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Henri Poincaré complains In various passages of his classical Méthodes Nouvelles
de la Mécanique Céleste 1) of a serious difficulty we always encounter when trying
to apply the theory of periodic orbits to concret astronomical problems.

The fundamental determinant, namely the Hessian—Jacobi—Poincaré 2), disappears
identically just in the cases in which celestial mechanics is most interested. I refer
especially to the all important example of the general problem of three bodies.

And as a matter of fact the vanishing determinant causes the necessary periodic
solutions to remain unattainable, as it renders every possibility of their detection futile.

This makes the very known solutions too scarce and far between. And so it
happened that for a long time all theoretical efforts resulted in the general belief
that the most needed periodic solutions did not exist at all.

Poincaré himself puts it clearly as follows 3):

With every other law than that of Newton, which uses the second power of the
reciprocal distance, we meet with lesser difficulties when try}ng to solve the problem
of three bodies. (Donc avec une loi différente de la loi Newtonienne on ne rencon-
trerait plus dans la recherche des solutions périodiques du probléme des trois corps
la difficulté que je viens de signaler.) Many years ago I tried to overcome the
aforesaid difficulty 4). With this object in view I generalized a substitution — which
although very well known even to Poincaré himself was never rightly appreciated
for the purpose in question.

And, indeed, by using this infinitesimal transformation and introducing small
parameters I succeeded in attaining another Jacobians. The trial always results in
the possibility of suppressing a single zero factor (which represents the small parameter

of the disturbing mass) of the determinant.
1—523804. Acta mathematica. 88. Imprimé le 24 octobre 1952.
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By this very simple means the original vanishing determinant yields another
Jacoblan — the later generally remaining distinet from zero. In the following paper
I shall call this method — for sake of brevity — ‘“‘an operation”.

By the aforesaid process huge 5) quantities of periodic solutions — spread densely
enough throughout all space — are obtained important as it appears just in cases
in which theoretical Astronomy is mostly interested.

I tried to apply the method in planetary problems and the investigation has
yielded results quite satisfactory for practical use of the Méthodes Nouvelles of
Poincaré.

It stands to reason that it is always possible to apply the same process in the
case of the motion of the Moon.

But the aforesaid means is not the chief idea that induces me to publish the
following paper after so many years.

This time my purpose is to call the attention of geometers to a possibility
which appears rather remarkable and even so unexpected.

It consists of the following:

All the authors dealing with the theory of the Moon’s motion — from the
beginning to the present day: Abul Vefa, Tycho Brahe, Kepler, Newton, Euler, Laplace,
Poisson, Pontécoulant, Hansen, Delaunay, Gyldén, v. Oppolzer, Newcomb, J. C.
Adams, G. W. Hill, Ernst W. Brown, Andoyer, — all of them faced the following
problem:

The Moon being “a planet of the Harth”, revolves round the latter in a fixed
Keplerian ellipse or in a rotating ellipse or else in a distorted ellipse (periodic orbit
of G. W. Hill) and so on. These original intermediary orbits show deviations, Per-
turbations - caused by the Sun, etc. This classical, mathematical standpoint always
gives the disturbing parameter (u, as used by H. Poincaré) of an approximate amount
1
400°
according to the powers of this small quantity. Now the possibility I am putting

and 1t is understood, that all the following approximations are to be developed

forward enables us to choose a parameter — ceteris paribus 1000 times smaller,

_r .
350000
And, indeed, when trying to solve the satellite problem of the three bodies Sun,

this being represented by the small mass of the Earth

Earth, Moon, we can start with another formulation of the question
than that which the classics had hitherto used.
Let us imagine two planets of the Sun, the Earth and the Moon (both revolving
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round the Sun). By entirely neglecting their masses p = 0, we obtain two heliocentric
ellipses round the Sun. — I suppose firstly — for sake of simplification — a circle
for the Earth and a slightly excentric ellipse for the second planet (Moon) — both
of them moving round the Sun at the same Keplerian speed, and thus
keeping the same starting length M + 7 = M’ + «’.

Now when introducing a rotating system of the velocity just mentioned, we
immediately obtain a fixed position of the Earth and a small closed curve round
it — the path of our Moon.

And, indeed, it 18 very easy to see, that the original planet has changed into
a satellite. Unfortunately this Moon revolves round the Harth which constitutes
the centre of its orbit, in a year instead of a month 6). Now the idea immediately
presents itself — to study the analytical continuation of this curve and thus obtain
the whole complicated motion of the Moon — just the same as the classical theory
has studied the analytical continuation of an originally simple or distorted planetary
ellipse round the Earth.

If we succeed in this endeavour, we would acquire the enormous advantage of

operating — ceteris paribus — with the disturbing parameter mnstead of

1
350 000

1 .
100 of the classical theory.

However, when approaching this so formulated satellite problem of three bodies
and choosing the mass of the Earth for a new disturbing parameter which is a thousand
time smaller, we are met with two impossibilities within the meaning of the classics,
mentioned above.

1. How to pass from the heliocentric to the geocentric orbit so as to change
the original planet into a Moon.
2. How to set a planet in motion round the Harth so as to acquire the

requisite speed of our real Moon.

Fortunately the first impossibility is reduced merely to a fitting passage from
heliocentric to geocentric coordinates.

Lastly the second classical impossibility mentioned above, simply means to apply
an “operation” namely to pass from an identically disappearing Jacobian—Hessian to
a determinant distinct from zero. This is easily carried out by means of small
parameters.

Karl Schwarzschild discussed 7) the convergence of the series used by G. W.

Hill in the Lunar theory and ascertained that in the case of the periodic solutions
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in question this convergence appears to be rather probable, but is not sufficiently

guaranteed 8) in the case of a parameter & la Hill—Brown—Poincaré u = 100

I hope in this way an extreme probability of this convergence is gained by the

considerable diminution of the amount of the new disturbing parameter 350 000

at least a thousand times smaller.

In the present paper I am giving an exact demonstration of the theory explained
and studying the analytic continuation of the undisturbed problem u = 0 of the
abovesaid two ellipses in the case of the complete problem w>>0. The result is the
accessibility of huge classes (manyfold infinity) of short periodic and of secular par-
ticular integrals of the satellite problem formulated herewith.

