "ty

t —_— al) a,.) ak+l)2 if(y)
Tsj,,sj2 ..... Gy~ lsj,lsj,---lsj, 2 [ [ f c(a),,-’(y)xl(

leyls .oy i,
=ty
P Sk

out of the product S;; -5,

ri' §f,?

where S; is the (b(m,,,)—1)-substituted coefficient of

l; 4, in hq—V in an (n, m,,))-expansion of g and a b(m,, )-expansion of V, and
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S7; is the (b(my,,)—1)-substituted coefficient of /;g; in a (b(a;), b(m,,))-expansion of

q,;,- Now let ¢ be the subset of all combinations Sjys Sjys ---5 8J,» SUch that

2 2 |c(a) L (n) i (y)l =70 10 1 Z Z |c(¢) i (Y)l

e i rk+1 a i,

and such that

Z Z '(c(a) L) d(a) i, (y)) x‘l( lestopN\ 10 L 2 E |c(a) i, (y)xl( IestopN

) rier 5o

Now let
Tix, ) = Z T} gy sy D-

With these notations we have the following

PROPOSITION af 5,m, g, ..., g, N(@y, @y, ..., @y, My,,). There is a growth function
Fr, ay....anm,,p Which coincides with
Fya,ay...q) 4P to the (b(my,,)—1)-st stage such that if {L,,D,,1,,C,} grows faster

* nc :
than Fye ... .. o.m,,and the case af g, m, g, ..., Qg g, My, Occurs then either

% nc . N
case af g, My g, ... A ps Myry G° | Vies=1
or

case af g, My g, ..., Af g, M,y i The sum of the cancellation effects of all mono-
mials XF'=P (x) of all S{x,D~T}x, D), e=1/2"", is

Bl _ EW,
10-2:2717 10-2-2Mn ™

Proof. The proof will be given below in Section 4.

(3.31) We now let Zw(U,") be the sum of the weights of good partial coefficients of
all [; g ’s.
We now have

. . -1
LemMA 3.4. There is a number K, , depending only on | [P

such that if |V|Y,<1 in the previous proposition then
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2 2 ld(a),i, (y)xii(y) estopNs <2 w(U,,)) 'Kl,)(mkﬂ) (332)
e iy
where the summation is extended over all Ty; . . for all 9§ and j.

(3.33) From Lemmas 11, 21 and 31 of the induction hypothesis it follows that the
cancellation effects of Tix, D’s on E(x) is

Lo W)

10 2.2mk+l_”’k = (Z w(U")> 'Lb(“j,)' .Lb(aj',).cl,’(mk+l)7

-1
where Cj, ,_, depends only on | P,

So with Lemma 3.4. and (3.33) we can define good partial coefficient of /;g;. For
this let r,., be the smallest number <nj., such that for

’ o @) a,) ak+l)2 i7y)
Ty g, =l oo ly, > 1T diay.;, ) T
Jals oos @y i(y)
=Ppyeees r
we have
T, o o @ =T, ()
oSy 51T Syr s S By ll'
k+1

We now say that
I lg,... 14, if

. Kim ' Npyp 100 .
22|d(a),i,(7)x,lry)|estopNs S ZZIJ(,,)‘i,(Y,x’F’)II. (3.34)

!
« i Cb(mm) « i)

Ty, y...5ip) & ]) is a good partial coefficient of /;q; that contains

(3.35) We say that I, (,)|d, ; o] is the weight of this partial coefficient.

(3.36) Let D' be the sum of the weights of good partial coefficents of /;g;’s,
g,€1/2™, There is among the systems au,; ;@ q12-- b(@py; D<@y )<...foOr
which the corresponding & is 1/2™*' a first say a,,, ,=q,,, for which the sum of the
weights of good coefficients of Lgs, ej=1/2'""*‘, is >D’'/2?. We then say that the case

aF By «vrs Myyy p» O OCCUTS.

With this we will now see that we have verified the Induction Hypothesis for k+1.
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(1) follows from Proposition afy,m, g, ..., a% g, M1 N(@y, Gy, -, @, my,y) and (3.24)
and Proposition af g, m, g, ..., Qfg, My, N(@y, Oy, ...s @, my,,) and (3.36). The existence
of E,.., which works for (3a) in the definition of good partial coefficient follows from
Lemma af g, m, g, ..., a} g, My, N(ay, ..., a, my, ) and (3.23) and from (3.34). (3b) and
(3¢) of the definition of good partial coefficient follow from (3.23). (3) of the Induction
Hypothesis follows from (3.23) and (3.30) and (3.34). (4) of the Induction Hypothesis
follows from (3.35) and (3.23) and (5) after Lemma 3.2. The existence of V; and Lemma
11, follow from Lemma afg,m,p,...,a% g, My y, N(@y, 0y, .oy @, my,,)  and
(3.23) and (3.35). Lemma 2I follows from Proposition afg,m,g,...,af g, My
N(ay, a,,...,a,, m,,,) and (3.24). The existence of V, and Lemma 31 follow from
(3.31)-(3.36). So we have verified the Induction Hypothesis for k+1.

Now the family of growth functions in the propositions, lemmas and in the
Induction Hypothesis satisfy (3A1) and (3A2) so there is, by (3B) one growth function F
that dominates all of them. So to conclude the construction we now verify that
Statements 3-6 follow from the propositions and the Induction Hypothesis. Statement
3 follows from (3.21), Statement 4  follows from  Proposition
af g, My g, .0 G5, N(Q), 0, ..., ) and (3.29). Statement 5 follows from (3.22). State-
ment 6 follows from Proposition af 5, m; g, ..., af 5, My and (3.24). This concludes the

construction.

4.

In this section we will give the complete proofs left from Sections 1 and 3. We start by
proving Theorem 1.2 from Section 1 and then we turn to proofs of lemmas and
propositions from the 3rd section.

Proof of Theorem 1.2.

SuBLEMMA 4.1. Let 1, ..., 1,, Cy, ..., C, be given, C;>2. There exists a constant
M depending only on ||y, ..., |l such that for all y there is a representation

y=r+zsk(lqu_1); Sk___zak,i’axil;ll.”l:n
k=1

and
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"= lr|l+2 Iak, i,alzi(cllllll)al (Cn|ln||)a"8k

k=1

and for each term a, ; ,+0, we have |i+a,+...+a,|<M.

Remark. This means that the norm | |” is attained and with S; having bounded
powers of x and /; this shows that |p|” never vanishes for any polynomial p=0.

Proof. We have

" = inf{|rl,+ D, ag , o2(C L1 ... (C L) e
k

If we take a given term corresponding to a, ; , and remove it from the sum and place it
in the term r, we decrease the sum but increase |r|,. If any.i or a>M, we decrease the
sum by at least 2¥gja, ; 1" ...I;". On the other hand we increase |r|; by at most
lag ;i X" ... 177 |lg,—1|,- Remembering that there is by compactness a bound on |g,,
depending only on |/,|,...|l,], it follows that we can assume [|i+a,+...+a,|<M for
suitable M. Compactness yields that the inf is attained.

COROLLARY. If Iy, ...,1,, C,,...,C, are given there exist M, (depending on |li};
and degree of I, 1<k<n) such that if ord g>M, |g|"=|g|°=]g|,.

Continuation of proof of Theorem 1.2. Fix K and N. Let g be any polynomial with
deg g<N. Suppose g has a representation

n+1

g= D, Sl g~ D+r 4.1)
k=1

- i1 Aty
Sy = Z P S FRRE WA

So |g|"*! is defined as

n+l

inf{|r|1+2 lag i ol 2CCH LD o (Cpp i)™ 60}
1

and we can assume by Sublemma 4.1, that |g|"*! equals the above expression.

17-878289 Acta Mathematica 158. Imprimé le 28 juillet 1987
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Our goal is to show that we can find another representation of g in which [,
does not appear and with a lower ‘‘norm’’. Recall that we denote by [g], the
polynomial g ‘‘cut-off at m”’, i.e. with all terms of degree > m removed. We shall be
comparing the representation (1) with the same representation with all terms *‘cut-off”’
at some suitable degree.

Let us expand S, by powers of /,,,,, 50 $,=S¢ ;+l,., S, (+,, 8, ,+ ... where each

S, is a polynomial inx, [, ...,!, and by Sublemma 4.1, since |l |, is given S, and in
particular §; , have bounded degrees. Thereby, if ord [, ;=w+1 for sufficiently large w,

we have by ‘“‘cutting down”’ to w,

g= [r]w+2 So. sk @1 —=Sg 41 4.2)
=1

We see that the ‘‘norm’’ of (4.2) where we put together the terms r—Sg, ,+, is smaller
than the ‘“‘norm’’ of (4.1) by at least the amount

£n+1lso,n+1|opn"|so,n+1|1

Hence, this quantity cannot be positive and so we deduce that

lso,n+1|opn< 1 (4 3)
lSO,n+l|I Ent1

Therefore, So, ,+1 satisfies the condition for our theorem. So, denoting S=So, ,+1,

lsqn+l,n = IS-I: ‘B. 4.4

Now again comparing (4.2) with (4.1) above we see that the norm in (4.2) is less than
that of (4.1) by at least

n

L s X S Y (2 MW 1)|n+£n+l|sl,n+1|0Pn) —ISl;

k=1

with [r}*=r—[r],.

Again, since this quantity cannot be positive, and | |op .= |1,

[+ Criillsly (E NI 1)|n+£n+l|sl,n+lll) <I8l;- 4.5)

k=1

We need a sublemma.



ON THE INVARIANT SUBSPACE PROBLEM FOR BANACH SPACES 263

SuBLEMMA 4.2. Let A>0. There exists a lacunarity function f such that if | is a
polynomial of lacunarity =f, and deg G;<A, 1<i<A, then

A
G, +EGy+...+ 4G |, = D IFG,.-

k=1

Proof. if my<n,<... are the exponents occurring in /, then n; +...+n; are the
exponents in /. Hence, the lemma is true if we know

b+t =+ )| >A ifr+s. 4.6)

We can clearly assume i,#j,, since otherwise we drop these terms. If i,>j;, we can
ensure (4.6) if n;>n; +...+n,+A. This is a lacunarity condition.

Now since degg<w we have by looking at (4.1) and considering terms with
ord>w,

0= [r]w+ln+1(2 Sl,k(lqu_1)+so,n+l qn+l_sl,n+l) +l:21+1 Gz+li+1 Ga r:+1 GA’
k=1

@.7n
where deg G; <A

for some constant A by our application of Sublemma 4. Thus from our lemma, if ., is
sufficiently lacunary,

=<|[r?;. 4.8)

k=1 1

ln+l(2 Sl,k(lqu_1)+so,n+] qn+l_sl.n+l)

The left side equals the product norm of the norm of the two factors if [, is
sufficiently lacunary, since the second factor has bounded degree. So, the left side of
(4.8) is =|l,+1|, times the | |” norm of the second factor so, since the | |” norm is <| |;,

_Isl,n+l‘l}'

n
+£n+l|sl,n+lll] .

