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1. Introduction 

We will be concerned here with certain radical Banach algebras of power series. Let 

C[[z]] be the algebra of formal power series over the complex field C. We say that a 

sequence of positive reals {w(n)} is a radical algebra weight provided the following 

hold: 

w(0)= I and 0 < w ( n ) ~  < 1 for all nEZ+; (1.1) 

w(m+n)<~w(m)w(n) for all m, nEZ+;  (1.2) 

lira w(n) l/" = O. (I .3) 
n-.--> oo 

If these conditions hold, it is routine to check that 

il(w(n))~{ y=~y(n)zn:~ly(n)lw(n)<~176 n=0 

is both a subalgebra of C[[z]] and a radical Banach algebra with identity adjoined. 

Conditions (1.1) and (1.2) make ll(w(n)) into a Banach algebra; Condition (1.3) is 

needed to give it exactly one maximal ideal. The norm is defined in the natural way: 

[[YII=E,~0 [y(n)[ w(n). We shall generally refer to ll(w(n)) as a radical Banach algebra. 

The multiplication is given by the usual multiplication of formal power series. The 

reader is referred to [3], [4], and [8] for background material on such algebras. Besides 

ll(w(n)), there are obvious closed ideals in ll(w(n)): 

M(n)~{ ~y(k)zkEl'(w(n)):y(O)=y(1)=k=o "'" =y(n-1)=O} (1.4) 
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for n= 1, 2 . . . . .  and, of  course, the zero ideal. Such closed ideals are referred to as 

standard ideals. Any other closed ideals are referred to as non-standard ideals. It has 

been an open question for some time whether or not there exists any radical algebra 

weight {w(n)} such that ll(w(n)) contains a non-standard ideal. The problem seems to 

go back to ~ilov (see [6, p. 189]). An erroneous solution [6, Theorem 5, p. 205] appears 

in the literature (see [8, Proposition 2.1] for a specific discussion of the error). Interest 

has also been focused on the quotient algebras (ll(w(n))~) where I is a closed ideal 

since these algebras are representative of  all radical Banach algebras with power series 

generators [1]. In this paper we will show how to construct radical algebra weights 

{w(n)} such that ll(w(n)) contains non-standard ideals. The radical algebra weights we 

use will be semi-multiplicative in the sense of  [11, Definition 2.1]. Briefly, these are 

weights where w(m+n) actually equals w(m)w(n) for many indices. We will give 

specific details of  the construction in Section 2. Weights similar to these have also been 

shown to possess pathological multiplier algebras [2], and there may well be a connec- 

tion between the two problems. 

Before discussing the strategy of the construction, we remark that for very well- 

behaved weights there are positive results which ensure that all the closed ideals are 

standard. If In w is a concave sequence, then a theorem of S. Grabiner [3, Theorem 4.1] 

implies that every non-zero ideal contains a power of  z, and, since a non-zero closed 

ideal is standard if and only if it contains a power of z [3, Lemma 4.5], this certainly 

implies that all closed ideals for such a weight are standard. A weaker requirement is 

that the weight (w(n)} be star-shaped [10, Definition 3.1]. Essentially, this means that 

the region below the graph of  y = l n w  is illuminated by the origin; equivalently, 

{w(n) 1/'} is a decreasing sequence. In this case also, all closed ideals of lt(w(n)) are 
standard provided that w(n) l/~ is O(1/n a) for some a>0  [10, Corollary 3.6]. Since semi- 

multiplicative weights are, in a qualitative sense, as far away from star-shaped weights 

as possible (while still satisfying condition (1.2)) it is reasonable to look here for 

algebras with non-standard ideals. 

Let A=l~(w(n)) in the following. To construct a non-standard ideal it will suffice to 

find an element x=~n~x(n)z  ~ with x(1)4:0 such that the closed ideal ~ generated by 

x is properly contained in the unique maximal ideal M(I). Let T be the operator of right 

translation on A, so that the action of  T on a power series in A is simply multiplication 

by z. It is an easy exercise to show that Ax is the closed linear span of  the translates 

of  x. Hence, x generates a non-standard ideal provided that span {T~}k~0 is properly 

contained in M(1). To demonstrate this, it will suffice to show that z I$ s--p-~{T~}~=0 . 
This will follow provided there exists e>0 such that 



A NON-STANDARD IDEAL OF A RADICAL BANACH ALGEBRA OF POWER SERIES 201 

z -  a(s)TSx > e  (1.5) 

for all choices of N and finite sequences of coefficients {a(s))~= 0. The elaborate nature 

of the construction we shall give is dictated by the fact that (1.5) must hold for all 

choices of coefficients. If x fails to generate a non-standard ideal, condition (1.5) fails, 

and the approximation of z by a linear combination of translates of x is possible. 
1% 