On the whole the Lunar problem appears to be reducible to the study of analytic
continuation of a small non-elliptic closed curve, instead of a strictly elliptic orbit
or else a distorted Hill’s periodic solution.

In this so formulated Lunar problem the Earth plays the part of the disturbing
(third) body, instead of the disturbing Sun of the classical theory 9).

The scope of the harvest of particular solutions obtained herewith appears to
be so large that I hope I am not compelled — at least in these preliminary sketches
— to numerical computations of the natural phenomena.

I content myself with showing that all the movements of a small Moon revolving
round the Earth in the aforesaid curve (this being an ellipse round the Sun in
reality), can be freely calculated by our modern methods.

So all the solutions of the problem in question are clearly shown to be within reach.

FIRST PART.

§ 1. Investigations into the theory of movements in the immediate
neighbourhood of large planetary masses.

Let us start with the well-known equations of motion, governing the movement
of three bodies, Sun and two planets. If we choose rectangular, relative coordinates

the equations are as follows 10).



The Satellite Problem of Three Bodies. 5}

e (m+0) o (=& &\ Km, o, ,707<1 x’§+y’n+z;§)
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dtznw - N+ Em e (—A — - s ), (1)
e km o , 0 (1 wE4ynt2 )

de =g (g

The asteroid of zero mass and coordinates &, #, { (the moon) revolves round the
Sun of mass m =1 and coordinates 0, 0, 0 and is disturbed by a planet m’ (Earth)
2=+ =ty A= ()0 (2)

k? the konstant of Gauss.
Apparently the kinetic energy of the problem will be given by the expression
d&\*  (dn\? (dé)z
I S “n “5) . 3
2T (dt)+(dt)+ it )
Now let us specialize these well-known formulas as follows:
In the present outline, where we shall be concerned only with the first approxima-

tions, we are going to suppose the mass of the Moon (asteroid) to be zero and to

be moving when undisturbed in an ellipse of excentricity approximately & = ——

400
For the path of the disturbing planet (the Harth) we take simply a circular orbit of
zero excentricity so that #° = a’ (constant). Further we suppose that the mean

lengths 1,1
I—V=M+a—M —a =0. 4)

(M, M’ mean anomalies 7 =’ longitudes of the perihelions) start with a zero difference
in longitude. It remains to point out expressly the chief characteristics of our con-
figuration chosen herewith: ©

It is supposed that the movements of both the asteroid and the disturbing
planet, when m’ = 0 proceed with the same angular speed n = n’.

Now whether we introduce a rotating system with angular velocity »’ or not,
the orbits hitherto ascertained admit the following description:

The Earth revolves round the Sun with its eustomary mean speed %’ in a circular
orbit. It is accompanied by a small satellite of negligible mass. This small body
represents a kind of Moon, describing a small closed curve round the Earth as its

centre (not focus of the ellipse). But it is important to mention that the speed
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of this Moon is very slow. It revolves round the Earth with the same velocity as
the Harth revolves round the Sun, so that the time of its revolution round the Karth
is just one year.

First of all we shall proceed to study the equation of the small curve, closed
round the position of the revolving Earth.

Let us introduce for that purpose the usual planetary coordinates, the ecliptic
being chosen for the cardinal plane Z, Y, the £ axis aiming towards the vernal point.

O denotes the length of the node of the orbit of the Moon counting from the
ecliptic, 7z that of Moon’s perihelion, & = #— £ the distance of the perihelion,
¢ the inclination of the asteroid-Moon-orbit, ¢ its excentricity, p the excentric anomaly.
Let us indicate with dashes, the same signs in the case of the Earth’s orbit, and
especially o', v’, o’

If we take for semi major axes resp a, ¢’ we immediately see that according
to the above hypotheses 7% = /% + 3% + 2’2 = a2, " is reduced to &’ and we can quote

the well-known formulas of the elliptic motion
&= a (cos y— &) (cos 2 cos & — sin Q sin & cos 1) —
—aV1—¢*sin p (cos 2 sin & + sin 2 cos @ cos 1),

77=a(coszp—e)(sinf)cosa“)+cos!§sina~)cos t) —

—aV1— & sin  (sin Q sin & — cos £ cos & cos ),

£ = a(cosp—¢) sin @ sin ¢+ all—e?sin p cos @ sin ¢, 5)
' =a" cos yp cos 7' —a sin ¢ sin 7’ = a’ cos (' + x'),
y =a cos y sin &’ + @ sin ¢’ cos &’ = o sin (v’ + 7),

" =0.

Y
i

We now pass from excentric u, to the mean anomaly M, of the Moon, by
means of the well known elaborate formulas of Dziobek 11) or Le Verrier 12):
Mathematische Theorien der Planetenbewegungen pp. 24, 25, Leipzig, 1888, Annales de
I’Observatoire National de Paris, Tome I, and obtain the following explicit result

§=alé+ﬁ1ﬁ, gza(cosw—e),

=o€+ Bofl, G=aVl—etsiny=all—(1—V1—z) siny, (6)

C'=a3§+/33ﬁ, F=a(l—7)siny, 5=1—VI1—2¢, Z=0.
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~ . { nd ~ ~
a; = cos ¥ + smz»‘j[cos (2802 — 7)—cos w] = cos (& + Q) +

+ sin® ; [cos 2 — @) —cos (@ + 2)],

.. gl = .- - . =
as = sin 7 + smz—?Lsm 202 —na)—sinz], 7wT=a&+ Q,

e A 2 U
ag = sin ¢ sin (75—9):(2 51n5~s1n3§) sin (7 — £),

pr = —sin 7 + sin? é [sin (29 — ) + sin 7],

B = cos 7 — sin? é [cos (2.2 — 7) + cos 7],

Pz = sin ¢ cos (7 — Q) = 2 sin ; cos (7 — ) — sin® ; cos (T — Q), (6)
éz cos P — &
a ¥ ’
3 € 3, 3¢e? P
= Cos ergs + 5 cos ZM—és cos M + g o8 3M + 5 COS 4 M —
&2
— g cos 2M + -
7 = sin p )] — g2
a
3 3
—sin M+ S sin M Osin M4+ Oetsin3M + & sin AM— 2% sinoM +
2 8 8 3 12
According to our scheme — just explained — we are able to write down the

integral curve of movement of the Moon-asteroid for the undisturbed problem m’” = 0,
in case of our fixed system of relative coordinates.