= |ln+lll{lso,n+l I 2 Sy lleg—1)
k=1

Using (4.8),

2 S va 1)

k=1

S, l
;|1n+1h| 0,;4—!'1 _ l n+1|1 [

n+1

Using this and
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45
> 48 |So,neali 1
€

[lso, n+1l1_|[’]w|1] > (17,

n+1 z:‘n+1 n+1

contradicting (4.8). Q.E.D.

For the proof of Proposition af°, N(a,) we need a sequence of lemmas which will

also be used later on. The general idea behind these lemmas is that if a sequence of ;s
is sufficiently lacunary and has sufficiently small coefficients then the cancellation
effect of a monomial which contains /; is small on a polynomial in which the terms do
not contain ;. We make here the trivial but important observation that the sequences
(I) in the Lemmas 4.1-4.12 below do not need to start with /, but can start with any /;
with j=1. '

We also make the remark that for the proofs of these lemmas it is more convenient
to write indices of I’s in increasing order as opposed to what we have done in Section 3.
So let J=(j1,J2, ..-,J,) below denote a finite sequence of integers such that j,<j,, if
k<m. Put |J|=r. We recall [;=1/|l);. We will below assume that for each i the moduli of
coefficients of /; are constant.

LeMMA 4.1. Given >0, a sequence (F}) of real numbers and a w>0 and ro>0 and
mo>0, there is a lacunarity function f and a sequence d; such that if the sequence (I;) is
more lacunary than f and has moduli of coefficients <9; then the following holds:

Assume that in

za x"ﬂj'i‘lj2 iaj'
wnaX ) L

i,J,a

we have

> la;; .l <F,

i,J,a

W=

Then for every polynomial

- Ny n Ip
Sy =, by; A0
i,J,a
i<my
Wl=rg
ja|sw

the cancellation effect of
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— iy Iy h Ir
P.0)= > a, XL
i,J,a
Hi>ry
on S(x) is <e.
Proof. Let s, 1, 8y ..., 81 n» 52,15 52,25 -+ So,np -+ D€ the exponents of x appearing

in /,,1,,... and written in increasing order. Then the moduli of the coefficients of
I,,1,,... will be 1/N,,1/N,.... Now we write

P0)= > (@, XL YL LT

B h iy f]
LJ,a
[},
— i 7 7
E ¢ XL
Wi>rg

(4.9) We observe that if the sequence [; is sufficiently lacunary then the moduli of
the coefficients in [i; l_hl'j are all IN; I/N, ... 1/N;.

i

This is all right only if the /;’s are so lacunary that the monomials in /; ... can arise
in only one way (for example, we may ask that the monomials in the /;’s be powers of 2,
all distinct).

Now let

51> 4w<z Spat D s,-,q>. (4.10)

p<i a<J

It is clear that (4.10) holds if we put the lacunarity function flk)=8wk. Now we fix
io and i; and we study the cancellation effect of the monomial

Il T ¥
C=c, XTI .1
on
= W Im
B Z bio,-, X l]1 l.lz * Z;Im
a,J

The exponents appearing in C have the form i,+X,_, 8.q, and the exponents appearing

in B have the form i,+X,_ d. s where every d.
0 h=r, In

. . . <] <
i a1 Si 4 , 1s an integer with l\djh, o =W.

q

Now assume that there are solutions Z,, and %, s, , , of equations

S ay
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ll+z Sl:jk: 9 = 10+E dl,j;,,q;, sj;.: 49y (4'1])
k<r hsry
and
'1"‘2 S2jea tot Z D a1 S a4 (4.12)
k<r h=ry

Then (4.11) and (4.12) will give

kzs"’*' % 2 40 Stinan ™ 2‘2,1}, @ Z Dt St ay (4.13)
=r

h<ry ksr hsry

Since r>rg, Liqo Sy 5, 4, CONtains at least r—ry different terms s, ; , which do not

appear in L, d and correspondingly for £,., s, ; ,. Now (4.10) and (4.13)

Vs @ S Vs @1
implies that these s, ; ,’s must be the same as the s,; ,’s. And this implies, since
Wi Hf it

N,<N,< that for i, and i, fixed there can be at most N;

. ... N, different sums
0+ 1 -’r—ro+2 Jr

Li<rS1,j, q, Which solve equations of the form (4.11) and (4.12).

This together with (4.9) now implies that the cancellation effect of

i ifh i im
¢; gxL 1 ..., on zjb,o’,xi;: Ij: ijam
a,

is
1 1 1 1 1
\'Cil'll—ﬁ;" IVJ SIC,-PJI—IV—"I—V;' “ee -
1 r— 0

Now summing this over all {; and the m possible iy’s gives that the cancellation
effect of

2 ci,-lxi[illiz"’lf,
iJ
Vi=r

on S(x) is

11 1 mF,
< )= .. <
m<2|c'-’|) N, N, "N__ N N,..N

W=r r—ry R o Y
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And so the cancellation effect of P, (x) on S(x) is

mkF,
= —_—
7 NyN,...N,_,
By choosing
5. = 1 < {3

r—ry - Nr—ro m- Fr' 2r
we get the lemma.

LEMMA 4.2. Given w there is a lacunarity function f such that if the sequence (1) is
more lacunary than f, then for all polynomials

hxy= > a,, LT
iJ,a

i+lalsw
we have |h|;=Zla;, ;, o
The proof of this is obvious.

LEMMA 4.3. Given integers m and w and positive real numbers K and ¢ there is a
lacunarity function f and a sequence 6;\x0 such that if (I)) is more lacunary than f and
the moduli of the coefficients of |; are <d; then the following holds: Put

Sx)= E ai,.l,axilj?l IJ?Z I.:j’

iiJ.a
ism
|a}=w

and let

satisfy

Z Iai..l.al =K.
i>m
J.laj=w

Then the cancellation effect of P(x) on S(x) is <e.
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Proof. The proof of this lemma is quite similar to that of Lemma 4.1. We form
S1,15 51,25 <3 S1Np» 52,15 52,25 -+ S5 -+ @S there. Let the s, ;s satisfy the condition (4.10)

of Lemma 4.1. Then it follows from the binomial theorem that the moduli of the
coefficients of

ljl j2 Jr
xlj1 ZZ . IJ'
are
a! a! a.! \
j j i, w!
s . < 4.14)

N B
N N. N. N'N.*...N.
J2 Ir J2 Jr

Ji Jy
Now fix iy<m and i;>m and consider the cancellation effect of the monomial

_ A
A=x[rEE L

r

on

- Wi
B— 2 aiq»-’,ax ljl I.iz '“Ij,» '
J,la|=w )

The exponents appearing in A have the form i,+X & 0 Siva with Zajk, W=W and the

exponents appearing in B have the form iy+Z df;., o S 2 with £ djh_ =W Now assuine

that there are solutions L a, ; ,s,; , and La,; . s,; . of equations

10+E al,fk, 9 sl’jlp q = ’0+2 dl,.l.l.: qp Slyj;.» 4y (4' 15)
and

0+2ay5 0 527.q, =0t dy) 0 5 4 (4.16)

Since i;>i, there is in (4.15) at least one s, ;¢ Which either does not appear on the

right hand side of the equation or appears but is multiplied by a smaller number than on
the left hand side. Analogously we find at least one s, j.q from equation (4.16). As in

Lemma 4.1 above, (4.10) implies that the s, ; _’s must be the same as the s, jva, & Since

N; <N, ... this gives that for fixed i, and i, there are at most

w-NN"% N>
/S AR
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different sums L a; , s. . which solve equations of the form (4.15) or (4.16). By (4.14)

T @ “J 9

this gives that the cancellation effect of A on B is at most w-w!/N; <w-w!/N,.

Since there are only m different iy’s and since

2 la; ;<K

i>m
|a|=w
we get that the cancellation effect of P(x) on S(x) is at most K-m-w-w!/N;. This gives
the lemma if we choose 1/N1<&/K-m-w-w!.

LEeMMA 4.4, Given integers m and w a positive number ¢ and a function y such that
y(k)—0 as k—, there is a lacunarity function f and a sequence 0;\0 such that if {1}
is more lacunary than f and the moduli of the coefficients of l; are <O; then the
Jollowing holds: Put ‘

= i iy
Sx) = JE a,-,,,axljl'ljzz...I;’L

ism
lal=w

and let
— i
PO = Y, a,, 0T
iJ,a
la|>w
satisfy
Dlag s, < vk,
iJ,a
|a|Zk

Then the cancellation effect of P(x) on S(x) is <e.

Proof. We first choose W so that y(W)<e/2. Then it is obviously enough to prove
that the cancellation effect of

T P B i
ifThgh Ir
a; J,a* 1 ljz . i:

on S(x) is <e&/2.
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If in (4.10) (of the Lemmas 4.1 and 4.3 above) we replace w by W we can now just
repeat the argument of Lemma 4.1. The only difference is the following: In this lemma
we use the condition |a|>w in the terms of P(x) to conclude that the left hand side of
(4.15) has an Sj.q, which either does not appear on the right hand side or appears

multiplied by a smaller number than on the left hand side.

Let D be a subset of the integers. Let

P=2 a,, A [ T

L h
iJ,a

be a polynomial such that in every term

DY Il A K

hoh r

out of P there is at least one k with j, € D. Then we can write

p=> (2 P(,,,,l,)

=21 \m=0

where P, ; consists of the following terms out of P:
The term

xifh fiz .. f!}—m fjr—m+1 .. fjr

v h Jr-m Jr-m+1 : Jr

belongs to Py, ; if j=j,_n, and j is the highest index of an [ appearing in the term with
JED. So for such a term none of the numbers j,_,,+1, Jr—m+25...,Jr is in D, Now
every term out of Py, ; we will below rewrite in the following way:

xifjl flz [a-’r—m Ia-’r—m+l ia"r — (x la-’l ZaJI -’r—m—l flr —m Jr—m+l jr
A . .

Jr-m Jr-m+i -m-1 Jr-m -’r m -lr—-m+l
We now write
xl-fjl fjl Ia-'r m-1 f-’r—m-

1 1 Jr-m-1 Ir-m

as a polynomial in x (by expanding the I’s). We also put

Gm = (Jr-m+l ) "(M) r—rn’jr-m+l""’jr)'
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Then we get
= i Jr-m+1 Jy
P, = 2 Ci.J(m),a(M)xlj’_m i;_mﬂ IZ .
I
ey m)
We will put
|P (m,Dll,f = 2 Ici,J(m),a(m) .
We put
= ¢ Jr-m+1 Jr
P(m’j’W) - JZ ci"l(m)’a(m)x Ijir—m I-::—m+l o lj,
b (m)
|y =0
and

IP(m,j,w)ll,f= 2 |ci,J(m),a(m)I'

lo oyl
In order to prove the more important Lemma 4.6 we use the following

LEMMA 4.5. Given integers m and w there is a lacunarity function f such that if (1))
is more lacunary than f then the following holds:

Let D be any subset of the integers and {G;} any sequence of real numbers.
Assume that in

- iThin Ir
SW= > a,, %21
iJ,a

i<m
lajsw

for all ji in all terms we have j,&D. Assume that in P(x)=%, c; ;x'l; we have

Zlc; /<G; for every j. Assume that the moduli of the coefficients of I; are <e/(4mG)).
Then the cancellation effect of P(x) on S(x) is <e.