Suppose, for some sequences {ak(s)} s=0 that 

ms 
lim X ak(s)/*x = z. (1.6) 
k---, ~ s=O 

Let s be fixed. We outline the determination of limk__,| as follows (see [10, Chapter 

2], for more detail). First, let {c(n)} be the unique sequence satisfying the equation 

~ c ( n ) z n ' x =  z in C[[z]]. (1.7) 
n=0 

We call {c(n)} the associated sequence [10, Definition 2.1]. In general, En~ 0 c(n)z n is 

only a formal power series and not an element of A as a consequence of the consider- 

ations in [9]. Furthermore, {c(n)} can be explicitly calculated: 

and 

c ( 0 ) = x ( l )  -~ 

n - I  

c(n) = - x ( 1 ) -  1 X c(k) x(l  + n -  k). 
k=0 

co  

Let {en}n=O be the dual basic sequence. By this, we mean that e*(zm)=6mn . Define 

(1.8) 

It then follows that Z* EA* and j~*(Tmx)=6mn. If we fix So, and apply Xs* to both sides 

of (1.6), we obtain 

lira ~* ak(s) TSx -- Zso* (z). 
k---,~ o \ s=O 

-• Z* - c(k) e~+,,-k. (1.9) 
k=O 



202 M . P .  THOMAS 

Thus, 

lim ak(So) = C(So). (1.10) 
k.--~oo 

Therefore, the sequences of  coefficients, Nk {a k (s)}s= 0, converge pointwise to the associ- 

ated sequence as k tends to infinity (Nk---~oo as k---~oo). We conclude that, if E~= 0 

a(s) TSx is sufficiently close to z, initial terms of {a(s)} are very close to initial terms of 

{c(s)}. With our choice of x, certain initial terms of  {c(s)} are very large. Also, it can be 

shown that finite sequences {c(s))~= 0 satisfy (1.5) with a(s) replaced by c(s) (see [5]) for 

the types of weights we are considering. Our proof will proceed by contradiction. We 

shall take a very rapidly increasing sequence {n(k)} with n(1)=l and build a semi- 

multiplicative weight which has large 'drops' at n(k). By this we mean that w(n(k)) is 

very much smaller than the previous terms. In between, the weight will be constructed 

inductively [11, Definition 2.2] using the semi-multiplicative condition 

w(tn(k)+j3 = w(n(k)) t w(j3, (1.11) 

if tn(k)+j<n(k+l).  We will let x(1)=l and choose x=E~=lx(n(k))zn~k)where 

Ix(n(k)) I w(n(k))=2 -k§ for k=2, 3 ..... The rapid increase of the sequence {n(k)} will 

ensure that there is minimal overlap between the terms in r.~=0a(s)TSx. We will then 

show that if (1.5) fails for e= 1, anytime a term {a(k)[ is relatively large, there must exist 

m > k  such that [a(m)[ is also relatively large (see Proposition 3.18). Since some initial 

terms must be large as a consequence of (1.10), this will producethe desired contradic- 

tion because all approximations we are using are based upon finite linear combinations. 

Hence (1.5) must hold and the given x must generate a non-standard ideal. 

We would like to thank the referee for noting that in our example, M(1) is a radical 

Banach algebra with one generator, z, and with a proper closed ideal not contained in 

the closed ideal ~ z  2, generated by z 2. This seems to be the first example of this kind. 

In the next section we will give the precise quantitative rules of construction. We 

finally note that the questions we are considering here can be rephrased in the language 

of operator theory. Note that one can equivalently consider the unilateral weighted 

shift operator R on l p which is similar to the right shift operator T on the weighted 

space lP(w(n)). One says that R is strictly cyclic if lP(w(n)) is an algebra (see [7, 

Proposition 32, p. 96]; this is stated for p=2  but this restriction is not essential). One 

says that an operator is unicellular if its closed invariant subspaces are totally ordered. 

A unilateral weighted shift operator R on ! p is unicellular if and only if the only closed 
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invariant subspaces it possesses are the obvious ones. Hence,  the question whether or 

not there exists a quasinilpotent strictly cyclic unilateral weighted shift R which is not 

unicellular [7, Question 19, second variation, p. 105] is equivalent to the question 

whether or not there exists some radical Banach algebra of power series, lP(w(n)), 

which has a non-standard ideal. Of course, we are considering the case p = 1 throughout 

this paper. 

