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Preface

The purpose of this paper is to give applications of the operator theory developed in
the first part (Acta Math., 127 (1971), 79-183). These concern the existence and regularity

of solutions of a pseudo-differential equation
Pu~f (1)

in & manifold X. In particular we construct and study parametrices for P.

In the first chapter, Chapter V, we have collected some general facts concerning the
caleulus of Fourier integral operators needed later. In Chapter VI we then consider the
equation (1) under the assumption that P has a principal symbol p which is homogeneous
of degree m and real. First we study the propagation of singularities of solutions of (1).
If no bicharacteristic curve of P is contained in a compact set in X this leads to semi-global
existence theorems and we can then give necessary and sufficient conditions for the operator
P to map 9'(X)/C*(X) onto itself. Globally as well as locally these hypotheses are
weaker than those made in Hormander [17, Chap. VIII]. Under the same hypotheses we
construct (twosided) parametrices for P, that is, inverses mod C®. If the characteristic
set is split in a disjoint union of open and closed subsets N* and N~ there is mod C® a unique
parametrix £ = E(N*) such that for f€&’(X) the wave front set of Ef in addition to that
of f only contains forward (backward) bicharacteristic half strips emanating from points in
N* (resp. N7). When the characteristic set has k components there are 2° such parametrices.
For the Klein-Gordon equation []-+m? these are given by the advanced and retarded
fundamental solutions, the Feynman “propagator” and its complex conjugate. The dif-

ference between the Feynman propagator and the advanced or retarded fundamental
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solution is + =1 times the positive definite distribution which is the Fourier transform
of the Lorentz invariant measure on either component of the hyperboloid & —... — &7 =m2.
(See e.g. Bjorken and Drell [32].) On physical grounds it has been suggested (see DeWitt
[34]) that this positivity remains valid for the wave operator on a pseudo-Riemannian
manifold of Lorentz signature. In this direction we prove here that E(N')/i increases
with Nt (in the sense of operators in Hilbert space) if P is self-adjoint and the indeter-
mined C® part of F is conveniently chosen.

In Chapter VII we drop the hypothesis that the principal part p of P is real, but we
require that the differentials of Re p and Im p are linearly independent and that the
Poisson bracket {Re p, Im p} vanishes at the zeros of p. Even under this strong restriction
our results are less complete than in the real case. The more general classes of operators
studied recently by Nirenberg-Tréves [25] and Egorov {8] are not considered here at all.
Nor do we discuss operators between sections of vector bundles although this involves no
additional difficulty when the fiber dimensions are the same and hypotheses are made on
the determinant as in the scalar case. For a more detailed description of the contents we
refer to the introductions of each chapter.

The authors would like to thank Professor A. Wightman for patient instruction on the
role of “propagators” in relativistic quantum mechanics. This led to the results of section

6.6 indicated above.

V. Additional results on the calculus

5.0. Introduction

In section 5.1 we shall just recall with slight extensions some of the notions introduced
in part I. The following two sections give an important supplement to the multiplicative
properties of Fourier integral operators proved in section 4.2. There we proved that if
A €I X <Y, 0y), A,€IT(Y xZ, C3), if the composition €, 00, of the canonical relations
¢, and C, is well defined and 4, or 4, is properly supported, then 4, 4,€I;**™(X x Z,
(C100y)’), and we computed the principal symbol. However, for some choices of 4, and 4,
which occur in Chapters VI and VII the principal symbol of the product will vanish identi-
cally although this is not the case for either factor. Thus 4, 4,€ [T 1-2(X « Z (C,00,)")
then, and we must compute the principal symbol of order m; +m, +1 —20. In doing so we will
assume for the sake of simplicity that 4, is a pseudo-differential operator of type 1, 0. Besides
the principal symbol of 4, we must also consider an invariantly defined subprincipal symbol
closely related to the subcharacteristic of Gdrding—Kotake—Leray [37]. This is discussed in

section 5.2 and the required formula for the principal symbol of the product is given in
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section 5.3. It involves a first order differential operator depending on 4; which acts on the
prineipal symbol of 4, The solvability of the .equation 4;4,= B with given 4, and B
is also discussed in section 5.3 under the assumption that the first order differential equa-
tion for the prineipal symbol of 4, can be solved. This is actually the transport equation of
geometrical optics. Instances of this will be encountered in Chapters VI and VII. In section
5.4 finally we examine when a space I7(X, A) is included in the space H,(X) of distri-

butions with locally square integrable derivatives of order s.

5.1. Preliminaries
Let X be a ¢ manifold and A a closed conic Lagrangean submanifold of T*(X)\0

where T%(X) is the cotangent bundle and 0 the zero section. (We require manifolds to be
countable at infinity.) In section 3.2 we have introduced spaces I7(X, A)(m€R, } <p<1)
of distribution densities of order 1 in X. If A€ I™(X, A) then the wave front set WF(A)

is contained in A and there is a natural isomorphism
IMX, AYIP 20X, A) 2 SPF YA, Qy @ L)/Sy ™42, Oy ® L).

If €Sy (A, Q,®L) and u€I7 (X, A) have corresponding residue classes we call a a
principal symbol of u. The following result is really implicit in Chapters I and I1I but we

state it for later reference:

ProrosiTion 5.1.1. Let 4,€I7%X,A), k=0,1,2,... where my—~ — oo as k- oo,

Set my=max;,m;. Then one can find AGIZ’" (X, A) such that

A— S AL X, A), k=1,2,... (5.1.1)
i<k

A is uniquely determined modulo C*(X) and has the same property relative to any rearrange-

ment of the series X Aj; we write A~ A

Here we have written C®(X) for the space of C*® densities of order }. Similarly we shall

often write just 2'(X) for the distribution densities of order }.

Proof. If every 4, is of the form (3.2.14) with a fixed § and an amplitude of order
my, + (n— 2N ;)/4 satisfying the hypotheses of Definition 3.2.2 with a fixed j and K, then the
proposition is an immediate consequence of Proposition 1.1.9. We can choose a countable

subset J, of the index set J used there such that the sets X; are a locally finite covering of
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X and U, are a locally finite covering of A. Each 4, can then by Theorem 3.2.1 be split
into a sum X 4,; with 4,;as above. Thus X, 4,; is defined modulo C* and since the supports
of these distributions are locally finite we can form the sum A4 with respect to j also. It is
obvious that it has the desired property.

Extending the definition of characteristic used in section 2.5 for pseudo-differential
operators we shall say that 4 € I7(X, A) is non-characteristic at A€A if and only if any
principal symbol a €S7*™*(A, QL) has a reciprocal b€ S,™ *(A, Q_,®L) in a conic
neighborhood of 1. If s, is a local section of ;&)L which has no zero and is homogeneous
of order m +n/4, this means precisely that a =ays, where g, is complex valued and |a,|
is bounded from below at infinity in a conic neighborhood of A. This condition is of course
independent of the choice of principal symbol. By Theorem 3.2.6 the non-characteristic
points belong to WF(A4).

If X and Y are two C® manifolds then a homogeneous canonical relation from
T*(Y)N\O0 to T*(X)\0 was defined in section 4.1 to be a conic C® submanifold C of
(T*(X)N0) x (T*(Y)\0) which is Lagrangean with respect to the difference ox—ay of
the symplectic forms and is closed in 7*(X x Y)\ 0. Then the manifold ¢’ obtained by
multiplication with —1 in the fibers of 7*(Y) is Lagrangean in 7*X x Y)\ 0, and the
elements of I7(X x Y, C) can be considered as maps from &£(Y) to 2'(X) and CF(Y)
to 0°(X).

The following is an immediate extension of Proposition 2.5.1:

ProrosiTioN 5.1.2. Let C be a bijective homogeneous canonical transformation from
T*(YYNO onto TH*HX)\O, thus dim X =dim Y, and assume that A€ I}(X x Y, C"} is properly
supported and elliptic, that is, has no characteristic points. Then there exists a properly sup-
ported elliptic Fourter integral operator BEI;™(Y x X, (C~Y)') whick is a left and right
parametriz, that is, BA-I and AB—1 have C® kernels. Any other parametriz for A differs

from B by an operator with C® kernel.

Proof. We can regard the principal symbol a of 4 as an element of S7(C, L) (see
4.1.7). The ellipticity means that we can find b€ 8;™(C, Lg") such that over any compact
set ba =1 outside a large enough sphere. Choose By€ I,™(Y x X, (C-')') with this principal
part. Then we obtain that AB,=1-+R,, ByA=I1+ R, where R; are pseudo-differential
operators in X and ¥ respectively of degree 1-2¢ <0 and type p. As in the proof of Proposi-
tion 2.5.1 it follows that I+ R, has a twosided parametrix which is ~ 23°( — R;)*. It follows
that A4 has both left and right parametrices and since the proof of Proposition 2.5.1 gives
without change that left and right parametrices must differ by operators with C® kernel,

the proposition is proved.



FOURIER INTEGRAL OPERATORS, II 187

We shall sometimes need local versions of the preceding notions and results. Thus let
A be a conic Lagrangean manifold in 7*(X)\ 0 which is not necessarily closed, and let K
be a conic subset which is closed in T*(X)\ 0. We then denote by I}(X, K) the set of
distributions introduced in Definition 3.2.2 with the additional condition that for each
j€J the restriction of @; to some conic neighborhood in R" x R% of the pullback of AN K
by the mapping Cy,3 (@, 0)~ (=, @1z) 3s of class S—®. Note that the definition depends both
on K and on A although A has been suppressed in the notation. The proof of Theorem

3.2.5 again gives an isomorphism
SXH—HM(K,Q} ®L)/Sg’+"/4+1”29(K,Q% ®L) ~ IZ,"(X, K)/I;"Jrl'zQ(X, K)

where 84 (K, Q,&@L) denotes the set of a €84 (A, Q,® L) such that a €S- on AN\ K. Clearly
the analogues of Theorem 3.2.6 and Proposition 5.1.1 are also valid.

Now let C be the graph of a homogeneous canonical transformation from a conic
neighborhood of (y,, 7,) € T*(Y)\0 to a conic neighborhood of (x,, &)€T*(X)\0 with
co= (%o, &o)» (#o, 1)) EC. Let A€IF(X x Y, K') where K is a conic subset of ¢ which is
closed in 7™(X x Y)\ 0, and assume that ¢, is a non-characteristic point for 4. (We consider
the principal symbol to be defined on C or on (", whichever is more convenient for the
moment. This should cause no confusion.) Then the proof of Proposition 5.1.2 shows
that one can find BEI;™(Y x X, K;) where K, is the inverse of K, such that

(@0, £) §WF(AB—Ix), (4o, m0) ¢ WEF(BA—1Io). (6.1.2)

Here Iy and I, are the identity operators in 9'(X) and 2'(Y) respectively. Note that
AB and BA are pseudo-differential operators.

5.2. The subprincipal symbol of a psendo-differential operator
Let X be a (° manifold and P€Lj (X) a pseudo-differential operator in X regarded

as a map from densities of order 1 to densities of order }. For every choice of local co-
ordinates y, ..., ¥, in an open subset X, the operator has a symbol p(z, &), (z, £) €X, x R",
determined modulo S~ (see section 2.1). Regarded as a function on T*(X) it is independent
of the choice of local coordinates modulo Sg+!'~2¢, We shall improve this invariance by a
modification of an argument of Garding—Kotake-Leray [37] which takes advantage of the
densities of order 1.

Let @, ..., ¢, be another system of local coordinates in X, and set @(z, 0) =Z @,(2)6,,
(z, 0)€X, x R". Choosing a density w€ (g (X,) of order } we shall consider e~ *?P(we’?) as
a function on 7*(X,) by means of the vector bundle isomorphism (z, 6)— (x, gz (x, 0)).

This quantity may of course depend on ¢, ..., ¢, but by evaluating it in terms of the local
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coordinates @, ..., z, we shall see that this is not the case modulo S5+2*~2® and so we will
obtain the desired invariance.

In terms of the local coordinates we have
¢ P(we'?) ~ 2 p®(x, @) Di(w(z) €0 ol |, _, (5.2.1)
where 0(%,2,0) = @(z,0) — p(x,0) = (2 — z, (., 0)).

This follows from the formulas for multiplication of pseudo-differential operators and for
changing variables given in section 2.1, and can also be taken as a starting point for a
proof of these (see Hormander [13, section 2]). If k is the largest integer < { a|/2, the second
factor in (5.2.1) is a polynomial in  of degree <k and therefore in S¥. This gives easily

e” P (we*?) = p(x, gz) w(x) + 2 p (@, @) Dyw(x)
+ (24) 1 2 p9 (x, y) w(x) P plow. 0w,  mod SptEI-EO, (5.2.2)

Note that only the first term on the right hand side is not determined by the residue class
of p mod S5+!~22, Since we should regard w as a density of order } it is natural to replace
the first sum by a Lie derivative so we digress to recall this notion.

If v is a real O vector field and a a density of order » on a manifold M, then the Lie

derivative of @ with respect to v is defined by
d £y %
,?va:%- (¢')*alio. 5.2.3)

Here ¢? is the local one parameter group of transformations of M generated by v and ¢* a
denotes the pullback of @ by means of the transformation ¢. If g, is a non-vanishing density
and we write @ =uqa,, then

Lo = (vu)ay+uP,ay = (vu+fu)a, (5.2.4)

where f is the function defined by % ,a,=fa,. Apart from lower order terms Lie derivation
of densities therefore coincides with differentiation of the factor u with respect to the
vector field v. If a, is the density of order » corresponding to the standard volume in some

local coordinates yy, ..., ¥, on M then
] =undive =3x X ov,;/0y;. (5.2.5)

Formulas (5.2.4) and (5.2.5) define %, also for complex vector fields.
Let v be the vector field (p™(z, ¢y), ..., p™ (x, @s)) in X, which is defined by the

funetion p(z, £) on T*(X), with no other reference to the local coordinates.xy, ..., z,. Since
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2 p90 (@, @) 8 plow,b, — Zop (w; gr) o= — 2 P (@, @2)

where p{) (z, &) =8 plow,0;, we obtain

e~ P(we™) = (p(x, pr) — (28) 2 pR (w0, @p)) w(x) —i.F,w modulo SF*21-20.  (5.2.6)

But Z,w is modulo S7*?@~29 independent of the choice of local coordinates 2, ..., ,,
so it follows that

P @) — (2672 PR (@, 02)
is also independent of the local coordinates mod Sp+*'~29 when regarded as a function

on T™(X,). Thus we have proved

Prorosition 5.2.1. Let P be a pseudo-differential operator tn @ manifold X, considered
as an operator between densities of order §. If PELY and for some choice of local coordinates

p(x, &) denotes the full symbol, then
p— (24) 12 8% plox;08,€ ST (5.2.7)
13 modulo Sy+21=29 independent of the choice of local coordinates.

It is of course also possible to prove Proposition 5.2.1 directly using the formulas of
section 2.1 for changing variables but this approach would not explain the reason for the
invariance as clearly.

In what follows we shall usually consider pseudo-differential operators PELT(X)
with a homogeneous principal symbol p. This means that we assume the existence of a
O homogeneous function p of degree m on T*(X}\0 such that for any system of local
coordinates the full symbol of P is of the form p +r where r €§7-1. Clearly p is then uniquely
determined by P, and Proposition 5.2.1 reduces to the statement that

r—(24) 128 plox,08,€ ST ! (5.2.8)

is uniquely determined modulo 8772, We ‘can therefore choose ¢ € 87~ (T*(X)) which agrees
with (5.2.8) modulo S7~* for any choice of local coordinates. We shall call such a symbol ¢
a subprincipal symbol. If the full symbol of P is a sum of homogeneous terms we can of

course choose ¢ homogeneous of degree m —1, and the definition of ¢ is then unique.

5.3. Products with vanishing principal symbol

Let X and Y be C® manifolds and € a homogeneous canonical relation from 7*{Y)\ 0
to T*X)N\0. If P is a properly supported pseudo-differential operator in LJ{X) and if
AETF(X x Y, C'), we know from Theorem 4.2.2 that PA€I™™(X x ¥, ("), and Theorem



190 J. J. DUISTERMAAT AND L. HORMANDER

4.2.3 allows us to compute a principal symbol of PA. This may vanish identically, however,

and the following result gives the principal symbol of lower order in such a case.

THEOREM 5.3.1. Let P be a properly supported pseudo-differential operator €LT(X)
with homogeneous principal symbol p, and denote by ¢ a subprincipal symbol of P. Asswme
that C is a homogeneous canonical relation from T*(Y)\0 to T*(X)\ 0 such that p vanishes
on the projection of C in T*X)\0. If A€IF(Xx Y, C') and a€S™+"x*"P* (", Q,®L)
is a principal symbol of A, it follows that the product PAEIF*" (X x Y, C') has

1 %n,0+ca (6.3.1)

as principal symbol. Here H, is the Hamilton field of p lifted to a function on (T*(X)\0) x
(T*(Y\0), so H, is tangential to C, and L, is the corresponding Lie derivative.
Note that since L is flat we can define &y, a by using local trivializations of L which

only differ by a constant factor and therefore do not affect the definition.

Proof. 1t follows from Theorem 3.2.3 and an observation made at the end of its proof
that a conic neighborhood of any point in ¢’ can be represented by a phase function of the

form
(P(x’ Y, E, 77) =<.’E, '§> +<y’ 77> —H(S: 77)

provided that the local coordinates in X and in ¥ are conveniently chosen. Here H is defined
in a conic neighborhood of (&, 7o) € (R"2\ 0) x (R"*\0). We may therefore assume in the
proof that 4 is of the form

Au(x) = fffew‘x'”'f'”)a(x, y, &) uly)dydsdy, u€CY, (5.3.2)

where a €85 for y=m'— (nx+ny)/4 and a vanishes outside a small conic neighborhood of
(Hg, Hy, &,m) with &= &, p=1n,. The map

(&n)~ (Hy Hy &)

is a local parametrization of the manifold C, of points where ¢ is critical with respect to
(§,7), and the density defined in O, by the pullback of the Dirac measure in R"x+"r with
the map (z,y, & 5)—>(x—H;, y—H,) coincides with the Lebesgue measure in (£,7). In
terms of these local parameters on C' and the trivialization of L given by the phase function
@, a principal symbol of A4 is therefore given by the restriction a(H;, H,, £, 7).

By repeated use of Proposition 1.2.5 we can replace a by a function a(&, ) without
changing the singularities of 4 in the local coordinate patch considered in (5.3.2). An appli-

cation of P under the sign of integration now gives
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PAu(z)= fffe"”“'”'f'") (p(, &) +1(x, &) g, n) wly) dy dé dn (5.3.3)

where as at the end of section 5.2 we have denoted the full symbol of P by p+r. Since
p(Hy, £)=0 we can choose by means of Taylor’s formula functions p;€ C*® in a neighborhood
of the support of the integrand in (5.3.3) such that

D, &) =2 p;(, &) (v, — 0H[0&)) = 2 p, (, &, m) Bop(x, y, &, m)[0&; (5.3.4)

and p; is homogeneous of degree m with respect to (£, n). We may assume that a, vanishes
in a neighborhood of 0 and obtain by an integration by parts with respect to & as in

section 1.2
PAuz) - f f feww-s-m(mrrlzamu, £m) ao (&, )08 uly) dydedy.  (5.3.5)

P4 is therefore a Fourier integral operator with the amplitude

”‘o - i_lzpj (.’l?, E: 77) aao (5; 77)/85} - i_lao (E: 7]) Zapj (z’ 5’ 7?)/85; (536)

This is in 83*#7¢ so it follows that P4 €I7*™ ¢, We can obtain the principal symbol by
taking the restriction of (5.3.6) to C,. In doing so we may replace a,(&, ) by a(H;, H,,
&,n) for the difference is in Sy*'72¢. With x=H;, y=H, this gives

- 2p;(x, & p)oa(Hy, Hy &) [08;= — 2p;(Z0a/ox,8*H|08, 28, + 2 0a/oy,o*H [on, 08, + 2a/0k,).
Since differentiation of (5.3.4) gives for z = H;

oplow;=p;,  oplo&,= —2p;0*H[0&;08,, 0= —2p,8*H|0&;dn, (5.3.7)
we conclude that

— 2p;(w, & ) da(Hy, H,, &,1)/68;= 3 (6p(0&; 6a/ox; — oplox, dalag;). (6.3.8)

This shows that the vector field —X p;8/0&; on C,, is the expression of I, in terms of the
local coordinates (£,7) there. Therefore the Lie derivative along H, of a(H;, H,, & 7)

considered as a density of order } is in view of (5.2.5) equal to
- zp] aa()/aéj - %Zapj(H;: 57 n)/afja’O‘
Thus the principal symbol of P4 is i‘l,?Hpa+ ya where if we recall (5.3.6)

7’ =r + (2?’)—1281)1(1;1;’ E: 7])/851_ i_lzapi(x: 53 n)/afj’ xr= Hé'
13 ~ 722909 Acta mathematica 128, Imprimé le 23 Mars 1972.
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This is the value for z=H; of

4 (29) (2 0p,/08;+ 20p,[0x, 6" H |08, 88, — 22 0p,/0¢,)
=1 —(20)" 28/0&,(p; + ZOpyfow,(x,, — 0H[0E,)) = r — (21) " 28* plow, ¢,

where the last equality follows from another application of (5.3.4). This completes the
proof, for the right hand side is the definition 5.2.8 of the subprincipal part.

From the proof it is obvious that there is also a local version of Theorem 5.3.1 when
AeI}(X x Y, K’) for a closed conic subset K of a canonical relation C.

Keeping the hypotheses of Theorem 5.3.1 we shall now discuss the solvability of the
equation PA=B with A€} (X x Y, C’) when B is given. We know by Theorem 5.3.1
that B must be in I;"""¢(X x ¥, (") and that the principal symbol b€ 85+™ -+ i3 given
by

b=i‘1,'Z’Hpa+ca. (56.3.9)
Here we have written n=dim X +dim Y. However, we cannot expect this equation to
have a solution a €S, ™4 for every b€Sy+™~¢+*"* if p <1. For example, if m =1 we might
have H,=0/0x, and integration of b with respect to z; would not decrease the order. On
the other hand, this example indicates that it is reasonable to expect such a solution «
if beSy+m-1+"4 Tn fact, such situations will be encountered in Chapters VI and VII, and

the conclusions are discussed in the following analogue of Proposition 5.1.2.

TrarorEM 5.3.2. Let P and C satisfy the hypotheses in Theorem 5.3.1, let p>2/3 and

assume that for every real u
H,84(C)> 87~ 14(0). (5.3.10)

For every BEIZ"™ Y (X x Y, (') one can then find A€IT(X x Y, (') such that PA—B
has a O kernel. If b is the principal symbol of B and a is any solution of (5.3.9) belonging to
87 M40, L®LY;) one can choose A with principal symbol in the class of a modulo Sy +™/t+2-3¢

(€, LRQ,).

Proof. From (5.3.10) it follows that (5.3.9) has a solution a€85(C’, LRQ,) for any
HESFH (", LRQ,). In fact, let w be a non-vanishing section of L, which is homo-
geneous of degree 0. That such sections exist follows from the triviality of L and €2, as
complex vector bundles (see section 3.2, p. 148). Writing a %aow and b =byw we reduce the
equation (5.3.9) to the form ‘

(—iH a4 +c'ay) = by

where ¢’ €877 and a,, b, denote scalar symbols of the same orders as a, b. By hypothesis
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we can find y € 89 so that H,y=c’. By Proposition 1.1.8 we have exp (+14y) €S, and if we
write a,=1e~a,, b,=e~'?b, the equation reduces to
Hya, =b,
which by hypothesis has a solution a, €8% if b, €Sp+#1,
Now choose 4,617 (X x Y, (") with principal symbol satisfying (5.3.9), and set
B, = B—PA,.

By Theorem 5.3.1 we obtain B, €1j where uy=m+m'—p—(20—1)=m+m'—1-—-(3p-2).
Iterating this argument we obtain sequences A;€Ir'3¢®(Xx Y, (') and B €
Ipm-1-98e-B(X » Y, (') such that By=B and

B, =B;~P4,, j=0,1,2,.. (5.3.11)

Let A be the asymptotic sum of all 4,, j=0, 1, ... which is defined according to Proposition
5.1.1 since 3g>2. Adding the equations (5.3.11) we obtain

P(dy+...+4,)=By—B;,,
which gives that PA - B €I;*(X x Y, (")=C®X x Y). The theorem is proved.

Remark 1. A similar-result is valid for the equation AP = B for this is equivalent to
the equation P*4*= B* for the adjoints.

Remark 2. We shall also need a local version of Theorem 5.3.2 where C is replaced by
a closed conic subset K of a canonical relation which is not necessarily closed. Since the

modifications involved are quite obvious we do not state this result explicitly.

5.4. The smoothness of elements in I, (X, A)

First recall that H,(X) denotes the set of all u€2’'(X) such that Au€LE (X) for all
properly supported A4 éLﬁ (X). It is enough to require this for one elliptic 4, and we have
Bu€H_py(X) if u€H,(X) and BELY(X), p>1. (See section 2.2 and also [13], section 5.)
Let A be a closed Lagrangean submanifold of T*(X)™0.

TeEOREM 5.4.1. I}(X, Ayc Hy(X) f and only if m+n/d+s<0. Moreover, if u€
I3(X, A) and u has some non-characteristic point, then it follows that u ¢ Hy(X) when 0<
m+nld+s.