Proof. Let the lacunary condition be (4.10) of Lemma 4.1. We fix i, i, and j and
consider the cancellation effect of xi‘lj on

Za,.o,,,axi"fj' [ [
J,a

7 h A
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The equations (4.11) and (4.12) take the form

l+Sj,ql

=i+2d

Ljp 9 s‘vjh' 9h

and

il+sj’q2 =i+X dl,i;,, USSR

Since by assumption the index j does not appear in any of the terms out of S(x),
(4.10) now gives s; o= Siay Since there are only m different i, we get that the
cancellation effect of xi‘l_j on S(x) is sms/(4iGjm). And by the assumptions this gives

the lemma.

LEMMA 4.6. Given an integer my, a positive number ¢, an increasing sequence of
integers {w,,} =0 and an increasing sequence {F,} of real numbers then there is a
lacunarity function f such that for every subset D of the integers and every increasing
sequence {G;} of real numbers we have the following:

Assume

— iJhin iy
SW= > a0
i+rsm,

lal<w,
where for all ji of all terms j. & D. Assume
where

G.
|P(m,j)|1,fs GF, and |Pm,j,wm|l'fs 2_’:

Assume also that {I;} is more lacunary than f and that the moduli 1/N; of the
coefficients of I; are

1 (Tp()em) e L1
N; k<i \ Vi (Wit ) Wis g 4t myGFyt...+F;, +1)

Then the cancellation effect of P(x) on S(x) is <e.
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Proof. By assumption we can write

P, .= E c Xl [ f"’=zc..x"l_-
(m, ) 0y Umy ™ rem Jr-mer "y [ i)
i
J(m)’a(m)

with

2|ci,j‘s 2 Ici,J(m),a(szGme'

i i
Timy %m)

Also we can write

= i Jr-m+1 jr= 2 r i
P(m,j, w,) 2 ci,J(,,,)‘a(,,,)XIjzj‘t_,,H ZZ cuxij

i (i O i
Ay B W,

with

2 e < D01 00| < 6
]

We now consider the sum

> Pyt D P, w,) = >, d;;x,

msnmy, m>m i

And so we get

E |d; | < G{Fy+F+...+F, +1).

And this gives by the previous Lemma 4.5 that the cancellation effect of

2 2 P (m,ﬁ+ Z P (m,j, w,)

J msmy m>my

on S(x) is <e/2.
So we now consider the cancellation effect of

’ 2 (2 (P (m,j)_P (m,j, w,,,))>
7 m

on S(x).

273
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We assume

$iy> Wi (2 Spat D s,.,q>. 4.17)

p<i i<q

We observe that (4.17) is stronger than (4.10) since the w,,’s increase with m. We
also observe that (4.17) is given by the lacunarity function fIk)=8wy.+ k.
We now fix j, m>m,, i, and i, and we investigate the cancellation effect of

LY o A J)
XL L
JJr—m+1 Jr on

iO-ajl -ajl Jr
Z aioylxax lj| Ijz ."IZ )
J,a
igtrsmg
lalsw,

N £,
We observe that the largest absolute value of a coefficient out of III;’_’":‘ lj”' is smaller

than or equal to the largest absolute value of a coefficient out of / romem=my IZ’ And the

a
i e
-lr—m+m—m0

a. R
largest absolute value of a coefficient out of ljj"’"" lz” is, by (4.17) and the binomial

—mg

theorem, and since r—m>0,

(@ N (a)! !
J'_'"O i/ wm.
<
-~ a] . e Naj — aj’ i aj .
Mo ST ™o Jr
Nj,_mo i, NJ}-,.,, . N;
As above we now form the equations
04850, 015,055 0= 0t 241, 0,50),q, 4.18)
048,085 0.5 .0, = ig+Edyj 0 52 a0 4.19)

There are at least m—mj different indices j, which appear on the left hand side of
(4.18) and which do not appear on the right hand side. And the correspondingly is true
for the equation (4.19). So for at least one of these we get an s, jva; SO that the index of

the corresponding ! i$ j,_ .+ (m—my>m—my. And so by (4.17) there must be some & so that
St,j,4,=52,j,q, Thus for fixed j,m, i, and i, there are at most

ajr— +1 aj"’"o”l ajr
w,N;-N N, ...N;
-l "'

Jr—m+1 ot -’r—mo
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sums that can satisfy equations of the form (4.18) and (4.19). Thus the cancellation
effect of x"[ lja’_;':' ila’ on S(x) is

a; & 1
< ] . . '-’r—m-H . r-mgy=1
sw,!myw, NN~ ...er_mo_l N
'IY—M(’
Since Jr-myZJ+m—my this is
wm!mo W, £ 1 < 13 1

= W) imow,,,, #° Gimm(Fot+...+Fj,,+1) 4" G;F,’
This gives the lemma.

For the next lemma we introduce the following notation. With

HeS a0

AR/
i,J,a
we put
T B £
— hjn Jr
H=7 a,, x["0%..1
iJ, a
Wi=r
and

Ho= a0 1
i

hoh Jy
o=w
Ulr
We will also put
th,f= 2 ‘ai,l,a|'

LEMMA 4.7. Given an integer R, an increasing sequence {F;}, j=0 of real numbers
and a function y, y(k)—0 as k—, then there is a lacunarity function f, a sequence
6;\\0, an integer m and a positive number B so that if {l;} is more lacunary than f and
has moduli of coefficients <¢; then the following holds: '

Assume that H is a polynomial, |H|, =1and L, ,.4a; ; ,|<y(k).
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Assume that Q=L;=0Q; defined like H, above, is a polynomial such that

1Q/1,r<F;, j=0 and |[Qolrl=1.
Then there is a polynomial

E= Z e,.J,,,lx"l‘AIj1 A A

1 2 Jr
i+lajsm

such that |E(x)|;=B and HQ(x) contains pi,100(E)-

Proof. We choose k; so that y(k,)<1/2. Then we can find r; and w, with
ri<w, <k so that |H, , |, ,=1/2ki. We consider H, . Thereis a K, so thatin H,

we have L |a; 1.o/<1/4K; (we just choose K, so that y(K,)<1/4k}). We now form the
product
H, D0 = >, ey x5 [ T
Mi=ry
|al=to;
Now it is easy to see that there is a B, such that Z,.x ,zle; J.«/=B, and obviously

2,.>K1+R|e1’i,,,a|s1 -F,. Thus if we put

E = 2 el,i,,,axilzj‘i;’...ij’,
i<K,+R
then by Lemma 4.2. |E\(x)|,=E|e, ;,,| and by Lemma 4.3. (H, , Qy)(x) contains
P1noo(E (%))
Now by Lemma 4.1 the cancellation effect of (X uxm, py>r, Hn @,)(x) 0N E, is

<(1/400)- B,. So either (HQ)(x) contains p;;;o(E,), in which case the lemma is proved,
or the cancellation effect of

D Hpu0|W
max (m, p)<r
(m, wy*(r;wy)

on E; is >(1/400) B;.

By Lemma 4.4 the cancellation effect of (£, H, , L, Q) (x) on E; is <(1/800) B,.
We see this by writing I,

j<r

Q; as a polynomial in x. So in this case the cancellation
1 %=
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effect of (Z,., ,<, H,Q) () + (Cyey H, L, Q)x) on E, is >(1/800) B;. And this

implies that either for some r<r, we have

1 B
|H, ;> >t

1600 2 F;r,
or for some w<w,; we have
1 B,
’Hrl,wll,f>r‘60_.

w,sz

Jsny
In the first of these cases we can choose k, to be so big that
1 B,

3200 '
EFJ"I

Jsry

k) <

This gives that in either case we find a new H, ,, for which we can repeat the same
argument as for H, , . Obviously this process has to stop after at most k2 steps which

only depends on y. This proves the lemma.

For the next lemma consider an (n—1)-substituted (n, n)-expansion of g and form
q'. Put ¢'=q}+q5 where g consists of those terms which contain only x’s and I’s form
the n—1 first systems. And so in g5 every term contains at least one [ from a system
with number n. As in Lemma 4.7 above with gj=Ea;, ,,ax"lzj‘ i;:”i:’ we use the

notation
r ifhih Im
D PR A K Aol

LEMMA 4.8. There are constants C and D depending only on | "' such that for
all Nzn we have the following:
Consider q with |q—q,|"<e,/16. Then |q; |, <C-D" for all m=0.

Proof. (4.20) We consider a pre-(n, n)-expansion of g. We say that a term in the
final stage of the pre-expansion contributes to g, ,, if—when the s’s are written as
polynomials in x and Is and I}, b, ...,l,—, and I},L, ...,I,_, are written as polynomi-
als in x—we get the terms that enter into g} ,,. We observe that a term of the second

18—-878289 Acta Mathematica 158. Imprimé le 28 juillet 1987
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type can contribute only if p<sn—1. Since otherwise /; belongs to a system with
number =n.

(4.21) We observe that a term which is derived from a term of the second type
cannot contribute to g ,,. Since every such term will contain an /; from a system with
number =n.

(4.22) We observe that no term of the types 1-4 with r=m+2 can contribute to
i, m- Since all such terms contain at least m+1 different l;’s with the index j;=n. The
same is obviously true also for terms which are derived from such terms.

(4.23) We finally observe that a term of type 1 can contribute only if j<n. Since
otherwise the term will be replaced either by the first or the second rule.

Put e=min{e,,¢,,...,¢,} and fix an integer r<m-+1. Consider those terms
l

s s )

i b s, s; I; q; of the first type, such that either the term itself or some term derived

from it contributes to q; ,. We have
1 r
Zs;, Sj, - Silopn < <?) , 4.29)

where the sum is extended over all such terms.

To prove (4.24) we first recall that in forming g’ we only consider terms in which
every s; has its corresponding ¢;=¢.

We prove (4.24) by induction on r. For r=1 we only have to consider the first stage
of the pre-(n, n)-expansion of g, g=q,+Z;s{l;g;—1)+t. It is clear that in this case all
terms from later stages of the expansion contain both an /; and an /;,. We get

£
2 IsilopN'gisTg—g 1,

E,-?E

and this gives

1
> Ishopn =

£;=¢E

We now assume that (4.24) is true for r. By the observations (4.20) and (4.21) above, for
r+1 we only have to consider those terms which are obtained by replacements

according to the first rule. So consider a term s; [; 5;. ljz ...5; I, q;. Assume that we have
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q;=q,+L;5,., {l;q;—1)+t, where p<n~—1 (otherwise I, would belong to a system with

number =n). Then

E |sr+1 IopN r+1\ <L

r+lt

And so

1
E | Ser1, 1|opN\?

r+l l

And since the op N-norm is submultiplicative this gives (4.24) for r+1.
We now have

2 |sf1 5, e sj’|I < 2 |st Sj, sj’|opN.