2. Semi-multiplicative weights 

We will construct a semi-multiplicative weight inductively in the sense of [11, Defini- 

tion 2.2]. This simply means that we first fix a strictly increasing sequence of positive 

integers {n(k)}. For  simplicity we will use n(1)= I. We then let w(0)= 1, and choose w(1) 

so that 0<w(1)~<1. If w(0),w(1) . . . . .  w(m) have all been defined we consider the 

following two possible cases: (i) n(k)<m+l<n(k+l);  and (ii) m+l=n(k+l) .  In case (i), 

take t E N and j E { 0 . . . . .  n(k)-  1 } so that m + 1 = tn(k) +j, and set 

w(tn(k)+j9 = w(n(k)) t w(j). (2.1) 

In case (ii), we choose w(n(k+ 1)) sufficiently small (but positive) so that 

w(n(k + 1)) < w(n(k)) (n(k+l)+n(k))/n(k). (2.2) 

We also say that {w(n)} is the semi-multiplicative weight generated by (w(n(k))}. Note 

that the sequence {w(n(k))l/"(k~ is decreasing. We shall repeatedly use the following 

combinatorial result, proved in [11, Lemma 2.4 and Lemma 2.5]. 

LEMMA 2.3. Let {n(k)} be an increasing sequence o f  positive integers. Let  {w(n)} 

be constructed inductively via (2.1) and (2.2). Then for all, t, s E Z + 

w(t+s) <, w(t) w(s). 

If, additionally, the decreasing sequence {w(n(k)) l/"(k)} tends to zero, then lims__,= 

w(S)l/s=O and {w(n)} is a radical algebra weight. 

The proof of  Lemma 2.3 is given in [11] and the result is easily seen to be valid 

even if the sequence is finite (in this case only the first part of the lemma applies) and 

the strict inequality in (2.2) is replaced by 'less than or equal' .  In order to ensure that 

ll(w(n)) contains a non-standard ideal we shall have to impose some additional condi- 

tions on {n(k)} and {w(n(k))}. Qualitatively, these are conditions which make {n(k)} a 
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very lacunary sequence (much more so than was needed in [I1]) and force even more 

rapid decrease on {w(n(k))}. We shall also choose {x(n(k))} as we go along and then let 
X - -  o o  -Ek= ! x(n(k))z ~k). Since there are several conditions we must impose and since they 

will be repeatedly referred to later we shall label them alphabetically: 

(A) Pick n(1)= I, n(2)~>4, and, if n(1), n(2), .... n(/) have been chosen, pick n(/+ 1) so 

that 

n ( j + l ) > n ( j ) ( n Q g + l ) ,  j = 2 , 3  . . . . .  

This is the only condition on {n(j)}, and we assume that it holds in the following. 

Before we proceed further we need some notational simplification. 

Definition 2.4. Let  n l = l  and n j=n( l ) - I  for j = 2 ,  3 . . . . .  

It easily follows that n2~>3: Also, ifj~>2, then 

nj+l > nO) (nO)+ 1)-  1, 

and so the sequence {nj} is also strictly increasing. 

(B) Note that w(0),w(l) . . . . .  w ( n ( k + l ) - l )  are defined as soon as w(n(1)), 

w(n(2)) . . . . .  w(n(k)) are chosen (as a consequence of  (2.1)). We will impose four 

conditions on w(n(k+ I)) which will ensure that it is sufficiently small by comparison 

with the previous terms (condition (2.2) and three others). Hence there is no require- 

ment that w(n(k+l))  be sufficiently large, only that it be sufficiently small. Before 

listing the four conditions ((B1)-(B4)) we note: 

(C) Let  x(n(1))=x(1)=l.  I f  k>~2 and if w(n(1)), w(n(2)) . . . . .  w(n(k)) have been 

chosen, choose x(n(k)) to satisfy 

Ix(n(k)) I w(n(k)) = 2 -k+l . 

We now list the four following restrictions on {w(n(k))}: 

If  k E Z  +, and if w(n(1)),w(n(2)) . . . . .  w(n(k)) have been chosen, then 

w(0),w(1) . . . .  , w ( n ( k + l ) - l )  are determined and x(n(1)),x(n(2)) . . . . .  x(n(k)) have been 
nk+l--I 

chosen using (C). The first nk+t terms of  the associated sequence {c(n)},= 0 are 

determined via (1.7) and it follows that 

nk+l--I 

E c(n) z n. x = z + d(n k + i + 1) z nk +' + 1 + .... 
n=0 
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Then x(n(k+l)) will be chosen to satisfy Ix(n(k+l))lw(n(k+l))=2 -k as soon as 

w(n(k+ 1)) is chosen. Observe the relation (*) 

c(nk+ I) = - c(nk+ l--nj) x(n(j)) -x(n(k+ 1)), (*) 
\ j = 2  / 

which follows from (1.8). We choose w(n(k+ 1)) to satisfy 

0 < w(n(k+ 1)) < w(n(k)) ~ +  ~)+n~k))/~(k), (B 1) 

0 < w(n(k+ 1)) < 2-kw(n(k)) t+t, (B2) 

where t=  nk+l/nk and {ni} was defined in Definition 2.4, 

0 < w(n(k+ 1)) < t2-k~n,+dnk+,/2 n ~-nk+2 r ~-~+3 
w(n(k+l ) - l )  " " ~ k+2j , k+3, , (B3) 

and due to (*) we can moreover choose w(n(k+ 1)) so small that Ix(n(k+ 1)) I is sufficient- 

ly large to ensure that 

Ic(nk+l)l > �89 1)) l, (B4) 

and we shall suppose this has been done. 