CoroLLARY 54.2. A Fourier integral operator from D'(Y) to @'(X) is a Hilbert-
Schmidt integral operator if it is of order < —(dim X 4-dim Y)/4 and the kernel has compact
support,
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It is interesting to compare this conclusion with Theorems 4.1.1 and 4.3.2

Proof of Theorem §.4.1. Tt is sufficient to show that if € I7(X, A) and WF(u) is in a
small conic neighborhood T of (z,, &) € A, then u € H g, = L}, if m +n/4 <0 whereas u ¢H q,
if m+n\420 and (z,, &) is a non-characteristic point. Let y be a homogeneous canonical
transformation from a conic neighborhood of (x,, &) to a conic neighborhood of (X, =) €
T*RB")\0 and let K be a closed conic neighborhood of (z,, &, X, E,) in the graph of y.
The inverse graph we denote by K,. According to (5.1.2) we can choose operators
Ae}(X xR", K') and BEI?(R" x X, (K-1)’) such that

(g, Eo) § WF(AB—1I).

We may assume that I’ does not meet WF(AB—I), and then we have 4 Bu—u€C™.
Hence it follows from Theorem 4.3.1 that

w€LZ, > Bu€Li > ABu€ L >u€ll,

so w€L{,< Bu€Lf,,. Now Bu€Ig(R", 4I'), and by appropriate choice of y we can make
4T contained in 0 x (R*™\0), the normal bundle of 0 in R”®. In fact, with suitable local
coordinates Theorem 3.1.3 shows that A is defined near (z,, &) by x=H'(§) where H is

homogeneous of degree 1 near &;,, and we can take for y the canonical transformation
(, &) > (@ —H'(§), ).

In the special case to which the proof is now reduced we have
u(w) = (27{)_372{4.[65(2'6)0?(9) do

(the integral taken in the sense of Schwartz), where a €87 ™* and 1/a €S8, ™"/ in case
» has a non-characteristic point. By Parseval’s formula we obviously have »€ LE, if
2(m —nj4)< —n, and not if 2(m —n/4) > —n when there is a non-characteristic point, for

is rapidly decreasing at infinity so w€L%, if and only if uw€L2

VI. Pseudo-differential operators with real principal symbols
6.0. Introduction

Throughout this chapter P will denote a properly supported pseudo-differential operator
of the class L7'(X) where X is a € manifold, and we assume that P has a real and homo-
geneous principal symbol p. In section 6.1 we show that if Py =f€C*® then thé singularities

of u propagate along the bicharacteristics in the sense that W F(u) is invariant under the
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flow defined by the Hamilton field of p. (Recall that by definition p vanishes on W F(u).)
This implies that through every point in sing supp « there is a bicharacteristic curve which
stays in the singular support. (The conclusion is of course trivial if some such curve is
reduced to a point.) In the constant coefficient case this result was first proved by Grusin
[38]; a weaker statement valid also for variable coefficients had been given before in
Hérmander [17, section 8.8]. A local extension of the Grugin theorem to the case of regular
bicharacteristic curves was announced in Hormander [15]. One of the main reasons for
considering W F(u) instead of sing supp w is that this eliminates the difference between
local and global results. For proofs using only pseudo-differential operators we refer to
Hormander [45], where only the case of a regular bicharacteristic curve is studied, and
Hoérmander [46] where an extension to certain operators with complex principal part is
also given. Analogous results concerning non-analyticity have been given by Andersson
[29], Kawai-Kashiwara (to be published) and Hormander [44].

On the other hand, we prove in section 6.2 that there exist distributions « with Pu € C®
such that WF(u) is generated by a given bicharacteristic strip. (The statement must be
modified if the strip has boundary points. ) For earlier results in this direction see Zerner
[53], Hormander [17, section 8.8], [43]. The methods used in the proof are derived from
the asymptotic expansions of geometrical optics but to obtain global results which do not
require regularity of the bicharacteristic curve it is essential to use the calculus of Fourier
integral operators.

In section 6.3 we use the results of sections 6.1 and 6.2 to study the existence of solu-
tions of the equation Pu=f. If no bicharacteristic curve of P is contained in the compaet
set K < X it is proved that the equation can be solved in a neighborhood of K if and only if
fis orthogonal to the finite dimensional space of v €Cy (K) with *Pv =0. If no bicharacteristic
curve is contained in a compact subset of X then the equation Pu =f has a solution modulo
(= for every distribution f if and only if X is convex with respect to the bicharacteristic
curves of P in a sense explained in section 6.3. By an example it is shown that knowledge
of the symbol alone cannot decide whether genuine solutions exist.

The existence theorems of section 6.3 are proved by abstract functional analysis but
in section 6.5 we show that the same hypotheses on P and X allow one to construct para-
metrices of P, that is, inverses modulo 0®. As a preliminary for the construction we
discuss existence theorems for real first order differential equations in section 6.4. This is
required for the application of Theorem 5.3.2 and also gives an elementary example of
the role of the convexity conditions occurring in the general case. In section 6.5 we deter-
mine in particular which sets that can carry WF(H) when E is a right, left or twosided

parametrix. The results contain the theorems on the singularities of solutions of hyperbolic
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equations given by Hadamard [39] and Riesz [49] (second order equations) and Courant-
Lax [33], Lax [21], Ludwig [22] (equations of arbitrary order). The study of parametrices
is continued in section 6.6 which is mainly devoted to the positivity properties mentioned
in the preface. These seem to be new even for second order hyperbolic operators with

variable coefficients.

6.1. The propagation of singularities
The main result to be proved in this section is

TarorewM 6.1.1. Assume that P€LT{X) ws properly supported and has a real principal
part p which is homogeneous of degree m. If w€P'(X) and Pu=f it follows then that
W F(u)N\WF(f) is contained in p~1(0) and is invariant under the Hamiltonian vector field H,.

We shall prove the theorem by reducing it to the special case P= D, in R* where it
follows by explicit solution of the equation Pu=f. The study of this special case as well
as the reduction will at the same time prepare for the construction of a parametrix in
section 6.5, so we shall also include some material not required until later on.

By E; and E; we denote the forward and backward fundamental solutions of the

operator D,, the kernels of which are defined by
E} =82’ —yYH(x,—vy,), E,=—1id@ -y )H(y,—x,).

Here H is the Heaviside function, H(f)=1 for t>0 and H(f)=0 for {<0, and we have
used the notation z=(x’,z,) and y=(y', y,) for points in R". Note that B —E, =

#8(z" — ') or, in Fourier integral form,
(B —B7) (w)= (2n)‘“"“2>’4f f f V0 Vo (e, yydedydd, w€CP®*xR™. (6.1.1)

Here 4n —2=2n+42(n —1) so the power of 27 in front of the integral agrees with (2.4.1)
and (3.2.14). For the phase function ¢(z, y, ) ={(2’ —y’, 6> the set C, where s =0 is defined
by z'=y’, so it is parametrized by ', z,, y,, § and the pullback of the Dirac measure in
R* under the map (x, y, ) >¢p is the measure da’dx, dy,df on C,. The canonical relation
defined by ¢ is

On={(=, & y,m); 2’ =y, & =n'+0, & =1, =0} (6.1.2)
and the bijection C,—~C, gives the parametrization

(xls xn; yn7 0) - (xly xn: 6) O) x'a ?/m 65 0) eon (61’3)

With these parameters and the trivialization of the Keller—-Maslov line bundle L given by
@ the principal symbol of E; — B, is
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iV2n Vda' dx, dy, df € SP—D/2 = gyt+enit, (6.1.4)

so Ef —E; €IT}R" xR, C,). It follows that yEi€I;¥R"xR", Oy) if y€C°R" xR
vanishes in a neighborhood of the diagonal. In fact, if x -y then either B or E; vanishes
in a neighborhood of (z, y).

In particular we conclude that W F'(E7) is contained in C, except over the diagonal
in R*xR" Since WF'((z'—y'))<C, and WF'(H(x,~y,)=C ={(x, & y,n); &=n"=0,
Ty =Yn, En=m,=+0}, it follows from Theorem 2.5.10 that WF'(E;)<=(C'+C,)VC'UC,.
Over the diagonal in R" x R* this set is the same as the diagonal in (7*(R"*)\0) x (T*(R")
N0). If we note that WF'(D, E;;)=WF'(6(x—vy)) is equal to the diagonal, we find on the
other hand that WF'(E;) must contain the diagonal in (T*R")\0) x (T*(R")\0), and

so we have proved

ProrosITION 6.1.2. Let E; and E; be the forward and backward fundamental solutions
of D,= —1id[oz, in R". Then we have

(i) WF'(E5) is the union of the diagonal in T*R™)\0 x T*R")\0 and the part of the
canonical relation C, defined by (6.1.2) where x, 2 y,.

(i) yEf€IT¥R" xR, C,) if XE€CX(R" x R") vanishes near the diagonal.

(iii) Ef —E, eI;¥R* xR, C,) and a principal symbol is given by (6.1.4) where the
parametrization is that of (6.1.3) and the Keller—Maslov line bundle s trivialized by means

of the phase function {x'—y', 6>.

Using (i) only we shall now prove Theorem 6.1.1 when X=R" and P=0D,. First
assume that v€&'(R") and set g=D,v. Then we have v=E; g=E; g. If €} and C;; denote
the parts of C, where x,>y, and «x, <y, respectively, then by (i) in Proposition 6.1.2 and
Theorem 2.5.14 it follows that

WFw)< (WF(g) U CEWEF(g)) n (WF(g) U C; WF(g)). (6.1.5)

Consider now a distribution ©«€2'(R") and set D,u=f. Since the Hamilton field of
p(x, &) =&, is the unit vector e, along the z,-axis, Theorem 6.1.1 will be proved for the ope-
rator D, if we show that (zy, &) € WF(u)\ WF(f) implies (z,, &) +te, € W F(u) for small £.
Choose 6>0 so small that (x,, &)+te, ¢ WF(f) when |¢| <8, and then p€C(R") with

x—%| <0 in supp ¢. If v=¢u and g=D,v, we have
l 0[ 1Y g n
WF(g) < WF(pf)U WF(uD,p),

and W F(pf) contains no point of the form (z,, &) +le,. I @(xy) =1 then (x,, &)€W F(v)
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o it follows from (6.1.5) that (z,.&)+te, is in WF(u) and over supp D, for some ¢ >0
and some ¢ <0. Hence (x,, &) +te, € WF(u) for |t] <d.

In the general proof of Theorem 6.1.1 we may assume that P is a first order operator,
for if @ is an elliptic pseudo-differential operator with positive principal part, homo-
geneous of degree 1 —m, then Pu=f implies (QP)u={f where QP has the same charac-
teristics and bicharacteristic strips as P, and WF(Qf) =W F(f). It is also sufficient to con-
sider characteristics (z,, &) of P where the Hamilton field H, does not have the direction
of the cone axis {(x,, v&,); 7>>0}, for the bicharacteristic strip starting at (z,, &) is otherwise
equal to the cone axis and this makes the assertion of Theorem 6.1.1 trivial. Using these
conditions we shall now transform P locally at (2, &) to the operator D,. The first step is

an essentially classical construction of canonical coordinates (see Carathéodory [6, § 105-6]).

ProrositrioN 6.1.3. Let p,, ..., p, be real valued C® functions in a conic neighborhood
of (x4, &) ETHX)N\O which are homogeneous of degree 1. Let n=dim X. For the existence
of @ homogeneous canonical transformation y(z, &) =(X4(x, &), ..., X.(=, &), By(2, &), ..., E,(2.8))
from a conic neighborhood U of (xy, &) to a conic neighborhood of (0, E,) € T*{R*)\0 such
that pi(z, &) =Z =, &), j=1, ..., k, it is then necessary and sufficient that

(i) {2: pj} =0 in a neighborhood of (x,, &) for i, 1=1, ..., k;
(1) Hy (g, &o)s s Hyp (%0, &) and the direction of the cone axis are linearly independent.

Here {p, q} =H,q denotes the Poisson bracket, and H, the Hamilton field.

Proof. Since Poisson brackets, Hamilton fields and the cone axis are all invariant
under homogeneous canonical transformations, the necessity follows from the fact that
{E; E;;=0, Hz,=0/0X,; with respect to the symplectic structure in T*(R").

For the proof of sufficiency we first note that the symplectic form vanishes in the
k-plane B spanned by H,,(%,, &), -, Hy (2o, &) s0 k<n. If py(2g, &) =... =puly, &) =0,
then dp,, ..., dp; vanish in the direction of the cone axis by Euler’s relations for homo-
geneous functions. Hence the symplectic form vanishes in the plane which it spans with
B and so &k <n—1 then. We shall now consider separately the construction of the coordinates
Z, and X,.

(a) Assume that k=n. Writing 5,(z, £} =p,(z, &) we have to find X; homogeneous of
degree 0 so that

Hy(z, &) Xy, &) =0i; 1,5=1,...m; {6.1.6)
{X, Xj3=0; 4,5=1,..,n (6.1.7)

To do so we shall choose a conic n-dimensional manifold § through (z,, £&,) which is trans-

versal to B and choose X4, ..., X,, equal to 0 on 8 and satisfying (6.1.6). The differentials
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are then linearly independent so S must be Lagrangean in view of (6.1.7). All these
conditions can be fulfilled since the tangent plane of S at (z,, &) can be taken as any
Lagrangean plane containing the direction of the cone axis. (Cf. pp. 137-138 and
161-162 in Chap. III.) Since

[Hpi’ Hp,] = H{p,-‘pﬁ} =0

in view of (i), the equations (6.1.6) have a unique local solution and it is clearly homogeneous
of degree 0. The equations (6.1.7) are valid on S since S is Lagrangean and follow in general

by another application of the Jacobi identity,

H,{X, Xi} = —{Xy, {Xo, p}} — {Xo, {p;, Xi}} =0.

(b) If £ <n» we shall prove that one can choose p,,, = so that (i) and (ii) remain valid
for py, ..., Pr.1- Combined with (a) this will of course prove the proposition. Conditions (i)
require that
Hyu=0,j=1,..,k (6.1.8)
and as above we can solve these equations with prescribed data on a conic manifold of
codimension k& transversal to B. If the data are homogeneous of degree 1 the same will be
true of u. Since the differential of u at (x,, &,) is unrestricted by this condition we can choose
the data so that dpy, ..., dp,, du and &dx are linearly independent, for the dimension 2n —k
of the manifold exceeds k+1. The proof is now complete.

The special case k=1 underlies the following

ProrosiTiON 6.1.4. Let PELY(X) have real and homogeneous principal part p and
assume that the Hamilton field H, at (xz,, &) € T*X)\0 is not a tangent to the cone axis.
Choose any homogeneous canonical transformation y from an open conic neighborhood of
(g, &0) ET™(X)N0 to a conic neighborhood of some point (X, Ey) € THR™Y\0 such that p is
the composition of the coordinate function B, and y. For any u€R one can then find a Fourier
integral operator A €I X xR", 1) such that

(i) T is a closed conic subset of the graph of y.
(i) (g, &o» Xo» Bo) 8 @ non-characteristic point for A.

(iii) 4 transforms P to D, locally in the sense that
(xO) 507 XO, EO) ¢ WF’(PA "A.Dn).

Proof. We start with any A4, € I4 which satisfies (i) and (ii). By the local version of
Proposition 5.1.2 expressed by (5.1.2) we can then choose B,€Ii*(R*x X, (I'"1)) so
that (x,, &) ¢ WF(4, B, —I). (All operators can be taken properly supported.) If we set
Q=B,PA, then PA,—A4,Q=(I—A4,B,)PA,, so
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(g, &gs Xy Bg) § WF'(PA, —A,Q). (6.1.9)

Since A4; and B, have reciprocal principal symbols, it follows from the choice of y that
the principal symbol of @ is &, in a conic neighborhood of (X,, E,). Thus we can choose

g€L}B™ =0 that
(Xo, Bo) ¢ WF(Q— D, —q). (6.1.10)

We shall now prove that there is an elliptic pseudo-differential operator 4,€L}(R")

such that
(D,+q)A,— A, D, €L, (6.1.11)

Admitting this for a moment we set 4 =4, 4,. That (i) and (ii) are valid is then obvious,

and since
PA—-AD, = (PA;—4,Q) 4, + A,(@ — Dy —q) Ao+ (D, +9) A, — A4, Dy)
we obtain (iii) from (6.1.9)-(6.1.11).
To solve (6.1.11) we rewrite the condition in the form

[D,, 4,]+qA, €L, (6.1.12)

If ¢° is the principal symbol of @ and a° the principal symbol of 4, the vanishing of the
principal symbol requires that
i_l{ém aO} +§l0“0 =0,
that is, da°/ow, = —ig%®. This equation is solved by
Tn

a®(z, &) =exp (— zf

0

(', ¢, S)dt)
which is an element of S? by Proposition 1.1.8. Choosing 4° with principal symbol a® we
can now successively choose A’€L;’(R*) so that for every j
[D,, A°+...+ A" +q(A°+...+ A7) = R,€Ly’.
In fact, this only requires that the principal symbol o’ of A’ satisfies the equation
i'0d/[ox, + ¢°dl = — 1)y

where r{_; is the principal symbol of E;_;. The solution
Tn
aj(xy 5) = O(xy E)f - 1:7'?__1 (x/: t: E)/aO(x” t) E) dt
0

is in 877 by Proposition 1.1.8 again. Following Proposition 5.1.1 we set 4y~ A%+ 41+ ...
and have satisfied (6.1.12).
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Proof of Theorem 6.1.1. First recall that we have reduced the proof to the case m=1
and that the theorem has been proved for the operator D,. So suppose that m =1 and let
(%9, &) E WF(u)N\ W F(f). By definition of WF(u) this implies that p(x,, &)=0. Since
WEFu)\WF(f) is a cone in T*(X)\0 and an integral curve of H, tangent to a cone axis
is contained in it, we may as already pointed out assume that H,(x,, &) is linearly
independent of the direction of the cone axis. We can then choose an operator 4 according
to Propositions 6.1.3, 6.1.4, and by the local form of Proposition 5.1.2 we can then construct
an operator BEI7#R"x X, (I'"1)") such that

(g, E) §WF(AB 1), (X, Eg)¢§WF(BA-I). (6.1.13)
Here I stands for the identity operators in X and in R™. Since
B(PA—-AD,)B=BP(AB-1)—(BA-1)D,B+BP—-D, B,
it follows from (6.1.13) and (iii) in Proposition 6.1.4 that
(Xo, gy Xy, &) § WF'(BP— D, B). (6.1.14)
We shall now consider v=Bu€2'(R"). Since
U=Av+(I—AB)u

and (z,, &) (I —AB)u by (6.1.13) we have (X,, E,) € WF(v) for the opposite assumption
would imply that (x,, &) ¢ W F(u) in contradiction with our hypothesis. On the other hand,

D,v =D, Bu = BPu—(BP—D,B)u

50 (6.1.14) and the hypothesis that (x,, &,) ¢ W F(Pu) gives that (X,, E,) ¢ WF(D,v). From
the special case of Theorem 6.1.1 already proved we now conclude that W F(v) contains a
neighborhood of (X,, &) on the bicharacteristic curve of D, through (X,, &), so it follows
that ¥ W F(u) must contain this neighborhood. The invariance of the notion of bicharac-
teristic curve under canonical transformation therefore shows that W F(u) contains a
neighborhood of (z,, &) in the bicharacteristic of P through this point, which proves the
theorem.

In section 6.3 we shall need a more precise version of Theorem 6.1.1 which takes into
account differentiability of finite order. To state it we need some terminology and nota-
tions. Again we recall that H,(X) denotes the set of all w€2'(X) such that Au€ LZ,(X)
for all properly supported 4 € Li(X), and that we have Bu€H,_,,,(X) if u€H 4, (X) and
BeLj(X), p>%. We now modify (2.5.2) by writing

WF o(u) =N char (4)
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where the intersection is taken over all properly supported A €L? with Aw€H,), and
char (4) denotes the characteristics of 4. (It would be equivalent to take A€ Lji with
Au€L,) It WF(AYN WF,(u)=2 and 4 €L;(X) is properly supported, o >3, it follows
then that Au€H_,,. Another way of defining WF(,(u) is that (z,, &) ¢ WF(u)if and
only if we can write u=wu; + u, where u, € H,(X) and (z,, &) ¢ W F(u,). The simple proof
is left for the reader.

Let A€9'(X x Y) and assume that WF(4)< (T*(X)\0) x (T*(Y)\0). Also assume

that for the corresponding operator we have

AH i (Y)NE(Y)< H ;- X) (6.1.15)
Then it follows that

WF(,_(Au)< WF' (A)WF ,(u), u€E'(Y). (6.1.16)

In fact, we can write u=u,+u, with u,€H, and WF(u,) close to WF(u), and since
Aw, €H(;_,, by (6.1.15) this allows us to deduce (6.1.16) from Theorem 2.5.14. Note that
Theorem 4.3.1 gives (6.1.15) if 4 is a Fourier integral operator of order y corresponding to
a canonical transformation from 7*(Y)\ 0 to T*(X)\0. We also have (6.1.15) with y=0
if X=Y =R"and 4 =E%, defined in Proposition 6.1.2, for Au is convolution by a measure.

In view of the preceding remarks we obtain by obvious modifications of the proof of
Theorem 6.1.1

THEOREM 6.1.1'. 4ssume that PE€LT(X) is properly supported and has a real principal
part p which is homogeneous of degree m. If u€ 2’'(X) and Pu=f, it follows that WF ., 1)(u)
WF(f) is contained in p=2(0) and is invariant under the Hamiltonian vector field H,. Here

s 18 any real number.

6.2. Construction of solutions with singularities

The main result of this section shows that Theorems 6.1.1 and 6.1.1’ cannot be

improved at least when the bicharacteristics of P are well behaved:

THEOREM 6.2.1. Assume that PE€LT(X) 1s properly supported and has o real principal
part p which is homogeneous of degree m. Let IR be an open interval and y: I-T*X)\0
a map defining a bicharacteristic strip which remains injective after projection to the cosphere
bundle. Denote by I' the closed conic hull of y(I) and by T the limit points, that is, the inter-
section of the closed conic hull of p(I™\ Iy} when I, runs over all compact intervals contained in
1. For any s€R one can then find w so that w€H ) (X) for every t<s and

WFPu)T, WFuNI' = WF ) \I" =T \JI" (6.2.1)
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Note that 1V is empty precisely when y composed with the projection into X is a proper
map I—+-X. Then we have
Py€C», WF(u)=WF,wu)=T. (6.2.1)

Proof. As in section 6.1 we may assume that m=1. We shall begin by proving a less
precise result where I is replaced by a compact subinterval I, and I’ resp. I’ by conic
neighborhoods of (1) resp. y(81,). There is of course nothing to prove if ¢(I) is a ray in
T*X)\0 so we may assume that y is never tangential to the cone axis. If , is a point in
I, we can therefore choose a n—1 dimensional conic submanifold N, of N=
{(z, ) €THX)\0, p(x, £)=0} such that the symplectic form vanishes in Ny, y(t) €N,
and H (y(t,)) is not tangent to N,. (If p(z, &) =£, we can take for N, a plane x=constant,
£,=0 so it follows from Proposition 6.1.3 that such a choice of N, is always possible.)
If (¢, n)—@(t, n) is the Hamilton flow of p, that is, @(¢, %) is the value for the parameter
value ¢ of the solution of the Hamilton equations starting at » when ¢=0, it is clear that

there is a closed conic neighborhood V<N, of y(t,) such that
(t> 'I’L) - ‘P(t —to’ n)

is injective on a neighborhood of I, x V. The range is therefore a closed conic subset A
of a conic manifold which is Lagrangean since n— (¢, n) is a canonical transformation and
H, is orthogonal to the tangent plane of N, by virtue of the fact that p=0 on N,. It is
clear that p=0 on A, and we have y(Iy) =@(I,, ()< A.

Let I, be an open interval with closure contained in the interior of I, and set A’ =
P(Iy\Jo, V,). Since H, pulled back to I, x V, is 9/é¢, the hypothesis (5.3.10) is fulfilled in
A (compare the proof of Proposition 6.1.4). We can therefore choose u€I5(X, A), u=
—s—mnf4, so that Pu€ I§(X, A’) and the principal symbol of u is prescribed on V, in the
class S§+™4( Vo L®LY,). If we choose it non-characteristic at p(f,) it is non-characteristic
at y(lo). Taking Theorem 5.4.1 into account we conclude that uw€H, if t<s and that

WEPuwCAN;  p(I)NA'C WFw)< WFu)< A. (6.2.2)

By using symbols of type p with 2/8 <¢ <1 and Lemma 6.5.9 below it is easy to modify
the preceding arguments so that W F(u)=y(I,) and W F(Pu)<y(81,). However, to obtain
the full result including the precise H, regularity we shall use a more functional analytic
argument combined with a modification of the preceding construction where # depends on
a parameter.

Let F be the set of all w€%'(X) such that w€H;(X) when t<s, WF(Pu)<I' and
WF(u)=T'. The statement in the theorem is that WF ,(u)>I'\I" for some u€F.
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Following section 2.5 we introduce in F the weakest topology making the following maps

continuous:
F < Hy,, t<s; Fau—>Au€C®X) and F3u->BPy€C*(X)

where 4 and B are properly supported pseudo-differential operators with WF(A)NT' =0
and WF(B)NT"=@. 1t is clear that F is a Fréchet space for we need only consider count-

ably many choices of #, A and B, and the completeness is obvious.

Lemma 6.2.2, If T is a properly supported pseudo-differential operator of order s which
is non-characteristic at some point (xq, &) ETNT", then {w€ F; Tu€ L3} is of the first category.

Admitting the lemma for a moment we can complete the proof of Theorem 6.2.1.
To do so we choose a countable fundamental family of conic neighborhoods V,, V,, ...
of points in I'™\I" and for every j an operator T'; as in the lemma with WF(T)<V,
In view of the lemma it follows that 7,4 ¢ L%, (X) for every j if u€ F and » avoids a set of
the first category. But this implies that WF,(u) > I'™\\I" for most u€ F, so Theorem 6.2.1

is proved.