We also have that all /; which appear in terms that contribute to g1, m are from the
n—1 first systems and so |I;|;<L,_;. Thus given r we get by (4.23) that for terms of the
first type that contribute to g3, ,»

1\,
2 |S J, J, qj |1 = (max qu‘l)) (';) Ln—l
Obviously for terms of the second type we get the same estimate
1 r
2 Isj, &, 81,8, - ;.4 qpli < max (gD L,

For terms of the third type we get by (4.24)

1 r+1 ,
Zl i, 4,54, 12 J,IJ, J,+1|1 = : Ly,

and finally since |f|<1 we get by (4.24) for terms of the fourth type
Z s; Ly < Ry
|Jl Ji lez S b = £ n~1

Now r<m+1 by (4.22). So summing these estimates over all r<sm+1 we get
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' 1 1Y r
atoh < 3 (2maxigl Lot (L) i
j<n

- &
1 1 "L,
<{|2max|gj,+—+1) =L,  p—==L,
Jj=n € [ €

It is easy to check that this holds also for m=0.
This gives the lemma with

C= <2 max |q.|,+i+1> Loy
Jjsn 1 € €

and

In the next lemma we will let D denote the subset of integers <N so that jED if
and only if /; belongs to a system with number =n. We can then as in the Lemmas 4.5
and 4.6 above write

4=3 ( D p(m,ﬂ).

i m=0

LemMA 4.9. There is a number D and a sequence of integers {W,,} depending
only on | |"~! and numbers K;, j=n, K; depending only on | ! such that for all N=n,
with |q—q,|N<e,/16 we have for g}

1P s < D"K; and |P(m'j,wm)||’f$ Kj2".

Proof. We consider a pre-(n, n)-expansion of q. For every k we consider terms of
the first type at the stage £ which have the form sj, lj, 5, lfz sj,_llj’_] s;l;q; and which
Let Py, ; be

the sum of these contributions. Obviously all terms of any of the four types which in the
final stage contains /; is derived from such a term.

have the property that some term derived from them contributes to P,,, »

(4.25) Now consider a g; in a term 8, ljl 5, liz"'sf,_;li,-.siliqi and consider what
expression g; is replaced by in the final stage of the pre-(n, n)-expansion say
4 n,2(5,1,q). Then remove from Q;n,a(5, 1, @) all terms of the third type so that the

corresponding ¢ is <min {¢,, ..., ¢,}. Let g}, (s, [, q) be what remains. Now we expand
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gj »..(s,1,q) as a polynomial in x, say g;, ,(x). Then we obviously get |g; , ;<K ;
where K, ; is determined by the sequence /;, by, ..., [i_;, €1, Cy, ..., Cjy, Dys Dy, oos Dy
Ll’ Lz, ces _I

We make here the following remark: When g; is replaced in the pre-(n, n)-expan-
sion of g and then in the final stage the s’s are replaced by polynomials in x and I’s, then
only ¢’s and I’s with index <j will appear. So for computing |P, |, , all these will be

replaced by polynomials in x.

(4.26) We observe that in order that a term of 1st, 2nd or 3rd type of the form

5 I.s. I, ... has a term which is derived from it and which contributes to P, , it is
11 m,j

necessary that r—1<m, that the &’s corresponding to s;,s;,...,s; ~ are all

=e=min{e,, ..., &,} and that [ i ls s .,1; all belong to the n—1 first systems.

We remark that ¢; which corresponds to s; can possibly be <e.
With J=ji, /2, ...,Jr—1,] We consider all products

&y Pk 5,
85, 8), 8|S Ea,,axlk b, - 1‘,;

where for every k;, k;=j, 1<i<p. We get as in (4.24) of Lemma 4.8 that

S(Ee)=@)5

By (4.25) and (4.26) we get by summing over all r

K L. \""' _K;(2L,_,\"
Pl pl1.r<— = “Z("—') <— (——‘) ;- 4.27)

SJ , £ €j €

Consider
...llk _ak
= . 7 P
Sili.s; L E Cria Xl ...lkp

and let w, ,, be defined by

2L, \" |
Zl 11 Jy J,_, J,_ |opN\ ( B 1) = z (2 'CJ,i,al) <7?”_

J.r \a>w

-
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Then we get

1 1
IPém,j,w,,m)'l,fS-z_'_l'_'|jll'

We fix an r<m and we consider the terms derived from terms of the form
8j, L sl o8l g; where j>j. Obviously we can assume that all the lji’s are from the

n—1 first systems. Then by passing to the next stage of the expansion we have
q;,= qp+2 s{l.g—D+t, psn-1.
i

Now we consider the terms of the first type s; Ls;, Lyvos s l;q, and we first consider
the terms where i<j. For these terms we form as above ¢/, ,(x) and we put
K, j=max,lq; , ,(x)|,. Let P{, ; be the contribution to P

these terms. Then we get as above

L, K, 2L, ,\" K,
<352 e (s
r » Cj—1

¢ ) min{g,... £ min {;, ..., &._;}

(m,j from terms derived from

As above we find a w, ,, so that

Ky 1
min {¢,,...,&_,} 2"

e

IP'(Im,j, wz'm)ll,fs

Now we consider terms of the first type s; lj] 5;, lj2 ...s;1.q, with i>j. We see that these

terms will appear when we consider r+1.

So now we fix r<m and consider terms of the second type s; [; 5, I, ... s; la, where

we can assume p<n—1, otherwise /, would belong to a system with number =n. For
the contributions Py, » from these terms we get as above after summing over r

" 2Ln—1 " 2Ln—l "
| (m,j)|1,fS e max |(1,,,|1S . ‘K, ;

p<sn—1

with K3,J-=maxp$,,_||q,,|1.
As above we also get a number wj_ ,, such that

1
hor< Ky

| "
(m,j, ws
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For terms of the third type S;, lf| ljz...sj Ls; we observe that only s’s with

&=min {¢, ..., ¢,}=¢ will enter. So withK4,j=1/£ we get

2L,_
| (mj)‘l f\ €

and we find a w,, ,, such that

1
|P(m, w, m)ll = K4,j.7'

And for terms of the fourth type we have |f|<1. So with K5 ;=1 we get

2L,_\"
P Xn,j)h,szs,j( . )

and we get an ws, ,, such that

<K
(Mst,,,)llf\ om :

14

Finally for terms s;, ¢ and terms derived from s; ; g;, with j,<j, we get K ; and
we, ; SO that the contributions to P, ; satisfy

2L, _\"
1Pl pli.r<Ke ; p

and

K6j
l (mJ W, ; )ll,fS om :

This gives the lemma with w,=max {w, ,,, W, ,» ..., Wg }>» D=2L,_,/¢, and

_ (K K,
K. = + + K, +K, +Ks +Kq |-

! g  min(e,..., & )

In the next lemma we consider

H= Eb;,qxiﬂligz,.-ml‘/= zai,laxllj?l IZIZ _,-r
J=n

= i P
Hy,= z a; ;x0T

i+|a|=k
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The last representation is of course the (n—1)-expanded representation of H. We recall
|H|; s=Z|a; ;o] We also assume that the representation

DAL

shows |H|,,y<1/¢ which in particular implies I;, b, o|<1/(e-2°).

LEmMMA 4.10. Given >0 and ||*"' there is a function y. ,—, such that
Ve, n—1(k)—0 as k—» so that the following holds:
Let |H|op n<1/€ hold. Then

2 |a; ;. ol < Ve (O

i+|al=k

Proof. We consider the representation
H= b, A0 I,
i,a
We have that the only terms that can contribute to H, have the property

N
i+ > adegl+y, o=k
Jj=n

jsn—1
which implies
i+la|degl,_,=k,

which implies

[+ |a] > .
! Ia' deg In—l

This gives the lemma with

_ 1
}’e,n—l(k) - e .2k/degl,,_, :

Remark. The assumption |H|; s=1 would be obviously superfluous in the lemma
above.

In the next lemma we assume |q—qn|N$en/16. We consider an (n—1)-replaced
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(n, n)-expansion of g. We consider q'=q;+¢; as in Lemmas 4.8 and 4.9. We assume
that the case a}° occurs that is |[g']g |,>4. We recall that a growth function is trivial up
to the mth stage if it takes the value 1 for all 3k-tuples, k<m—1, and has the lacunarity

function f=1 and the d=1 for all (3k+2)-tuples, k<m~—1.
We will assume that |h|;=1 and that |A|,, n<1/e,. We let

. B3 o
— iThjn Ir
h= Z a; 54X [Z ol
i,a
Jiznforall k

be an (n—1)-substituted representation of 4 as for H in the previous lemma.

LEMMA af, N(qa,). There is a growth function F}\,(al) which is trivial up to the

(n—1)-st stage and numbers B. and m depending only on ||"' such that if

{D,,L,1,C,} grows faster than Fjyq, and the case ai occurs then there is an

—_ iJh§ i Jr
E= 2 e,-,,’axl;.ll ijaz Ij
i+|ajsm
Ji=n forall k

such that |E(x)|,=B,, and (hq') (x) contains py;se(E).

Proof. We put ¢’ =q}+g5 and put
T TR a2
h= ay, XL 1= hy+h,

where h, consists of those terms which contain only I’s from the n—1 first systems and
where each term in A, contains an ! from a system with number =n. Now if D,>10/¢,
then |y, ;< and so |k|, ;=. Then by the Lemmas 4.8 and 4.10, /, and ¢ satisfy the
assumptions of Lemma 4.7 and so (k, q;) (x) contains a p,,(E) where E is as above.

Now by writing &, g;+h,(q;+q3) in the form Z,(Z,, Py, ») it follows easily from Lemma

4.9 that we have |P(, ;|, ~<(D')"K; and |P; ) ;<Kj2™. Thus by Lemma 4.6 if

(m, j, w,)
{D,,L,1, C,} grows sufficiently fast then the cancellation effect of &, g;+h,(q;+43) on
E is <(1/100)|E|,. This concludes the proof of the lemma.

N
est

To estimate |hq|" we write I, v(l;g~1)+v=V and the estimate V|7, of |hq|" given

by Vis LY |v|,~ &+|v];- We consider a pre-n-expansion of V. We form V' by
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removing all the terms of the third type such that the corresponding ¢ is
<min {¢,,...,¢,}. We then form an (n—1)-replaced n-expansion of V'. We write

V'=V|+V; where V] consists of those terms out of the (n—1)-replaced n-expansion of
V’ which contain only /’s from the n—1 first systems and where every term out of V;
contains an ! from a system with number =n. We write Vi=E V] and V,=L(Z P, ;)

with the same notations as for g;and g;. We now have

LEMMA 4.11. There are constants C' and D’ depending only on | |"~' such that for
all N=n we have |V| |, ~<|V|C'-(D")".