We will henceforth assume that {n(k)} has been chosen according to (A) and then 

{w(n)} and x have been constructed according to conditions (B) and (C) above. We 

have then that {w(n)} is a radical algebra weight and that x=Ek~=lx(n(k))z ~r is an 

element of  ll(w(n)). Let  A=ll(w(n)), as before. The remainder of  this paper will be 

devoted to proving that Ax is a non-standard ideal using the strategy outlined in the 

introduction. We shall also write x as Ei% 1 x(i)z/when this is notationally more conve- 

nient. We now define some combinatorial quantities. 

Definition 2.5. Let  {nk}k%l be as in Definition 2.4. Let  v(0)=l,  v(nO=v(1)=l and 

V(nk)=lx(n(k))l-l=2k-lw(n(k)) for k E Z  + and k~>2. Let  {v(n)} be the semi-multiplica- 

rive weight generated by {v(nD}. 

We must verify that the analogue of  (2.2) holds, but if k $ Z + and k>~2, then (B2) 

implies that 

o(nt,+O = Ix(n(k+ 1))1 -I  

= 2kw(n(k+ 1)) 

< w(n(k)) '+~, 



206 M.P. THOMAS 

where t=nk+l/nk, Thus 

v(n, + 1) < (2 k- I w(n(k)))t+ 1 

= O(nk) (n*+l+nk)/n). 

Since the case k= 1 is trivial we have verified the analogue of  (2.2): 

v(n,+ j) < v(n,) ("*+~+"*)/nk. (2.6) 

The other values (v(n)} are, of  course,  defined using the analogue of  (2.1). Namely,  if 

tnk+j<nk+l for some kE Z +, then 

v( tn, +j) = v( n,) t v(j). (2.7) 

It is an immediate consequence  of  Lemma 2.3 and (2.6) that v(t+s)<.v(t) v(s) for all t, 

s E Z  +. We emphasize that {v(n)} is not equal, or even similar to, the left shift of  

{w(n)}. Rather,  it is the semi-multiplicative weight generated by the left shift of  the 

subsequence {2*-lw(n(k))} ~=2 together with v(nO = I. Since we will generally work with 

the reciprocal of  v, we make the following definition. 

Definition 2.8. Let  F(n)=v(n) -1 for all non-negative integers n. We call F(n) the 

character of n. 

Since {v(n)} satisfies (1.2) we immediately obtain the following. 

PROPOSITION 2.9. For all t, s E Z +, F(t+s)>-F(t) F(s). 

As a very important addendum, we note that one can find the character of  m, F(m), 

by repeatedly applying the division algorithm. First pick r so that nr<.m<nr+l and then 

divide: 

m = trnr+Rr, where t rEZ + and Rr<nr 

Rr = tr-1 n r - l+Rr -1 ,  where tr_l~>O and R r - l < n r - !  

R2 = tl n l + 0 ,  

(2.10) 

where Rj=m-E~=j tini is the remainder at each stage (recall that nl = 1). Then it easily 

follows using Definition 2.5 and condition (2.7) that 

F(m) = Ix(n(2))I t2 Ix(n(3))(3 ... Ix(n(r))l tr (2.11) 



A NON-STANDARD IDEAL OF A RADICAL BANACH ALGEBRA OF POWER SERIES 207 

(recall that x(n(1))= 1). We will repeatedly use this fact about the character of m in the 

next section. The motivation for defining such a combinatorially involved quantity F is 

that, if it were possible to approximate z closely by a linear combination of translates of 

x, certain initial coefficients in the combination would have to be similar to terms 

appearing in (2.11). This is best appreciated by explicit computation (see [5] or [9, 

Lemma 4.1]). 

3. Property (M) and non-standard ideals 

We would like to incorporate F(k) into a recursive condition. We will need the fact that 

F(k) w(k) is very large when k is larger than n~(nj+ 1) and less than nj+l. 

LEMMA 3,1. Let j E Z + with j>-2 and suppose that nj(nj+ l )~k <nj+ l. 
Then 

r(k) w(k) >t (2k) k (2"J+2nj+2) nm-k. 