This integral is given by the set of equations:

§=acos(M*i—ﬁ)—gaecosft+av26c0's(2M+ﬁ)

2 2
A s (M + ) + %5 cos (M —7) + 5 aet cos (3M + 7)
2 8 8 (1)

o~

. - gl - N
—a sin? = cos (M + 7) + a sin? 5 cos (M +7x—2%0)

o

o

3 >
—~gae3 cos (2M + =) + %i— cos (2M —=z) + % cos (4 M + x)



8 Wladimir Waclav Heinrich.

. -, 3 o~ . ~
7 = o sin (M+n)—éaesmn+$sm @2M + x)

2 2
—af;* sin (M -+ ﬁ)*gf;f sin (M —x) + %aaZ sin (3M + 7)

~asi112£2 sin (M + 7)) — a sin® ; sin (M + 7 —29Q)

3 . ~ s ~ 3 ~
—éa63 sin (2M+n)—% sin (2M —m) + %? sin (4 M -+ 7)

3 gt .o~ 3 L gl = . (7)
- Z P _ 9 —
+ g @& SIN” 5, sin g @€ sin® 5 sin (282 —mn)
LAJERY- S 5 98 n2 b g 7 —90
g SIn® g sin @2M + x) 5 Sin” 5 sin QM +a—2802),

C:2asin%sin (M+7?~.Q)—3assin%sin (7?—!2)+aesin;sin @M+ 7 — Q)

— ae?sin = sin (M- m—0)— = sin

2

|

sin (M — 7 + Q) +
3 5 .. ~ =~
+ L 0€ sing sin (BM + 7w — Q)

— a sin

sin (M + 7 — 0),

o~

However, it 18 to be pointed out expressly, that the mean anomaly of the Harth
must not be introduced for ¢’ s¢0. This would entirely spoil our starting supposi-
tions of the problem restreint. Moreover the new curve of Lunar path would lose its
defining meaning and the present study would lead to nothing.

Let us now pass to a new origin of coordinates in the Karth, thus changing
our starting heliocentric into a geocentric system. It is understood that the new
axes of the geocentric system always remain parallel to the original heliocentric ones.

The final expressions of the geocentric coordinates are the same except for the
first terms on the righthandsides of &, 7, these latter being replaced by

a’ cos (M’ +n')y=acos (M +x), o sin(M +a)=asn M+ 7). (8)
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The space curve fixed by the last set of equations is closed in itself and em-
braces as its centre (not focal point) the movable position of the Earth. Thus 1t
represents — as was explained above — the starting, not disturbed, orbit of the
Moon. Only the period of revolution coinecides precisely with that of the revolution
of the Earth round the Sun and so appears twelwe times shorter then the period of
our real Moon. The newly chosen origin as well as the form of the aforesaid starting
Moon-space-curve suggést another angle to be chosen for the new distance of the
perihelion. This will be best defined as the fixed angle between the two directions,
the line parallel to the nodal line of the Moon-planet-ellipse- and the direction
from the Earth to the fixed Keplerian perihelion of the Moon Planet ellipse —a.

When choosing for a moment the geocentric rectangular system of axes, so that

£ rung through the node, we can immediately write down the coordinates of the Earth as
xo = @ cos (Mo + 7') = a’ cos (Mo + &), M = M, =0,
yo=a sin (Mo + a')=a’ sin (Mo + &), Mo+ & =d, My=
M+7~z:M'+n’=M+d)+!§:M’+d)’+Q’, pth:Q', (9)
M+ @&=M+& and for My =0, M = M, hence & = My + &,

and the coordinates of the Moon-perihelion as

& = (a—ag) cos @,

7o = (@ —ag) sin & cos ¢ = a(l — &) (1*2511125)-) sin @, (10)
Lo=(a—ae)sin@sine, ¢=0000225=¢i, 1=5"9, &=

It is to be expressly noted that the meaning of the constant ¢ is the inclination

of the plane of the starting Moon ellipse to the ecliptic, namely the heliocentric
inclination.

For the distance Node-Moonperihelion, we easily get the final expression
02 = (Eo—x0)® + (mo—yo)® + 2 = &+t + 32+ a0® + yo* — 2& 0 — 2100,
i=a*+a®—2d%c+ a?e® —2(a—ae)a’ cos (@ — My— &) +
+ 4 (a— ae)a sin? ; sin @ sin (Mo + &), & — Mo— &’ =0, a=d,

11
i=a? + 4a?(1—¢) Sinzgsin2 é. (1)

Taking account of our starting fundamental condition (4)
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M+a—M—a =0, we find M0+!~2+(Z)=M6+w’+.Q'

and as we put the & axis into the direction of the node of the Moon-Planet ellipse:
Mo+ o’ = @. Recalling that we have chosen both the Earth ellipse as well as the
Moon ellipse of precisely the same major axes, it will be a = a’.

In this way it turns out to be

11\ ., )t
Qo=as{1+4(8—2-—g) smzwsmzé}- (12)

We have then to construct the direction cosinus cos @, by means of (10):

’ -~
&y —uwo= —acecos &

_— i’ . _—é 13
COSG):§ xo:—cos@{l—k‘l(‘l’z—l’) sin? & sin? 5} (13)
Qo & e 9

from which expression we immediately gather that

. . 1 .
sin® @ = 1 —cos® @ = sin® & {1 +4 (22 — i) cos? @ sin® %} (14)

We easily adjust the signs of the roots, remembering that the two directions of &
heliocentric and @ geocentric differ by 180° and obtain finally

{1 1y .5 AT Y 1 S B R
{1 + 2(32 ;) sin’ §} cos @ + 2(52 8) sin

sin @ {l Ll 1 '25} ina+ (L l)s'ztsin?;a‘l
W = — — 5 — —r § ~yV >S5 — — = 3
sl ) s’ gpsin @+ ol — ) sin®y

and putting

I

cos @ cos 3 @,

Do~

T 1\ . ,¢ h h
h:(3w~)sm2§: p1=1+§5 1)2=1‘~é’

& &
- _ A _
cosw=~-plcOSw+écos3w, (15)
. . h o
81nw:+p2s1nw+§81n3w,
- IR oAk A
cos(w+!2):~cos(w+!2)~5cos(w~9)+§cos(3w+g),
. ~ . ~ h . ~ h . _
Sln(d')+Q):—SIH(CD+Q)+§SIH((I)—.Q)+§Sln(3w+.Q),
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cos ((Z)+.(~2+L):~cos ((I;+S~2+L)—§cos(cD~Q~L)+gcos (3¢D+Q+L),
(15)
sin (u“)+[}+L):*Sin(aw—!§+L)+gsin(a;—f2—L)+gsin(3u‘;+f2+L).