Proof. The proof is essentially the same as for Lemma 4.8. We observe that (4.24)
will be replaced by

1 r
2|sfz Sjy e Silopn < View (;) )

and we have corresponding modifications later in the proof.

LEMMA 4.12. There is a number D’ and a sequence of integers w,, depending only
on | "' and numbers K, j=n, K depending only on | ™" such that if |V|\, <t then for

all N=n we have for V;,

est

|Pm,j|1,fSK;(D,)m'|V|N

K
|Pm,j, w’mll,fs'z_,i,' IV]zt

The proof is essentially the same as for Lemma 4.9.
With these lemmas we now easily complete the proof of Proposition aj®, N(a,).

Proof of Proposition a}°, N(a,). hq' contains p,s(E) by Lemma a}°, N(a,). Now if
[VIY.<1 then by the Lemmas 4.6 and 4.12 the cancellation effect of V, on E is
<(1/100)|E| and by Lemma 4.1 the same is true for £, V; .. So if (hq’— V") (x) does not
contain p,,5(E) then the cancellation effect of I, Vi ; on E is >(1/25)|E|,. By Lemma

4.11 this concludes the proof of the propostion with

B,
B)= .
25-C'- > (D'Y

jsm
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Proof of Lemma 3.2. We prove that the estimate holds for the terms derived from
terms of the 3rd type in a shortened pre-(n, b(m,)}-expansion of g. These terms should

have the form 55 ljl 8, ljz sjrlljp_lsjp with p<r+1, where j>jfor all isp—1, j,=jand j,

is<p, is from one of the b(m,)—1first systems. Since for every term s, ljl ljp_] sjpqujin

the shortened pre-(n,b(m,))-expansion of g there is a term 5;, ijl 8 S in the short-
p—1 Jp

ened pre-(n, b(m,))-expansion of g this obviously gives the lemma.

We thus prove the estimate

) oMy pp .
> b7, 5,05 Dlestop < @27 Ly 1 D1 @.27)
Jpeenrdp
J=i
system of j=b(my)—1

which completes, the proof of the lemma.

We prove (4.27) by induction on p. To get it for p=1 we consider the first stage of
the pre-(n, b(m,))-expansion of g

N
q= q,.+z s{ligi—D+1.

i=1

We observe that, since j>n no I; with i>j will appear in any stage of the further
expansion of g, (or gi, i<n), not even if the s’s are substituted by polynomials in x and
I's.

We observe further that any term of the 3rd type that “‘ends’ with s; , j,=j, and
which does not appear in the first stage of the pre-(n, b(m,))-expansion, must contain at
least one [; with i=j. So to get (4.27) for p=1, it is enough to prove

2 |sjp|estopN <2 2'"2

=i
1

g =—
Jp my

2

which is immediate from the assumption |g—g,|¥<¢,/16<1. Now we assume that
(4.27) holds for an integer p and we prove it for p+1.
Every term of the 3rd type, say s;, If. ljp 8 in the pre-(n, b(m,))-expansion of g is
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obtained by expanding g; in the term 8, lj1 ljp q; - Since we assume j,>j and that j,
(4 (4

belongs to a system with number <b(m,)—1<n<j we have

j—1
6, =4+ > sia-D+0', with r<blmy)-1.

i=1

So, as above, we get that for fixed 5, lj1 e 8; We have

m
lejpﬂlestopN: Z |s;p+||estopN$2'2 2

=j
1

m

Jp+1

E; =2
Jp+1
P2

Since |ljp|eswp N<Dyu-1 Lygmy-1 We get (4.27) and the lemma is proved.
Proof of Lemma af g, m,, N(a,, m,). We write h(x,)=h,(x, D+h,(x, ) with

heD= D19k, ;xD and kD= Ik, ;(x,])
0] 0]

and

S =8, e, D+8, e, [y= D IS, 0, D+, 198, x, D)
0] o

where we have the following: Every ! in h, (), h, (5, S|, Of S;,(; has index <j and
every Lin [, 1%, I, or I, has index >j. For every [;in I, I{), h, ;, or S, (;, i belongs
to some of the b(m,)—1 first systems and in every i,‘,’:, Igj, R, o) OF S,  there is an [;
with i belonging to a system with number =b(m,). For [j|=0 say (j)=0, we put
S, @, )=0 and we observe that S, (x, ) consists of terms out of Sj(x,]) and that in
fact §; =S,

To prove Lemma af 3, m,, N(a,, m,) it is obviously enough to prove the conclusion
for the product hx,)S; Ax,]). To do this we first observe that
[2(0)|< {5 if Dy,)>10-2"2>10/e,, since |k op a|(x)|<1/e, and so |y (x)],>.

Since |Al.q,, n<1/€,, We have that

1
lj|2>r |h‘v(j)(x)|‘ < £, 9"
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and so for some ry ;<10m, we have

2 (h, ) ®)

W=ry

( ). 2

> 0k, DIestopN\l

A=r, En

This gives by the multiplication theorem that there is a constant E; ;>2 depending
only on m; such that for the product

< Z ’%”%m) Sio= ME i},’?cl,m,,._(k,x"ﬂ’)

ll1=r1_;
estop N)

=5 Il

=

we have

Ey, |Sz(x)|1 = )ECI i 19

ME (201 (/)x(k)x"k)(x)

i, (k)

Now two possibilities can occur. Either the terms

PR (Zc, (k)xl"‘)>

M=’| 1 i, (k)

( > Iig?hl.m) (27 S m)
bil<r >0

out of the product

satisfy
’ ijk
> |2 eoawr® 2E |s;00)|,
=ry |i (k) estopN 1,1
or satisfy
’ i j(k
2 Ecl,m,i,(k)x'I() 2E IS(X)|1-
W=r 1 i (k) estop N 1,1
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In the first case the lemma follows with E;=2E, ; since always | |estop ~=| |1, and for
the other terms out of S, ; we have |j|>r; ;. In the second case we have

( > I_U’Zhl’w>(x)

l<ry

1
’ 2 |I(j,r|estopN> Z_E‘l_l' |Sj(x)|1

1 ’<rl,l

which gives

(2 vy hl,m(x)>

Wr

1

>,
1 1,1 8- 2m2—m‘ 2 (2 . 2mz)rL2(mz)—l Z(mz)—l 10"

r<r

21 ) sz_ . 1 _
E,, Lb(zmz)—l Db(fnz)—l

with obvious notations.
Thus there is a number ry ,<r; ; such that

(= DINE

N=r,

Ch, 1

1
>2E — - .
2 2
1 L1 Lb(mz)—lDb(mz)—l

We can now repeat the argument above with r, ; instead of r; | and so the result
follows.

Proof of Proposition aj g, my, N(a,, m,). We observe that the only terms out of
coefficients of /;g;’s in V, &= 1/2™, that can contribute to (3.3) are those which are
derived from terms of the form v b, sj, L, ... ; s; where jy,ja, ..., J, are in the b(my)—1
first systems and r<r;<n,. The sum of the estop N-norms of all such terms is

n n myny+1
<|V| .Lbémz)—l Dbémz)—l @-27)"

by similar arguments as above. This gives the propositon.

N
est

Proof of Proposition a;%, m,, N(a,,m,). We assume V| ,<l. First consider the
sum S, of the estop N-norms of all monomials derived by a (b(m,)—1)-replacement

from the following types of terms: hsj1 lfx' o 5., or "illi. lf, S, obtained in the pre-

(n, b(my))-expansion of g and b(m,)-expansion of V, with r<m and with every l; from
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one of the b(m,)—1 first systems. Like in the proof of Lemma 3.2. we obtain

my\ym+1
§,<2:Q22")" Ly Dy

This gives that there is a function y(k}—0 as k— such that the sum of /;-norms of
monomials of degree kin x and I’s is <y(k). Thus by Lemmas 4.1, 4.4 and 4.5 the sum of
the cancellation effects on E(x) of the monomials which are of degree >m in [’s or
contain an /; from a system with number =b(m,) is

|E(x)|1
30-2-2™™™

Now for each r>m we consider the sum $,, of the est op N-norms of all monomials
derived by a (b(my)—1)-replacement from the following types of terms:
hs; L ...L; s; or v; l;...l; s5;+1 obtained in the pre-(n, b(m;))-expansion of g and
b(my)-expansion of V with every j; from one of the b(m,)—1 first systems.

Like in the proof of Lemma 3.2 we obtain

M+l r
S5y<(2:2™) Liymyy-1 Dipgmpy-1-

Thus we can use Lemma 4.1 with F,=(2-2"%"*! Liymyy-1 D;(mz)_l. and get that the sum of

the cancellation effects on E(x) of the monomials which are of degree >m in [;’s or
contain an /; from a system with number =b(m,) is

|E(x)|1
30-2-2™™

We finally consider the sum P of all monomials derived by a replacement described
below from the following types of terms: sl ...l;s;  or v;l..I;s;  where
some j; belongs to a system with number =b(m,). In every j; which belongs to a system

. - . ,
with number =b(m,) we consider those terms 5j, ljl lj'_ li,sim or u; lf. 8, e lf,- lj, S,

where ji, /s, ...,j;—1 all belong to a system with number <b(m;)—1. For every such

term we rewrite s; 5 ...s; s; and u; 5, 8j,-+-5; as & polynomial in x, we rewrite every

..l s; ~asa polynomial in x (ljl,ljz,...,lj,s.

r e+l (S e

e G _ we do not rewrite). With j=j and
i~1=m we then rewrite P=X.(Z,_,P, ;) where P, consists of all monomials
X L ..., . We can now apply Lemma 4.6 in the following way:

D is the set of integers {j} such that j belongs to a system with number =b(m,). G;
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is the /;-sum as polynomials in x of all terms it

... --- 8., which appear in the
expansion of g;. Gj is obviously determined by | I"'-l.

Fm = 2 ' LZ](M;)-] D'bn(”h)—l (2 ) 2'”2)'""'1 .

Then |Pm, j|1’ s<G;F, by the same arguments as in Lemma 3.2 and obviously
‘Pm, i»wmll f<Cj for w,=m+1. Thus the cancellation effect of P(x) on E(x) is
|E(x)|1
30-2-2"™

and the proposition is proved.

Proof of Lemma 3.3. We omit this proof since it is the same as of Lemma 3.2. We
now turn to the

Proof of Proposition af 3, m, g, a5°, N(a,,a,). We consider (3.16) and we assume
|VI¥.<1. The proof of the proposition will be completed from Lemma 4.17 below. To

prove that lemma we first prove Lemma 4.13. To prove Lemma 4.13 we use the
Lemmas 4.14 and 4.15.