Proof. We digress for a moment to explain the concept behind the proof. Recall 

that condition (A) implies that n(j+l)>n(j)(n(j3+l) since j~>2. Hence 

nj+l>n(j)(n( j)+l)- l ,  and from this it follows that nj+l>nj(ny+2). Integers k with 

nj(nj+ 1)<.k<nj+l will thus always exist, and this will be extremely important later on, 

in particular at the end of the proof of Lemma 3.14. We are essentially considering a 

partition here of the form: { .... nj, nj(nj+ 1), nj+l .... }. Furthermore, if k is sufficiently 

larger than nj (namely k>-nj(ny+l)) but smaller than nj+l, this will force v(k) to be 

substantially smaller than w(k). Suppose now that we have the representation 

F(k) = Ix(n(2))l'21 x(n(3))l'3 ... [x(n(j))l 'j, 

where tynj<~k<(tj+l)nj, as in (2.10) and (2.11). This means that t j~nj+l=n(j) since 

k~nj(nj+l). Although tjnj<ny+l (since k<nj+l), it may happen that (tj-1)n(j) is 

larger than nj+l. 

Now we go to the proof. Let to be the semi-multiplicative weight generated by the 

finite sequence {w(n(i))}~= v An application of Lemma 2.3 shows that to(s+t)<.to(s)tO(t) 

for all, s, t ~ Z +, although lim,~= tO(s)~/'*O. Then 

F(k) w(k) = Ix(n(2)) I '2... ix(n(j))lt~ w(k) 

>~ Ix(nQ))] tj w(k) 

= Ix(n(j~) 5 (v(k) 

14-848289 Acta Mathematica 152. Imprim~ le 29 mai 1984 
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since tj>~n(j). Thus 

>I Ix(n03)] 'j a'((6"+ 13 nj) 

= [x(n(J3)l tj tb(tj(n(j3-1)+nj) 

= Ix(n03){ w(tp(j)-tj+n) 

>- Ix(nU) ) l '~ tO(6 n(j)-  n(j) + nj), 

F(k) w(k) >I Ix(n(j))l'Ja~((6-1) nO)+ nj) 

= Ix(n(J3)l 9 w(n(j)) tFl w(nj) 

F (n03-1)] 
= (2-J+t)tJ [ w(n(J3) J" 

Using condition (B3) with k+ l  replaced by j ,  and noting that tj<nj+l/nj since k<ni+ ~, 
we see that 

l"(k) w(k) > (2nj+0 '%' (2"J+~nj+2)nJ+2 

I> (2k) k (2"J+2nj+z)"J +2-k, 

and the lemma is proved. 

Unfortunately, we are not able to do induction on F(k) alone since F(k)w(k) is 

rather erratic just after nj+l. For example, F(nj+Ow(nj+t) equals Ix(n(j+l))lx 
w(n(j+ 13-1), which is large, but F(n(j+ 1)) w(n(j+ 13) equals [x(n(j+ 1))[ w(n(j+ I)), 
which is small. We need to incorporate F(k) with another quantity which will 'dampen' 

this erratic nature of F(k). We first require a preliminary definition, motivated by 

Lemma 3.1. 

Definition 3.3. If k E Z  + with k>~n2, we define r=r(k) to be the unique natural 

number satisfying 

nr(nr+ 1) ~< k < n,+ i(nr+ ! + l). (3.4) 

A few remarks are in order. It follows from Definition 2.4 and condition (A) that: 

nz>-3>~nl(n~+2) and if rEZ  +, with r> l ,  then n,+l>(n(r)(n(r)+l)-l)>~nr(nr+2). 
Hence for all r E Z + 

nr+l(nr+l+ I) > nr+t >1 n~(nr+ 2). (3.5) 

If k is much larger than nj+l and close to nj+2 then r(k) will be j +  1. If k is only 

moderately larger than nj+l then r(k) will be j .  This double partition of Z + 
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({ .... nr(nr+l), nr+l(nr+l+l) . . . .  } and { .... nj, ni+~ . . . .  }) will be a constant theme 

throughout the rest of  the paper. We are interested in the quantity 

(2nr+2n )~,+2 -k 
,+2 (3.6) 

w(k) 

where r=r(k), for several reasons.  First, the numerator is rather large whether  k is 

slightly smaller or slightly larger than nfi the numerator will be large when F(k)w(k) is 

small. Second, it contains large powers of  two which will be useful in cancelling terms 

such as [x(n(j+l)) I w(n(j+ 1)). Finally, the numerator can be related to F(k)w(k) by 

using Lemma 3.1. This suggests that we may be able to do recursion on the quantity 

(2nr+2 n )nr+2-k ) 
max (1/2k)kF(k), "~+z, [ (3.7) 

w(k) J" 

We thus define 

Definition 3.8. Let  {a(s)}~= 0 be a finite set of  coefficients and let k E Z + with 

nz<~k<.N. We say a(k) has property (M) provided 

[a(k)l I> max {(I/2k) k F(k), (2~'+Zn'+z)n'+2-k ~ 
w(k) J' 

where r=r(k) is as in Definition 3.3. 