These expressions are to be substituted into our coordinates (6) written above
as well as into the disturbing function which will be fixed here after § 4.

Moreover it is advisable to introduce — instead of the real heliocentric inclina-
tion ¢ of the two starting Earth and Moon ellipse — an average geocentric inclina-
tion 4. The meaning of this function is to be understood only as an average constant,
or the last taken as a disturbed variable of the whole problem in question.

This new constant replaces so to say, the inclination of the geocentric Moon
orbit, although we know from the above, that even the not disturbed quasi
osculating Moon path — being a space (and never a plane) curve — does not admit
the precise geocentrical meaning of the inclination of a plane curve in relation to
the fundamental plane of the ecliptic.

We prefer to put for sake of a suitable choice of geocentric canonical elements

a 1 . . - . . __*?',_
S*d,~roo~00025, sln ¢ = € 8in 7, L7400’
P59, sing=009=7=" (16)
£
2 2
gl . &t
sin 1

§ 2. Remarks on the starting Moon-space-curve.

When introducing a rotating system é, 7, f with angular velocity ¢ = M’ =
=n't + My whose E axis points perpetually towards the Earth, we obtain the
expressions

£=a (cos w—e){cos (2 — 1y — ') cos & —sin (2 —y —x’) sin & cos 1] —
—aV1—¢& sin ywlcos Q—w’~n’) sin @ -+ sin (!~2—~q)’~n’) cos @ cos t}

7l = a (cos y—&)[sin (2 —y' — ') cos & + cos (2 —y' — @) sin & cos ¢] — amn
—aV1— & sin p[sin (f)—w’—n’) sin @ — cos (é—tp’—n’) COS () COS t]

A

{=a(cosy—e) sind)sinL+qV1—~—fg2sinzpsintcosd)
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these representing the coordinates of the slowly moving Moon round the Earth in
our rotating heliocentric system. The same equations can be written in another form,
more suitable both for theoretical and calculating studies

E=qcos(y—vy +7—a')—aecos (y -+ n’*fr)ﬁ%{7 cos {(y—y +a—a')+

*_
w|S

cos (w+ vy +a —x)—asin® -cos(y—y +ax—a)+

o~

[2

+ a sin?
2

cos (p+y +x +a’ —20) + aesin? ; cos (¢ + ' —a)—

— ag sin® % cos (& +a +y —20)

n=asn(y—y +7x—a')+ aesin (1p"+n’—ﬁ)—%n sin {(p—v¢ +a—a’)—

%(12'17 sin (p + ¢ —a + 7’) — a sin® % sin (y—y +7x—a’)— (18)

—asinzgsin w+y +7+n —20)—ae sin® ; sin (' + 7’ —x) +

+ ae sin® ; sin (@ + a2’ +y —20)

E= a(2sin ;— sin® ;) sin (y + 7 — 2)— 2aesin ; sin (7 — Q) —
[sin (y + &% — Q) + sin (p — 7 + 2)],

where we have put as in (6) §=1—V1—¢.
And again we pass from excentric ¢ to the mean anomalies of the Moon, by
means of the well-known elaborate formulas of Dziobek (see 11) pp. 24, 25) and obtain

the following explicit result

é: &1§+/§1ﬁ,

7= &2§+/§277, (19)
¢ = &3§+I§377,

a; = cos (m —y — ') + sin® % [cos 20— 7 —y' —a')— cos (& — 9" —a')],

2, = sin (x — 9’ — x’) + sin? % [sin @@ —7 —y' —a')—sin (7 — 9 — 7)), (20)

az = sin ¢ sin (7 — Q) = (2 sin ;— sin® ;) sin (7 — ),
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B1 = —sin (7 —y — ') + sin? Lé [sin (2 Q2 — 7 — ¢’ —a’) + sin (7 —y’ —a')],

. ¢ s .
=cos (m—vw —a)—sin® - [cos (22 —a —y —a') + cos (m —y —x')],
B2 ( Y ) 2[ ( 4 ) ( L )] (20)

B3 = sin ¢ cos (m — 2) = (2 sin ;— sin® ;) cos (7 — f)),
E=a(cosy—e), 7=aVl—esiny, &=0.

If we limit ourselves to the third power of small quantities only (exclusive),
we can immediately write down the following expressions for the rotating helio-
centric coordinates of the Moon

£ = a cos (M — M + ﬁ«n’—)—%g‘cos (r—a— M) + g;cos eM—M +a—a)—
2

. 2
—% cos (M—M +a—a') -+ ﬁé{ cos M+ M —xa+a') +

+ %axe2 cos 3M — M’ + x— ') — a sin® % cos (M—M' +a—a")+

+ asin? % cos (M + M’ + 7z + n’—ZfJ)—gasa cos QM —M +a—n')+
3

a83 " ~ ’ aeg ’ ~ ’
+2v400s(2M+M*n+n)+?cos(4M——M +n—a) +

+ 3(16 sin? = cos (ﬁ—-n’—M’)—:}ae sin? © cos F+a+M—2802)—

2 2 2 2

—%fsi 2%005(2M—M’+ﬁ~n’) + a—2§sin2§cos QM+ M +r+n—29),
7 =asn(M-—M +ﬁwn’)~i?sin (r—n — M)+ %fsin CeM—M +r—n')—
2 2
~5‘-‘—2‘?~sin(M——M'+ﬁ—n')—~9‘§~sin(M+M’—&+n’)+ 1)

+ gow2 sin BM — M’ + 7— a') — a sin® % sin (M—M +rn—a')—

— a sin? - sin (M+M’+:7z-|-7::’——2.(5)——%&33 sin QM —M' +a—n')y—

2
ag® . S ag . , . ,
~ sm(2M+M’——n+n’)+~é~sm WM—M +ra—a) +
3 gl , , 3 P , ,
+gaesin ésm(n-——n —M)+§assm ésm(n-}-n + M —20)y—
~%’~€ sin”%sin(2M—M'1‘-7%—7:’)'——952is sin?'%sin @M+ M +7+x—20),
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é:‘)asingsin (M+n—Q~)—3aasin; sin (fz—-é)ﬁLassin;;sin @M+ 7— 2)—
o . L . N T -~ A
—ae sm—ésm(M—lw —.Q)~T sin. ;, sin (M —m+ 2) + (21)

3 . . ~ . . ~ x
+ iasz sin ; sin M + n— Q) — asin® ; sin (M + 7— Q).