Proof of Lemma 6.2.2. 1f the assertion were false we would by the closed graph theorem
have a continuous map u—> 7% from F to Li,.. Let y €CY (X), (%) +0. The continuity im-
plies that

llxTu| <O(|| Byu| + || Boul|| + (| BsPul|), u€F, (6.2.3)

where the norm is L? norm, and B, B,, B, are pseudo-differential operators with kernels
of compact support, B, is of order t<s, WF(B)N['=0 and WF(B,)nI"=J. We now
return to the construction which led to (6.2.2). If we choose I, sufficiently large and ¥,

sufficiently narrow, then
ANNWEF(By) =@, ANWF(By) =D, (x4, &) V(LA
Hence we have by (6.2.2)
ByPue(C®, Byu€(C>®, Bu€l? yTu¢l’ (6.2.4)

This would contradict (6.2.3) if u were in F which is not the case though. To finish the
proof we have to give a suitable approximation of 4 by smooth functions.

Let ¢ €C°(T*(X)) be equal to 1 and 0 respectively at (z, &) when |£[ <1 and [&]| >2.
Here |£]| is defined with respect to some Riemannian metric in X. Set y, (, &) =y(x, &/e).
These functions form a bounded set in 89 as 0 <g<1 (see section 1.1). We now reconsider
the construction of the distribution « in (6.2.2) with the initial data for the principal

symbol on ¥V, multiplied by .. This gives functions u,€C® such that u,—>wu ase~>0and
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since bounds independent of ¢ are obtained at every step in the construction, (6.2.4) is
replaced by boundedness of B;Pu,, Byu, in C* and of B u, in L. Application of (6.2.3)
therefore gives a uniform bound for ||y 7'u,|| which implies that [|y7'u|| < oo in contradiction
with (6.2.4). This completes the proof.

Remark 1. Note that in the construction of %, a symbol depending on ¢ is consid-

ered to be of order ¢ say only if it is in a bounded set in 8§ when 0 <g<1.

Remark 2. Since the assertion is obvious when P = D, the first part of the proof could

be replaced by a semi-global version of Proposition 6.1.4. (See also Lemma 6.6.3.)

For large classes of operators Theorems 6.1.1 and 6.2.1 combined give a complete
answer to the question what regularity properties of % can be inferred from some

known regularity of % and of Pu:

TuEOREM 6.2.3. Let PELT(X) be a properly supported operator with real and homo-
geneous principal part p. Assume that every bicharacteristic curve of P is proper, that is,
belongs to a compact set in X only for a compact subset of the parameter interval. Let F,, F,
be two closed conic subsets of T*(X)\0. Then we have

w€D'(X), WF(u)< F,, WF(Pu)< F,> WF(u)<F (6.2.5)

tf and only if F> Fy 0 Fyand for every bicharacteristic strip T the set F contains every compo-
nent Ty of I\(F,N Fy) in T such that Ty F,.

Proof. We may assume that F,< F,; without restriction. If (z, £) € W F(u)\_F, then the
bicharacteristic strip I' through (z, £) will by Theorem 6.1.1 belong to W F(u) until it
meets F,. Thus (z, £) is in a component I, of ™\ _F, which satisfies the conditions in the
theorem. On the other hand, for such a component Ty it follows from Theorem 6.2.1 that
one can find € 9'(X) with W F(Pu)< F, and T'y< W F(u)< F,. In fact, since the complete
bicharacterstic strip I" containing I'y has a proper projection in X, the only limit points of
the conic hull of I'y to consider in Theorem 6.2.1 belong to F,.

By the principle of condensation of singularities we also obtain from Theorem 6.2.1:

THEOREM 6.2.4. Let PELT(X) be properly supported and have a real and homogeneous
principal symbol. Denote by K the closed conic hull of a family of bicharacteristic strips each
of which has a proper projection in X. Then there exists a distribution u in X such that
WF(u)=K and Pu€C>.

The details of the obvious proof are left for the reader.
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6.3. Existence theorems

In this section we shall study the existence of solutions of a pseudodifferential equa-
tion Pu=f by combining abstract functional analysis with the results of sections 6.1 and
6.2 applied to the adjoint *P. At first we only consider solvability on compact subsets.

THEOREM 6.3.1. Assume that P€LT(X) is properly supported and has a real principal
part p which is homogeneous of degree m. Let K be a compact subset of X such that no complete
bicharacteristic curve is contained in K. Then it follows that

N(K) = {ve&'(K), Pv=0} (6.3.1)

is a finite dimensional subspace of Cy (K) orthogonal to P9'(X). If f€H(X) for some
SER resp. fEC™(X), and if | is orthogonal to N(K), then one can find u€H , ,_1,(X) resp.
u€C®(X) so that Pu=f in a neighborhood of K.

Proof. That N(K)<C=® follows from Theorem 6.1.1 since for any v€N(K) and
(z, &) € W F(v) the bicharacteristic strip starting at (z, £) must remain over K. By the closed
graph theorem the L? topology in N(K) is equivalent to the C® topology which shows that
the unit ball in the L? topology is compact so that dim N(K)<oo.

The hypotheses of the lemma are also fulfilled if K is replaced by a sufficiently small
compact neighborhood K’. To prove this we may assume that m =1 and can then consider
the bicharacteristic strips as curves in the cosphere bundle. Since this is compact over K’
we would obtain a bicharacteristic strip staying over K for all values of the parameters
if there is one over K’ for every K'. This proves the statement. Since dim N(K') decreases
with K’ it is also clear that N(K')=N(K) if K' is sufficiently close to K.

Let || ||y denote a norm which defines the H,, topology for distributions with support
in an arbitrary fixed compact subset of X. Since v€&'(K), ‘Pv€H ) implies v€H gy m_q)
by Theorem 6.1.1°, it follows from the closed graph theorem that

1#llo+m-1 < CUIEPO]| 0y + |0l 01 m-25), vECE(K). (6.3.2)

Let V be a supplementary space of N(K) in Hsym_1)(X) 0 &'(K). Then there is another
constant C; such that
oo+ m-n < C1liPollw, vEV N CT(K). (6.3.3)

In fact, if this were false we could select a sequence v;€V with
lollosm-n=1, [Pvll—>0.

A weakly eonvergent subsequence must converge strongly in Hy,,,,_o) to a limit v€ V with
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‘Pv=0, and 1<C|[v||(c4m-2 by (6.3.2). Hence v is a non-zero element of N(K) belonging
to V which is a contradiction.
If feH, is orthogonal to N(K) we set 0=1—m —s and have by (6.3.3) for some C

[<f, o> | <C[['Pv]|(ey, vECT(K), (6.3.4)

for this is true if v€CF(K)N V and neither side changes if an element of N(K) is added
to v. By the Hahn-Banach theorem it follows that the linear form ‘Pv—{f, v>, v€CF (K),
can be extended to a distribution u€H _q)=H ). Since

<f5 'U> = <u, tP’U>7 ,veoto)O(K)’

we have Pu={ in the interior of K. If we apply this conclusion to a suitable neighborhood
K' of K we obtain Pu=f in a neighborhood of K.

To discuss the C® case we denote by C®(K) the quotient of C®(X) by the subspace of
functions vanishing of infinite order on K. The dual space of this Fréchet space is §'(K).
To show that the range of the map C®(X)—C®(K) defined by P is the orthogonal comple-
ment of N(K) we have to show (see e.g. Dieudonné-Schwartz [35, Th. 7]) that PE'(K)
is weakly closed in &’(X), or equivalently by a theorem of Banach (see Bourbaki [31, Ch.
III, Th. 5]) that the intersection of *P&’(K) and the unit ball in H )N &'(K,) is weakly
closed for every real ¢ and compact K;<X. Now ¢v€&'(K), ‘Pv€H ,, implies vE€EH s 1y
and by (6.3.3) v =v; +v, were v, EN(K) and ||v,||(54m_1) < C;. Since the set of such v,€£'(K)
is weakly compact and *Pv="Py,, the assertion is proved.

Remark 1. When K consists of a point xz, we conclude that there is local solvability of
the equation Pu=f at z;, with ¥ €C= if €, provided that no bicharacteristic strip stays

over .

Remark 2. The condition on the bicharacteristics made in Theorem 6.3.1 is merely
sufficient and in no way necessary for the conclusion to be valid. For example, if P has
constant coefficients our assumption means that the real characteristics are simple but the
conclusion is always valid in the 0% case and may hold in the H,, spaces also, for example
if P is the heat equation, even if there are multiple characteristics. Even when the
characteristics are simple the condition is not necessary in the variable coefficient case.

For example, the conclusions of Theorem 6.3.1 are valid for
P =2,0/02, —2,0]025 +c

in X={(z;,2,); 1<af+aj<2} if ¢ is a real constant=0, but the circles af+af=12
are bicharacteristic curves. Thus the lower order terms may in general be essential. However,
14 — 722909 Acta mathematica 128. Imprimé le 24 Mars 1972
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they are irrelevant when the hypotheses of Theorem 6.3.1 are fulfilled, and we introduce

a terminology which refers to this fact:

Definition 6.3.2. Let PGET(X) be a properly supported pseudo-differential operator.
We shall say that P is of real principal type in X if P has a real homogeneous principal
part p of order m and no complete bicharacteristic strip of P stays over a compact set in X.
We shall now discuss global solvability of the equation Pu =f. The best results refer

to this equation mod C*.

THEOREM 6.3.3. Let P be of real principal type in the manifold X. Then the following

conditions are equivalent:

(a) P defines a surjective map from P'(X) to 2'(X)/C*(X).
(b) For every compact set K< X there is another compact set K'< X ‘such that

u€&8'(X), sing supp ‘Puc K = sing supp u< K'.

(c) For every compact set K< X there is another compact set K' < X such that K' contains

any interval on a bicharacteristic curve with respect to P having both end points in K.

Proof. (b) = (c¢) with the same K’ by Theorem 6.2.1. Using Theorem 6.1.1 we shall
also prove that (¢) = (b). In doing so we may assume that P is of order 1 since we can
multiply P by an elliptic operator of order 1 —m without affecting these conditions. This
has the advantage that the bicharacteristic strips can be considered as integral curves of
a vector field on the cosphere bundle, and the fibers of this bundle are compact. Assuming
that w€&'(X), (z, £)€ WF(u), we shall show that if x¢ K’ there is a contradiction. By
Theorem 6.1.1 the bicharacteristic strip through (z, £) stays in W F(u) until it reaches a
point lying over K. In view of (c¢) and the assumption that x ¢ K’ at least one half ray y
of the bicharacteristic strip starting at (z, &) contains no point lying above K so y< W F(u).
Choose (z,, &,) so that-its class in the cosphere bundle is a limit point of y at inifinity, which
is possible since y lies over the compact set supp %. Then the entire bicharacteristic strip
with initial data (z;, &) must stay over supp w, which contradicts the hypothesis that P
is of principal type.

That (b) together with the fact that K’ may be taken empty when K is empty implies (a)
is a result of pure functional analysis (Hérmander [46, Theorem 1.2.4)), so it just remains
to show that (a) = (c). Assume that (c) is not valid. For some compact set K< X we can
then find a sequence of compact intervals I, I,, ... on bicharacteristic strips with end points
lying over K and points (z;, &;) € I; with 2;— o0 in X. We may assume that the intervals I,

are disjoint even when considered in the cosphere bundle. Let (y;, 77;) be one end point of 1;
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and let I'; and I'j be defined as in Theorem 6.2.1 relative to the interval of bicharacteristic
strip bounded by (y;,%;) and (z;, §,). We take a sequence ;- — c© and then use Theorem
6.2.1 to determine u,€2’(X) such that

WF(s )(u]) = WF(uj) = Fj, WF(P’L&J) = F;.

We can then write Pu,=f,+g; where WF(f;) and W F(g,) is the ray defined by (z;, £;) and
(¥, m,) respectively. In doing so we can take the support of f; so close to x; that the supports
of the distributions f; are locally finite. Set

f"‘zfj-

We claim that Pu—f is not in C* for any »€9’(X), thus (a) is not valid. In fact, given u

we can choose s 30 large negative that
WFyw)na 'K =Q.

When s;<s it follows that W F,(u—u;) contains a neighborhood of (y;,%,) on I, but not
the other end point of I,. In view of Theorem 6.1.1' this shows that W {P(u—u,))

must meet the interior of I,. However,
Plu—u)=Pu—f+2 fi—g;
L=

and I; does not meet the wave front set of the sum. Hence I; meets W F,(Pu—f} which

proves that Pu—f is not in .

Remark. Note that the proof only requires a local version of Theorem 6.2.1.

A criterion for the existence of genuine solutions is given in the following theorem.

TuaEOREM 6.3.4. Let P be a pseudo-differential operator of real principal type satisfying

one of the equivalent conditions in Theorem 6.3.3. The following conditions are then equivalent:

(a) The equation Pu=f has a solution w€D'(X) for every f€D'(X) such that {f, v)=0
for every v€OF (X) with *Pv=0.

(b) The equation Pu=f has a solution uw€C0®(X) for every f€C®(X) such that {f, v>—0
for all v€CT(X) with *Pv=0.

(¢) For every compact set K= X there extists a compact set K'< X such that if v€&'(X)
and supp ‘Pvc K it follows that *Pv="Pw for some w€&' (X) with supp w=K’.

(d) Same condition but with v, w€CY .

Proof. That (b) = (a) follows from the hypothesis. For the implication (c) = (b) we
refer to Malgrange (48, pp. 328-329]; a special case of the argument was used in proving
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Theorem 6.3.1 above. It is quite obvious that (d) = (¢). For by (b) in Theorem 6.3.3 there
is a compact set K’ such that

v€&’(X), sing supp *Pv< K = sing supp v< K'.

Choose y €C*(X) equal to 1 in a neighborhood of K’ and set v, = Xv, v, =(1 —X)v. Then supp
v, <supp X and if supp ‘Pv< K we obtain

supp *Pv,<supp ‘PovUsupp ‘Pv,< K,

where K, is a fixed compact set. Since v, €Cy it follows from (d) that ‘Pv, = ‘Pv, for some
v,€05 with supp v, in a fixed compact set K,. We have ‘Pv=‘P(v, +v;) and supp
{v; +v5) belongs to a fixed compact set.

Assuming now that (a) is valid we shall prove (d). Let & be the set of all f€C®(X)
satisfying the conditions in (a). This is a closed subspace of C*(X) and therefore a Fréchet
space. Note that if K is a compact set in X and f€C>(X) is orthogonal to N(K), then one
can find g€ZF equal to f in a neighborhood of K. Here N(K) is the finite dimensional
space in Theorem 6.3.1.

Now consider the bilinear form
F x 0P (X)a(f, v) =<, v

For fixed » it is continuous as a function of f. For fixed f we can by (a) find #€9'(X) so
that Pu = f and therefore {f, v) = {(u, *Pv). Thus the bilinear form is continuous as a function
of v for fixed f when supp *Pv< K for a fixed compact set K and we put the C® topology on
Py, Since & is complete the separate continuity implies continuity, that is, for every

compact set K we find continuous semi-norms N, and N, in 0®(X) such that
[<f, v>] < ONL(f)N,(‘Pv); f€F, vECY(X), supp ‘Pv<=K.

Choose a compact set K’ so that N,(f)=0 if /=0 near K'. Then it follows that {f, v> =0
if 0y (X), supp ‘Pv<K, f€EF and f=0 near K'. Fix v and set K"=K'Usuppv. By a
remark above {f, v)> =0 for all f€CF(X) with f=0 in a neighborhood of K’ and f orthogo-
nal to N(K”"). Since N(K") is finite dimensional it follows that for some w€N(K”")

vy =<f,wy if f€C*(X) and f=0 in a neighborhood of K’.
Hence supp (v —w)< K’, and the proof is complete.

Theorem 6.3.4 does not really answer the question about global solvability for the

conditions (c) and (d) remain to be analyzed. Some uniqueness theorems giving sufficient
conditions may be found e.g. in Hérmander [17, Chap. VIII] in the case of differential

operators. Further analysis lies outside the scope of this paper for we shall now give an
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example showing that hypotheses made on the operator P modulo C® only cannot suffice
to decide if P has the properties discussed in Theorem 6.3.4. Our construction is based on
the observation that for a hypoelliptic non-elliptic operator there are sets which are not
P-convex (see Hormander {17, section 3.7]). To be specific we consider the heat operator
Q(D)= D}+1iD, in R? and choose an open set X < R? such that {x € (X; x,>0} contains 0
as an isolated point. Let E(x —y) be a fundamental solution of @(D) which vanishes when
25 <y,, and choose F(x, y) also equal to O then so that E(x—y)— F(z, y) €C®(X x X) and
F is the kernel of a properly supported operator, also denoted by F. We now consider the
properly supported operator
P=QD)F.

By construction P= I+ R where R has a (™ kernel. Although P differs from the identity
only by an operator with C® kernel we shall show that the range of P on O®(X) resp.
2'(X) is dense in C®(X) resp. 2'(X) but not equal to either space. To do so we first note
that ‘Pv=0, v€&’(X), implies v=0. In fact, v= —*Rv€CF(X) so we have

v(@)= — fR(y, z)v(y) dy.

Let V(x,) = [ |v(x)| d=, and choose C so that

f | R(y, )| dz, <O, yEsuppo.
Zesupp v

Then we have Vix,) < O’f V(y,) dys,

Y>3

and since V=0 for large x, this implies that V=0 identically. Hence v=0. Since
Py ='F'Qv we can easily show that (d) in Theorem 6.3.4 is not fulfilled by taking for »
a null solution with respect to & half plane x, >¢—0, cut off to have compact support in X
by a fixed cutoff function. Since this is just a repetition of the proof of Theorem 3.7.1 in
Hoérmander [17] we leave the details for the reader.

When P is a differential operator with constant coefficients the results of Andersson
[29] concerning analytic singularities show that the hypotheses of Theorem 6.3.3 imply
that PP’ (X)=2’'(X). An extension to real analytic coefficients has been given by Kawai-
Kashiwara (to be published) and Hérmander [44] under the almost certainly superfluous
additional hypothesis that the bicharacteristics are regular, i.e., 0p/0f+0 when p=0.

In section 6.5 we shall construct parametrices for P with properties which immediately
give the implications (¢} = (a) and (¢) = (b) in Theorem 6.3.3. (See Theorem 6.5.10.)
To do so we need some preliminary results on first order differential operators which will

be proved in section 6.4.
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6.4. First order real differential operators
Let M be a C° manifold and L a real C* vector field on M. We shall study the existence

of solutions of the equation

Ly =f 6.4.1)
when u, f€C®(M). If K is a compact subset we denote as before by C®(K) the quotient of
C=(M) by the subspace consisting of elements vanishing of infinite order on K. The dual
space is then &'(K).

THEOREM 6.4.1. Let K be a compact subset of M. Then the following conditions are

equivalent:

(a) LO®(K)=C"(K).

(b) (L+a)C®(K)=C"(K) for every a € C®(K).
(¢) There exists a function p€C® such that L?¢>0 on K.

(d) No complete integral curve of L is contained in K.

Proof. (a) = (b) for if Lv=qa and Lw=e¢’f then (L+a)(we?)=f. That (b) = (a) is
evident. Using (a) twice we find a function ¢ € C°(X) with L?p =1 which proves (c). From
(c) we obtain (d) by noting that if an integral curve I" is contained in K and the maximum
of ¢ in T is attained at y, then the integral curve through y is contained in T and Le(y) =
0, L2p(y) >0. This is a contradiction. Finally, to prove that (d) = (a) we first note that
(d) implies

(d") No integral curve of L is contained in K for all positive or all negative values of the

parameter.

In fact, the solution curve starting at a limit point of a half integral curve with this pro-
perty would be entirely contained in K in contradiction with (d). (This argument already
oceurred in the proof of Theorem 6.3.3.) In view of (d') every point y € K lies on an interval
of an integral curve with end points outside K so if f€C°(M) has support sufficiently
close to y it is clear that the equation Lu=f can be solved in a neighborhood of K.
By a partition of unity we conclude that this is also true for an arbitrary f€C°(M). The
proof is complete.

Theorem 6.4.1 is of course analogous to Theorem 6.3.1 which contains a less elementary

proof that (d) = (a). We now give an analogue of Theorem 6.3.3.

THEOREM 6.4.2. The following conditions (a)—(f) on L are eguivalent:
(a) LO®(M)=C>(M).
(b) (L+a)0®(M) = C®(M) for every a€C>(M).
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(¢} There exists a function ¢ €C®(M) such that L2@>0 and

{yeM; ply)<c}
18 compact for every c.

(d) (1) No complete integral curve of L is contained in a compact subset of M,
(2) for every compact subset K of M there exists a compact subset K' of M such that

every compact inferval on an integral curve with end points in K is contained in K'.

(e) There are no periodic integral curves and the relation R = {(y1,Y2)EM X M; y, and
Yy are on the same integral curve of L} is a closed C° submanifold of M x M.

(f) There exists a manifold M, an open meighborhood M, of Myx {0} in MyxR
which is convex in the R direction, and a diffeomorphism M — M, which carries L inlo the
operator 9[ot if points in My xR are denoted by (y,, t).

Proof. (a) = (b) is obvious as in the proof of Theorem 6.4.1. That result also shows
that (a) = (d1). To prove that (a) = (d2) we assume that (d2) is not true. Then there
exist intervals [y;, ;] on solution curves and y,€[y;, ;] such that y;, y; €K but y, is not
contained in any fixed compact set for all j. Taking a subsequence we may assume that
Y5>y, y;—~y" and that any compact set contains only finitely many y,. We can now take
a C® non-negative function f on M which is so large near the points y; that »(y}) —u(y;),
being the integral of f over the integral curve, tends to oo with § if Lu=f. Thus (a) cannot
be valid. By Theorem 6.4.1 we also have (¢) = (d1), and that (¢) = (d2) is obvious.

(d) = (e). Denote the L-flow by ¢ so that t—>¢(y, t) is the solution of the equation
dz[dt = L(z) with 2(0) =y defined on a maximal open intervalc R. If D, is the domain of ¢,

then
R ={(p, 1), 2); (x, t)ED,}.

The map (z, )~ (@(z, £), ) is injective since there are no closed bicharacteristic strips,
and it is clear that the differential is also injective. To prowe that R is a closed C® sub-
manifold it suffices therefore to show that the map is proper. Let (x,, t,)€ D, and assume
that 2;,—z, p(z;, t)—~y in M. We have to show that (z;, ¢,) has a limit point in D,. In
doing so we may assume that ¢, T €[ — oo, oo]. By (d 2) there is a compact set K’ such that
‘@(z;, )€K’ when t€[0, ¢;]. If T=+ oo it follows that g(z, s)EK’ for s>0 or for s<0. In
view of the equivalence of (d) and (d’) in Theorem 6.4.1 this contradicts (d1). Hence 7'
is finite and (;, ¢;)~(x, T)€D,.

(e) = (f). It follows from (e) that the quotient space M= M/R is a Hausdorff space,
and identifying a neighborhood of the equivalence class of x with a manifold transversal
to L at x we obtain a structure of C* manifold in M,. The map M — M, has a C® cross
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section My~ M. This is obvious locally and using a partition of unity in M, we can piece
local sections together to a global one, for only an affine structure is required to form
averages. We can now take M, = {(z, t); x€ M, (z, )€ D,} and the map M, M given by ¢.
(See also Steenrod [50], sections 12.2 and 6.7.)

(f) = (a) for the equation &u/ot=f€C°(M,) has a unique solution »€C®(M,) with
u=0 for {=0.

(fy = (¢). If ¢, and ¢, are positive € functions in M, and in M,, then

t
Ptor 1) = Polyo) + f (¢ — 5)px(o, €)ds

is in C*(M,) and L*¢>0. If gy at o in M, and @, o sufficiently rapidly at oo in
M,, it follows that ¢—>oc at oo in M.

Remark. The equivalence of (a), (b) and (d) is of course essentially contained in
Malgrange [48]. According to Whitney [52] the L-flow is called parallelizable when (f)
is fulfilled. For conditions equivalent to (f) see also Birkhoff [30, Chap. VII] and in the
topological case Dugundji-Antosiewicz [36].

In the applications of Theorem 5.3.2 in section 6.5 we must solve equations of the form
(6.4.1) when M is a cone manifold (section 1.1, p. 87) and «, f are symbols on M. We assume
that the vector field L commutes with multiplication by positive scalars as is the case for
the Hamilton field of a function which is homogeneous of degree 1. Thus Lu is homogeneous
of degree m if u is, and Lu€Sp+1-¢(M) if w€Sy. In particular, if M, is the quotient of M
by the action of R, L induces a vector field L, on M, since the C® functions on M are
precisely the C® functions on M which are homogeneous of degree 0. We write & for the
projection MM .

TEEOREM 6.4.3. When M is o cone manifold and L a C® vector field commuting with
multiplication by positive scalars in M, the following conditions are equivalent:

(i) For every fESF(M), m€R, §<p<1, the equation Lu=f has a solution u€ST(M).
(ii) The vector field L, on M satisfies one of the equivalent conditions in Theorem 6.4.2.
(iii). The vector field L on M satisfies one of the equivalent conditions in Theorem 6.4.2,
ond if N is a positive C® function on M which 18 homogeneous of degree 1, then for any
compact set K< M
Ny) <CgN(z) (6.4.2)
of my, nz€K and y, z are on the same orbit of L.

(iv) There exists a C® manifold M,, an open neighborhood M’ of Myx0 in MyxR
which is convex in the direction of R, and a diffeomorphism M — M’ xR, commuting with
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multiplication by posifive scalars (defined as identity in M' and standard multiplication in
R.) such that L is mapped to the vector field 0/ot if the variables in My xR x R, are denoted

by (ym t: T).