Clearly la(k) l is rather large if a(k) has property (M). We next have two lemmas 

which show that property (M), under suitable hypotheses,  is a recursive condition. 

LEMMA 3.9. Suppose that k E Z  + with k>~nj where j>~2 and that n(j)+k<n(j+ l). 

Suppose that {a(s)}~= 0, where N>-k, is a finite set of  coefficients, and let y= E~= 0 

a(s) TSx. Suppose that 

IIz-yll < 1. 

Then if a(k) has property (M) there exists m EZ + with re>k, m<nj+! and m<.N such 

that a(m) also has property (M). 

Proof. We remark that for reasons of  notational convenience we may refer in this 

lemma and the following lemma to terms a(h) where h>N. It is to be understood such 

terms are zero. We also remark that the conclusion of  the lemma forces k to actually be 

less than N. 
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To obtain a contradiction, suppose first that for all p E {n(1), n(2) .. . . .  n( j -  1)} that 

[a(k)[ x(n(j))l >1 2jla(n(j)+k-p)[ Ix(p)l. 
oo �9 i Writing y= E~=0 a(s) T~x as Ei=ly(t)z, we see that 

[y(n(j')+k)[ >I [a(k)[ [x(nCt3)[- ~ [a(n(j)+k-n(i))[ [x(n(i))[ 
i = 1  

>~ �89 
Thus, 

[Iz-yll >I ly(nQ')+ k)l w(n(j)+k) 

I> ~a(k)[ [x(n(j))[ w(n(j)) w(k) 

since n(j)+k<n(j+l) and {w(n)} is semi-multiplicative. Using condition (C), we see 

that the above is 

= �89 2 -j+l 
>12-J(2n,+2nr+2) n'§ 

using property (M), where r=r(k). Since r>~j-l,k<nj+l, and J<ns+l the above is 

>>-nj+ 1 I> 1, contradicting the hypothesis that Hz-yll< 1. 
Hence there exists p E {n(1), n(2) . . . . .  n(j -1)}  such that 

]a( k ) [ Ix(n(J))l < 2jla(n(j) + k - p  ) [ [x(p )l . (3.10) 

Let m=(n(j)+k-p) .  Then m>~n(j)+k-n(j-1)>k. Also m<~N since clearly a(m)#O. 
Note that m ~< nj+~ since n(j)+k<n(j+ I) and p~>l. Then we see that 

la(m) I > [a(k)l [x(n(J)) I 
2jlx(p)l 

( 1 ) '  r(k)lx(n(j3) [ 
>I ~ 2jlx(q+ l) I ' 

using the fact that a(k) has property (M) and letting q + l = p .  But j<nj<k and 

F(k)lx(n(j))[=F(nj+k) as a consequence of the considerations in (2.10) and (2.1 I) since 

nj+k<nj+1. The above is then 

( I]k+, r(nj+k) 
I> \ ~ /  Ix(q+ 1)1 
= ( l_]_]k+' r(nj +k) 

\ 2k ] r(q) 
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whether q=0 or q=ni where i~>2. Since q<~nj+k, Proposition 2.9 implies that the above 

is 

Hence 

>I (1/2m) m F(nj+ k - q )  

= (1/2m) m r (n( j )+k-p)  

= (1/2m)" F(m). 

It remains to 

m>~nj(nj+ I) and (ii) m<nj(nj+ 1). In case (i) Lemma 3. l implies 

"1,i+2 ǹ 1+ 2 - m  F(m) w(m) >I (2m) m (2 n)+2) 

since m<nj+l. But then (3.11) and the fact that r(m)=r=j imply that 

(2nr+2nr+2) n'+2-m 
[a(m)] I> 

w(m) 

Thus, (3.11) and (3.12) together imply that a(m) also has property (M). 

In case (ii) m<nj(nj+l), so r(m)=r(k)=j-1.  Using (3.10) we have that 

la(k)l [x( n(j) ) [ w( n(j) + k ) < 2j[a( n(j) + k -  p ) ] Ix(P)[ w( n(j) + k ). 

Since the weight {w(n)} is semi-multiplicative, 

la(k)[ w(k) I x( n(j) ) I w( n(j) ) < 2jla( n(j) + k -  p ) I w( n(j) + k -  p ) Ix(p ) I w(p). 

Using condition (C) and the fact that m = n ( j ) + k - p ,  we see that 

]a(k)lw(k) 2 -i+l < 2jla(m) [ w(m). 

Thus, 

]a(m)[ I> (l/2m) m r(m). (3.11) 

show that la(m)[>~(2"r+2n,+2)n'+:m/w(m). There are two cases: (i) 

[a(m)[ w(m) > (2ij) -1 (2n`1+'ni+j) ni+'-k 

since a(k) has property (M). Since j~<nj+l and m>~k+l it follows that 

[a(m)l w(m) > (2"`1+!nj+0 "~+'-m. 