To simplify our survey it is advantageous to eliminate throughout the following
computations in the expressions of é‘, 7, é the explicit time M’ = n't + ¢ = n't + My
by means of the principal condition (4), M — M’ + 7— a’ = 0 which according to
our original assumption, lodges both ellipses — the ellipse of the Moon-asteroid and
the Farth ellipse — conveniently so that the never escaping Moon changes from the
original planet into an jdeal, slowly moving satellite. In this manner and only so,
we can avoid all delicate questions concerning rotation or libration. And indeed
when keeping the Sun as the origin of coordinates, we introduce the rotating system;
our ideal Moon always presents itself as a librating Planet, never going round the
Sun without the Harth. )

In this manner the angle M is never allowed to grow to the full amount of
360° without a parallel growing of M’ as a consequence of the aforesaid condition
M—M +7a—a =0.

However, it appears most important to note that the original meaning of M as
a mean anomaly with respect to the ellipse round the Sun, disappears and our new
variable M signifies quite another angle, marking the revolutions round the Harth.

We carry out this elimination M — M’ + z—x’ = 0, but at the same time we
pass from the starting heliocentric origin of rotating axes to geocentric ones, thus
obtaining the following equations which represent the undisturbed Moon-path (orbit)

of our study

A 2 2
o) — aE aeE = .
E=a—accos M — — + ——cos 2 M — a sin®

2 5 +asin2%cos(2ﬂ+2n—2!§)+

&

[ R

a 3 _ 3 _ —
+ L‘;i cos 3M~éa§3 cos M + ae sin? —;— cos M — (22)

RNV

— ~qe sin® «Lj cos (27 + M —29) + 9; sin® ~ cos 3 M + 27 —20),

Z
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A~ P 2 j— — o~ 3 —
h = 9acsin i + 2% sin 20 + a sin? © sin Qa+2M—20) + z—(}isin 3 M —
K 4 2 2%

4]

~Zae3 sin M —2ace sinzgsin M+ ;as sin? - sin Qr+ M—29)—

3
&

ae .
— == gin?

[N Y3 ~ =
5 5 Sin BM+2a—20),

U 34

Lo L. ..
:Zasmés1n(M+(I))—3aasmésma")+assmés1n(2M+cT))—

. . . . 3 . .
— a&? sin ; sin (M + &) _Zf— sin - sin (M — &) + ias2 sin % sin (2M + @) —

—asin3f2sin(M+a)). i=a+ 0.

On the whole in our rotating system of coordinates — the aforesaid path of
the slowly moving Moon — appears to be a spacecurve closely rounding the position
of the fixed Earth — during the period of one year. It is easy to obtain the equa-
tion of the curve in rectangular coordinates by eliminating the time, which enters
into the right hand members trough the mean anomalies M and M’.

When judging according the first, most important terms of our rotating co-
. . . Lt .
ordinates and entirely neglecting sin g’ We are led to the conclusion that the curve

in question can best be approximated by a plane ellipse. The excentricity of the ellipse
is about 087, but it is very important to point out that the Earth
occupies its centre and not the focus, as we are always accustomed to
suppose. Moreover, for the whole of following theory, it is necessary to express the
coordinates of the aforesaid ellipse exclusively by means of the mean anomalies
M, M’ (not possibly of the excentric v, 9" or else true anomalies v, v'). As we
immediately ascertain from the latest developments, the small slowly moving
Moon-ellipse has a major axis 2ae, twice as long as the minor one ae. T}lis 18
easily inferred from the two starting terms — ae cos M in the coordinate é and
2a¢ sin M in 1:7

The triangle (end of the smal axis, centre of the ellipse and its focus) gives
the relations k

2
a=2as, bzg:ae, a2~62:a2—%= a® = a?é?, ez-l;—3:0'866. (23)
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§ 3. On a system of canonical elements.

Let us consider the expressions for the fixed rectangular geocentric coordinates
(7) of the aforesaid Moon-path as a customary transformation & la Lagrange. We
have then to pass to new Lagrangian coordinates, for which we shall choose the
three angles M, @, Q.

It will he easy to construct the Lagrangian kinetic Energy of our geocentric
system and to pass to the Plaffian differential form.

Now to find out the best canonical elements of the problem in question we
have to calculate the Lagrangian impulses (momentum).

These expressions yield manifestly periodic series, proceeding according to mul-
tiples of the chosen angles M, &, Q. In this manner we are able to write down

immediately the total differential form of Pfaff as follows:

a—rdM+a].dm+Q];df2—th=dS
oM 0o a0
FoulT 0T 50T gy
oM 0w 00

(Y (2

2T_(dt) T \a +(dt (24)
Bu 1 pgcoso

V'I 7*@""]:3 /Al=1+m(, luR:]l/2//L(Z_“ 7/2 ), /u:/rné

7/2 _ x/z + y/2 + z/2 : axz’ 92 _ 52 + 172 + 52’

A= (E—a)+ —y P + 1% 2 =0,

d S signifies an exact differential.