Proof. (i) = (ii). Let fEC®(M ) and consider f as a homogeneous function of degree 0
on M. Choose a solution % €SY(M) of the equation Lu=f. If K is a compact subset of M
and if K;,={ty;t=>1, y€K}, K,={ty; >0, y€K}, then there is a constant C such that
|u(y)| <C, y€K,, and we claim that

|u(y) —u(z)| <20, if y, z€EK, are on the same orbit. (6.4.3)
In fact, if t€R, and we write t*u(y) =u(ly), y€M, t>0, then
Lt*u—u) =t"Lu—Lu=t*{—f=0
8o t*u—u is constant on the orbits of L. Hence u(tz) —u(z) = u(ty) —u(y), so

Ju(y) —u(z)| = |ulty) ~utz)|.

For large t we have ty, t2€ K, and (6.4.3) follows. Since nK,=nK may be any compact
set in M, conditions (d1) and (d2) of Theorem 6.4.2 for L, follow immediately, already if
we take f=1 in the case of (d1).

(ii) = (iv). First note that there is a cross section M ,—~M. In fact, we can construct
a positive C® function N on M which is homogeneous of degree 1 by means of a partition
of unity on M. The section M ;— M is then uniquely determined if we require that N(m)=1
in the range. From condition (f) in Theorem 6.4.2 applied to the vector field L, on M,
we now obtain a diffeomorphism M — M’ x R, with M’ as in condition (iv), which transforms

L to a vector field of the form
L, =0/ot +aly,, t)rofor
where a €C®(M’). Now solve the equation
&b(y,, 1)/t +aly,, t) =0

with b €C®(M') and introduce the function N,(y,, ¢, r) =7 exp b(y,, £} which is homogeneous
of degree 1 and satisfies the equation L; N, =0. The composition of the map MM’ xR,

and the map
M’ x R‘+3 (?/0, t’ ’I') - (?/o, t3 Nl(yos t! T)) EM’ x B’+

will then have the properties required in (iv).
The implications (iv) = (i) and (iv) = (iii) are trivial so it only remains to show

that (iii) = (ii). It follows from (6.4.2) that every integral curve of L contained in a compact
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subset of M, can be lifted to an integral curve of L contained in a compact subset of M.
Hencé (d1) of Theorem 6.4.2 must be valid for L,. To prove (d2) we let K be a compact set

in M, and set
K, ={yeM;a(m)€K, Og' <N(y) <Cg}.

Tt we lift an integral curve of L; with end points in K to M so that it starts at a point with
N(y)=1, then the other end point will belong to K, too. Hence the whole integral curve
belongs to a fixed compact set K; in M which completes the proof of (ii) and of the
theorem.

Remark 1. Under the hypotheses of Theorem 6.4.2 {or 6.4.3) the vector field (L, 0)
on M x M defines a vector field I on the relation manifold R which satisfies the same

conditions. In fact, this is obvious from conditions (f) and (iv) respectively.

Remark 2. The obvious proof of the equivalence (a) <> (b)in Theorem 6.4.2 also gives
that (i) in Theorem 6.4.3 is equivalent to

(i") For every f€Sg(M), m€R, t<p<1, and c€SIM) the equation (L+c)u=f has
a solution u €Sy (M).

Moreover, the solution can be prescribed arbitrarily within the class Sg(MyxR,)
on My x0x R, <~ M, the injection being as in condition (iv) of Theorem 6.4.3.

Remark 3. The situation changes drastically if for example periodic integral curves
occur. Assume that dy(t)/dt =L{y(t)) and that y(?) is periodic with period 7'. The equation
Lu+cu=f reduces to du/dt+c(y(t))w={(y(f)) on this curve. Because {—~u(y(t)) has to be
periodic, this leads if dh(t)/dt =c(y(t)), h(0)=0, to

T
u(y(0)) exp A(T) = u(y(0)) + f f(y(2)) exp h(t) dt.
0
It follows that the equation Lu+cu=f is solvable if and only if exp A(T') =1, that is,

ch(y(t))dt#2kni, kEZ. (6.4.4)
o
Secondly, if this condition is satisfied then the solution u is uniquely determined by f.
Now suppose that all integral curves of L are periodic with a positive minimal
period depending continuously on the initial point. This means that the relation R intro-
duced in Theorem 6.4.2 is a closed submanifold of M x M, that the orbit space M/R is a
manifold and that M—>M/R is a fibration with fibers diffeomorphic to the circle. Then
the equation Lu -+ cu =f is globally solvable for every f if and only if (6.4.4) is valid for each
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integral curve y(t) of L, with T denoting the period of the curve. This will be called the
non-resonance case. Moreover, in this case the solution « is uniquely determined by f.

Analogous statements are of course valid in the case of cone manifolds.

6.5. Construction of global parametrices

A continuous operator E: C¢°(X) ~ 0°(X) is called a right parametrix of the properly
supported pseudo-differential operator P if

PE=I+R (6.5.1)

where I is the identity and R has a ¢ kernel. If instead EP =1+ R’ with B'€C® one
calls K a left parametrix. We shall say that R is a parametrix if # is both a right and a left
parametrix.

Throughout this section we shall assume that P is of real principal type in the
manifold X (Definition 6.3.2) and that P satisfies condition (¢) in Theorem 6.3.3. For

easy reference we introduce a term for this property:

Definition 6.5.1. If P is of real principal type in X we shall say that X is pseudo-
convex with respect to P when condition (c) in Theorem 6.3.3 is fulfilled.

Denote by N the set of zeros of p in T*(X)\ 0. This is a conic manifold and the
Hamilton field H, is tangential to N. The integral curves are the bicharacteristic strips
of P and we define the bicharacteristic relation C by

C ={({, &), (y,9)) EN x N; (z, &) and (y, n) lie on the same bicharacteristic strip}. (6.5.2)

This construction is invariant under the action of canonical transformations on p since the
definition of the Hamilton field is. Multiph'cation of p by a non-vanishing function will
change the parameter on the bicharacteristic strips but not the bicharacteristic relation.
Note that the set C, defined by (6.1.2) is the bicharacteristic relation of D,.

By the preceding remarks we may assume that P is of degree 1 when studying C.
By hypothesis the vector field H, on N then satisfies condition (ii) of Theorem 6.4.3 (in
the form of condition (d) in Theorem 6.4.2) so the equivalent condition (iii) in Theorem
6.4.3 shows that C is a closed conic submanifold of (7™#(X)\0) x (T*(X)\0) which is
closed in T*(X x X)\0 by (6.4.2). Conversely, if P is of real principal type in X and C
has these properties it follows that X is pseudo-convex with respect to P.

We shall now prove that C is a homogeneous canonical relation (Definition 4.1.2).
To prove this we consider the flow @,, with domain D, defined by the Hamilton field
H,, of the function p, obtained by lifting p from T*(X)\ 0 to (T*(X)\0)x (T*X)\0)
by the projection on the first factor. € is then the “flow-out”
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{p1(h, 8); (b, ) €D, REAY}

of the diagonal Ay in N. The symplectic form o, —0, in T*(X) x T*(X), which is the differ-
ence of the symplectic form in each of the two copies, vanishes on Ay, and H,, is orthogonal
to but not a member of T(Ay) since p, =0 on A, and H,, 0. This proves that € is Lag-
rangean at Ay. Since C is invariant under the Hamilton flow defined by p; and ¢,(-,¢)
is canonical with respect to o, —o,, it follows that C is Lagrangean everywhere. Thus we

have proved

ProroSITION 6.5.2. dssume that P is of real principal type in X. Then the bickarac-
teristic relation C of P is a homogeneous canonical relation from THX)N\O0 fo T*(X)\0
if and only if X 18 pseudo-convezx.

CO\Ay is the disjoint union C+U C~ of the forward (backward) bicharacteristic rela-
tions C+ and C- defined as the set of all ((z, £), (., 7)) €N x N such that (z, &) lies after
(resp. before) (¥, %) on a bicharacteristic strip. These are open subsets of ¢ and inverse
relations. The definition is invariant under multiplication of p by positive functions but
C+ and C- are interchanged if we multiply by a negative function. The role of these sets
is indicated by Proposition 6.1.2.

Maore generally, by an orientation of ' we shall mean any splitting of C\ Ay in a dis-
joint union of open subsets C! and €2 which are inverse relations. In order to describe these,

denote by B(z, &) the bicharacteristic strip through (x, &) and write
C*(w, §) = C* N (B(x, £) x Bz, £)).
Because ¢! is a union of components of O\ Ay we have either Ct(z, &)= (7 or else
CHx, E)NC' =3, j=1, 2. Write
N = {(z, &) EN; CH(x, &) =}, j=1,2.
Then N' and N? are open, disjoint, and‘N =N1U N2 Conversely
Cl:(lﬁ{cﬁ(% Y (HC"(% &)

and C? is obtained similarly by interchanging 1 and 2 (or + and —). We can therefore
identify the orientations of €' with the open and closed subsets of N. Denote by N the set
of all components of N, let v be a subset of N. Denote by N, resp. N, the union of the
components in », resp. in N\ » and write O\ Ay=C; UC; for the orientation of C cor-
responding as above to N'=N, and N2=N,. Observe that C, = OE\V and that C+=C§_
I N bhas k& components there are 2* possible orientations. In particular, if X is connected

and P is a strictly hyperbolic differential operator of order m then there are 2™ orientations.
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THEOREM 6.5.3. Let P be of real principal type in X and assume that X is bicharac-
teristically convex. For every orientation O\ Ay=C; UC; one can then find parametrices
By and E; of P with

WF'(ES)=A*UCS, WI'(E)=A*UC; {6.5.3)

where A* is the diagonal in (T*H(X)N0) x (T*(X)\0). Any right or left parametriz E with
WF'(E) contained in A*U C; resp. A*U C; must be equal to E; resp. E; modulo C®. For
every sER the parametrices B, B, define continuous maps from HE™(X) to H ;m 1,(X).

Finally
Ef By e ™XxX, (), (6.5.4)

and E; — E; is non-characteristic at every point of C'.

Proof. We begin by proving the uniqueness. Assume that #,; and &, are right and left
parametrices with WF'(E,)= A*U (. We shall then prove that E, — E,€C* by modifying
an argument used in the proof of Proposition 2.5.1. This consisted in observing that E, PE,
is congruent both to £, and E, mod C®, but the definition of this product may be in doubt
when E; and E, are not properly supported. However, we do know that E, BE, is defined
if B is a pseudo-differential operator with kernel of compact support in X x X, for B maps
9'(X) to &'(X) then. If (x, & y, n)E WEF'(E,BE)) but (z, &) and (y, n) are both in the
complement of WF(B) it follows that (x, &, 2, £)€C, and that (2, {, y, ) €C; for some
(2, )€ WF(B). This implies that (x, &), (¥, ), (2, {) are on the same bicharacteristic strip
with (z, {) between the other points. Let K and K’ be as in condition (¢) of Theorem 6.3.3.
If WF(B) has no point over K’ it follows that W F'(E, BE;) has no point in K x K. Now
choose ¢ €C°(X) equal to 1 near X’ and form

E.pPE, - E,PpE, = E,(pP —Py) E,.

The wave front set of the right hand side contains no point over K x K, so the same is
true of E,¢ —@k,. Since K is arbitrary it follows that E,— E, €C=,

Since PE = I+ R is equivalent to E*P*=I + R* and P* has the same principal symbol
as P the existence of left parametrices with the properties listed in the theorem follows:
from the existence of right parametrices for P*. To prove the theorem it is therefore suf-
ficient to construct a right parametrix with the required regularity properties. In doing so
we may assume that the order of P is 1 for P can otherwise be replaced by the product
with an elliptic operator of degree 1—m with positive homogeneous prineipal symbol.
This has a pseudo-differential parametrix of degree m — 1.

The first step in the construction is local in the cotangent bundle near the diagonal.
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LemMa 6.54. Let PELi(X) satisfy the hypotheses of Theorem 6.5.3 and let (x,, &,)€
T*(X)\0, p(zg, &) =0. If TE€LY(X) and W F(T) is in a sufficiently small conic neighborhood
of (g, &), one can find F+, F~ with WF'(F+), WF'(F-) close to (xy, &, %y, &) -such that
PF*=T+R* and

(i) WF(F*=)<A*UCE.

(i) R*eli¥ (X xX, ") and WF'(R*)< Cf.

(iiiy F+—F-eI;HXx X, C").

(iv) F* can be written in the form AFE B where the kernel of Fi is the product of the
distribusion EE in Proposition 6.1.2 by a C® function and A, B are Fourier integral operators
of order 0 belonging to inverse homogeneous local canonical transformations from T* X))\ 0
to T*R™0.

Proof. We may assume that C; =C+ and C; =C- in a neighborhood of (%, &,) for in
the opposite case we just have to consider —P instead of P. Choose a canonical trans-
formation y and Fourier integral operators A, B of degree 0 according to Proposition 6.1.4
and (6.1.13) with y=0. Then we have

X loCroxcC* (6.5.5)

in view of the invariance of the definition of C under canonical transformations. We

shall prove that the composition
F*=AF:BT

has the required properties if WF(T) is in a sufficiently small conic neighborhood of
(g, &) and P =yki where y €C*(R" x R"), =1 in a neighborhood of the diagonal and
=0 outside another sufficiently small neighborhood. Conditions (i) and (iii) in Lemma
6.54 follow immediately from (6.5.5), the corresponding conditions in Proposition
6.1.2, the calculus of Fourier integral operators developed in section 4.2, and Theorem

2.5.15. To prove (ii) we form
PF*=PAF;BT = (PA—AD,)F;BT +AD, F;BT. (6.5.6)
By (iii) in Proposition 6.1.4 we have
(x4, £9» Xo, Bo) § WF'(PA—-AD,)<T.

It follows that there is a conical neighborhood V of (X, E,) such that (P4 —A4D,)veEC™®
if WF@)<V. Since WF'(F;) can be made arbitrarily close to the diagonal in
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(T*R"N0) x (T*(R")\0): by choosing -the support of y close to the diagonal in
R" x R*, we can choose ¢ and a conic neighborhood V' of (X, &) such that WE(Fyv)< V.
if WF()ycV'. If WF(T) is.so close to (xy, &) that yWF(T)<= V' it follows that the first
term on the right hand side of (6.5.6) is in C®.

To study the last term in (6.5.8) we note that D, F¥=1- R} where

B} = (Duyy(,y) Bz € I YR < R, C7), WF'(B)<Cr.

Since ABT=(AB—-1)T+ 7T and (AB—-I)T€C>® if WF(T) is sufficiently close to (z,, &),
it follows that PF* =7+ R* where R* — AR} BT €C=. The calculus of Fourier integral

operators now gives (ii).

End of proof of Theorem 6.5.3. If (xy; &) € T*(X)\0 and p(x;, &) +0 a stronger result
than Lemma 6.5.4 is valid: we can find a pseudo-differential operator F such' that
PF =T+ R where R€C® (see section 5.1). In this case as in Lemma 6.5.4 we can choose
WZF'(F) in any given neighborhood of WF(T)x WF(T), in fact as the diagonal in this
product.

Let {V} be a locally finite covering of T*(X)\ 0 by open cones such that either Lemma,
6.5.4 or the preceding observation is applicable when WF(T) < V,. The pfojecﬁons W,
of V;in X are also locally finite. Using a partition of unity in the sphere bundle of 7*(X N0
subordinate to the covéring given by {V,} we can write I=2 T; where WF(T)<V,
and the support of the kernel of 7'; belongs to W, x W,. For every i we choose F; according
to Lemma 6.5.4 or as indicated above with supp Ff< W, x W,. Then the sum

F+=2>Ff

is defined; (6.5.3), (6.5.4) are satisfied by these operators and F* maps. H{Z™ (X) con-
tinuously into H,(X) by Theorem 4.3.1. because Ei does. Further

PF:— I+ R* where R*€I{}(X x X, C"), WF'(R*)=CE.
By Theorem 5.3.2 we can choose G*€I7¥(X x X, C') so that
PG* — R*€C>,

In fact, the hypotheses of Theorem 5.3.2 are ‘fulfilled in view of Remark 1 following
Theorem 6.4.3 since the vector field H, satisfies the conditions in Theorem 6.4.3. If in the
proof of Theorem 5.3.2 we choose initial data 0 on the diagonal of N x N for all the first
order equations to be solved, we obtain WF'(G*)=Cy. It follows from Theorem 4.3.2
that G is'a continuous map from HE™(X) to H,(X) for every s, so Bfi=F*—G*isa

right parametrix which is centinuous from H{™(X) to H 4 (X). The construction shows
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that F+—F~ and therefore E; —E, is non-characteristic at the diagonal of N. Since
P(E} —E;)€C> it follows from Theorem 5.3.1 that the principal symbol satisfies a first
order homogeneous differential equation along the bicharacteristic strips starting there.
Hence E] —E; is non-characteristic everywhere. (In section 6.6 we shall compute the
principal symbol precisely.) This implies that WF'(E; —E;)=C and since WF'(EF)<
A*U CF we conclude that WF'(Ef)> C#. Since

A* =WF'(I)= WF(PES)< WF'(Ey)
the proof of (6.5.3) is complete, and so is that of the theorem.

Remark 1. Suitably modified Lemma 6.5.4 remains valid under the weaker hypotheses
of Proposition 6.1.4. If no open interval on a bicharacteristic strip has a fixed projection in

X the first part of the preceding argument gives a local parametrix.

Remark 2. If p(xy, §,) +0 the proof shows that there is a pseudo-differential operator
@ such that (x,, &, o, &) ¢ WF'(EF —Q). The symbol of Q near (x,, &) can be computed as
in section 5.1 by the usual algorithm for determining the parametrix of an elliptic operator.
Somewhat loosely we might say that Ef is a pseudo-differential operator except at the
diagonal of N xXN, N=p-%0), where the symbol becomes highly singular and forces
additional singularities on C. We shall now prove that these cannot be avoided.

At the end of the proof of Theorem 6.5.3 we saw that WF'(E)> A* for any right or
left parametrix K €2'(X x X) of P. We shall now prove that additional conditions on
WF'(E) follow from a modification of Theorem 6.1.1.

LeMMA 6.5.5. Let PELT(X) have a real and homogeneous principal part p, let
A€PD'(X xX) and assume that PAEC(X x X), where A is considered as an operator
O X)~»2'(X). If (,& y,n)EWF'(A) and £0 it follows then that p(x,&)=0 and that
B(x, &) x{(y, m)} = WF'(A).

Recall that B(z, &) is the bicharacteristic strip containing (x, §).
Proof. The hypothesis means that for some F€C®(X x X)
(A,'Pu@v)=(F,u®@v); u,vECF(X).
Thus (A, Quw> = (F,w>, welT(X xX), (6.5.7)

if Q@ ='P®1 is defined by Qu(x, y) = ‘Pw(x, y) with ‘P acting on w as a function of x for fixed
y. We cannot apply Theorem 6.1.1 directly since ¢ is not a pseudo-differential operator.
Choose a pseudo-differential operator R of order 0 in X x X with principal part homo-
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geneous of degree 0 such that WF(R) contains no element of the form (z, 0, %, ). Thus
[n] <C|é&| if (x, &y, n) EWF(R) and (2, y) is in a compact subset of X x X. We can take
the principal part of {R equal to 1 on B(x,£) x {(y,7)}. The proof of the multiplicative prop-
erties of pseudo-differential operators given in section 2.1 applies with no change to prove
that QR =@, is a pseudo-differential operator with principal symbol given by the product
of those of the two factors. If we replace w by Rw in (6.5.7) it follows that

QA =RFeC™

so the lemma follows from Theorem 6.1.1 since B x {(y, %)} is a bicharacteristic strip of ‘Q,.

We shall also need the analogous result where AP €C® instead. This means that the
operator P®1 above is replaced by 1® ‘P. In terms of local coordinates, if p;=a, p;=b,
the Hamilton equations corresponding to the principal symbol of ‘P are

dyldt = —bly, —n), dn/dt = —aly, —n)

and this proves that (y, —») describes a bicharacteristic strip of P. If APEC® and
(x, & y,m) EWEF'(A), n=+0, it follows therefore that p(y,#)=0 and

WF'(A)> {(z, &)} x B(y, n).

Finally, if PA€C® and APEC™®, (x, &, y,n)E WF'(A) and &, 5 =0, it follows by repeated
application of these results that p(z, §) =p(y, ) =0 and that

WEF'(4)> B(g, £ x B(y, 7).
Remark. The hypothesis PA€C™(X x X} in Lemma 6.5.5 may of course by replaced
by WEF'(PA)N (B(x, &) x{(y, n)}) =2
In the following theorem we shall use the notation
N = {(@, § € THX)\0, p(z, &) =0}
When (x, £)EN we write
Of (%, &) = C*(%,£) N ({(=, &)} x N)={(2, 8)} x B¥(x,£)
OF (2, 8) = C* (2, &) N (N x {(z, §)}) = B*(x, &) x {(=x, §)}.
Here C*(z, &) =C*n (B(x, &) x B(x, &)) as before and
B*(x, &) = {(y. n) € Bz, §); (y, 0, x, §) €C*}.

TuEOREM 6.5.6. If E€D'(X x X) is either (a) a right parametriz, (b) a left parametrixz
or (¢) a paramelriz of an operator P salisfying the hypotheses of Theorem 6.5.3, then
WF'(E)>A* and respectively
15 — 722909 Acta mathematica 128. Imprimé le 24 Mars 1972,
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(a) For every (x, £)EN we have either WF'(E)> C/ (z, &) or WF'(E) > Cf (=, &).
(b) For every (z, &)EN we have either WF'(E)> Cf(z, &) or WF'(E)> O (2, &).
(e) For every (x, EYEN we have esther W F'(E)> CHx, &) or WF'(E)> C~(x, §).

Proof. That WF'(E)>A* follows from the end of the proof of Theorem 6.5.3.
Let E+ and E- be the parametrices given by Theorem 6.5.3 for the orientation C+, C-.
We can apply Lemma 6.5.5 and the observations following itto 4 =E —~E+tand A =E - E-.
Assume for example that ¥ is a right parametrix, that (z, £)€N and that €7 (z, £) is not a
subset of W F'(E). Since C; (z, &) does not meet W F'(E-) it follows that O (z, £) is not a
subset of WF'(E—E-), Hence Lemma 6.5.5 shows that Bz, £) x {(z, §)} does not meet
WF'(E — E-). In view of (6.5.3) this implies that C; (2, £)c W F'(E). The other cases of the

theorem are proved in exactly the same way.
The preceding arguments also allow us to supplement the uniqueness statement in

Theorem 6.5.3.

TuEOREM 6.5.7. Let CF and C§ be orientations of C corresponding to two subsets o« and
B of N. Denote by N,z the symmetric difference of N and Ng (or Ng and Ng) consisting of
points belonging to one set and not the other. If E; and Ef are the corresponding parametrices
given by Theorem 6.5.3 then

Ef —Eg €I} ™X x X, (C N (Nuyg X Nag))'). (6.5.8)

In particular, N,, is empty when the orientations are equal and N,;=N when they

are opposite, 80 (6.5.8) contains (6.5.4) and the unigueness in Theorem 6.5.3.

Proof. 1f (x, £)€EN then WF'(E; —Ej) either contains B(z, §) x B(z, £) or else does
not meet this set. Since WF'(E})N (B(z, §) x B(z, £)) is one of the half spaces in B x B,
which one depending on whether (x, £)€EN; or (x, §)€N,, it follows that

WF'(ES —E;)< C N (Nog X Neag)-
If M is the complement of N, it follows by change of the orientation Cf that
WF (Ef —Ez)<=Cn (M x M).

Since E; — Ej = (E; — E3)+ (E5 — Ef) we now obtain (6.5.8) from (6.5.4).

In section 6.6 we shall continue the study of the differences in (6.5.8). However we
return now to the study of wave front sets of parametrices and shall prove a converse of
Theorem 6.5.6.
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THEOREM 6.5.8. Let F < (THX)\0) x (T*X)\0) be a closed conic set containing the
diagonal and assume that either

(a) for every (x,£)€EN we have G (z, &)< F or Cr(x, §)< F;
(b) for every (z, £)EN we have Cf(x, &)< F or C; (x,§)< F;
(c) for every (z, &)€EN we have C*(x, &)< F or C~(x,§)< F.

Then there exists respectively (a) a right parametriz (b) a left parametriz (c) a parametriz B

such that
WF(E)<F, EHH™(X)cHgmy(X), s€ER.

If 3<p<1 one can choose E so that in addition
E-Efel} ™(XxX,(0) (6.5.9)
if B is defined as in Theorem 6.5.3.

Proof. We may assume in the proof that C; =C™* for Theorem 6.5.7 shows that (6.5.9)
does not change if we change the orientation. In case (a) we denote by N+ and N the sets
of all (z, £)EN with CF (x, &)< F resp. C7(z, &)< F. An analogous definition is made in
cases (b) and (¢). Then N+ and N— are closed conic sets with N+*UN-=XN. In case (c)
we know in addition that N+ and N~ are closed under the equivalence relation C, that is,

inverse images of sets in N/C. We shall write £* = Ex.