For every j there is an n; ;=n, such that for the part

G;= E I Ed(a),m'(ﬂ)x"'l‘ﬂ’

|a|=”1,j

of hS;—V; we have
IZE%I 2 <2|d(a),m,(ﬂ)xml(ﬂ)|l) = 2 ’Ed(a),m,(ﬂ)xmi(ﬂ)

where n, is given by Lemma af g, m,, N(a,,m,) and n; ; is the r, of that lemma. We put

estop N

G=G, ,+G,, where G, ,;=LI%Ld, . 5x"I? where the summation is extended over
those (a) for which

10E2

m f(B)
Ed(a).m,(ﬂ)x e

zd(a),m,(ﬂ)xm o >
i

estop N

and G, , is the sum extended over the other (j)’s. We let B; be defined by

HS—-V=G; +G,,+B,
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We can now apply Lemma af°, N(a,) to the product (X d, ,, 4 *" % q; for every fixed
(o) appearing in G; ,. Then X d, ,, X" I® will play the role of & and q; the role of g'.
Here, of course, Ld, ,, 4" [? is not normalized as  in Lemma aj°, N(a'), but the
important thing is that £ d,, ,,, X" [? like h in Lemma af*, N(a'), has a bound 10 E] on
the ratio between its ||, y-norm and its | |;-norm. The (n—1)st stage of Lemma
af’, N(a'), will here be the (b(ay)—1)st stage. So this gives us that there exist

blay)-1

n, and By, , depending only on | | such that L d, ,, ,*"I? g} contains

— 5.7
Pyso (Eg,n,) —91/502 €a),k B) X @, k+|Bl<n,
where

|E@.1.11 = Biay |

Zd(a)’m’w)x’"ﬂﬂ’l .

Now by Lemma af p, m;, N(a,, m,) and the definition of weight of good coefficient and
the definition of (&S i~ Vf)quf in (3.16) and the definition of G; , there is a constant C
[""2~! such that

> (Z( Zd@,m.@x'”f“”.l)) >C-D,

J (@)
where D is the sum of the weights of good coefficients of /;q,'s with g; in the system a,.

depending only on |

Now we define
E= 2 l (ZI‘“’E(Q),,J).
J (@)
With this definition we get |E|,=D-C *Bla, Lo, and so this gives that E has the

properties 1-5 above with By, =C" By, To prove that (hg—V)’ (x) contains p,,, (E)

we start by proving

LEmMMA 4.13. For every j, (hS;— Vj)qu,' contains

Pina (Ijz I(J)E(a),l,j) .
(@)

To prove Lemma 4.13 we first prove

19878289 Acta Mathematica 158. Imprimé le 28 juillet 1987
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LemMaA 4.14. For every j

2 [@ l; (E:d(a),m, @ H1® q{) (x) contains py;, (2 (l(a) l; E(a)yl,f)>'

(@) (@)

To prove this we put

Z digym, X" 19 4} = Z ax'+ 2 a;x'

=0 i>m

where m’ is chosen so that deg(Ze, 4 x* [?)<m’. We can choose m'=n,degl;_,. Then

we obviously have that £ a,x’ contains p,s(E, ; ) and

> (113 o)

(@) i=0

contains

p,,50<2(l_‘“)le(a)ylyj)> if ordl,>n,degl,_,
(@)

which certainly is true if the sequence is sufficiently lacunary. We have

2 a;x' 2 ax 2 iy m, " 1%

i>m’ iz0

1

=< '|qf|1sB" |E@, 11|91
1 bmy)

==

1

=
1

Now we apply Lemma 4.3 in the following way:

S(x) of the lemma is [, (I £, a;x). P(x) of the lemma is I, ¢, (L5, a;X),
‘w=[i|+1. Since we have not normalized we get that the cancellation effect of P(x) on
S(x) is <e*|E, 11" Lo, if the sequence {I;};5; is sufficiently lacunary and the moduli
of the coefficients decrease sufficiently rapidly. With ¢=1/30—1/50 this gives Lemma
4.14.

To continue the proof of Lemma 4.13 we will now study the cancellation effect of
(G, ,+B)l;q;on L,(E, ["E, , ). To do that we will use the Lemma 4.15 below. That

lemma will be used both in studying (hS;—V)) Lq; and (hS;—V) Lg;.
- Fix a j and consider AS;—V;as in (3.16). Expand hS,—V;as a polynomial in x and

I's and do not substitute any / by a polynomial in x. We can now write
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hS=V), D=2 [ 2 F,, . DI T2

l Jr

rz0 \ 1y
Pl=r
=> EF, DL+ EF O YA
r=0 . i r=0
i i

with the following notations: [,l ,...,l, are in systems with number

1 2

<b(a)—1and j,,j,,...,J, are all >j. F, (x,])is a polynomial in x and I's there for each
I, either i belongs to a system with number =b(a,) or i<j (or both). F} LD is a
polynomial in x and I's where all I's have index 5j. F (x,]) is a polynomial in x and s
where in each term for at least one [, i>j and [, belongs to a system with number
=b(a,y).

(4.28) We observe that for those j for which G, , is defined we have

yJ 1 ylz y.l

EF}y(x YA

if the sum is extended over appropriate J and a and every [ with index < b(a,)—1in F’ is

substituted by a polynomial in x.
(4.29) We also observe that for every r (with no I’s substituted)

P LRI A

Bt it Jr

estop N

i "' " i jr
=2|F}y( ... j:,estopN+2|F,y(x1)1’J,fz i

r

estopN”

LEMMA 4.15. For every i and every fixed r=0,
P LA VAT
Ly ’
Wi=r

1 r+1 ,
estop N <4 (?) (Lb(az)—l Db(az)—l) ’

where e=min{,, ..., &yq,}.

The proof is the same as for Lemma 3.2.
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Now we use this lemma to estimate the cancellation effect of
(G, ,+B),qjon L, [V E,, , . which will give Lemma 4.13. By (4.28) and (4.29) we
have if in G, , and B; no [ is replaced by a polynomial in x,

' iy i iy " 7 Vi,
G +B=D > Fi [l 04> [ D Fy T 0,

=0 Jy =0\ J,y
Wl=r Vi=r
1,78G;

where the first sum is extended only over those J,y which do not enter in G, ;. Now
with

ny+ny+l
Fr= 3 SF D0 0> > Fy i e
r=0

we have by Lemma 4.15

1 \mtm+2 n+ny+1
L 1 2
|F"|estopn <8 (‘e' (Lotap-1Dbay-1) .

This gives that for every £>0 there is an m” depending only on £ and | J~! so that
with F"=%, a, x'I}' [ ... [ we have that

2 |ai,y| <e (E lE(a),l,jll) i, “4.32)
(@) q;

JHyl>m"

To see that m” only depends on £ and | f~! we observe that given | J~' we have
an estimate from below on Z,|E, , /|, and precise information on |g],. Now we have

that the cancellation effect of
( > a X0 lfy) g, on LY I?E, .
j+|yl<m” (@

is 0. To see this we can argue as follows:
Make an (j—1)-substitution in [,Z[E,, , ;and in

( > a X &”) Lq).

Jtylsm’

Then both these expressions have bounded degrees as polynomials in x and s,
and the bounds depend on | /!, And by definition, a monomial that appears in one of
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them does not appear in the other. Combining this with (4.30) we get that the cancella-
tion effect of F"1,q;on ;2 [V E,, , ; is <Ly, (Z|Eq, 1,0

To prove Lemma 4.13 we have finally to prove that the cancellation effect of

Fiha= 23 (X, @R g

r>nptn,+l
m—r

on le(a)i‘ E.1,; 1s sufficiently small. To see this we make an (j—1)-substitution of
FV1,q! say

-—lZa,,y d "f” N

v Jr

and an (j—1)-substitution of X, I“E, | , say
I ‘aj,,,
Y I Al A A

Now by Lemma 4.15 the conditions of Lemma 4.1 are fulfilled (except for normaliza-

tion of ) and so the cancellation effect of F' ;g on IJE [9E, ;s

<O0L,, (2(«:) |E@,1.5] l) .

With §=1/10* this completes the proof of Lemma 4.13.
The next step is to prove that L(hS,~V))[,q] contains p,,,(S(EI?E,, , ). To do
this we first prove

LEMMA 4.16. Let the support of a polynomical in x be the set of exponents.
Assume that {A;} and {B;} are sequences, finite or infinite, of polynomials in x.
Assume that the B;’s are mutually disjointly supported. Assume also that A; contains
ps(B;) and that the cancellation effect of A; on L;+;B; is<e|Bi,. Then LA; contains
Pa+(LB)).

Proof. Put A;=ps(B)+C;+D; where

suppC,csupp L,,;B; and supp D; N supp L,B=0
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Then by assumption the cancellation effect of C;on IB;is <e|B|;. We have
LA;=ps(B)+XLC,+LD, The lemma follows since the cancellation effect of ZD; on LB;is

0 and the cancellation effect of ZC; on LB, is <e|B/,. We now prove

LemMA 4.17. 3,(hS;—V) L,q] contains p,; (CLEIYE, | ).

To prove this we first consider the cancellation effect of (hS;—V)lq;on

S (2 m(a),,,,) - (z oS ek,(m)ka).

r¥j r¥j

We make a (j—1)-substitution in (hS;—V) 1 q; and in

z L (2(@ Im)E € m xt lw})

rj

and replace g; by a polynomial in x. Then obviously /; will not appear in

2 l, <Z(a) [ 2 k, (m) €k, (m) I M))

r¥j

since every [ in every I belongs to a system with number <b(m,)—1 and every [ in
every I belongs to a system with number <b(a,)—1. This makes it possible to apply
Lemma 4.6 where the set D consists of the one integer j. S(x) of the lemma will be the
(j—1)-substitution of

P (2@[@ > ek,(m)xki('"))

r+j k, (m)

and P, ; will be the sum of all monomials out of the (j—1)-substituted expansion of
(hS;—V)1,q; with g; replaced by a polynomial in x, which are of degree m in I's with
index >j. Sequences W,, and F,, depending only on | /™! can now be determined by
Lemma 4.12.

(4.33) Thus, given 6 the cancellation effect of (hS;—V)1;q; on

S (2 O oo zw)

r+j k, (m)
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will be

<0L,,, (Z(G)IE(a), Ll l) '

By applying Lemma 4.16 we now get Lemma 4.17.

(4.34) We now investigate the cancellation effect of ¥, (hS;~V)) ligionE. Given any
sequence 6j\.0 we prove that the cancellation effect of (th—Vj) ligionE is <0, in

exactly the same way as (4.33) is proved.

We now finally investigate the cancellation effect of AR'—Ry on E. We first
observe that all terms in AR’ and R} are derived from terms in which the [’s that
appear have i from one of the b(a,)—1 first systems and the g;’s that appear have
i<b(a;)—1. Thus, assuming |V|<1, we get by the same argument as in the proof of
Lemma 3.2 that the sum of /;-norms of all terms derived from terms that contain at
most n,+n,+1 (m+n,+1)different [’s in AR’ or Ry is

+n,+2 +ny+2 1
< max (|gf)-(2:2")"™ -Liéé?ﬁl'(-:;}fi‘,<Iqj|o-(2-2’”*)'" " ‘LZIISZ—?)

j<blay—1 j

and this is much smaller than |E,/200 since |E|, contains the factor L.