. 0T 0 0 . e e
Now the series — - £ _‘é ete. represent clearly the integral of the simplified

Io 90
not disturbed problem, where m’ = 0. Consequently they must satisfy the Pfaffian
condition term by term, and we can limit ourselves to calculating the simplest
term among them. For this we choose the best, the first constant term called secular
(in Astronomy). Now the well-known principles of analysis show clearly that we
need not even to calculate the whole expression of 7 as we can isolate the periodic
series step by step.
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oT dTOE 9TOy  OTIE  AE By .0
e T e S N e Y /
ou1 0F odr 9mam ofom oM T Mom T iom

9E 0 .
0T 0T o0& 0T0n 0T0C 08, .0n 00 (25)
o 08dw 97 9p 0 0a @ 0@ )
01 _0To¢ 0T 9w 0T 0C 08 0n .00 o

06 08 90 Ongp 0 gh 00 a0 a0

D
vy
(a5
re
(=)
=3
(=5}
=
o)
T
&5
T
(&5
"y

£ 0& 0n _ 8y 8 _0¢

s .= » = 5 - e

|

a6 00 ogm OM gy OM gy OM
(26)

(S5
S
(=5
g
s
<

To simplify a general survey and facilitate computation, T rewrite the previous
expressions (6) of the heliocentric fixed coordinates as transformed into the geocentrie
system, whose axes remain parallel to the original heliocentric fixed axes, — as

follows — thereby neglecting all terms of the third order (exclusively) of small
quantities ¢, &:

2 =a cos (M +x), y =a sin (M +a'), ﬁ:(Z)+Q~,
- 3 .~ ag ~ a el -
E:acos(M+n)-féa£cosn+?cos(2M+n)~—2—cos(M+n)+
ae? .3, - ) -
+*§f cos (M——n)+§a£ cos BM + ) —asin® - cos (M + n) +

2
+ a sin® ‘5 cos (M + 7—29), @7)
. .. 3 .~ Q& . - a& . -
nsasm(M+n)—§aesmn+72fsm(2M-|—n)—7sm(M+7z)~—
ag® . ~ 3 4 . ~ gl ~
— g sin (M—ﬂ)+(§aa sin (3M + n) —a sin 5 sin (M +z)—

Hasinzgsin (M +7%—29),

Zj:2asin%sin (M+ﬁ——!~2)~3aesin%sin (ft*!?)‘-kassin—;sih QM+ 7— Q).

2 —523804. Acta mathematica. 88. Imprimé le 24 octobre 1952.
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As we have supposed M + 7= M’ + a’, (see (4) p. 5), and « = &/, we can replace the
starting terms a cos (M + 7), a sin (M + ) by a’ cos (M’ -+ a’), &’ sin (M’ + x’) and
skip them entirely, as they remain always independent of our variables M, @, 0.
In this way we obtain
2

3 - - -
&= a cos (M’+n’)—éa8 cosn+%§cos (2M+7t)—g2i cos (M + ) +

2
+ 28 s (M —z) + §0162 cos 3M + m) — a sin®

o iy
3 8 cos (M +m) +

[N

+ asinzgcos (M +7—290),

2

. 3 .~ . ~ . ~
7 = o sin (M’+7z’)—5assmn+a—2§sm (2M+n)—q; sin (M + =) — (28)
ag® . - - ol ~
g sin (M——n)+éas sin 3M + &) — a sin 5 Sin M+ x)—

— a sin® ; sin (M + 7—2 Q),
{=2asin ; sin (M + z— Q) —3ae sin f sin (w— Q) + ae sin % sin @M + 72— Q)

and by means of (15)

£ . _ -
Zzgecos(“+Q)+—*—cos(Dhﬁ)»—%‘Ecos(3@+Q)~£cos(2M+cD+.Q)—
he ~ £2 o
—~—cos(w—Q—2M)+—cos(3w+Q+2M)+—2- cos (M + o+ Q) —
&2 ~ 5 t o)
~—8—cos(cD+Q—M)—~ezcos(3M+dJ+Q)—l-sm25cos(M+u‘)—.Q)—
R’ .~
—sin® - cos (M + @— 0),

5 co8 ) (29)
7Z=%.ssin(tx‘)—l—.§§)~%gsilr1((1‘)~.{§)—3—h—88in(3LD—!-!§)~§sin(2ZII+(DJI-!~2)+
a 2 4 4 2

he . =« he . - & . o
+Tsm(w—[)—2M)+TSIn(3w+Q+2M)+gsm(M—FwJ.-.Q)—
£ . ~ 3e% = C gl . _ ~
—3 31n(w+Q—M)~—8~ sin (3M + @ + 2) + sin ésm(Mﬁ—w-I-.Q)—i-

+sin2£sin(M+(Z)—~!§)

[
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- = 2 sin & sin (@ + M)+ hsin § sin (@—M)+sin%ksin Ba+ M)—

. . . . 29
~esm;sm(d)+2M)+3esm%smu'). (29)

From these expressions, we easily form the necessary factors

i: ensin (2M + @ + !5)——@%& sin (@—-.@~—2M)~—ZLA?—L sin (2M+!§+ 3o) +

&

2 . 2 N 2 -
+n7gsin(M+ (IH—.Q)—ZLE;i sin(M~@—Q)+g—%8— sin BM + & + ) —

— psin® = sin (M + @ + Q) + n sin? ;—‘sin M+ o—02),

Lo | =~

106 & 109 ¢ 100 ¢

«OM e’ «0M na adM nd (30)
g:~-encos(21ﬂ—f~-d)+é)—k;ncos(w—~!~2—2ﬂ[)+k%ncos(3u7+[~2+2M)+
n B ~ n & ~ ~ 9pg - ~
+ 700s(M+w—|~Q)+~»éfcos(M~w~Q)—— 3 cos B3M + o + £2) +

+nsin2%cos(M+a)+!~2)+nsin2;cos(M+a)—Q),

0 — 2 sin & cos (M + @) — hn sin :

5 5 cos (cD—M)—I—knsinicos Bao+ M)—

2

.o
—2nesin 5 cos M + ).

“

Similarly we find out by simple derivations the expressions necessary for the moment

orT
— a8
@
7] ~ -
ia—;:ig%:%sin(2M+m+Q)+ﬁfsin(w—Q—2M)~
[
3he . _ ~ e . _ ~ e . =
—Tsm(3w+Q+2M)~§ s1n(M+w+Q)+§ sin (@ + 2— M) +

2

3 . ~ . . ~ . .
+%sm(3M+@+Q)—sm2 ; sin (M + @ +.02) + sin® - sin (M + @ — Q)

[ NoR
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109 109 € =~ he ~
20220 % s 2 ; 28 cos (09— Q— 31
03n  adw 2c0s(M+w+Q) 4cos(w Q—2M) + (31)
3he _ ~ &? _ ~ & _ ~
+ e cos(3w+Q+2M)+§ oS (M%—w+.Q)~~8008 (0 + Q—M)—

2 - - ~
~%§cwcm1+@+¢m+sm2 mMMﬁwﬂ+Q%mm2§wswﬁ+@—QL

Lo =~

1
a

SEDS

10¢ Lt .t
— 22 9 208 (4 z o— M) —
v 96 sin ; cos (0 + M) + hsin 5 cos (o — M)

D@

— 3 sin ; h cos (3@+M)~8sin%cos 2M + o).