(3.12) 
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Then since r--r(k)=r(m)=j-1 
(2n'+2nr+2)n'+2 -m 

[a(m)[ I> (3.13) 
w(m) 

Then (3.11) and (3.13) together imply that a(m) also has property (M) in this case. This 

completes the proof of the lemma. 

We note in passing that the hypothesis of Lemma 3.9 could be weakened from 

Ilz-yll<l to 

[y(n(j)+k)[ w(n(j3+k) < 2-J(2n'+2nr+2) n'§ 

where r=r(k). Only minor changes in the proof are needed. 

The other alternative to Lemma 3.9 is handled by the next lemma. 

LEMMA 3.14. Suppose that k E Z  + with nj<~k<nj+~ where j>~2 but 
nO)+k>~n(j+ l). Suppose that {a(s))~= 0, where N>>-k, is a finite set of  coef.ficients, and 

let y=E~=0a(s) ~x.  Suppose that 

[[Z-y[[ < 1. 

Then, if a(k) has property (M), there exists m E Z  + with m>nj+l>k and m<<.N such 
that a(m) also has property (M). 

Proof. Again, the conclusion here forces k to actually be less than N. Since 

n(j)+k>~n(j+l), we obtain nj+k>~nj+l>~nj(n~+2) using (3.5). Thus k>~nj(nj+l) and 
r=r(k)=j. 

To obtain a contradiction suppose first that for all p E {n(1), n(2), .... n(j3} that 

[a(k)[ [x(n(j+ I))[ t> 2j[a(n(j+ 1)+k-p)[ [x(p)[. 

Note here we are using n ( j+ l )  rather than n( j3 as in Lemma 3.9. Again, writing 
y=E~=oa(S) TSx as Ei~_l y(i)z i we see that 

/ 

[y(n(j'+ 1)+k) I >~ la(k)l Ix(n(j+ 1))1- ~ [a(n(j+ 1)+k-n(i)) I Ix(n(i))[ 
i=l 

Thus, 

--->�89 [a(k)l Ix(n(./+ 1))1. 

Ilz-yl[ I> lY(n(J+ 1)+k)Iw(n(j+ 1)+k) 

�89 Ix(nO'+ 1))Iw(n(j+ I)) w(k) 
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since n(j+ 1)+k is much less than n(j+2) and the weight {w(n)} is semi-multiplicative. 

Using condition (C), we see that the above is 

=! la(k)l w(k) 2 -j 2 

2_J_l(2nJ+2nj+ E)nj+2-k 

using property (M). Since k<nj+2 and j+l<nj+2 the above is ~>nj+2~l, and this 

contradicts the hypothesis that IIz-Yll<l. 

Hence there exists p E {n(1), n(2) .. . . .  n(j)} such that 

la(k)l Ix(n(j+ 1))l < 2jla(n(j+ 1)+k-p)[ Ix(p)l. (3.15) 

Let m = n ( j + l ) + k - p .  Then m>n(j+l)>nj+~>k since k>~nj(nj+l)=njn(j')>p (recall 

j~>2). It is important here that k>~nflnj+l); k>~nj is not a strong enough assertion. 

Clearly m<~N since a(m)*O. The remainder of the proof is rather routine and similar in 

spirit to the second case in Lemma 3.9. We see that 

la(m)l > la(k)llx(n(J + 1)) I 
2jlx~o)l 

(1 f r(k)lx(n(j+l)) I 
>I - ~  2jlx(q+ l)[ ' 

using the fact that a(k) has property (M) and letting q + l = p .  But j<nj<~k and 

F(k) Ix(n(j+ 1)) I =F(nj+ i+k) as a consequence of the considerations in (2.10) and (2.11) 

since nj+t+k is much less than nj+z. The above is then 

(__L]k+, r(n,+, +k) 

I> \ 2k / Ix(q+ 1)1 

= {l_.~..~k+l r(ni+ ,+k) 
\ 2k / r(q) 

whether q=O or q=ni, where i>~2. Since q<~nj+~+k, Proposition 2.9 implies that the 

above is 

>I (1/2m) m F(nj+ ~ + k - q) 

= (1/2m) m r (n( j+  1)+k-p)  

= (I/2m) m r(m). 

Hence 

la(m)l I> (1/2m) m F(m). (3.16) 
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Also (3.15) implies that 

la(k)l [x(n(j+ 1))1 w(n(j+ 1)+k) < 2jla(n(j+ 1)+k-p)l Ix(P)lw(n(j+ 1)+k). 