Now Lemma 4.1 gives that the cancellation effect of the terms derived from terms
that contain >n,+n,+1 (>m-+n,+1) different I’s is |E|,/200 with F, of that lemma

_ (H . ™)+
‘js‘zf!ii‘-lqull 22" L1

This completes the proof of Proposition af g, m, 5, a3°, N(a,, a,).

Proof of Lemma af gm, g, a5 5, my, N(a,, a,, my). Consider the terms (3.3) or (3.8)

G;(x,)= Z i(a)Ed(a),i,(mxii(ﬂ)

lal=r, i@

out of §, ;or T}, . Since every / in S(x, D) has index <j, the terms

-, T 2 '(‘12)2 i)
E - rll ! Clap, (@y).i, % !

feegl=r lagl=ry
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from S, ;(x,]) S, (x,]) or T;(x,]) S, (x,]) are obtained from the product G;(x, DS, (x, D.
We now by (3.3) and Lemma af g, m,, N(a,, m,) or by (3.8)) consider those (a) for which

i i)
2 CariiinX 2 dia).i,p* gk (x)

L) i, (y)

<20-E}

estop N

or

10m- Ky, - 100 i
=7 1 1 Ed<a>,f,<y>x )|

i7y)
2 Ca),i, nx !

i)

!

TO—. n'7'2mz_,,,l b(mz) 1 Db(m) 1

estopN

Apparently this is so for ‘““most>’ of the (a)’s. Now for every such (a) we can
exactly repeat the proof of Lemma aj g, My, N(a,, m,) with

i J(v)
Z d(a),i, (y)x’ I

L)

playing the role of 4 and S, (x, I) playing the role of S{x, /). This will give us a different
r, for each (a) but by losing at most a factor n, on E, we can fix one of them. This
completes the proof.

Proof of Proposition af 3, m, g, a5 g, m;, N(a,, a,, m;). We consider for a fixed k

2 lj 2 I(al) E I(aZ)Z d(a,) (ay), i, (y)xl [ (435)

i ed=r layt=ry i, ()

We consider a pre-(n, b(ms))-expansion of g and a pre-(b(ms))-expansion of V.

And we consider terms which are derived from terms hsjll l 8, Ory; lj1 lJ 8.,
r r

and which contribute to (4.35). Terms derived from the followmg types of terms

hsjl ljl lj'sj'+l or v; li1 lj'sj'+l can contribute to (4.35):

(1) Terms derived from hsjl ljl IJ 8., Or U; llx Ij, 8., where for some i, ljl=lj for

Jout of a,. The sum of the contributions of all these terms will obviously be precisely

21 Z ! “"Z I “”Z Cla), (@), i, (N % 2 (4.36)

[ ¢2)

as defined in Lemma af g, m, g, a5 5, m;, N(a,, a,, m;).
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(2) Terms derived from hsjl lj s, Ory ljl Sy e lj St where ljl + lj for all i and j.

Since in (4.35) for all J; with i>k, i belongs to one of the b(m;)—1 first systems we must
have that ji,...,j, (which all are >k) belong to the b(m3)—1 first systems. Moreover

from (4.35) we get r<r,+r,<n,+n,. Assuming that |V|¥<1we get that the sum of

estop N-norms of all these terms after summation over £ is

<?2. LZE;:)Z—n DZ;;:’):_I (2,2’"3)"1+n2+l 4.37)
by the same argument as in Lemma 3.2.

The sum of the /;-norms is

n my\m T 438
<2-Ly (227) 1+t (4.38)

by the same argument.

(4.39) Let Dj; be the weight of the good coefficient of /;q;, j€a,. Let Dj the sum
of the Dy ;’s. For every j and k we get that the sum of the est op N-norms of the terms

al)z a,) i {v)
le I I Z Clay,(@p,i. N X I
(ap) [C) L
is
’ r .
=D, ; E; lsklestopN L) Dyay

where E; depends only on Hb("“)'l. Also the sum of the [j-norms is

=D, ; E;-|Si|, Ly, Where E; depends only on | "™~ Now there is a C depending
blay)—1

only on || such that D{>C. This follows from Propositions aj y,m, and the

.\ *
definition of af 5, m, g, a,.

Since af 5, m, p,a3 g, m; occurs we have L, D; >} D, if we sum only over those j

for which

1
2 lsklestopN? z‘sk(X)l 1 >—

10m™
Thus we get that the sum of the estop N-norms of all terms

20878289 Acta Mathematica 158. Imprimé le 28 juillet 1987
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Z 11'2 e 2 1« 2 Caayp. (@i X

J (a)) (ay)

summed aiso over all a,’s is

D; 1 ,
> oy B Loy Dty (4.40)
The sum of /;-norms is
D; 1 ,
/_Zl. o ‘Ey- Ly, 4.41)

Since b(a;)>b(m;)—1 these numbers are much bigger than (4.37) and (4.38) and
this gives the proposition.

Proof of Lemma afg,m, g, ..., a5 g, m,,, N(qy, ..., ay, m,,;). By in the Induction

Hypothesis we have a bound E: on the ratio between estop N-norm and | |;-norm

b(my)—1

depending only on | | for

2 2 Ay, p X

e iy

in Uix,]). We observe that the assumption that U(x,[) is (b(m4,)—1)-substituted
only effects the terms d, ; ., x' I’ where all indices are <sk since in

a) fla,) yap)
Ly ly > T LI

(a]) yyyyy (ak)

every index that appears is >sk>b(m,_ ). We observe that in S,,,,(x, ) all indices that

appear are <sk. Now for most combinations

Lo ly >, [T

we have a bound 100 EZ on the ratio between the estop N-norm and | |;-norm of

2 d(a), Ly 21,

i

The proof is now the same as for Lemma af g, ..., a3 g, m;, N(q,, a,, m,).
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Proof of Proposition af zm, g, ...,m, ., N(ay,...a,, m,.,). For the proof of this

proposition we will consider the part

S ay ylay) @) jlay ) i
Utsh=1,1, .0, DR 2 A L) S S AN}

of the (b(m,,))-substituted coefficient of [ ;,, g4, in hg—V as above. (f=
$f1s 8Jy, ..., Sk. We will do this for different (#) and s(k+1) and we will show that either V
gives a big estimate of |hq[™ or the sum of the weights of those Ui} which are good
partial coefficients is big. We will only consider such combinations Ly 1y, .- I, Where

_ a;) ya,) a,) fa,) i f(y)
=l by D TR IV by A
(a,), ey Ly
is a good partial coefficient of [,q, and where the coefficient S, of

logr1y9ges ) in the (sk, b(m,, ))-expansion of g, is semigood. We first observe that with
the definition below

Uty = Wity 3 Wil @4

Wikl is defined in the following way:

Consider, for fixed # and s(k+1) out of the coefficient of [, gy
in a pre-(n, b(m,,,))-expansion of ¢ and a pre-(b(m,,))-expansion of V, those terms
which contain but do not contain any [ w1th p>h, call them Ty(s,) and V (s, 1),
respectively. By substltutmg the s’s we get T,,(s, D=T,(x,]) and V,(s, D=V, (s,]). Now
let Wi%'l, be the part

@) fa) L i J}
Ly L, L 2 e [ Ze(a),i,(y)xl(

lagls s lags ) i,y

of h-T,(x, D—V,(x, ) after having in this expression made substitutions between I’s and

I's as above. Wi('(}) consists of those terms which do not contain any /; at all. With

this definition (4.42) is obvious.
We see that we get W,,,=W;%'} where W,,, is defined in

Lemma af g, my, ..., a; g, my,, N(@y, ..., a, my, ).
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Let #,={sj,, 55, ..., 8} and £={sj,.,> ..., 5k}. Let S;(’,:';'f)z be the terms out of the coef-

ficient of [, +1)9s+1y in @ pre-(b(a,), b(m,, ))-expansion of g, which do not contain any

Lh %

I; with i from a system with number = b, and not any [;, p>h. Form S, .5(x, ) by

sjp’

by, ) substituting the s’s. Then it is easy to see that Wi'' .} is the part

a,) j(ay) akH)z ' i ()
Ly L, Ly 2 [ 1 Clar,isin® |
feyls - g L)
=Py Tt

of the product
Iy, Uyoe, D Syeiice, D).

Now consider a pre-(b(a,), b(m,, ,))-expansion of g, Consider those terms out of

the coefficient of I, q,.;, Which contain only I's from the b(m,,,)~1first systems
and which are of degree at most £%'! n,+card H in the I's. They form the polynomial
S;*V, say. We see that for fixed # no other term out of the coefficient of any
L4 +1) @ses 1y Will, when multiplied by Uf’;"(}l) and with s’s expanded in x and Is, give any
contribution to Wi%* 1), for any s(k+1) or any %, This is clear since they will all either
have too high degree in I’s with index strictly between sj, and s(k+1) or contain an !
from a system with number =b(m,.,). The only possibility for that would be an lsjp,
p>h—according to the definition of U3} —but this would contradict the definition of
Wik (-
By the previous argument of the proof of Lemma 3.2 we have

(k+1)
2 15544968, D eopy < Comy, g1
stk+1)

and this estimate obviously also holds even if we sum the estimated op N norms of all
monomials m(/, x) in x and I’s out of all $5**!’s, We observe that every such monimial

m(l,x) can contribute to W%’ for several different #,’s when multiplied by Ui{h(f.)'
For fixed ¢, and s(k+1) but different #,’s we consider the parts

a,) fay) ay ey i
;lﬂl'"lﬁhl‘jhﬂ"'ls" Z l( 1 l( : I( ! Eﬁﬂ),i,(y)x‘i(y)
2

gl oves bt pql i,(y)
s Pay

out of the product l,."(},l,m(l, x). Here we have
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>

)
2 S X [

A @i ¢ estop N
1 1
L L Teve L ( (a) i, (y)x l( ) : lm(I’x)lestopN
b(a,h 1) b(au. 2) bay) estop N,
1 ; .
s DDl x 1M, 0 eseop
Lr opN.
where
(4.43)
r = max (b(ajh ‘) b(a ) b(ak)).
The factor
| S S |
Lo e Lot
comes in since all the I'sin [; ...[, have to appear in the products (Zd} ,x' [? m(l, x).

By summing (4.43) over all different m(l, x) and then over alt s(k+1) we get for
fixed #,

> (s

sth+) \ 5

2 Ee(u) i (y)xl(”)

« L@

N) < Cypm, -1 (2 ,2 d} o' 10

>_1_, (4.44)
opN Lr

By finally summing (4.44) over all different $, (which end with an [ in
b(ajh)) we obtain

DPPAP)

5 s+ % \ @

h ij»
Ze(a),i, n* [

i,

) zw(uh) b(mkﬂ)—-le(mH,) 1

op N.