If A+and A-€LYX) are properly supported and if A++ A~ =1, then B =E+A++ E-A-
is a right parametrix and E=A+E++ A-E~ is a left parametrix. We have B — E+—
(BE-—E*)A- and E—Et=A-(E——E*) in the two cases. This gives (6.5.9) as a conse-
quence of (6.5.4), and the continuity properties stated in the theorem follow from those in
Theorem 6.5.3 and those of pseudo-differential operators. Since there exist closed conic
subsets I'+ and I'- of T*(X)\0 with '+*N N =N+ "N N=N-and I'tUT-=T*X)\0,

the cases (a) and (b) in the lemma therefore follow from

LeMMA 6.5.9. Let Ty, ..., T; be closed cones in T*(X)\0 and let § <p <1. Then one can
find properly supported operators A, ..., A;€LY(X) with Ay +...+A4,=I and WF'(4,)<T,
1=1, ..., 4, if and only if

T, =T*X)\0.

ic-

1

Proof. The necessity is trivial. In the proof of the sufficiency we may assume that
X<R". Let gz, &, ¢) be the convolution of the characteristic function of I'; and &%*
x(x/e, &|e) where 0 <y €CF°, x =0 outside the unit ball and [y dxdé =1. Clearly the derivatives



226 J. J. DUISTERMAAT AND L. HORMANDER

of @, of order k with respect to z, &, ¢ can be estimated by C,e*, and T ¢, >1. In view of this
fact and Proposition 1.1.8 the functions defined by

i
az(w,é“)=¢,-(x,E/lfl,e)/;%(x,éllfl,s), e=|&e,

when |£|>1 and some smooth extension when [£| <1 are in S3(X x R"). Furthermare,
a,;=0 for large |£| in the complement of any conic neighborhood of T'; so 4,=a,(x, D)

has the required properties.

Continued proof of Theorem 6.5.8. What remains to prove is part (¢) which concerns
the existenee of a parametrix. Again we shall write £ =Et4+*+ E-4- with Av+-4-=1,

which is a right parametrix. Since
E—E+=(E-—E)4~
and (E~—E*)A-P =(E-—E*)PA~+(E-—E*)[4-, P],
we also have a left parametrix if
WF([A-,P)NN =0Q. (6.5.10)

(Since [4~, P]= —[A*, P] the operators A+ and A~ play a symmetric role here.) If in
addition to (6.5.10) we have

WEFAHYN N N+, WF(A- NN N-, {(6.5.11)
it follows that WF'(H)< F. Using the fact that N+ and N- are closed under the equiva-

lence relation ¢ we shall construct such operators A+ and A~ in section 6.6. No reference
to part {¢) of Theorem 6.5.8 will be made until then.

We shall now apply the established part of Theorem 6.5.8 to give another more
constructive proof of the implications (¢) = (a) and (¢) = (b) in Theorem 6.3.3. Extending
a terminology introduced in section 2.1 we shall say that & distribution K€2'(X x Y) is
left (right) properly supported if the projection supp K 3 (x, y)—>=x (resp (¥, y¥)—>y) is a
proper map. The map C5°(Y)—2'(X) defined by K (which we also denote by K) can then
be extended to a map O®(Y)—2P'(X) (resp. is a map C(Y)~&'(X)). If WFy(K)=0
the maps will be from 2'(Y) to 2'(X) and &'(Y) to &'(X) of course.

THEOREM 6.5.10. Let P be as in Theorem 6.5.3. Then one can find a left properly sup-
ported right parametriz E, and a right properly supported left parametria E, for P such that for
j=1,2 and a given p with }<p<1

(i) WF'(E))c=A*U C,

(i) B,~Ef€I} ™ X x X, ") if E¥ is defined as in Theorem 6.5.3,

(i) E; is continuous from HZTP(X) to H,p1,(X) for every s€R.
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Proof. As in the proof of Theorem 6.5.3 the statement concerning the left parametrix
follows from that about the right parametrix by passing to adjoints. It suffices therefore
to show that , can be chosen according to Theorem 6.5.8, part (a), so that sing supp E,3
{z, y)—>x€X is a proper map. For then there is a neighborhood V of sing supp E, such that
V3 (x, y)—>2€X is also proper. If y€C®(X x X) has support in V and y=1 in a neighbor-
hood of sing supp E;, then y &, is a left properly supported right parametrix with the pro-
perties required in the theorem.

Let X, X,, ... be an increasing sequence of open relatively compact subsets of X with
union X and choose another such sequence X; such that any interval on & bicharacteristic
curve with end points in X, belongs to X;. That this is possible follows of course from the

pseudo-convexity of X. We shall apply Theorem 6.5.8 with

F=A*U (UCY (2, &)U (UCr (=, &)
Nt N~

where with 7z denoting the projection T™*(X)—>X
N+ = {(x, &) €EN; nBH(x, £)= (X, for every j with x ¢ X}
N-={(, §)€N; nB~(z, £)<(X, for every j with z¢X;}.

These are closed cones and N+U N~-=N. In fact, if (z, £) is not in N+U N~ but (2, £)EN
and if § is the largest integer with x ¢ X; then B(z, £) contains points over X on either side
of (z,£) in contradiction with the definition of X;. Thus F satisfies the hypotheses of
Theorem 6.5.8. If (z, &, y,n)€F and x€X,, then the definition of F gives y€X; so the
theorem is proved.

Theorem 6.5.8 shows that the minimal sets F< (T*(X)\0) x (T*(X)\.0) containing
WF'(E) for some (a) right parametrix (b) left parametrix or (¢) parametrix are precisely

all sets of the form

F=A*U(UCH (=, &) U (UGS (=,8)), (6.5.124)
NT N—

F=A*U (UG (2, &) U (UG (2, &), (6.5.12b)
N+ N—

F=A*U (UC* (=, &) U (UC(,8), (6.5.12¢)
Nt N—

where N+ and N— are closed cones with N+U N-=N, no interior point of N+ (resp. N-)
belongs to N— (resp. N+), and in case (¢) N* and N- are invariant under the Hamilton
flow. We shall now show that E is not uniquely determined mod C'* by the condition
WF'(E)< F except when N+ and N- are disjoint, which is the case discussed in Theorem
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6.5.3. The case (c) is left for section 6.6 but cases (a) and (b) follow from a supplement to
Theorem 6.2.1:

ProrosiTION 6.5.11. Let P satisfy the hypotheses of Theorem 6.5.3. For any s€ER
and (x, E)EN, (y,n)ETH*X) one can choose K€D (X x X) so that K€H (X x X) when
t<<s and either

(a) PKEC™(X x X) and WF'(K)= W F(,(K)=cone generated by B(z, &) x {(y, n)}, or
(b) KPEC™(X x X) and WF'(K)= W F,(K) = cone generated by {(y,n)} x B(z, §).

Proof. It suffices to consider (a). As in the proof of Lemma 6.5.5 the only new point is
that the operator P®1 in 2'(X x X) is not a pseudodifferential operator. However, we can
choose a pseudo-differential operator R in X x X such that WF(R) contains no point of
the form («', 0, y',%’) and in addition WF(I— R) does not meet B(z, &) X {(y, n)}. Then
(P®1) R is a pseudodifferential operator which has B(z, &) x {(y, —#)} as & bicharacteristic
strip. If we choose K €2'(X x X) with K €H ;) (X x X)fort <sso that WF(K)=WF,(K) is
generated by B(z, &) x {(y, —n)} and (P®Q1)RK €C®, which is possible by Theorem 6.2.1,
then the fact that (I — R) K €C*® gives that (P®1)K €C®. But (P®1)K is the kernel of
the composition PK.

Using Proposition 6.5.11 we also find that a restriction on the wave front set of a right
parametrix does not guarantee that it is a parametrix except in the case discussed in
Theorem 6.5.3.

THEOREM 6.5.12. Let P salisfy the hypotheses of Theorem 6.5.3 and let E be a right
parametriz of P with WF'(E)< (THX)N\0) x (T*(X)\0). Unless E is the parametrix
E; of Theorem 6.5.3 for some v= N there exists another right parametriz E, with W F'(E;)<
WF'(E) which is not a left parametrix.

Proof. If (x, &, y, n)E WF'(E)\(A*U C) it follows from Lemma 6.5.5 that B(x, §) x
{ly.n)}= WF'(E). Choose K according to part (a) of Proposition 6.5.11. E+K is then a
right parametrix with WF'(E + K)c WF'(E) but E and E+ K cannot both be left para-
metrices since KP is not in C® by the observations following Lemma 6.5.5. Assume now that
WF(E)YcA*UC. If N+ and N- are defined as in the proof of Theorem 6.5.8 it follows
from Theorem 6.5.6 that WF'(E)=F is given by (6.5.12a). If N+ and N— are disjoint we
have the situation of Theorem 6.5.3. On the other hand, if (x, £) EN+N N— then B(z, §) x
{(®,£)}c WF'(E) so we can again use Proposition 6.5.11 to find a right parametrix
E, with WF'(E,)<= WF'(E) which is not a left parametrix.

Parametrices with entirely different properties can exist for operators which have real

principal symbol but do not satisfy the hypotheses of Theorem 6.3.3. In particular,
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this is the case if we allow P to have periodic bicharacteristic strips but require that ¢
is a closed submanifold of T*(X x X)\ 0, i.e., in each component we have either a fibration
by periodic bicharacteristic strips or else no periodic bicharacteristic strips at all. We can
then use Remark 3 at the end of section 6.4 provided that the subprincipal part of P
satisfies the non-resonance condition described there. Moreover, in the case that all bi-
characteristic strips are periodic the right parametrix E can be chosen properly supported,
80 it follows as in the proof of Proposition 2.5.1 that it is also a left parametrix and that
right and left parametrices are uniquely determined modulo €. It follows also that Pu€
0=(X) implies % € C®(X) for all w€2’'(X). However, as soon as bicharacteristics occur the
operator P is not hypoelliptic in the usual local sense that sing supp «<sing supp Pu for
all u€2'(X). In fact, by Theorem 6.2.1 hypoellipticity implies that all bicharacteristic
strips stay over a fixed point in X, so p(x, &) =0 whenever p(z, £)=0. Since we assume
that dp 0 when p=0 it follows that the rank of the differential of the projection N—~X
is constant equal to »—1, which implies that locally p(z, &) =¢(z)q(z, &) in neighborhoods
of the zeros of p. Here ¢=0 and ;0. However, for such operators we have Pr=@rq
on N. The orbits of the Hamilton flow on N are therefore straight lines in the fibers so they
cannot be periodie. This proves the statement.

For example, the operator P in Remark 2 after Theorem 6.3.1 has all the properties
required above, even if we let P be defined on the whole plane including the origin.

6.6. The distinguished parametrices

Theorem 6.5.12 and the discussion preceding Proposition 6.5.11 underline the particu-
lar interest of the parametrices constructed in Theorem 6.5.3. These will be called distin-
guished parametrices here. As mentioned in the preface the case of the Klein-Gordon
operator [1+m2 in R" has been considered in relativistic quantum mechanics. The set
N has two elements then. When »=N or »=@ one can take for E; the Feynman “pro-
pagator” or its complex conjugate, while we obtain the advanced or retarded fundamental
solutions when » has one element. This covers all the 22 cases. Note that modulo
C*® we have thus in Theorem 6.5.3 given an analogue of the Feynman propagator for the
wave operator on a pseudo-Riemannian structure of Lorentz signature. We do not see how
to fix the indetermination. (See also DeWitt [34].)

If v, and v, are disjoint subsets of N then

E; + B =E;,, +Ef mod C~. (6.6.1)

In fact, E=E}, + K}, —~ E},,,, is a parametrix, and if we apply Theorem 6.5.7 to the dif-
ference of the last two terms it follows that
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WF'(E)nC* < (N xNS)ynC*.
By the symmetry we can interchange indices 1 and 2 which shows that
WF'(E)cA*UC-, (6.6.2)
hence that £ =E} mod C*.

When €N we shall write Cy=C N (# X #) (where #% is considered as a component

of N) and write
Sp=Ef— B €13 ™(X x X, C7). (6.6.3)

For any subset » of N we have then

Ef=E;+ > 8z (mod C*). (6.6.4)

fiey

This makes sense even if » is not finite for on any compact subset of X x X only finitely

many terms are not in C*. Hence

E;=Ej+ 2 Si=Ey— 2> Si=B;— 2,8
figw fiey fiey
80 E; —Ej=E4—Ej =25
N

In view of Theorem 6.5.3 and (6.6.3) this shows that WF'(S;)=C;. It follows that
E} and 8;, #€N, are linearly independent mod C* and that only k+1 of the 2°
distinguished parametrices are linearly independent mod C®. Here k=-card .

We shall now compute the principal symbol of S;. For the case P =D, this was done
in Proposition 6.1.2, part (iii). To study the general case we shall first show that there is a
natural density on C and a trivialization of L, both of which are invariant under canonical
transformations.

C can be regarded as a fiber space C'—N|C with base N/C by taking B(x, &) x B(z, &)
as the fiber through the point (z, &, y, ) €C. The parameter in the Hamilton equations
defined as 0 at (z, £) gives an inclusion B(z, &)< R. If (z, &) is replaced by another element
in the same class of N/C we just obtain a translation of B(z, £) on R. Thus the Lebesgue
measure on R? defines a density in the fibers of ¢~ N/C. Furthermore N/C is a symplectic
manifold, for the tangent space can be identified with the tangent space of N at some
point modulo the direction of the Hamilton field there. (See also section 3.3, p. 161). The
fiber product dy(p) of the two densities is the required density in C. Note that if p, and p,
are the liftings of p to (T™(X)\0) x (T*X)\0) by the two projections, then the Lie
derivatives & H,jdc( p) =0. In the particular case where P =D, we can identify N/C with the
cotangent space of R"™! (which again proves that N/C is symplectic in view of Proposition
6.1.3). If we use the parametrization (6.1.3) of C then d, is dz'dfdz,dy,,.
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The definition of dy(p) is obviously invariant under canonical transformations. We
shall now consider the effect of replacing p by ¢ =ap where a is real valued and =0. This
does not change C but since H,—=aH, on the characteristics the parameters on the bicharac-
teristic strips are affected. If £ and s denote the parameters on the bicharacteristic strips of
p and g then 8/8s =ad/ot or equivalently ot/ds =a. On the diagonal Ay of N x N we therefore

have -
do(q) =a~*do(p), that is, Vd(g)=la|™Vd(p)- (6.6.5)

Vdy(p) is a homogeneous section of Q,(C) of degree (n—1)/2—(m—1). In fact, by (6.6.5)
it suffices to prove this when m =1. Since the Hamilton field is invariant under multiplica-
tion by positive scalars the statement follows then from the fact that the symplectic
measure in a conic symplectic manifold of dimension 2k is homogeneous of degree k.
We shall now verify that the bundle L, is trivial (even as a Z bundle). Since Ay is a
deformation retract of C it suffices to prove this for the restriction of L to A, and we may
assume that P is of degree 1. When P =D, we want to have the trivialization given by
the phase function {z’ —y’, 6> occurring in Proposition 6.1.2. In addition we want to have
a trivialization which is invariant under canonical transformations. If (x,, &) EN we there-
fore take according to Proposition 6.1.3 a canonical transformation from a conic neighbor-
hood of (z,, &) to a conie neighborhood of (X, E4) € T*(R*\ 0. Let p(z, X, B), ® ER™N0,
be a phase function defining this canonical transformation. The proof of Theorem 4.2.2

shows that near (zy, &, %, &) the canonical relation C is defined by the phase function
o,y X, Y, O, 0y, 0) =y, X, 0x) +<X' - Y, 0> —p(y, Y, Oy)

where 0=(X, Oy, 0, ¥, ®y)€R*"! is to be considered as the fiber variable, and (z, )€
X xX. We have written X=(X’, X,) and Y =(Y’, Y,). Thus

Oo{(2, 909, — @) Px = Qo =Po=9r=0po,=0}.

When x =y is near z, and ;= — ¢, is near &, it follows from the preceding conditions that
X=1Y and ®yx=0y. Since interchange of (z, X, @) and (y, Y, ©y) changes the sign of ¢
it follows that the signature of ¢y, is equal to 0. Thus one can define C locally near Ay
by non-degenerate phase functions ¢ (z, y, o) such that sgn @, =0 at all points corre-
sponding to A,. This proves the triviality of L.

At a point in Ay where p;=0 the rank of the projection X x X is n+1 whereas
it is » — 1 at points with p;=0. For the phase function constructed above we therefore have
5n—1—rank gr=2n~(nt1)=nF1 (Theorem 3.1.4). Thus we can always reduce the
number of fiber variables as explained in sections 3.1 and 3.2 to n+1, that is, by 4n—2
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units. This can be done so that the signature of the new phase function is also 0 whereas
the rank is 0 or 2. Summing up: At Ay we can define C' by non-degenerate phase func-
tions @(z, y, 0) with 6ER™2\ 0 such that z=y, @s=0, ¢;=¢, implies sgn gg =0 and
rank gg=0 or 2. The corresponding trivialization of L, (see the paragraph following
Theorem 3.3.4) is invariant under canonical transformations and will be used throughout

here.

THEOREM 6.6.1. Let P be of real principal type in X and assume that X is pseudo-
convex. The principal symbol of S; € I}™™(X x X, C) pulled back to C;, by the map C;~C= is
then in C; equal to

iV2ndg(p)a (6.6.6)

where @ is the function on C which is equal to 1 on Ay and satisfies the differential equations
1 Hya+c60=0, iH,a—ca=0. (6.6.7)

Here p; and ¢, are the liftings of the principal part p and the subprincipal part ¢ (see
(8.2.8)) to (T*(X)\0) x (T*(X)\0) by the projection to the first or second copy of T*(X)\0.
If f is a solution of the equation H,f+c=0 and f; are the two liftings, then a —exp i(f; —f,)-

Proof. We shall first prove that (6.6.6) is valid with a=1 on Ay. By (6.6.5) this state-
ment is invariant under multiplication of P by an elliptic factor with positive principal
part so we may assume that P is of degree 1. Since in the proof of Theorem 6.5.3 the wave
front set of G* does not meet A, the assertion follows by inspection of that proof and
Proposition 6.1.2. To prove (6.6.6) off the diagonal we note that PS;€C*® and compute
the principal symbol using Theorem 5.3.1. Since &, VW =0 this gives

iH, a+ca€ 872 or H, (ae )€ 872,

which completes the proof.

When ¢ is real the integral operator in B(z, &) x B(z, §), (%, §) €N, with kernel equal to
the function @ in Theorem 6.6.1 is positive and of rank 1. This suggests that S;/¢ might be
a positive operator when c is real, that is, when P* — P € L7~3(X). Here P* is the adjoint of P,

(Pu, v) = (u, P*0); u, vECT(X).

(Recall that u, v are densities of order § so the sesquilinear scalar products used here are
intrinsically defined.) However, the fact that the principal symbol only gives rise to an
operator of rank 1 indicates that the situation is highly unstable so that lower order terms
in P may play a role. This is confirmed by the following example. Let X =RB" and let P
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have the symbol §n+ic[§’f ~* in a conic neighborhood of &, =0; ¢ is a real constant and v
a positive integer. We can write the parametrix £+ modulo a pseudo-differential operator

with £, 40 in its wave front set as

Etu(z)= ffe“""‘""’a*(xn, Y, 0) uly) dy do.

Here a* (z,,y,,0)=0 for x,<vy,, a™(y,+0,y,,0)=1 and
Dz, a* (%, Y, 0) + ¢ |0] 2" (2, 9, 0) = 0.
This gives at (X, Y, 0) =1 €xp (c(x, — ¥u)|0]") 20> Y0

Similarly we can construct £~ and obtain

THET - E)u(x) = ffei‘“"y"ma(xn, Y, 0) u(y) dy dO

where a(x,, ¥,,0) =exp (c(z,— ¥,)|0]|™") for all z,,y,. Now choose u(y)=v(y")wly,) where
w is fixed in CF and fw(x,)dr,=0, fz,w(x,)dv,=1. Then

Jfa(xns Yno 6) W(.’L‘n) w(yn) dxn dyn == lo |_2762 +...

where dots indicate a symbol of order —3v. Hence
Re (Bt —E7) i u,u) < — &2 |v||&,, + (Bu, u)

where R has a C® kernel (see section 2.2), so no operator in the same class as (E+—E-)[¢
mod C* has a positive real part. This motivates the hypothesis that P is self-adjoint in

the following theorem.

THEOREM 6.6.2. Let P be self-adjoint and of real principal type in X, and assume that
X is pseudo-convex. Then one can choose S; anti-self-adjoint so that

(1718w, %) >0, uECT(X). (6.6.8)

Proof. Taking the adjoint of the equation PE+=1I-+ R, where R has a C® kernel,
we obtain (E+)* P=1+ R*. Since WF(E+)c A*U O+ it follows that WF/((E+)*)< A*U C~
so (E*)* — B~ €. Taking adjoints in (6.6.4) we therefore obtain

3 (8p+S%)€EC™

and since the terms have disjoint wave front sets each of them is in C®. Hence S; can be
normalized so that S;/i is self-adjoint.
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The proof of the positivity is much harder except in the case P = D, when we obtain
from (6.1.1)

(i"HEBr — Ey)u,u)= (2n)“"‘1’f|6(0)|2d0 = f{v(m')lz dz’ (6.6.9)

where v(z')= fu(x', z,) dz,. (6.6.10)

In order to reduce the general case to this one we have to refine Propositions 6.1.3 and
6.1.4 so that we can construct S; in one stroke in a conic neighborhood in (T*(X)\0) x
(T*(X)\0) of the inverse image in O of a neighborhood of any point in N/C. In doing so
we shall also obtain the tools for completing the proof of Theorem 6.5.8, for example, so
at first we shall not require P to be self-adjoint.

Let A be an invertible elliptic operator of order (1 —m)/2 with homogeneous principal
symbol and set @ =A*PA. Then the first order operator @ is of order 1 and has the same
bicharacteristic relation as P; if P is self-adjoint so is Q. If E* are distinguished parametrices
of @ it follows that A E*A* are distinguished parametrices of P. Since 4 and A* preserve
wave front sets we obtain from the parametrix differences S; corresponding to @ the ana-
logous ones 487 A* corresponding to P. Thus it suffices to consider the operator @ instead
of P. In view of condition (iv) in Theorem 6.4.3 it follows that we can take the principal
symbol of 4 so small at infinity in X that in the representation of NV given by that condition
M’ =M, % R. In other words, the parameter on every bicharacteristic strip of @ runs from
— oo to oo, This is a notational convenience only.

Summing up, we shall assume in the following lemmas that P is of order 1, and that
the Hamilton field H, on N ={(z, & €T*X)\0, p(z, £) =0} satisfies the conditions in
Theorem 6.4.3 with M'=M; xR in (iv).

LEMMA 6.6.3. For every (x,, &) EN there is an open conic neighborhood U in T*(X)\0

and a homogeneous canonical transformation

U3 (@, &) = 4(@, &) = (Xa(®, &), ooy X2, E), B, £), ooy Enf, £) ETHR)NO
mapping U bijectively on an open conic neighborhood U’ of x(wy, &) =(0, By), such that.
(i) p(, §) = E,(=, ),
(i) U'NN', where N'={(X, E)ET*R"\0, E,=0}, is invariant under translations
along the X, axis, and U’ is symmetric with respect to the plane X, =0 and convex in the
direction of the X, awxis.

Since H), is transformed to 8/0.X,, by x' it follows from (ii) that U N N is also invariant
under H,,.
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Proof. By Proposition 6.1.3 we can find a local canonical transformation with all
the listed properties except that UNN and U’'NN’ are not invariant under the
Hamilton fields. By integration along the Hamilton fields H, and /60X, we can extend
U, U’ and y in the required way. In fact, by hypothesis the integration gives a bijection
between the flowouts of UNN and of U'N N’ and since exponentiation of the Hamilton
field gives a canonical transformation we obtain a canonical bijection of a neighborhood.
This proves the lemma.

Let U; and U, be closed conic neighborhoods of (z,, &) such that U,=U and U,
is in the interior of U; while U;N N are invariant under the Hamilton flow. We may take
U, so that Uj=yU, are convex in the X,-direction and symmetric about the plane X, =0.
By I'; and T', we denote the graph of the restriction of y to U, and to U,.

LEMMA 6.6.4. There exists a Fourier integral operator A€ IY(X x R", I'1) such that

(i) A ¢s non-characteristic in T3,
(i) Ton WF'(PA—-AD,)=9.

If P is self-adjoint we can choose A so that in addition

(iii) WF(A*A—-D)N Uy =@
or which is equivalent
(iii) WFAA*-I)n U, =2.

Proof. The first part of the statement follows by inspection of the proof of Proposition
6.1.4 since for every a€S5(U,) one can find b€S¥U;) with 9b/6X,=a and b=0 when
X,=0. When P is self-adjoint it follows from (ii) by taking adjoints that

() I'sin WF'(4*P—D,A* =0
Hence it follows that
UsN WF(A*PA—D,A*A)=0,U;n WF(A*PA—~ A*AD,)= @,
and so WF([4*A,D,)n Uy,=0.

Thus the full symbol of 4*4 is the sum of one term of order — oo near U and one which
does not depend on X, and is bounded from below near Us;. From the proof of Proposition
2.2.2 it follows that one can find B€L3(R") properly supported with W F(B)< U; such that

WF(B*B—~A*4A)N Uy =@ and WF([B, D,))N Uy =.

The proof of Proposition 2.5.1 shows that one can find 4, EL)(R") properly supported with
WF(A,)c U] and
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WF(A,B—I)nU;=@, hence WF(BA,—I)n U;=@.
Since WF(AYB*BA, — ATA*AA,)n Uy=0, WF(A,[B,D,]4,)0U;=0
this implies that
WFI ~(AA)*AA)N Us=0, WF(4,,D,])n Us=2.
From (ii) we now obtain
@=T,N WF'(PAA,— AD,A,)=Ts "\ WF'(PAA,~ AA,D,)

since T', N WF'(A[D,, 4,])=9. The proof is complete.
As shown in section 5.1 we can always choose BE I3 (R" x X, (I';'!)’) so that

WFAB—-I)NU,=0, WFBA-I)nU,=0.