Since the weight {w(n)} is semi-multiplicative, 

la(k)l w(k) Ix(n(j+ 1))l w(n(j+ 1)) < 2jla(n(j+ 1)+k-p)  I w(n(j+ 1)+k-p)lx(p)l w(p). 

Using condition (C) and the fact that m=n(j+ 1)+k-p  we see that 

la(k) I w(k) 2 -j < 2j]a(m)[ w(m). 

Thus, 

la(m)l w(m) > (2J+1)) -1 (2"i+2ns.+2) "j+2-k 

since a(k) has property (M). Since j +  l<nj+2 and m~k+ 1 it follows that 

[a(m)l w(m) > (2"ran/+2) "i§ 

It is clear that m>ns(nj+l). Since m<~2ns+~<nj+l(nj+t+l), it follows that r(m)= 

r(k)=r=j also. Then the above inequality implies that 

(2n,+2nr+2) n,+2-m 
Ja(m)J I> (3.17) 

w(m) 

As an aside we remark that here is the reason why we need two lemmas. Here 

r(k)=r(m), which is directly the result of condition (A). This would not necessarily be 

the case if n(j)+k<n(j+ 1). Hence, Lemma 3.9 cannot be dispensed with. 

Finally (3.16) and (3.17) together imply that a(m) has property (M) also. This 

completes the proof of the lemma. 

We remark, as in the case of Lemma 3.9, that the hypothesis in Lemma 3.14 could 

be weakened from ]lz-yJl<l to 

ly(n(j+ 1)+k)] w(n(j+ 1)+k) < 2-J-t( 2"'§ 

where r=r(k). Combining Lemma 3.9 with Lemma 3.14, we obtain the following main 

recursion result. 

PROPOSITION 3.18. Let {a(s)}~= 0 be a finite set of coefficients, and let y= 

E~=0 a(s) TSx. Suppose that k E Z  + with n2<~k<~N and that 

IlZ-YH < I. 
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I f  a(k) has property (M), then there exists m E Z + with m>k and m<<.N such that a(m) 

also has property (M). 

Since there is only a finite set of coefficients occurring in the hypothesis of 

Proposition 3.18, if some a(k), n2<<-k<~N, had property (M) we could continue to apply 

the proposition and find an infinite chain of coefficients a(mi), where 

k<rnl<m2<m3 .... each with property (M). This is a contradiction since the supply of 

coefficients would be exhausted. Thus we immediately obtain the following corollary. 

COROLLARY 3.19. Let {a(s)}~= o be a finite set of  coefficients, and let 

y=EN=oa(S) TSx. Suppose that 

Ilz-y[I < 1. 

/ f  k E Z + and k>>-n2, then a(k) does not have property (M). 

We are finally able to prove our major result. 

THEOREM 3.20. Suppose {n(k)} has been chosen according to condition (A). 

Suppose then that {w(n)} and x have been constructed according to conditions (B) and 

(C). Then the closed ideal generated by x is a non-standard ideal in ll(w(n)). 

Proof. Suppose instead that x generates a standard ideal. Then for any f ixedj  ~ Z + 

withj~2,  we can pick a finite set of coefficients {a(s)}N=0, where N is sufficiently large 

and IIz- r~Y=0 a(s) TSxll is sufficiently small and less than one so that Ic(nj)l<21a(n~)l. This 

follows since, for fixed j,  a(nj) will tend to c(nj) and c(nj)4:0 (recall the discussion 

concerning (1.10) of the introduction). Using condition (B4) for the first time, we see 

that 

Ic(nj)l > �89 

Thus, 

la(nj)l > �89 

> X4lx( n(j3 )l . 

Hence, we have that 

la(nj)l >~ (I /2nj)~r(nj) ,  (3.21) 
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since r(nj)=lx(n(j)) I and nj~2. Also, 

la(nj)l w(nj) > 4Xl x(ntJ3)l w(nj) 

= ~lx(n(J3) lw(n( j ) -  1) 

]w(n ( j ) -  1) 2 -j+t 
= 

w( n(.l) ) ' 

by condition (C). Then applying condition (B3) with k+ 1 replaced b y j  (recall j  is fixed 

and j~>2) we see that the above is 

> 2-j-l(-~-l)nj+,/nJ(2nj+l)"j+, t2.J+2n ~j+2 x j+2 j �9 

Since j +  1 ~<nj+ 1 the above is 

nj+2 nj+2 
i> (2 nj+2) 

nr+ 2 Ilr+2--n j 
t> (2 nr+2) . 

since r=r(n j )=j - I .  This implies that 

/lr+ 2 nr+2--11j 
(2 nr+ 2) 

la(ni)t >1 w(nj) (3.22) 

Together, (3.21) and (3.22) imply that a(nj) has property (M). Since j~>2, this contra- 

dicts Corollary 3.19. Hence x must generate a non-standard ideal, and the result 

follows. 
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