(4.45)

where Zu(U,) is the sum of the weights of good partial coefficients of
l s l Esystem b(a; )
To finish the proof we first observe that every Wi’ ) satisfies the conditions in the

definition of good partial coefficient and so if we sum the ‘‘weights’’ over § we get
Ew(Up-|s,44p}, and then over s(k+1) we get a number
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1 1
Zw(U") ‘——'—"“2mk+l_mk 16

or by Lemma af ,..., My, N(Qy, .0 My, )

> Zlcm,(y)xl‘ I"T{E:'W'E“’(Uk)

Fostk+1) o

Now by Lemma 21 and 31 of the induction hypotesis there exists a C’ depending only

on | "#?~! such that we have
1\ 1 | 1
C i .X'l( C’ D,- (——) e+ e ¢ . (446)
J,s(k+1);l @,i, ll [ 2mg+1 16 27he1 Pk Ek+\

By (4.46) above we have
N )
Ezle(u),f,(y)xll( ,estopN“Dh L Cb(mk -1 'Kb(mk,,,)-n
.

which is much smaller than

D.. 11 1 1 k+le+l
h Ek+l Pher 9Pr 2’"k+1 V‘

if the L’s grow sufficiently fast since r=max{p,,,...,p;}. This is obviously also true

even if we sum (4.46) over all & if the L’s grow sufficiently fast. To complete the proof
we now assume that the estimate given by V is <1. Then it is clear that | |,y Of the
perturbation caused by the Wi%'(,’sis much smaller than

by the same argument as in Lemma 3.2. This completes the proof of the proposition.

Proof of Proposition afg,my g, ..., a5, N(ay, ..., a). We consider the first sum
L8Lg=L,S,leqy in (3.27). With S,=L.U, ,+R;, (see (3.28)) we get
Esksskl kqsk”z k(z skl kqsk)

For every set [; I, ... [, we consider the good partial coefficient
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o, S 1@ (2 d(,,,,,.,(,),azw)

layls - lagd i, ()
=Pty

out of V, ,. We consider those V...’ ¥ for which

i )
2 Clan i * I 2 diay,ivin)

i,(y) i)

< 100E2

estopN

blay)—1
|

For these there exists b, and n, depending only on such that

Ed,,; (y)xi I g') (x) contains

L)
with

oo,
|E (0,2 B},

ay), ... (@), s -ony 8,
1

i 1)
Zd(u),i,(y)xll l :
i,(»)

Now by Lemma 11 in the Induction Hypothesis we have

i 1.
Zd@,.-,(y)ﬂ‘ =Y b,
@),....(@p | i) 1 !
=1s0eer 5,
bay)—1

where V| depends only upon | | and D is the sum of the weights of good partial
coefficients of I, q),’s, sk€a,.

Now we define E by

sk (@p), ..., (@)
=81 e Sy

Then

. o
11> DBy <~ Lo,y Loay

and so E satisfies the conclusion in the proposition. We now prove that for every sk,
LU, 414 q,(x) contains
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and for this we apply Lemma 4.3 in the same way as in the proof of Lemma 4.14. The
strategy of the proof will now be the following:
We first prove that the cancellation effect of

|El,
! "+ l.q. Eis <——. 4.47
szk R, 1,q,+R Ej Slig; onEis <~ 500 4.47)

Then we prove that the cancellation effect of I, U, , [, g;, on

E=E-l, > 1, .1, [¥E,

..... (@p), sy 84,
is

1
QWI(E E)(x)|,.

That will by Lemma 4.16 give that

2 (Z Ui sk lskq;k> contains Py, i1 000 (E)- (4.48)

sk i

For the proofs of (4.47) and (4.48) we introduce the following notation: Let
a,a,....q, by the subsequence of Qs Oy ves O, O with the following property
ll 12 lk r

b(af.-,) = max {b(ajl), b(ajz), .o b(ay), b(ak)}
and if b(aji ) is defined we put

b(ai:,,,ﬂ) = max {b(ai.»mﬂ) b(aii,,, )y eees b(aj’), b(ak)}.

+2
We say that a monomial M contains exactly a combination
a) - fle)
Ly o1 10
if I; is in the monomial and if the I’s with index > sj, in M agree with

Lol [ [

AL

(f M=a,x'[["... I} then of course a,x' or the I’s with index <sj, do not influence
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whether M exactly contains a certains combination or not.) We say that a monomial M
contains exactly a combination

a)  fa)
Ly by T

g
if the I's with index >/ in M agree with

I IS

o e,

We say that a monomial is obtained by multiplying terms out of A by terms out of B,
thus meaning that the monomial is one of the terms in the product AB.

(4.49) We consider now the shortened pre-expansion used in defining (hg— V)’
above. Assume that at some stage of the preexpansion some term of the first type ends
with /;q;. We now define ¢/(s, ], g, 1). In the final stage of the shortened pre-expansion

the g; will be replaced by a polynomial in s’s, Is, ¢’s, and ¢’s. Let g/be the polynomial
we get from gq,=qfs,l,q,t) by removing all terms of the 3rd type for which
e<min{g,¢,, ..., &,,}. Now obviously there is a number K; depending only on
| [~ such that the sum of /,-norms of all terms out of the expansion of q; is
<K, in particular |gi{x)|,<K.

Moreover |l}; depends only on | |"! and D, and L,. To estimate the cancellation
effect in (4.47) we consider out of

Ek R, 1, q;k+zsj Lg+R’

the following types of monomials M,,: Those which contain exactly a combination

l; 1 I I

gy by by, Ly o I(i,,.)
which appears in some term of E but which do not contain exactly any combination

al) -(a[m+l)
Lylyy Ly, Ly, T

that appears in any term out of E. First we study for fixed sj,.m the sum of the

cancellation effects on E of all monomials M,,

g, outof M which are derived from

terms that contain an lsji . Monomials out of M,, . are obtained only by multiplying a

j;
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good partial coefficient of lsj‘_ by terms out of slf; . To study this we substitute
qJ’-:m(s, I,q,1) as a polynomial in x and /’s in the followihg way:

We get, from the shortened pre-(n, b(a,))-expansion of g a shortened pre-expansion
of qu'_m—just consider what 4, in terms that end with lsj.-m g, is replaced by in the final

stage in the shortened pre-(n, b(a,))-expansion of g. We shorten this pre-expansion of
4y, further by not expanding terms which end with /g, i€system with number

=b(q; ), any further. Let then S,/;g; be the sum of all terms ending with /;q;. For all
‘m+1

these i we substitute ¢/ as a polynomial in x. For all other terms out of

q;’j'_ we make a (b(a,)—1)-substitution.

(4.50) Now we fix i and study the cancellation effect of all monomials M,, of

i
'm

M,Mji obtained by multiplying a good partial coefficient of [; by S;/ g, where

H

S; is (b(a,)—1)-substituted and g’=g(x). We get that the sum for fixed m and i over all
sj; of the /;-norms of all M

msj‘-"l

’s which contain <n,+n,+...+n; +i, +r different s

with index >i is
s +ly, r .
<V DMLy L , @7 Y Ly oo |lfi K 45D
m m+1

where D(m)=£w(U,.m) is the sum of the weights of all good partial coefficients of all

8

‘m

1. q, ’s by the same argument as in Lemma 3.2.

(4.52) Now by Lemmas 11, 2I and 31 we have

IEll > D(m) . Lb(ajl) oee Lb(aj_ )'Lb(aj, )‘Lb(aj, )’ G,
R ‘m tm+1 im+

1

b, -1
where C depends only on | | “m+1” " Now this gives by Lemma 4.1 that the sum over
gj; of the cancellation effects on E of the M,, ; ’s which contain >n,+n,+...+n;

different I’s with index >i is

|E|,
m-2000-2¢
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For the other M,, ; ’s it is also

|El,
m-2000-2°

We can see this in the same way as we prove Lemma 4.4 by observing that the
cancellation effect is =0 except for those terms which contain some I}zf with

o>, w; depending only on | |"! and the sum of /,-norms of those is much smaller than

|El,
m-2000-2'

if w, is large enough (depending on | |™1).

Now we consider the monomials out of M, ; obtained by multiplying a good

s
partial coefficient of lsj,. by other terms of . than those in (4.50). These terms out of

"

. are derived from terms that contain only I’s from the b(a; )-1 first systems.
im im+1

So instead of the estimate (4.50) we will get the estimate

V,-D(m)L L, @=L .
1 bla;) " Tbia ) ba, )-1'C
im tma1

where C’ depends only on | Ib(a*)_l. So for small r’s we can here just use that this is

much smaller than |E|;/1000 and for large r’s we use Lemma 4.1 as above.

We now study the sum of the cancellation effects of monomials M, . out of M,

;i

which are derived from terms that contain an [, r<m, but do not contain any /[

Sj‘-’ ’ S]iP ’

m=p>r. Such terms are only obtained by multiplying a good partial coefficient of lsji by

terms out of ¢”

sj,-"

which are derived from terms which do not contain any [; , m=p>r.
‘p

So also here we shorten the pre-expansion of q,; , by not expanding further terms which

end with [, g,, i belongs to a system with number >b(a; ). Then we proceed as for the
im+1

m

terms M,,; but we only need to use

IEII > D(r) 'Lb(ajl) s Lb(aj,)'Lb(aj_ ).Lb(ﬂj' )' C
t m ‘m+

b(a;
with obvious notations, C depending only on || =+
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To prove (4.48) we use Lemma 4.6 letting the set D consist of the single integer sk.
We can thus make the cancellation effect of I, U, , [, g;, on

1
4 —_— B .
E < DSk Vl b(ak) Lb(aj‘) e Lb(aj')

where D, is the sum of the weights of good partial coefficient of [, g ,. Summing this
over all sk obviously gives the result. This is since the estimate |q,.(x)l1<K,. is obviously
also valid for the sum of the /,-norms of terms of 3rd type in the pre-expansion of g;
gotten from the shortened (n, b(a,))-expansion of g.

To complete the proof we have now only to prove that the sum of the cancellation
effects on E of the following (b(m,,,)—1)-substituted terms of 3rd type in hg—V with

e=1/2"" is smaller than (|E|,/1000)- 1/2"™*'.

(4.53) Every monomial that contains exactly a combination

ay) a,) fa, )
by, oo I, T T
out of E but is derived from a term, which does not contain ISJ}"

Assume that it is derived from a term that contains /; but does not contain [;

m+k

for any k=1. (Obviously lsj,,=l ;

sjip ’

partial coefficient of l; , by terms derived from terms of 3rd type out of the expansion

for some p. Then it is obtained by multiplying a good

of quim gotten from the (b(m,,,)—1)-substituted shortened (n, b(a,))-expansion of g.
These terms of 3rd type cannot contain an I, with i from a system with number
>b(aj’,)—l. By the same argument as for the estimate (4.51) we get that the sum of
li-norms of terms which contain few different I’s is much smaller than
(1/2™+1)-(|E|,/1000) and by Lemma 4.1 the sum of the cancellation effect of the others is
also <(|E|,/1000)- 1/2™+'. This completes the proof.

Proof of Lemma 3.4. This proof is exactly the same as for the last part of the
previous proposition.
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