In the self-adjoint case we shall of course take B =A*, but we do not make this hypothesis
yet. Modulo C® a one to one correspondence between pseudo-differential operators
TeL¥X) and T’ €LYR") with WF(T)< U, and WF(T")< U, is obtained by writing

T=AT'B, T'=BTA. (6.6.11)
(We take all pseudo-differential operators properly supported.) In fact,
A(BTA)B—-T =(AB—-1)TAB+T(AB—-1)€C>
and similarly B(AT'B)A — T’ €C=. For general T and 7" in LY it is still true that
WF(ABTA)B-T)nU,=3, WFBAT'B)A-T')nU;=2.
The correspondence (6.6.11) preserves algebraic operations: If T; = BT, 4,j=1,2,3, then

WF(,T,~T)NU,=@ < WF(T1T5—Ts) N Up=D. (6.6.12)
In fact,

T:T;—T3;=BT,ABT,A— BT, A=B(T,T,—T;)A+BT,(AB-1)T,A
and the wave front set of the last term does not meet Us. Similarly,

WF({T,Ph)nNNU,=@ - WF({T',D,)NN'nU;=2. (6.6.13)
In fact,

[1", D,] = [BTA, D,] = BT(AD,—~PA)+ B[T, PlA+(BP—D,B)TA.

By (ii) in Lemma 6.6.4 the wave front set of the first term does not meet Us; and the same
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is true for the last term sinee again by (ii) WF(P—-AD,B)N Uy,=&, hence WF'(BD —
D, B)nTy'=0@.
If S is the difference E, —E, which occurs in (6.6.9) and if U,NN is in the

component # of N, then
WF'(8;—ASB)N (U, x Uy) =D. (6.6.14)

Indeed, the proof of Theorem 6.5.3 shows that WF'(4A Ef B— E*) does not meet the diagonal
in (UyN N) x (U,N N). Hence the same is true of WF'(ASB - 8;) which is also contained in

C. However,
P(ASB~-S8;)=(PA—AD,)SB,

so WF'(P(ASB —S;)) does not meet Uy x U, by (ii) in Lemma 6.6.4. Hence it follows from
Lemma 6.5.5 and the remark following it that (6.6.14) is valid. This leads to an important
step in the proof of Theorem 6.6.2:
LeMMA 6.6.5. If P is self-adjoint, T€LYX) and WF(T, P)NN =0, then
S; TT*-TASA*T*eC™® (6.6.15)
if WE(T)= U, and NN U, is in the component %. (The notations are those of Lemma 6.6.4.)

Proof. Taking B=A* we have by (6.6.14) and the invariance of U, N N
8;TT*— ASA*TT*eC™. (6.6.16)
Now introduce 7" =A*TA following (6.6.11). Then WF(T")< U; and by (6.6.13)
WHT',D,)NN' =0.
Thus the derivative with respect to @, of the symbol of 7" is of order — oo in a neighbor-
hood of N’. If we denote by 1, convolution by the Dirac measure at (0, ..., 0,4), then

S={r,dh, and 7,T"7_,—T" is of order — oo in a conic neighborhood of N'. If u €&’(R") it

follows that
WF,T'u—T' 1,u)n N' =0

for N’ is invariant under translations in the z, direction. Since 7" is properly supported
an integration with respect to & gives

WF(S, Tu)nN' =@.
On the other hand, WF([S, T"lu)= N’ since WF'(S)cN'x N’ so we conclude that
[8, T"1u€C®, hence that [S, T']€C®. Thus

A*TAS —SA*TA€C>,
and if we multiply by 4 to the left and by A*T™* to the right we obtain

TASA*T* — ASA*TT*€C.

In view of (6.6.16) this proves (6.6.15).
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By (6.6.9) the operator TASA*T*/i is positive. To prove Theorem 6.6.2 it therefore
remains only to show that the identity can be written as a sum of operators of the form
TT* discussed in Lemma 6.6.5. In doing so we again drop for a moment the hypothesis
that P is self-adjoint. We keep the notations of Lemma 6.6.4 and take in addition a closed
conic neighborhood Uj of (%, §,) contained in the interior of U, such that U;N N is also

invariant under the Hamilton flow.

LeMMA 6.6.6. There extsts an operator T E€LY(X) with WF(T)< U, such that T has a
non-negative homogeneous principal symbol equal to 1 in U, and

WF(T,P)nN =@.

Proof. Introducing T—AT'B as in (6.6.11) we reduce the proof to finding 7" € LY (R
with WF(T')<U,, such that the principal symbol is homogeneous and equal to 1 in
Us=yU,, and

WF([T', D)INN' =@,

In the proof we need another closed conic neighborhood V of (0, Z;) such that Vn v
is invariant under the vector field 8/0x, and Us (resp. V) is in the interor of V (resp. Us).
Choose a non-negative C® function gy(2’, £) which is homogeneous of degree 0, vanishes
outside {(z,&); (#',0,£)€EV} and is 1 in a neighborhood of {(2’, £); (x', 0, £)€ U,}. Then
choose ¢,(%, &) homogeneous of degree 0, equal to 1 in a neighborhood of V and 0 outside
Us;. The product ¢(x, &) =g,(2’, &)@y (x, &) is independent of x, in a neighborhood of N’
so a pseudo-differential operator 7" with symbol ¢ has the required properties.

End of proof of Theorem 6.6.2. Choose a countable number of triples of closed cones
U{> Uj> U} and corresponding operators A, as above so that Ujn N<ii for every j and
U Ui>4. In addition we require that the projections #U{ in X have closed neighborhoods
F, such that the sets F; are locally finite. Choose corresponding operators T,€L}(X) with
WF(T,;)< U} according to Lemma 6.6.6, thus WF([P, T,)n N =O. We can take T, so
that the kernel vanishes outside F;x F,. Then the sum

G=21T,T}

is defined, the principal symbol of ¢ is positive in a neighborhood of % and WF(G) N N =4.
Moreover, WF(|G, P))N N =9. Proposition 2.2.2 or rather its proof shows that we can
find a self-adjoint R € LY(X) with non-negative principal symhol and WF(G—~ RR*) N N =@.
We claim that

WF({R,Ph)NN =0,

This is obvious if P=D, for WF({G, D,)n N =2 means that some symbol of 7T is inde-
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pendent of z, in a neighborhood of the characteristic set and it is obvious that the sums
used to define R will have the same properties. (Note that the conditions on R determine
the symbol mod §—® in a conic neighborhood of N.) By the remarks following Lemma
6.6.4 we obtain the same conclusion for a general P.

Now choose R, €L} so that WF(RR,—I)N#=@. Then it follows that

WF([R,, P))N# =0.
1t T,= R, T, it follows that

WFT)nNc#, WFI-STHna=0, WF(P,T)nN=0.
Using Lemma 6.6.5 we obtain with congruences modulo 0%®
SﬂEZSﬂT,T’TEszA,SA}*Tf.

Hence we can define S;, to be the right hand side, and since every term there is positive
after division by 4, the theorem is proved.

We shall now give a supplement to Lemma 6.5.9 which will show that (6.5.10), (6.5.11)
can be fulfilled and therefore completes the proof of Theorem 6.5.8. (The reduction to
operators P satisfying the hypotheses made here is left for the reader.)

LEMMA 6.6.7. Let Ny, ..., N, be closed conic subsets of N with union N which are all
invariant under the Hamilton flow, and let 3 <o <1. Then one can find Ty, ..., T,€LYX)
with Ty +...+Tp=1 and

WFR(T)NN<N, WF(IP, TH)ONN=0, j=1,..,k

Proof. If P=D, the assertion follows at once from Lemma 6.5.9 applied to I';=
{(=, &); (x,&’,0)€EN,U0}. In fact, we can take the operators in Lemma 6.5.9 of the form
a,(z’, D) then so the commutator with D, is 0. In the general case we can transplant such
operators to the manifold using (6.6.11) and obtain T, .., T, with WF(T,)nNnN<N,,
WPF(P, THNN=0 and

WFI-T;—..-TynU,=0.
Now choose a covering of N as in the proof of Theorem 6.6.2 but with # replaced by N,

and choose corresponding operators T ,€ L} with WF(T )< U} and WF(I-2T)nNN=0,
WF([P, T,))n N=@. For each j we can choose T4, ..., T} as above. If we set

T,=>T,T, i=1,...,k,
i

it follows that 71, ..., T have all required properties except that only WF(I—>FT)N N =

@ instead of I=X T;. However, if we replace 7, by I—Z¥ T, the proof is complete.
16 — 722909 Acta mathematica 128. Imprimé le 28 Mars 1972,
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Finally we shall supplement Proposition 6.5.11 with a result which shows that there
are many parametrices with wave front set contained in the set given by (6.5.12¢) unless

it is the wave front set of a distinguished parametrix.

ProrosiTiON 6.6.8. Let P satisfy the hypotheses of Theorem 6.5.3. For arbitrary
(x;, E)EN, §=1,2, one can choose K€D (X x X) so that WF'(K) is the cone generated by
B(x,, &) x B(x,, &) and PK€C®, KPeC®,

Proof. For j =1, 2 we choose conic neighborhoods U1, U} of (z,, &,) and operators 44, B}
as in Lemma 6.6.4 and the following discussion. Let (0, Z4) € 7*(R")\0 be the point cor-
responding to (z;, &;), thus Ej=(0,, 0) where 6,ER*1\ 0. Now choose K, €2'(R"1 x R*-1)
with WF'(K,)={(0,t0;; 0, t0,), ¢>0}. If K is regarded as a distribution in R"xR"
independent of the nth coordinates, Theorem 2.5.11" shows that

WF(Ky) ={0, X,,t55; 0, ¥,,t53); >0, X,,, Y, ER}.

Since D, K,=K,D, =0 the composition K =A, K; B, has the required properties.

‘We shall end this section with some brief additional comments.

Remark 1. All solutions of the equation D,u=0 can be written in the form »=(E; —
E)v for some v such that the projection of supp v on the plane z, =0 along the x, axis is
proper. The quadratic form (Sv, v)/i only depends on % and not on » and may be thought
of as the energy of w. Using the partitions of unity above it is easy to show that if Pu=
fEC® and W F(u)<# then we have u=_83v mod C® for some v. We leave for the reader to

supply the proofs and the precise conditions on the supports of v and ;.

Remark 2. 1t is usually necessary to work mod C® to obtain the results proved above,
even if there is a natural choice of K, . For example, if m?is replaced by —m?in the Klein—-
Gordon equation the E are unambiguously defined but they are all linearly independent,
the differences corresponding to S; do not only depend on #, they are not skew adjoint and
do not have positive imaginary part. This follows easily by writing down Fourier integral

representations of E;. Again we leave the details for the reader.

VII. Pseudo-differential operators with complex principal symbols
7.0. Introduction

In this chapter we shall study pseudo-differential operators PE€LJ'(X) where X is a
C* manifold, assuming that P has a homogeneous principal symbol p. According to [17,

Chap. VI] it is necessary to require that
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{p,P} =0 whenp=0 (7.0.1)

in order to have even local existence of solutions of the equation Pu=f when P is a diffe-
rential operator. In the case of pseudo-differential operators the same condition is necessary
in order to have an existence theorem both for P and for 'P. (See [42].) We shall therefore
always assume that (7.0.1) is fulfilled. In addition we shall assume that the Hamilton
fields Hy,,, Hyy,, are linearly independent when p=0. (For many local results it is of
course sufficient to make these assumptions locally.) From (7.0.1) it follows then that
{Re p, Im p} =a Re p+bIm p for some smooth @ and b. In view of the Jacobi identity

this implies that
(Hgep» Hypmpl=aHgo, +bHyy, when p=0. (7.0.2)

By the Frobenius theorem we therefore have through every characteristic point a two-
dimensional manifold contained in the characteristics and tangent to the vector fields
Hy, , and Hyy,. In analogy with the real case the manifold will be called a bicharacteristic
strip. This is natural since we prove theorems on existence and regularity of solutions which
then become very close to the corresponding results in the real case. The main difference
is from the analytic point of view that for solutions of Pu=f€C® the order of differenti-
ability is no longer constant along the bicharacteristics but instead a superbarmonic
function with respect to the analytic structure defined by the Hamilton field H,.
Geometrically the new features are caused by the fact that we have to consider two dimen-
sional foliations and these may have a much more complicated (semi-)global behavior than
one dimensional foliations.

In section 7.1 we begin with a local and (semi-)global discussion of first order differ-
ential operators satisfying the preceding conditions. Using a local transformation of a gene-
ral operator to the Cauchy-Riemann operator with parameters we extend in section 7.2
the local results to theorems on the propagation of singularities of solutions of the
equation Pu=f. From these we also derive sufficient conditions for local or (semi-)global
existence theorems. In section 7.3 we then resume the discussion of first order differential
operators. In particular we study the case of cone manifolds which is required for differential
equations involving symbols. This prepares for the construction in section 7.4 of solutions
of Py =f€0® with given superharmonic degree of differentiability in the wave front set,
which is the cone generated by a bicharacteristic strip, and for the construction of para-
metrices in section 7.5. In contrast to the real case the existence theorems obtained via a
parametrix are weaker than those obtained from the local arguments in seetion 7.2, Also
in other respects the results in this chapter are not as complete as those in chapter VI.

For example only right (or left) parametrices are constructed.
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7.1. First order differential operators

Let M be a O® manifold and let L be a complex C® vector field on M, i.e., L=L, +iL,

where L, and L, are real C® vector fields on M. We assume that
[Ly, Ly]{x) is a linear combination of L;(z) and Ly(x) for all x€ M, (7.1.1)
Ly(z) and Ly(x) are linearly independent for every z€.M. (7.1.2)

These conditions are invariant under multiplication of L by a non-vanishing complex
valued function. If more generally L is a first order differential operator from complex
valued functions on M to sections of a complex line bundle on M and L1 =0 conditions
{7.1.1) and (7.1.2) can therefore still be applied to L. All that follows remains valid in this
slightly more general context.

Our purpose is to discuss the existence of smooth solutions u of
Lu=f {(7.1.3)

when f is smooth. Condition (7.1.1) is necessary for the local existence even of a distribution
solution as remarked in the introduction. Together (7.1.1) and (7.1.2) are sufficient for the
local existence of a smooth solution. To see this we first note that by the Frobenius theorem
one can choose local coordinates near 0 for example so that L, and L, are linear combinations
of 8/ox,_; and 8/ox,. Thus

L=a, ,0/0x, +a,0/0x,

can be regarded as an elliptic operator in the variables 2" =(x,_,, #,) depending on the
parameters 2’ = (2, ..., Z,_g). It follows that there is a parametrix

Ef(x)= (2n)“2f f VR g 0) f(a', y") dy” dO (7.1.4)

in a neighborhood U of 0. Thus LEf=f—Rf, f€4'(U), where R has a C® kernel. If
L ECF(R”) is equal to 1 in a neighborhood of 0 and y(x) =x(z/e) we obtain a solution of
(7.1.3) near O by taking w=ZHg where g—y, Ry=y.f. For small ¢ it is clear that the
Neumann series

9= (%R 1.f

o\M8

converges to a function in CF(U) which proves the local existence of solutions of (7.1.3).
(This is of course a special case of the theorems concerning operators of constant strength
in {17, Chap. VII].)
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From (7.1.1) and (7.1.2) it follows that for some A€C®(M)
(L, L]=AL—-ZL. (7.1.5)
If u is a (local) solution of Lj=2 and L' =e“L, then
(L, L'} = e#®#([L, L)+ (L)L — (Lu) L) = 0.

An application of the Frobenius theorem now gives local coordinates such that L' =

8lox, ,+18/0x, so we have proved

LEmma 7.1.1. At every point in M there is a local coordinate system such that L=ad/0z
where a €C™ is different from 0 and 0/0Z =(8[0x,_, +18[0%,)/2 18 the Cauchy— Riemann opera-

tor in x,_; +iz,.

If 4y, ..., y, is another local coordinate system for which L takes this simple form, then
y' is a function of 2’ and y,,_; + 4y, is an analytic function of x,_; +ix, when the other vari-
ables are fixed. Thus there is a natural analytic structure in the leaves of the L,, L, folia-
tion—or L foliation for short. (For basic definitions and facts concerning foliations see
Haefliger [40].) This analytic structure allows us to consider differentials of type (j, k)
along the foliation for arbitrary j and k; in terms of the local coordinates in Lemma 7.1.1
these are of the form adz’ d7* with a€C0®. Here dz and dZ shall anticommute. When j =0
(or £=0) we make the invariant definition &(adz") = éa/ozdzdZ* (resp. d(adZ’)=

Ou(0Z d2dz'). Now we can write
L=ad (7.1.6)

where a is a differential of type (0, —1) with no zeros. (The existence of such a differential
is a topological restriction which could be avoided by allowing the range of L to consist of

sections of a line bundle.) From (7.1.6) and L=ds we obtain
LL =adéd+bL, LL =ad@od+bL
where b is a function which in view of (7.1.5) must be equal to —A. Hence
@80 = (L+2)L = (L+A)L. (7.1.7)

If ¢ is defined in an open subset of a leaf of the foliation we recall that @ is called sub-
harmonic if ¢ is upper semicontinuous and 89 >0 in the sense of distribution theory (unless
¢ = —° identically). By (7.1.7) this is equivalent to either of the conditions (L +1)L¢ >0
or (L+2)Lp>0. When ¢€C? we say that ¢ is strictly subharmonic if strict pointwise
inequalities are valid. When ¢ is defined in M we say that ¢ is subharmonic if ¢ is upper
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semicontinuous in M and the restriction to each leaf is subharmonic. Finally ¢ is called
superharmonic if —¢ is subharmonic.

The local description of L in Lemma 7.1.1 leads easily to a rather precise description of
the singularities and the supports of solutions of (7.1.3). To measure the smoothness of a

distribution » in M we set

8y(x) =sup {tER; u€Hy, in a neighborhood of x}.

(In section 7.2 we shall also consider an analogous function in the cotangent bundle.)

Note that s, is lower semicontinuous by definition.

Lemma 71.2. If u€ ' (M) and Lu={, then min (s, 8) is a superharmontc function if s

is superharmonic and s, s.

Proof. The statement is local so in view of Lemma 7.1.1 we may assume that M is
an open subset of R* and that L=29/8Z, z=x,_, +ix,. We just have to prove that if A is a

harmonic function in € such that
min (s, 8)(0, 2) > h(2), |z| =,

then the inequality is valid when [z| <r if (0, z) €M then. It is obvious that s(0, 2) >A(2)
when |z} <r. If v=y;7,u and y; ECF(R™?) has support in a small neighborhood of 0,
71(0) =1, while y,€CF(C) is 1 for |z| <r and 0 outside a small neighborhood, then dv/0Z =g

and s, >h since
9 = XaXof + 41022/ 02 u.

Let F be an analytic function in € with Re F =54 and denote by @ the pseudodifferential
operator (14 |D|[2)"®2 Then we have 9(@v)/2Z=Qg, and Qg€Li, since for every « and
o<1 we have Q€L in a neighborhood of z if h(x") <t. If y €07 (R") is equal to 1 in a neigh-
borhood of supp v we conclude that w/oz € L? if w =y(v. An application of Cauchy’s integral
formula (or Fourier transformation) now shows that w€L2, hence that QueL,. It follows
that v €H, in a neighborhood of z if ¢ <k(z). Hence s, >/ at (0, z) when |z| <r which proves

the lemma.

Remark. If a€C®(M) and (L +a)u=f the same conclusion is valid. In fact, the asser-
tion is local and if b is a local solution of Lb=a we can apply the lemma to the equation
L(ue®) =fe® instead.

When f€C® we can take s= + oo and conclude that s, is superharmonic. It will be
shown in section 7.3 that this conclusion cannot be improved, and a general version of the
lemma will be given in section 7.2.

In the following propositions @ denotes a function in C®(M).
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ProrosiTioN 7.1.3. Let w€P'(M) and (L-+a)u=f. Then sing supp u\ging supp f
is invariant under the L-foliation in () sing supp f, i.e., if x €sing supp using supp f then

the whole leaf through x of the L-foliation in (} sing supp f s confained in sing supp u.

Proof. The statement follows by applying Lemma 7.1.2 in M, =(} sing supp f and noting
that a superharmonic function which is equal to + o in an open subset {2 must be equal to
<00 in each leaf through Q.

ProprosSITION 7.1.4. Let w€D'(M) and (L+a)u=f. Then supp u\supp f ©s tnvariant
under the L-foliation in () supp f.

Proof. This follows from the classical theorem on unique continuation of analytic
functions since we obtain smoothness from Proposition 7.1.3 and can remove the term «

as in the remark above.

Remark. The preceding propositions follow from Theorems 8.8.1 and 8.9.1in{17] but
we have preferred to give direct elementary proofs making this paper selfcontained.

We shall now show that the preceding results lead to semi-global and global existence
theorems for the equation (7.1.3).

TaroreM 7.1.5. Let K be a compact subset of M and denote by CP(K) the quotient of
O°(M) by the subspace of elements vanishing of infinite order on K. Then the following conds-
tions are equivalent:

(a) LO®(K)=C=(K).

(b) (L+a)C®(K)=C™K) for every a€(C>(K).

(¢) LC®(K) and (L+2)0°(K) are dense in C°(K), where A is the function in (7.1.5).
(d) There exists a function @ €C®(K) which is strictly subharmonic in K.

(&) No leaf of the L-foliation is contained in K.

Proof. Tt is trivial that (a)= (b)= (¢). If (c) is valid we first choose f€C®(K) with
(L+2)f so close to 1 that Re (L 4-A)f>1 on K. Then choose p € C*(K) with Lg so close to f
that Re (L+A)Ly >0 on K. By (7.1.7) it follows that (d) is valid for Re ¢. (Note that (c)
means that the & operator has a dense range when acting on smooth functions as well as on
smooth (1, 0) forms on K so the condition is guite natural.)

Now suppose that (d) is valid and let B be a leaf of the L-foliation. If B— K then
Bc K and B contains the leaf through any one of its points. At a point in B where g is
maximal the strictly subharmonic function ¢ has a maximum on the corresponding leaf

which is a contradiction.
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Finally assume that (e) is valid. Then (a) follows by repetition of the proof of Theorem

6.3.1 if we show that
vEL'(K), ‘Lv =0 = v =0, (7.1.8)

vEE'(K), ‘Lo =f, 8, > tER = 5, >1. (7.1.9)

Here ‘L is the adjoint of L with respect to some C® density in M so ‘L = —(L +a) for some
a €C®. Condition (e) gives (7.1.8) when combined with Proposition 7.1.4. By Lemma 7.1.2
and the remark following its proof the hypotheses in (7.1.9) imply that §=min (s,, ¢)
is superharmonic and that S <t with equality in § K. Thus the upper semi-continuous func-
tion 8§ assumes its minimum at some point €K and 8 is therefore constant in the leaf B
containing x. By (e) some point in ( K is in B so min S =8(z) =¢ which proves (7.1.9) and the
theorem.

Theorem 7.1.5 shows that semi-global solvability, i.e. LO®(K)=0%(K) for every

compact set K< M, is equivalent to
No leaf of the L-foliation is relatively compact in M. (7.1.10)

Now suppose that we have semi-global solvability. Then a slight modification of Théoréme
2, p. 328 in Malgrange [48] shows that LO®(M)=C=(M) if and only if

For each compact subset K of M and integer k>0 there is a compact

set K'< M such that v€&' (M), ‘Lv€£E*(K) implies vEE'(K'). (7.1.11)

In view of Proposition 7.1.4 the condition {a) in the next theorem together with (7.1.10)
is therefore sufficient for global solvability.

THEOREM 7.1.6. Suppose that L C*(K)=C(K) for every compact ses K< M. Then
the following conditions are equivalent:

(a) For each compact set K< M there exists a compact set K'< M such that if Bisa leaf
of the L-foliation and C a component of BN (K in the leaf topology whick is relatively compact
in the M-topology, then C< K'.

(b) For each compact set K< M there exists a compact set K'< M such that for every
x ¢ K’ there is a solution f€EC®(M) of Lf=0 with the property

|#()| >sup |f()]. (1.1.12)

(¢) There exists a subharmonic function @ € C®(M) such that {x; p(x)<c} is compact in
M for every c€R.
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Proof. Suppose that (a) is valid and choose K, K’ as in (a). Suppose that ¢ K’ and that
| )| < sup | f()]
vEK

for all f€C*(M) with Lf =0. By the Hahn-Banach theorem it follows that there is a measure
p with support in K such that u(f) = f(x) for all f€ C®(M) with Lf=0. Thus &, —p is ortho-
gonal to Ker L in C®(M), hence §, - is in the closure of Im 'L in &' (M). (As before we take
the adjoint with respect to some smooth positive density which is also used to identify
measures with distributions.)

As already pointed out (a) implies that L C®(M)=C*(M), and because C°(HM) is a
Fréchet space this implies that Im 'L is closed in &'(M) (see Diendonné-Schwartz [35,
Th. 7]). Hence there exists a distribution » € &'(M) such that , — u ='Lv. Let B be the leaf
through z and C the component of z in BN (KX in the leaf topology. Because z ¢K’, C is not
relatively compact in M. The same is true for O™\ {} which is a component of BN {(K U {})
in the topology of B. Since (supp *L») N (("\{z}) =2 and supp » is compact, Proposition
7.1.4 shows that supp v (C\{x})=%. But this means that for some neighborhood w
of x we have ‘Ly=4, in w and (supp») N w < {z} which is obviously impossible. This
proves (b).