1:, it turns out to be

oR

And for the momentum

lgézlgéziﬁn@M+@+Q%~@$n@—Q~2M%~
aaQ a g0 2 4

2 2

—%%m@w+é+wﬁ—%guM+w+®+%gum+é—MH-
3e* . _ = gl . _ = gt . _ 5
+ s sin (3M + @ + £2) —sin 5 sin (M + o + £2) —sin g sin (M +o— Q),

0, 0 ~ ~
1—@:1“2:—éc%@M+@+leme@~Q—wm+ (32)
a 00 a9 0 1 4

he - ~ &2 ) - 2 i N
+Z cos (3w + Q2+ 2M) + 5 cos (M + o+ Q)—é— cos (@ + 2 — M) —
—gsz cos 3M + & + Q) +sin2§ cos (M + @ + Q) — sin® ; sin (M + @ — Q)
10t _19¢
tpgp @0Q
After this short Lagrangian algebra, we are able to isolate — from the final
product — periodic series — the first, namely the constant (secular) terms, the

latter fixing the canonical elements of our Lunar problem
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49 .ot B nd? .
L= =na?e + 3—2%(1284 + 2na® sin® | + —y T 2na? sint
2

SR

gt
+ 2na®e? sin? |

+ na?h? sin?

[ SRR

2.2 2.2 2
nase hee®na 21 L .
G=z,= + + —ndet + 2na® sin® - + 2na® sin
? 2 4 32 2

4

bo| e~

ol .
+ no?k? sin? 3 + na®&? sin?

O~

na®e® | heinad® 21, ,
- a5 hat e

H=my=— 4 32

It probably appears useless to mention that the constant terms looked for
thereby are easily picked up from two factors of equal arguments, and where these
do not exist by passing from powers of trigonometrical functions to the multiples
(namely the doubles). ,

Now the canonical elements just computed represent the set of scalar variables
corresponding to the chosen angular quantities M, o, O both sets joining together

through the existence of the perfect differential of the Pfaffian form, namely

dS=LdM +Gdo+ HdQ— Fdt. (24)

But for further investigation it appears more advantageous, if not necessary,

to choose for one angular variable, instead of f), the linear combination M — M’ + O.

When passing so to the new angular variables M, @, M — M’ + .(5, we have to

transcribe our Pfaffian form into
dS=(L—H)dM + Gdo + Hd(M — M + Q)— (F— Hn')dt, (34)

finding in this simple way a new canonical system of elements

xi:ml‘*flf;‘;:L*H:A, yi:M,

xé:wZ:G) yé:u_}; (35)
x5 = x5 = H, vi=M—M + 0,

2—}—%182 1+”2*182
0a .~ 4 de .~ 16 ot (35 a)
a4 L7 One® a4 .1, O°

& — ———— &= na
16
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with the equations of movement defined by

do;, OF dy;  OF . , ,
di = ~6*£7 dt = a’g) 1= 1, 2, 3, F = F+ Hw' (36)

If we drop the dashes, we gain the system

de; OF dy_ OF 37)

E¥01i dt 0x;

§ 4. Development of the disturbing function.

With the view of finding out the final form of the differential and integral
equations of the problem and of solving them qualitatively, we are bound to look
for a suitable development of the disturbing function.

This qualitative development although convergent strongly enough is intended
to simplify explanation of our method and for a closer approach to the point of
view of Poincaré’s theory.

However, I should like to point out that for quantitative purposes and
especially for numerical computation another, far more convergent development may
be chosen. And indeed for the sake of computation we may even try to regularize
the shock point (A = 0) of the problem. So firstly for qualitative purpose let us
consider the customary, unchanged planetary disturbing function

1 CcoS o
,uR=k2[u(_A__9ﬂ2 ), o= my. (24)

It will be noticed that in our satellite case the indirect part namely

Q cos @

7’2

Bu
becomes far and away the most important, in consequence of our transfer of the
origin of coordinates from the Sun to the Earth.

In this way we are able to understand, that just this indirect part yields the
main secular and critical (commensurable terms) of the trigonometrical development.
This appears to be the more comprehensible and natural, as, unlike the usual
planetary theory, the path of the Moon-planet always embraces the movable position
of the disturbing planet — the Earth — as its centre.
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Let us start first with the expressions (7) p. 7, and construct by means of
these the mutual distance of Earth-Moon, namely (24) p. 16,

A= (E— 2P (o) + &
As the original amounts (see the first terms of (7), (4) p. 7, (27) (28) pp. 17, 18),
acos (M + 7)) =a"cos (M + '), asin (M +z)=asin(M+x'),

remain the same all through the computations of the present paper according to
our chief condition and lodging of both starting ellipses M + x— M’ —a’=0, (4) p. 5,
— it appears clear that the aforenamed starting terms cancel out, and the whole
distance becomes quite independent of the coordinates of the disturbing
body (the Earth). The chief consequence of this important fact is evidently that

no critical term of the commensurability of mean movements »n, n’ of the Moon-

Planet and of the FEarth is to be obtained from the direct Lagrangian part % of

the ‘disturbing function.

On the contrary many such critical commensurable terms remain contained in
the indirect Lagrangian part of the disturbing function, which thus becomes the
most important.