(b) = (¢). Since |f|® is subharmonic if Lf=0 the proof of Theorem 5.1.6 in
Hormander [41] can be applied with no change.
{c) = (a). We have the following maximum principle for subharmonic functions:

If K is compact in M and ¢ is subharmonic in a neighborhood of K then
sup @(x) = sup @(z) (7.1.13)
zeK ze 'K

where &'K is the boundary of K in the leaf topology. For let the supremum in the left hand
side be attained at y €K and denote the leaf through y by B. If y is on the boundary of the
closed set BN K (in the leaf topology) the assertion is obvious. Otherwise ¢ is constant in
the component of the interior of BN K (in the leaf topology) containing y. This case is ruled
out if using Theorem 7.1.5 we choose a strictly subharmonic function y near K and replace
¢ by ¢+ey. Thus (7.1.13) is valid for @ +eyp and letting >0 we obtain (7.1.13). ‘

Now suppose that ¢ satisfies (¢) and that K is compact in M. Define XK'= {z€M;
@(x) <c} with ¢ =sup {p(y); y€K}. Then K’ is compact in view of (c). If C is as in (a) then
the closure C in the M-topology is compact and 8'C < K. Therefore g(z) <c in C, hence
C< K’. The proof is complete.

Semi-global solvability and condition (¢) of Theorem 7.1.6 together are equivalent to

There exists a strictly subharmonic function ¢ €C®(M) such that
{x€M; @(x)<c} is compact in M for every cER. (7.1.14)
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Indeed, since semi-global solvability and (c) imply global solvability the proof of (d) in
Theorem 7.1.5 gives the existence of a strictly subharmonic function p €C®(M). If ¢ is
the subharmonic function of condition (c) in Theorem 7.1.6 it follows that @, =¢ +e¥
hag the properties stated in (7.1.14). Conversely, (7.1.14) implies condition (d) in Theorem
7.1.5 and condition (¢) in Theorem 7.1.6.

In analogy with the terminology in complex analysis the manifold M will be called
pseudo-convexr with respect to L if (7.1.14) is valid. As we have seen pseudo-convexity is
equivalent to the conjunction of (7.1.10) and condition (a) in Theorem 7.1.6, and it implies
global solvability of Lu =} with C® solutions. (That (7.1.14) implies global solvability is
also easily proved by means of Carleman estimates.) We do not know if the converse is

true but we can give a somewhat weaker result:

ProrosiTioN 7.1.7. Let LC®(M)=C®(M) and let K be a compact subset of M. Then
there exists a compact subset K' of M such that, if B is a leaf of the L-foliation and C a compo-
nent of BN QK in the leaf topology which is relatively compact in the leaf topology, it follows
that C< K.

Proof. Let ¢ be a positive O density on B in a neighborhood of C. Then ‘L(vg) =
(Lv-+av)p in a neighborhood of C for some a € C°(M). Choose b€C®(M) so that Lb+a=0
and let w be the product of ¢’¢ and the characteristic function of C. Then w€&"*(M),
Ocsupp u and supp ‘Lu< K so the proposition follows from (7.1.11) with k=1.

If every open connected subset of a leaf B which is relatively compact in the M-
topology is also relatively compact in the B-topology it follows from Theorem 7.1.6 and
Proposition 7.1.7 that pseudo-convexity is necessary and sufficient in order that LO®(M) =
C®(M). In our applications of Theorem 7.1.6 to parametrix constructions we shall have
to make much stronger geometric hypotheses than the preceding one for other reasons so

the question left open here will not be important.

7.2. Propagation of singularities and existence theorems

Let X be an n-dimensional manifold and P€LT(X) a properly supported pseudo-
differential operator with homogeneous principal part p. Let N, be the set of all
(e, &) €T XN such that p(z, £)=0 and Hp,,, Hy,, and the direction of the cone axis
are linearly independent. This is a ¢ manifold of codimension 2. The interior relative to
N, of the set in N, where the Poisson bracket {p, p} vanishes we shall denote by N. As
pointed out in the introduction the vector fields Hg, ,, Hy, , are tangent to N and the tangent
system on N spanned by them is integrable. The corresponding foliation will be called the
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bicharacteristic foliation and the leaves bicharacteristic strips. The projection of a bicharac-
teristic strip in X will be called a bickaracteristic. Note that the projection is non-singular
only in the open subset of N where d¢ Re p and de Im p are linearly independent.

If uez'(X) and (x, §) €ET*(X)\0 we shall write

s¥(x, &) =sup {t; u€H, at (x, £)).

That u € H, at (z, §) means that v = u, + u, with u, € H, and (x, §) ¢ W F (u,). The function
sh(x, &) is lower semi-continuous and homogeneous of degree 0, and the proof of Theorem

2.5.3 shows that
8, () = inf s, (x, £)
13

where s, is the function occurring in Lemma 7.1.2.

TaEOREM 7.2.1. Let u€2'(X), Pu=f, and let s be a positively homogeneous function in
an open conic subset Q of N with s <s;. Then 1t follows that min (s}, s +m —1) is superharmonic
in Q if s is superharmonic in Q, and that min (sy —s, m —1) is superharmonic in  if s is
subharmonic in Q (with respect to H ). In particular, sy, is superharmonic in Qif QN WF(f)=2.

CorROLLARY 7.2.2. If u€D'(X) and Pu=/, then (NN WEFu)\WF(f) is invariant
under the bicharacteristic foliation in N~ W F(f).

The corollary follows as Proposition 7.1.3 by taking s= +cc and Q=N\WF(f) in
Theorem 7.2.1. The proof of Theorem 7.2.1 is parallel to that of Theorem 6.1.1 so we shall
first consider the operator 8/0Z in R”, z=w,_; +9x,, and then pass to the general case by
means of Fourier integral operators.

Tirst we shall prove that Lemma 7.1.2 remains valid if s, s, are replaced by sy, s7
and s by a function of z and & which is homogeneous of degree 0. In doing so we may assume
that w€&’(R™). If a(&) is a homogeneous function of degree 0, then du/0Z=f implies
2(a(D)u)/oz =a(D)f. We shall apply Lemma 7.1.2 to such equations noting that for every
E,ER™ 0 one can ' choose a; with a,/&)=1 vanishing outside closed cones I'; which
decrease to the ray through &, as j— oco. If u;=a,(D)u we have suj(x)esz(x, &,) so the
superharmonicity of

min (8”;’ s;), where s;(x)= inf s(z, &),
&ely
gives in the limit that min (s, s) is superharmonic. This proves the first statement in
Theorem 7.2.1 for the operator /02. To prove the second we first note that it is equiva-
lent to the first if s is harmonic. Hence the second part follows if s is the supremum of
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a family of harmonic functions. If s€(? is strictly subharmonic, then s(z’, 2, ) 2 h(z, 2, §)
in a neighborhood of (', w, £) with equality at (z’, w, &) when A is the harmonic funec-

tion

k&', 2, §) = s(a', w, &) + Re (2(z —w) ds(z’, w, £)/ow + (2 —w)? &s(x’, w, £)[0w?).

In view of the local character of superharmonicity this proves the second statement in
Theorem 7.2.1 when s is strictly subharmonic and the general case follows by approximation
of s with such functions.

In order to pass from 9/0% to P we shall use Fourier integral operators corresponding
to a canonical transformation obtained from Proposition 6.1.3 with p, =Re p and p,=
Im p. However, this requires that {p, p}=2¢ {Re p, Im p} vanishes not only on & but in
a neighborhood in T*(X)\ 0. The following lemma gives a reduction to that case.

LeMMA 7.2.3. If (z,, &) EN one can find a homogeneous C® function a of degree 1 —m
with a(x,, &) =+0 such that {q, G} =0 in a neighborhood of (x,, &) if q=ap.

Proof. We may assume without restriction that m=1. H, can then be regarded as a
complex vector field on the cosphere bundle so there exists a fixed conic neighborhood V

of (x4, &) such that the equation
(Hp +a)w = /

has a 0 homogeneous solution of degree 0 in N N ¥ for all such a and f. The same is true if
w and f are taken homogeneous of any degree u, for we can introduce w =bw;, f =bf, with b
homogeneous of degree u and different from 0 and obtain an equation of the same form

for w, and f,. The proof now proceeds in three steps.

1) Assume that {p, #} vanishes of order k=1 in V when p=0. By Taylor’s formula

we can then write
k
{P, ﬁ} = zo:a,pjﬁk—j,

where we can choose a, so that @,= —a,_; since {p, p} is purely imaginary. We claim that
it is possible to choose w vanishing of order k —1 when p =0 so that if ¢ =p exp @ the Poisson
bracket {g, 7} vanishes of order k+1 in ¥ when p=0. To prove this we note that

{o. @ e = {p, 5} + plp, w}+p{®, 5} + (@, w}.
The last term vanishes of order 2+ max (2%—3,0)> % +1 so it can be ignored. Write

k-1~

k-1
w= %wm’p



FOURIER INTEGRAL OPERATORS. II 251

k-1
Then ip,w}= g{p, wi} o/ P71+ O(p")

where r =max (£ —2+%,1)> k. Thus we must make sure that
k-1

) k-1 ) k
% (Hypw;) P — % prjpk_'pj‘*' %“}Pif’k—j: 0(20"“),

that is, Hyw,— Hyw,_; +a,=0 NNV for j=0,...,k
Here w, should be read as 0. Since @;= —a,_; these equations follow if in NnV
H,w;+a;=0 when j<k/2, w;=0 whenj>k/2, Hyw;+a;2=0ifj=k/2.

- This proves the assertion.

2) We have now proved that there exist functions wg, w,, ... homogeneous of degree 0
and defined in a fixed neighborhood V of (24, &) such that if g, =p exp (B, -+... + W)
then {gy, g} vanishes of order k+2 in NN V. Moreover, w, vanishes of order k in NN V.
By a classical theorem of E. Borel we can choose a homogeneous O function w such that
w—wy —... —wy, vanishes of order £+1 in NN V for every k. If g=p exp @ it is clear that

{9, g} vanishes of infinite order when ¢=0.

3) We have now reduced the proof to the case where {Re p, Im p} vanishes of infinite
order when p=0. Write p =p, +¢p, with real p,, p, and set {p;, p,} =4, p; +4,p, where
2;€0® vanishes of infinite order in NN V. Now choose a function f, such that in a conic
neighborhood of (x,, &)

{ef‘pl, Pz} =e""Jypy e, {fp 1’2} +2,=0.

There is a unique solution with initial data f; =0 on a conic hypersurface transversal to
H,, at (x,, &) and it is homogeneous of degree 0. Since XV is invariant under the vector field

H,, it is clear that f, vanishes of infinite order when p=0. Next note that

{eh'py, eps} =0 if {e/'py, f,} + €A, =0.
This equation also has a solution f, vanishing of infinite order when p=0. Thus
a=(e"p, + el p,)/(py + ips) =1+ ((¢* — 1) py +i(e" — 1) pa)/ (1 +ip2)

is infinitely differentiable and & —1 vanishes of infinite order when p=0. Since g=ap=

¢/'p, +ief*p, the lemma is proved.
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End of proof of Theorem 7.2.1. Let (%, &) €. Using Lemma 7.2.3 we can choose an
elliptic operator E of order 1 —m such that for the principal symbol ¢ of @ =EP we have
{Re g, Im ¢} =0 in a neighborhood of (x,, &). Since Qu= Ef and si;=sf +m—1 by the
regularity theory of elliptic operators it suffices to prove the theorem for the operator @
instead of P. By Proposition 6.1.3 we can find a homogeneous canonical transformation y
from a conic neighborhood of (%, &) to a conic neighborhood of (X,, Ey)€7*R"™\0
such that g is the pullback of =, _, +iE, by the map y. As in Proposition 6.1.4 we can then
find a corresponding Fourier integral operator with the properties stated there except that
D, is replaced by 0/9% in (iil), z=X,_, +1X,. In fact, the only change is that to satisfy
(6.1.12) with D, replaced by 8/0Z we have to solve a Cauchy-Riemann equation in each
step. This can be done by Cauchy’s integral formula. The proof of Theorem 6.1.1 now serves
again to deduce Theorem 7.2.1 for the operator @ from the special case of the operator
0/0% already established, and we do not repeat the details.

We shall now derive existence theorems from Theorem 7.2.1. In doing so we assume
for simplicity that the set V there is equal to the characteristic set p—*(0) although it would

be easy to consider a mixture of this case and the one discussed in Chapter VI.

THEOREM 7.2.4. Assume that PELT(X) has a homogeneous principal symbol p, that
{p, p} =0 and that Hy,,, Hy,, and the cone axis are linearly independent when p=0. Let K
be a compact subset of X such that no bicharacteristic strip of P stays over K. If s 13 upper sems-
continuous in T*HX)N\O and subharmonic in p~1(0), it follows that

u€E(K), Pu=f sf>s = st zs+m—1. (7.2.1)
The space N(K)={ve&'(K); 'Pv =0} (7.2.2)

ts a finite dimensional subspace of OF(K). If S is a lower semi-continuous function in
T*(XIN0 which is superharmonic in p~1(0), if f€D'(X), sf =8, and f is orthogonal to N(K),
then one can find w€P'(X) with st>8+m—1 so that Pu=f in a neighborhood of K.

Proof. Let u be as in (7.2.1). By the elliptic theory s} >s--m in the complement of
271(0), and by Theorem 7.2.1 we know that g =min (s}, —s —m +1, 0) is superharmonic in
p71(0). We can now argue ag in the proof of (¢) = (a) in Theorem 7.1.5: Let the minimum
of g in p7(0) be taken at (z, £). Then ¢ is constant in the bicharacteristic strip through
(z, &) which by hypothesis contains points over (K. There s} = + c© so ¢ =0. Hence ¢ >0
everywhere and (7.2.1) is proved.

The hypotheses on P are also fulfilled by *P. Replacing P by ‘P in (7.2.1) we conclude
that N(K)< Oy and therefore by Fredholm theory that dim N(K)< oo,
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The existence theorem is now obtained by standard functional analysis as in the
proof of Theorem 6.3.1: Let F={u€9’'(X), s;>8} which is a Fréchet space with the
topology defined by the seminorms u— ||Au||,, where 4 €Li(X) has a kernel of compact
support and <8 in WF(4). The dual space consists of all v€&’'(X) with s} > —S. Since

vEE'(K), Pr=g, s§>—S—m+1 = s3> -8,

the functional analytic arguments at the end of the proof of Theorem 6.3.1 can be applied
with O replaced by F. The details are left for the reader.

THEOREM 7.2.5. Assume that PELY(X) has a homogeneous principal symbol p, that
{p, P}=0 and that Hg,,, Hi,, and the cone axis are linearly independent when p=0.
Assume that no bicharacteristic strip stays over a compact subset of X. Then we have
(a) = (b) = (c) where

(a) For every compact set K< X there is another compact set K'< X such that for each
bicharacteristic strip B and each component C of BN n—Y(K) which has relatively compact
projection in X we have C<a—1(K').

(b) For every compact set K< X there is another compact set K'< X such that
v€E'(X), sing supp Pv= K = sing supp v<= K.
(c) P defines a surjective map from 9'(X) to 9'(X)] C°(X).

Proof. (a) = (b) follows from Corollary 7.2.2, for the projection in X of the wave
front set is equal to the singular support. (b) = (¢) follows from [46, Theorem 1.2.4], for
we can take K'={ when K= because no bicharacteristic strip stays over a compact
subset of X.

After constructing solutions with wave front set in a bicharacteristic strip we shall
see in section 7.4 under additional hypotheses concerning P that (c) implies (a). (See Theo-
rem 7.4.2.)

It is easily verified that no bicharacteristic strip stays over a compact subset of K
if and only if no leaf of the bicharacteristic foliation in the cosphere bundle stays in a com-
pact set. Secondly condition (a) in Theorem 7.2.5 is equivalent to condition (a) of Theorem
7.1.6 for the bicharacteristic foliation in the cosphere bundle. For this reason the manifold
X will be called pseudo-convex with respect to P if condition (a) of Theorem 7.2.5 is fulfilled
and P is of principal type in the sense of Definition 6.3.2 which applies with no change in

the present situation:
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7.3. First order differential operators (continued)

As in section 7.1 we shall consider a homogeneous first order differential operator L
in a C® manifold M such that L satisfies (7.1.1) and (7.1.2). Before constructing parametrices
we have to discuss the properties of the corresponding relation R< M x M consisting of
pairs (z, y) of points in the same leaf of the L-foliation. The foliation is called regular in
M if R is a C® submanifold of M x M. (This terminology follows Palais [47]. Haefliger
[40] uses the term simple.) When the foliation is regular the quotient topology in the leaf
space M|R is Hausdorff if and only if R is closed but in any case regularity implies that
every point in M/R is the intersection of a fundamental system of neighborhoods with
manifold structure inherited from M. Thus M/R is a C* manifold when R is a closed C*®
manifold.

In contrast with the real case there is no relation between the condition that R is a
C= (closed) submanifold of M x M and the solvability properties of the equation Lu=f.

Example 7.3.1. Let Ly be a real vector field without zeros on a manifold M, and let L
be the vector field L,-+t9/0t on M, xR where t denotes the variable in R. Then there is
global solvability for L since there are no relatively compact leaves for the L-foliation
and condition (a) of Theorem 7.1.6 is fulfilled with K=K’ if K is convex in the direction
o/6t. The relation R; for L is closed (a manifold) if and only if the relation R;, for L, is.
When L;=8/ox, in R*\ {0} it follows that R, is a manifold but not closed and when
Ly=0/00+(r—1)0/or (with polar coordinates) in R*\ {0} it follows that R, is neither
closed nor a manifold.

Example 7.3.2. Let L =8/0x, +18/dx, and M =R*\ {0}. Then R is a closed submanifold
of M x M, no leaf of the L-foliation is contained in a compact subset of M but we do not
have global solvability on M.

If R is a closed C® submanifold of M x M, then the vector field (L,0) in M xM
defines a vector field L’ on R. The corresponding relation R;.< R x R is obviously a closed
submanifold.

ProrosITION 7.3.3. The L'-foliation has no relatively compact leaves if and only if
this is true for the L-foliation, and condition (c) in Theorem 7.1.6 is fulfilled by L’ if and only
if it vs fulfilled by L.

Proof. The first statement is obvious and the second follows immediately if we note
that f(z) +g(y) is a (L, 0) subharmonic function of (x, y) €M x M if f is L subharmonic, and
that fl(x, y(x)) is L subharmonic if f(z, y) is L’ subharmonic in R and y is constant as
x varies in a leaf. The existence of such y(z) locally over M/R and the existence of parti-
tions of unity in M/R leads to the desired subharmonie functions on M.
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We shall now discuss some properties of regular foliations near a compact subset of a
leaf. This is required for the construction of solutions with given singularities and will also
elucidate the meaning of the regularity condition. (See also Haefliger [40] for a much more
thorough discussion.)

At first we consider an arbitrary k dimensional foliation ® of an n» dimensional manifold
M. For every x€ M we can choose neighborhoods V such that the restriction of @ to ¥V
is a fibration with base and fiber diffeomorphic to a ball. The germ M of the base at the
projection of z is independent of the choice of V. If y€V is in the same local leaf as = we
obtain a well defined germ of diffeomorphism ®, ,: M;—M,. For every continuous curve
y: [0, 11€M which remains in a leaf we can now define a map @,: M0~ M,q,, the
Poincaré map of y, as a composition of maps @, iy, -1y, k=1, ..., N, when N is suf-
ficiently large. The map only depends on the homotopy class of curves y with fixed end
points and contained in a leaf of ®. If 9(0) =x,, y(1) =z, the relation R must at (z,, x,)
contain all (z, ) nearby such that ®,2" =y’ for the corresponding projections in M;, and
M. These points (x, ) form a germ of manifold of dimensionn —k+2k=n +k. Altogether
there are at most countably many curves to consider in order to obtain the full relation R
at a given point so B must be of dimension n+k if it is a manifold. (This could have been
included in the definition of regularity.) Thus regularity means that the relation R near
any point (%, x;) € R is obtained as just explained from any choice of a curve y from x,
to «; in the leaf of ® through these points. This shows that regularity of ® in M implies
regularity of the restriction to any open subset M,< M. We shall say that © is sem:-
regular in M if any compact subset of a leaf has a neighborhood in M where the restriction
of @ is regular. It is clear that semi-regularity implies that @, only depends on the end points
of y or, equivalently, that @, is the identity M. :— M, for every y in the leaf through z
which starts and ends at . We shall prove the converse below. In general the set of all
such @, defines a group of germs of diffeomorphisms in M, called the kolonomy group
of O at 2. If y is in the same leaf B as , an isomorphism between the holonomy groups at
z and at y is given by any curve from « to ¥ in B. Up to isomorphism the holonomy group
therefore only depends on the leaf so we shall talk about the holonomy group of a leaf also.

It is of course a quotient of the fundamental group.

ProrosiTioN 7.3.4. Let B be a leaf of the foliation @ in M such that the holonomy
group of B is trivial. For every compact set K< B it is then possible to choose a neighborhood
Win M and a diffeomorphism W—U x T which transforms the leaves of ©® to the fibers of
the projection U x T—T. In particular, ® is regular in W.

Proof. Since every compact subset of B has a neighborhood in M which is diffeomorphie
17 — 722909 Acta mathematica 128, Imprimé le 28 Mars 1972,
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to the normal bundle of a neighborhood in B, we may assume that M is a real vector
bundle with base B and Riemannian structure. If € B we denote the fiber at x by M,.
Let U be a connected relatively compact neighborhood of K in B with homotopy group
generated by finitely many closed curves y,, ..., ¥, with base point 2, € U. If y is a continuous
curve in B the Poincaré map @, is now a map of a neighborhood of 0 in M, to a neighbor-
hood of 0 in M ,;,. By hypothesis we can choose a ball T< M, with center at 0 such that
(DY;' is the identity 7'=T for j=1, ..,k and @, is defined on 7 for every curve in U
starting at z,. If (z, y) €U x T and y is a curve in U from ; to z writing F(z, y)=®,y€ M,
gives a unique definition of a diffeomorphism from U x 7' to a neighborhood of U in M
which has the required properties.

In the case of the L-foliation the analytic structure in the fibers of U x T'—T defined
by L might vary with the parameter {€ 7. However this can always be avoided when K
is not an entire leaf. In fact, there are no nontrivial deformations of the analytic
structure on a compact subset of a Stein manifold as shown in a recent manuscript by R. S.

Hamilton. We shall outline a proof in the case we need:

PRrOPOSITION 7.3.5. Let B be a leaf of the L-foliation in M such that the holonomy
group of B is trivial. For every compact set K < B it is then possible to choose a neighborhood
W in M and a diffeomorphism W —U x T which transforms L to the form c¢(Ly, 0) where Ly
s a first order differential operator in U and c€C®(U x T').

Proof. By Proposition 7.3.4 we may assume that M =U x T where U is connected and
non-compact, 7 is a neighborhood of 0 in R*"2, B is the fiber of U x ' T at 0 and L can
be considered as an operator L, in U depending on ¢. If U’ is a relatively compact neighbor-
hood of K in U, which is not compact, we can choose f,, ..., fy with Lyf,=0, j=1, .., N

so that
U'Bx* (fl(x): erey fN(x))

is an embedding of U’ in €¥ as an analytic curve I. This is possible since U’ lies in a Stein
manifold. Now choose u,€C°(U x T') so that u,{z, 0)=0 and

Lyuyx, t) =L,f(x), €U, te€T.
The existence of u; follows from Theorem 7.1.6 if we first note that
Lt/;=2ti'giv(x> t): gﬂeooo(U X T)’

since Lyf;=0, and then solve the equation with g,, in the right hand side. Write F,(z, ¢} =
f)(@) ~w(x, t). Then
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(CU, t) g (Fl(x7 t)’ ceey FN(x, t))ECN

gives for small ¢ an analytic embedding of U;=U" x {t} in C”, close to I'. Let us admit for

a moment that there exists an analytic retraction @ of a neighborhood of I' to I"'. Then
(Gl(x7 t), sees GN(x’ t)) = (D(Fl(w3 t)y s FN(x7 t))

is an N-tuple of C*® functions near K x {0} such that L,G;=0 and Gy(z, ) =f,(p(x, 1))
where ¢ €C® and ¢(x, 0)=x. Thus the map (z, t)->(¢(z, t), {) carries a neighborhood of
K x {0} into U" x T" and L into L’ so that U” is still a neighborhood of K and L{f;(x) =0
for all x€U” and t€T". But then it follows that L’ has the desired form.

The existence of @ follows if we show that that on I' there is an analytic function
P with values in N x N matrices such that P(z) projects ¢V on the tangent T, of T" at =
for every z€I'. In fact, we can then use the implicit function theorem to show that @
is defined in a small neighborhood of I' by P(®(z)) (z — ®(z)) =0. Finally, the existence of P
is trivial locally. As pointed out to us by M. F. Atiyah the global existence then follows
from the fact that the difference between two local choices of P is any analytic section of the
analytic vector bundle W on I' such that W,, z€T, is the set of N x N matrices mapping
C"into 7', and T, to 0. Indeed, the first cohomology group with values in the sheaf of germs
of sections of W is trivial by Theorem B of Cartan (see e.g. [41, Chap. VII). The proof is
complete.

In our applications to pseudo-differential operators we want to solve equations of the
form Lu =f when u and f are in the symbol spaces S7'. Let M be a cone manifold, L a com-
plex C® vector field on M commuting with multiplication by positive scalars. Denote by
M the quotient of M by the action of R, and let L be the vector field on M induced by L.

ProrosiTioN 7.3.6. The following conditions are equivalent:

(i) For every fEC®(M,) there exists a solution u€C®(M,) of Lyu=].
(ii) For every me€R and every f€C®(M) which is homogeneous of degree m there exists
a solution w€CO®(M) of Lu=f which is homogeneous of degree m.

Proof. (ii) is (i) for m = 0. If ¢ is positive and homogeneous of degree m, introducing
w=gu, and f=gf in (i) reduces Lu=f to the form Lu,+cu,=f, where ¢, u; and f,
are homogeneous of degree 0. This can be interpreted as an equation L u, +-cu, =f, on M,

which has a solution by condition (i). Hence (i) = (ii).

Denote by Shom(M) the set of all @ €S}(H) which are asymptotic sums of homo-
geneous symbols. If condition (i) in Proposition 7.3.6 is fulfilled it follows that for every

f€SEem(M) one can choose u€Sh,n(M) with Lu— f€8-®, This simple existence theorem
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would be satisfactory for our purposes but we shall give other existence theorems in the
spaces Sy anyway since they follow from a study of the relation defined by L which is
indispensible even if we only consider homogeneous symbols.

We shall now examine the relations between various properties of L and of L,. In doing
80 it is convenient to note that there exists a diffeomorphism M — M, x R, commuting with
multiplication with positive scalars (acting trivially on M ). In fact, since M is a fiber
bundle with affine structure in the fibers R,, we can construct a global section of M by
means of a partition of unity in M. From now on we therefore assume that M =M xR,

and denote points in M by (y, r) where y€ M, and r€ER,. Then

L =L +crofor (7.3.1)
where ¢€C®(M ).

ProrosITION 7.3.7. Condition (7.1.1) is fulfilled by L if and only if it is fulfilled by
L, and in addition to [L,, L,=AL,~2AL, we have

L~ Lie=2c— (7.3.2)

Condition (7.1.2) ts fulfilled by L, if and only if Re L, Im L and the direction of the cone axis
are linearly independent. When this is so and we write Ly—a @, as in (7.1.6), b=ca;", the
condition (7.3.2) reduces to o

o;b+0,6=0 (7.3.2)

which means that the real differential form b-+b is closed in each leaf of L.

Proof. Only the equivalence of (7.3.2) and (7.3.2)" requires discussion. We can write
(7.3.2) in the form (L,+1)é=(L,+A)c and the discussion which led to (7.1.7) shows that
(Ls+A)c=ayd,8,a; c, hence by conjugation (L, +1)é= —a,a,0,b.

It is obvious that (7.3.2) can be violated by a suitable choice of ¢. However, in our
applications we will only be interested in the case where L is the Hamilton field A, on the
manifold p =0 for a function p on the cotangent bundle of some manifold X. In this case

we have

PROPOSITION 7.3.8. Let p be homogeneous of degree 1 on an open conic subset of
THX)\0 and suppose that Re p, Im p have linearly independent differentials when p=0.
Let M be the manifold p =0, L the Hamilton field H, on M. If the operator L, on M ; satisfies
(7.1.1) it follows then that {Re p, Im p} =0 when p=0, hence that L satisfies (7.1.1).

Proof. The projection of { L, L]in M is equal to [L,, L] as is immediately seen by letting
[L, L] operate on functions which are homogeneous of degree 0. Hence [L, I]=aL —aL +cé
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where & is the vector field in the direction of the cone axis. Taking the symplectic scalar
product with £ noting that [L, L]=H 3, by the Jacobi identity, we obtain {p, }=0

when p=0 by Euler’s identity for homogeneous functions.

Assuming that L satisfies (7.1.1) and (7.1.2) we shall now examine when it is possible
as in Theorem 6.4.3 to find an isomorphism M—M xR, such that L becomes equal to
L. Obviously this requires that L, satisfies (7.1.2) and also that the projection
ne M—~M, is injective on any leaf B of L. The projection B,=m,B is then a leaf of L,.
Using an isomorphism of M and M, xR, as above we must therefore for any B, by able to
find a positive C* function R in B, such that B, 3y—(y, R(y)) is a leaf of L, that is, L, R =
¢R on B,. Writing R —=e¢” this means that » shall be real and that L,v=c or d,v="b with
the notations in Proposition 7.3.7. It follows that 8,v=5 or equivalently that dv=>5+b

where d is the exterior differential in B, Thus we have proved

ProProsiTiON 7.3.9. Assume that L satisfies (7.1.1) and that L, satisfies (7.1.2). If B
is & leaf of L it follows that the projection B—~ B,=n B is injective if and only if the closed

differential form b+b in Proposition 7.3.8 is exact in B,.

If there exists a properly embedded leaf B; with trivial holonomy group and
HY(B,, R) =0, then one can find c€C®(M,) so that the projection B— B, is not injective
although (7.3.2) is valid near B, However, for regular Hamilton fields this situation

can not occur:

ProrosiTioN 7.3.10. Let p be homogeneous of degree 1 on an open conic subset of
T*X)\0, and suppose that Hg,,, Hi,, and the cone axis are linearly independent when
p=0. Let M be the manifold p=0 and L the Hamilton field H, on M. If L, satisfies (7.1.1)
and the L foliation is semi-regular, it follows that the projection ;w,: M — M, is injective on the

leaves of the L-foliation, and the L-foliation is semi-regular too.

Note that by Proposition 7.3.8 it follows that L satisfies (7.1.1) so the L-foliation is
defined.

Proof. Let B be a leaf of L and y a curve in B starting at (x,, &) such that s,y is
closed in M ,. We shall prove that p is closed in M also. To do so we note that the local leaf
spaces M. introduced above are symplectic manifolds with symplectic form inherited
from the one in 7™*(X)\0. This follows from the fact that Hg,, and Hy,, are orthogonal
to the tangent space of M. (See also sections 3.3 and 6.6.) The Poincaré map ®,, is canonical
since this is obviously true for curves which stay in a sufficiently small neighborhood of a
point. But the fact that the L-foliation is semi-regular shows that @, must project to the
identity in M, so @, (z, §)=(z, (=, £)¢&) in a neighborhood of (2, &), >0. Thus @, multi-
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plies the symplectic volume element by 7"~? which implies that 7=1 and that @, is the

identity. The proposition is proved.

ProrosiTioN 7.3.11. Let M be a cone manifold, L an operator commuting with
multiplication by positive scalars such that L satisfies (7.1.1), L, satisfies (7.1.2) and the L,
foliation in M, is regular with separated leaf space. Then there is a diffeomorphism
M—-M xR, commuting with scalars which transforms L to L ¢f (and only if) the projection

we M—~M, is injective on the leaves of L.

Proof. The problem is to find a section M —~ M consisting of leaves of the L-foliation.
If we choose a diffeomorphism MM xR, and the corresponding representation (7.3.1)
of L, the proof of Proposition 7.3.9 shows that this is equivalent to the existence of a real
solution v €C®(M ) of the equation Lw=c, and Proposition 7.3.9 shows that this equation
has a unique solution in each leaf apart from an additive constant. If we choose v=0
on a manifold transversal to a leaf of the L foliation we obtain a C® solution v in the
union of all leaves in a neighborhood. By means of a partition of unity in the leaf space
M /R, we can piece these solutions together to a solution in ;.

Note that Proposition 7.3.10 shows that Proposition 7.3.11 is applicable in the
Hamiltonian case. This is the case which will occur in the construction of parametrices.

When L can be put in the form of Proposition 7.3.11 the equation Lu=f can be
solved for symbols « and f by regarding them as functions on M, depending on the
parameter r€R,. To do so we must only show that there is a continuous linear way of
choosing solutions of the equation L,u =f. For the sake of completeness we discuss this
question in the next three propositions although it is not essential later. In the first two

propositions we write L instead of L..

ProrosiTIoN 7.8.12. Let L be a first order differential operator on M satisfying (7.1.1)
and (7.1.2), and assume that the L-foliation is regular. Let K be a compact subset of M such that
no leaf of the L-foliation is contained in K. Then there exists a mapping E: Co(K)—~C(M)
such that

(i) E s continuous from CE(K) to C¥(M) for k=0, 1, 2, ...

(i) E commutes with mulliplication by C* functions which are constant on the leaves
of the L-foliation in a neighborhood V of K.

(iii) LEf=f for all f€Cy(K).

Proof. First note that the regularity of the L-foliation implies that K N B is compact
for every leaf B. In fact, if x€ KN B (closure of B in M) and if V is a neighborhood of z
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such that R is a manifold in ¥ x ¥V, then BN ¥V is closed in V so € B and the B topology
and M-topology agree on BN V.

By Proposition 7.3.5 it suffices to consider the case where M = U x T"and U is of dimen-
sion 2 with L tangent to the fibers of U x T'—T. For using a partition of unity near K
consisting of functions constant on the leaves of the foliation near K we can pass to the
general case. Clearly it suffices to consider the case M =U and the statement is very well
known then. (A direct proof is obtained by taking a positive density in U and writing E
locally by means of Cauchy’s integral formula in a system of local coordinates. Piecing

together one obtains E; with the desired properties except that
LE,f=1+Rf, Rf(x) =f3(x, NIy dy, [€CF(K).

Here R€C® so we can choose 8 so that L S(z, y) = R(z, y) in a neighborhood of K x K.
Thus Ef=E,f—Sf has the required properties.)

ProrosIiTION 7.3.13. Let L be a first order differential operator on M satisfying (7.1.1)
and (7.1.2), and assume that the L-foliation in M is regular with separated leaf space (i.e. the
relation R is a closed submanifold of M x M). In addition assume that M is pseudo-convex
with respect to L. Then there exists a mapping E: Co(M)—C(M) such that

(i) E is continuous C¢(M)~C*M) for k=0,1, 2, ...

(i) E commutes with multiplication by functions which are constant on the leaves of the
L-foliation.

(iii) LEf=f for all f€C(M).

Proof. By piecing together operators given by Proposition 7.3.12 we obtain all the
required properties except that LEf=f+Sf where 8 is an integral operator along the
leaves of the foliation with C® kernel, defined on R. Using the existence theorem for the

operator L’ induced by L on R (see Proposition 7.3.3) we can eliminate the error term S.

ProrosiTioN 7.3.14. Let L satisfy the conditions in Proposition 7.3.12 (resp. 7.3.13) and
set M'=M xR,. If fEST(M’) and supp f= K xR, (resp. supp f has a compact projection
in M) then u(z, r)=E,f(z, r} is also in S§ (M) and Lu=f in K xR, (¢n M'). Moreover, the
map f--u commutes with multiplication by functions which are constant on the leaves of the
L-foliation in M'.

Proof. That f € S7 means that for every semi-norm ¢ in C*(M) and every § >0 we have

q(aif/arj) — O(Trn —Qi+(1—-9)k)

as r— co. Application of E does not affect this condition in view of the continuity C§— C*.
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As a preparation for the constructions in section 7.4 we shall now prove results similar
to Proposition 7.3.14 where m varies but is a subharmonic function. The first case to con-
sider is the & operator on a Riemann surface where we can use well known Carleman

estimates.

Lemma 7.3.15. Let B be o C® compact connected Riemann surface with nonempty
boundary and let ¢ € C°(B) be strictly subharmonic. Fix a Hermitian metric in B. If f is a
square integrable (0, 1) form in B, the equation du =f has a unigue solution w = E(t)f such thai

Jult= [lupe-sea

is minimal, db denoting the Riemannian volume element. Then E(1) 1s o C® function of
and for the operator norm | |, corresponding to the L? norms with weights ¢~ we have

|E® (1), < Cprtv>1,k=0,1,2, ... : (1.3.3)

Proof. The existence of % and the bound (7.3.3) for k=0 can be found in Hérmander
[41] even in the case of Stein manifolds. The proof consists in noting that in a local co-
ordinate system the Hilbert space adjoint of 8/6Z is L,v= —08v[6z+ 2t 0p/0zv-+cv where
¢ is independent of 7. An integration by parts then gives when v»€C§ (int B)

flL,v[z e 2" dh = f[év [Fe=270db + %Tf(A(p) |v[Pe"2®db + ...

where dots indicate terms which can be estimated by ||v|| and ||ov||. This leads to
t|jol|7<C||L;v||}, v€CF (int B), and by duality the assertion follows. For the details

we refer to Hérmander {41].

If we write u,=E(1)f the definition means that du,=f and that
futﬁe'2’¢db=0, vEA, (7.3.4)

where 4 is the space of square integrable analytic functions in B. In particular we can take

V=, —U,y, and obtain
ﬁu, — UppnfPe 2 db = fu,+h (U, — U, p)e 2P (e 2% — 1) db.
By Cauchy-Schwarz’ inequality this gives

flu,— o ffe2Pdb < flu,+h[2e“2’¢ [e=2%% —1[2db.
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Thus (t,,s — u;)/h is bounded in L? norm as h—0. If w is any weak limit, then it follows
from (7.3.4) that

fwﬁe‘“‘”db = fu,ﬁe‘2’¢’2q;db, vEA,

and since w€ 4 this shows that w is unique so that E(t) is weakly differentiable. The pre-

ceding formula can be written
w—2¢u, = B(7) 0w — 2¢u,)) = — 2B(r) (u.09 + ¢f)

which leads to E'(v)f=2¢E(t)f —2E(z) OpE(t)f + ¢f).

It follows from this that ¥ is infinitely differentiable and, by induction with respect to £,
that (7.3.3) is valid.

When applying the lemma we shall have to pass from L2 norms to maximum norms.
To do so we note first that if » is defined in D,={2;2€C, |z| <r} then

| D*u(0)| < O, (r sup | D*ou/oz| + 1 ||u| xpy)-
Dy

In fact, it suffices to prove this when r=1 and then it follows immediately by using a
parametrix for 9/6z. If @€C" is real valued with given bounds for the first order
derivatives it follows that for v>1

| D*u(0)| 7@ < O, (r sup | D*6ufoz| e + =271 ||ue™%|| 12.p,y) (7.3.5)
Dy

if r7<1. In fact, p(2) =@(0) +0(|z|).
Now take u=E®f and let K be a compact subset of B which does not meet the
boundary. Then we have du/0Z=f for k=0 and éu/0Z=0 for £ >0. Hence by (7.3.3), (7.3.4)

sup |E® (1) f|; 6™ < Cyy(z7 sup |f|;e ™+t sup |flo ™), v>1, (7.3.6)
B B

where | |; now stands for the sum of the derivatives of order < j computed in terms of some
system of local coordinates.

The notation S7 introduced in section 1.1 is also applicable when J is a cone manifold
and m is a function on M which is homogeneous of degree 0. If @ is a positive function on M
which is homogeneous of degree 1, then a™€ 8y for } <p <1. In fact, the derivatives of order
« will behave as if a™ were in ST apart from a factor (log a)'®. (Symbols with this behavior
were considered by Unterberger—Bokobza [51] before symbols of type p, § were introduced.)
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ProrosiTiON 7.3.16. Let M' =T x Bx R, where T is an open set in R, and B is a
twodimensional connected non-compact manifold with a complex vector field L satisfying (7.1.1),
(7.1.2), which we regard as a vector field on M'. Let g €C®(B) be a strictly subharmonic
function which we also regard as a function on M'. If fESYM'), 1 <p<1, and if f vanishes
except over a compact subset K of B then one can find w€ SY(M') with Lu =f over a neighborhood
of K.

Proof. We denote the variable in 7 by ¢, in B by z and in R, by ¢°. The hypothesis is
that over any compact set in 7' x B for 1>1

| Qf' < Ce-t(w+ k(1—-0)»

if @ is a differential operator in M’ of order k which is translation invariant in v. With
E(7) defined by Lemma 7.3.15 with B replaced by a suitable neighborhood of K we set

u(t: 2, T) = E(T)f(ty 2, T)'

The statement now follows immediately from (7.3.6).

7.4. Solutions with prescribed singularities

Recall that in section 7.2 we introduced the subset N of p~1(0) where (7.0.1) is valid and
Hyop, Hywp are linearly independent of the cone axis. The bicharacteristic foliation defined
by H, in N gives rise to a foliation in the image N of & in the sphere bundle. In fact,
H, can be regarded as a vector field in N, if the degree m of p is one, and in general the
Hamilton field of gp where ¢ is of degree 1-m defines a foliation independent of the

choice of g.

THEOREM 7.4.1. Let Q be an open connected non-compact subset of a leaf B, of the bi-
characteristic foliation in N, and assume that the holonomy group of Q is trivial. Let I be the
closed cone in T*(X)\0 generated by Q and I’ the intersection of the closed cones generated
by O\, when Q, is compact in L. Let s be a lower semi-continuous function tn T*(X)N\0
which is homogeneous of degree 0, + o outside I" and has a superharmonic restriction to Q\I".
The one can find w€D'(X) with

WFRPuw<T’, stzsin ', st=sin QI (7.4.1)
In particular, WF(u)\I"=I"\T1".
Proof. We may assume that the order of P is one. As in the proof of Theorem 6.2.1

we shall begin by proving a weaker result where Q is replaced by a compact subset K, s

is a (= strictly superharmonic function in Q and I', IV are replaced by conic neighborhoods
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of K and ¢'K. First note that by Proposition 7.3.5 we can choose a connected neighborhood
U of K in B, a neighborhood T of 0 in R**5 and a diffeomorphism

UxT,~W,

where W, is a neighborhood of U in N, such that U x {0} is mapped to U and
it L=H, then L, restricted to W, and pulled back to U x T is proportional to the
operator L, in U lifted to U x T'.. In particular, the L foliation is regular in W, so if
W=n;1W, (7, is the projection 7™*(X)\0—8*X)) it follows from Propositions 7.3.10
and 7.3.11 that there is a diffeomorphism

UxT; xR, W

commuting with multiplication by positive scalars such that H, restricted to W is also
proportional to L.

As in the discussion of Poincaré maps in section 7.3 it is clear that 7'=T,xR_  is a
conic symplectic manifold of dimension 2(n—2). Choose a conic Lagrangean manifold
Ar=T containing 0 xR, and a closed conic neighborhood Az< A, of 0 xR,. Then the
image A of U x Ay in W is a Lagrangean manifold and U x A7 maps to a closed subset
containing K. Corresponding to the decomposition 7=7, xR, we have a decomposition
Ar=A; xR, such that H, acts along Ar_.

Our purpose is to use a local version of Theorem 5.3.2 with ¢ <p <1 and m’ replaced by
—s—n/4. In view of Proposition 7.3.16 it is clear that Theorem 5.3.2 remains valid although
m' is not a constant. What remains is to discuss the choice of a principal symbol. First we
choose a non-vanishing section w of L®E, in A which is homogeneous of degree —-nj4
and satisfies the equation 1%, +cw =0. This is obviously possible since L®LQ; is a
trivial line bundle and we have existence theorems for H, acting on symbols of degree 0.
In Theorem 5.3.2 we shall take @ = uw where the pullback v of  to U x Ay vanishes outside
K' xAz, K' a compact neighborhood of K in U, Lyv=0 in a neighborhood of K x Ar,
vE€ES™(U x Ay) and v~1€S° in a conic neighborhood of {z} x {0} xR,, 1<g<1. Here z,
is any given point in K. To construct such a function v we first note that if s(z, z,) is the
analytic part of the Taylor expansion of s at 2, to the second order, then s(z, z,) =s(z,)
and s(z) =Re s(z, 2y) —e(2, z,), where e(z, 2)) >b|z—2,|? in a neighborhood O of z, for some
positive constant b. Here we are working with local analytic coordinates at z,. Let x € C§°(0)

be equal to 1 near 2, and set
0(z, b, 1) = y(2)r7 " —w(z, £, 7), (2,1, 7)€U x Az, xR,.

The function w shall satisty the equation
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Low(z, t,7) = (LyX)r 5@ =§

in a neighborhood of K x Az, x R.Since for some e >0 wehave Re s(z, 2,) > s(2) +¢ in supp
it follows that f€8;° *. By Proposition 7.3.16 we conclude that w can be found in 85°°.

Summing up, by applying Theorem 5.3.2 with the principal symbol just constructed
we obtain for §<p<1 an element w€I,* " (X, K’ x A7), thus s;>s, such that Pu€
I;sti-et (X (K™ K)x Ap) and s*=s at a given point in K. (Here we have of course
used Theorem 5.4.1.)

To finish the proof we can repeat the functional analytic arguments in Lemma 6.2.2.
Briefly the argument is as follows: The definition of the Fréchet space F there is modified
to be the set of all w€P’(X) such that s3> and WF(Pu)<I". If T is a pseudo-differential
operator of order s(z,) < oo which is not characteristic at z,€QQ\I", it follows from the

preceding construction that
{u€F; TueL}}

is of the first category in F. For the proof it is important to note that on every compact
subset of O I" the function s is the supremum of a family of O strictly superharmonic
functions. The proof is now completed by the same arguments as in the proof of Theorem
6.2.1.

Remark. The proof of the preceding theorem would have been considerably simplified
if s had been assumed to be harmonie. In faet, it would not have been necessary to prove
Proposition 7.3.16 then. However, since combination of Theorems 7.2.1 and 7.4.1 show that
superharmonicity is exactly the right condition it seems worth while to accept these
complications although they are not required in our applications.

We can now prove the equivalence of the conditions in Theorem 7.2.5 when the
bicharacteristic foliation is semi-regular and the leaves are properly embedded. Note
that even in the case of first order differential operators we needed such hypotheses in

section 7.1,

THEOREM 7.4.2. Assume that PELT(X) has a homogeneous principal symbol p, that
{p, $} =0 and that Hy, ,, Hy,, ond the cone axis are linearly independent when p =0. Assume
further that no bicharacteristic strip stays over a compact subset of X and that the bicharac-
teristic foliation is semi-regular. If P defines a surjective map from 2'(X) to 2'(X)/C®(X)
it follows then that for every compact set K< X there is another compact set K' < X such that
for each bicharacteristic strip B and each component C of B0 (an—Y(K) whick is relatively

compact in B we have nC< K'.

Proof. Assume that for some K no such K’ exists. Choose sequences of leaves B,
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components (', of B,N (z~'(K) such that C, is relatively compact in B,, and points (x;, &,) €0,
such that z;—co in X. We shall then construct f€ 2'(X) such that Pu —f is not in C*® for
any distribution %. In doing so we may assume that the cones generated by C; are
disjoint.

Choose a compact neighborhood K, of K in X and let Cj be C; with such a small
neighborhood of (z;, £;) removed that 7(0'C;Nw~((K))—~> o as j—o. In C; we can find a
harmonic function s, which is 0 on the part of the boundary which lies over K but is so
large negative on the part of the boundary near (z,, &;) that s;< —j at some point in C,
which lies over K;. Let I'; be the closed cone generated by Cj, let I'; be generated by the
part of the boundary near (z;, ;) and I'; be generated by the boundary over K. In view

of Theorem 5.4.1 we can choose u;€2'(X) corresponding to the function s;, which gives

WF(u,)<T;, s3>0 over K, i;lfS:j< -4, Pu;=f,+g,,

WE(f)<Tj, WF(g,)<Tj.

The support of f, can be chosen so close to sing supp f, that the supports of the terms in
the sum

f=zf1

are locally finite.

Assume now that for some u € 2'(X) we have Py — f€C®. Let w€H, in K;, s <0. Then
WPF(P(u—u;)) does not meet C; and w— u,€ H,, at the boundary of ;. If V, is the closed
cone generated by C; and A4 is a pseudo-differential operator with WF(4) close to V,
and WF(I—4)n V,=@ it follows from Theorem 7.2.4 applied to A (« —u,) that w—u,€H ,,
at every point in C;. But since u, is not in H,_;, at some such point over K, whereas u € H ,

there, we obtain a contradiction when j> —s. The proof is complete.

7.5. Construction of a parametrix

Let P as wusual be a properly supported operator €L} (X) with homogeneous
principal symbol p such that {p, }=0 and Hg,,, Hy,, are linearly independent of the
cone axis in N =p~1(0). Moreover, we shall assume that the bicharacteristic foliation in
the image N, of N in the cosphere bundle is regular with separated leaf space. Assuming
for a moment that m =1 we obtain from Propositions 7.3.10 and 7.3.11 a diffeomorphism
N,xR,—~N commuting with the action of R, such that L=H, is just the operator L,
in N,. Since the relation C, defined by the L, foliation is by hypothesis a closed submanifold
of N, x N, and the bicharacteristic relation C' = N x N is identified with N, x N, x Ag L we
conclude that C is a closed submanifold of 7%(X x X)\ 0. The proof of Proposition 6.5.2
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shows that C is in fact a homogeneous canonical relation. Naturally this is also true if the
order m is not equal to 1 for multiplication of P by an elliptic factor does not change C.

In the following theorem we assume for the sake of simplicity that P €L,y (X), that
is, that the symbol is an asymptotic sum of homogeneous functions all of which are of

degree <m —1 except p.

TaEOREM 7.5.1. Let P €L}, (X) be properly supported and have a homogeneous principal
symbol p such that {p, p} =0 and Hyp,,, Hy,, are lnearly independent of the cone axis in
N =p~40). Further assume that the bicharacteristic foliation in N, is regular with separated
leaf space and that X is pseudo-convex with respect to P. Then there exists a linear operator
E: O5(X)—~C>(X) such that

(a) PE =1+ R where R is an integral operator with C® kernel.
(b) WF'(E)< A*UC and E€Ign(X xX, (') outside A*.
(¢) B s continuous from H(X) to Hiim-1y(X) for every s€R.

Proof. For the operator 9/0Z in R", z=«x,_, +ix, the fundamental solution
Ev(x)=”'1f”(x"w"—y")(yn-1+iyn)“1dy", veCs (RY)

has the preceding properties since €’ is then the normal bundle of {(z, y) ER" x R", 2" =y¢'}.
As in the proof of Theorem 7.2.1 we can use Lemma 7.2.3 and Propositions 6.1.3, 6.1.4
to construct E locally near a point in A*. Piecing together local contributions exactly as
in the proof of Theorem 6.5.3 we obtain E with all the stated properties except that (a)

is weakened to
(a) PE-I=Rel;}..(XxX, ().

We now apply Theorem 5.3.2 where the hypotheses are fulfilled for homogeneous symbols
in virtue of Proposition 7.3.6 and Theorem 7.1.6. Thus we obtain B, €0 (X x X, ')
with PE, — E€C™. Since Theorem 4.3.2 shows that E, has the required continuity properties
It follows that E — E, satisfies all the conditions (a)~(¢). The proof is complete.
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