An indeed the indirect part may be written, as 2’ = 0:

o cos o o (£ 7y sz’ +ny’ 2 2 2 2 ’ ’
—_—t - = =2 D) = ., = + =aq’, 38
/’,/2 /,'/2 (Q 7‘/ Q 7,/) /’,/3 Q 5 + 7] C ’ r a ( )
and we have simply to introduce on the righthand side the explicite expressions

(7) pp. 7, 8, thus obtaining the final development:

_gecoso
a’
(1 i eos M — M+ — ) + 2% (e sin?t ) cos (F— ' — M) —
e 3 a)e T—] g A\E T esin g feos (m—
. gt
a le 38 %o L,
Z\le 8 3 cos (2M —M + n—an') (39)

22 cos (M+M’+:‘z’~7~t)—§

o gl -
Y —5 cos BM—M +a—a’)—

8 a

a sin®

— cos M+ M +z+a —20)

DO~
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a63 4 ~ ’ a83 7 ~ 7
_?E(T/z COS(QM‘FM’“‘JZ-’-?Z)—S’d‘,'Z CcOS (4:M—‘M +7Z—7l)

ag .4t , o~ , Sae . 4t =~ . , ,
+27,2s1n2§cos oM—M +nfn)+éﬁsm2§cos 2Q—a—a —M) (39)
— 2 sin?l cos QM+ M + A+ —20)

2a’% 2 ’

Moreover it is to be noted that our critical terms start even with such terms,
which appear not multiplied by small factors containing the excentricity e or inclina-
tion ¢(¢). This is very important for reaching the necessary critical terms of the
periodic solutions in question.

From this result it can immediately be seen that no special development of
this chief part of the disturbing function appears necessary, except for the well-known
Lagrange Bessel series for purely Keplerian elliptic motion.

. . . 1 . .
As to the aforementioned direct Lagrangian part i the final expression of A?

is easily found to be

(E—-m')2+(77~y’)2+2j2_§2 9 ain2 & gt 2 oot 13 4 2 -2l
o2 =5¢ +..,sm2+2s1n2+5e sm2+328 +h sin® 5 +

5} 2 .
+ 1h282 ~§2£ cos 2M + € cos M — &% cos 3M + 2¢ sin® % cos M +

+ 3¢ sin? % cos (2@ + M) — & sin? % cos (2@ + 3 M) — 2 sin® % cos (2@ + 2 M) —
—4esin® - cos M + 2% sin® & cos (2M + 4@) — 2% sin? & cos 2M — 40)
2 2 2
72 sin? & 72 sin?
g cos (2@—2M)~T cos (6w + 2M) + A%e? cos @ —

_thez cos 2M + gkzez cos (2M + 4@) + ghzsz cos (2M —4@) + -

1Ly st
82 . sm2

the whole of this development can be clearly summed up by three representative
terms, which run thus:
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14
]
L

, &= &tcos2M + 6 (41)
5, D, gt gt o . gt 13, o - ot Doy
T p——— =4 a — —_ — —
3¢ 5¢ ‘2s;n2+281n2+5851112+325 + L S1n2+4ke,
gl gt ]
sin sin® —
& 2'[1’4 2, 219 gin? {132+2kzs'n2 +h2l
=g s+ sin® = 4+ -~¢ 1 —
" "5 & 2 280" e 2 |
. . . 1
the aforementioned small function 8 being clearly of order d00 &
L gl L gt
0= —2sin® ; cos (2@ + 2M) + & cos M —¢&® cos 3M + 2¢sin® 5 COS M +

+ 3¢ sin® ; cos (20 + M)

— ¢ sin® é cos (2@ + 3 M) — 4 ¢ sin® % cos M + 2 sin? g cos (2M + 4@) —

— 2k sin® % cos 2 M —
h2sin? | h?sin? (42)
2 2
- cos (20 —2M) — ——= cos (6@ + 2M) + h*&® cos & —

— Zkzg? cos 2 M + gh%z cos (2M + 4@) + gh%z cos (2M — 4 @)

Then put ¢ = 0 in the expression A% When trying to develop
1 1{6, 3, o\
— = — = 58— = q’, 43
i a’(?é 98 cos2M+5),a a (43)
it appears that we cannot take much advantage out of the Laplacian 14) transcen-
dents of the classical theory. Instead we can use a well known formula of Euler,
whose convergence strongly overshadows all hypergeometric coéfficients.
(See for ex. Lobatto: 15) L.essen over hoogere algebra p. 232, II. edition, Stud-
nicka: 16) O poltu integrilnim, Praha, 1871, p. 76.)

1 ) .
5 log nat (1 + a* — 2a cos ¢) = —% log (1—aew)—% log (1—ae'?)
2 3 4
=acos<p+% cos?<p+% 0053(p+% cosdo + -

! o 1  2a )
= é]()g(l +a) 5 log (1 1+ a2 cos @ (44)

P4
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Now, if we put

_—Za
K
1 1 2 @ «
—glog (1—ncosg) =, log (1 +a?) +acosp+ 5 cos2g+ 5 cos g + -
(45)
D og 2% 4 qcosp + L cos 2 + L cos B+
T 5 108 T TacSg T c0sag g 005 0g
In our case
1_l§-2_§2 )_% =a
A*a/(zs pe coszM o), aza
° 2 (46)
1 1 21 38 .16
- = 5 = 2 2M+
A a 55(1 582008 5)
Put then
3 & 2a 2 5 & - 1
5E Ira 1TeT203570 a=g
1 _Viia ) L
A4 a’'E V5 1+ a2—2a cOS2M+Lil+a)]
58 2a

.2
= 3éa’(1 +a?—2a cos 2 M)}
It is easy to be seen, that for 6 =0

1 . 2 1—c:os2M+icos4M+£-cos(—3M+

Ty & 13 81 (47)

When introducing the Besselian functions by means of the definition ¢ = VTI, (17)

6789 = Jo(x) —2Jy(x) cos 2 + 2J4(x) cos -+ +1[2J; cosp—2J5(x) cos 3 + -+ -]
x z\2 z\*
: [ 2 2

l.in+1) 1.2.(n+1)(n+2)
we replace z by — ¢ thus obtaining

] (48)

€% % = Hy(x) + 2H, (x) cos ¢ + 2H,(z) cos 2¢ + 2Hz(x) cos 3¢ + -+,
p=2M,

we then put

Jon(— 1) = (= 1)"Hzn(z), Jonr1(—2d) = (— 1" ilHznei(2),

(5 - } “

n L(n+1) 1.2 (n+1)(n+2)
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(1)k
3 & 3

% cosg %— cos2kM 3k cos2kM
e e e s

and finally
3

Lol =

|

Ny
o W=
—_—r

~

= HO(%) +2H, (;—)) cos 2M + 2521 cos 4M + 2H, {( J cos 6 M +---

|

1 1 1
9 4 2 2
2 30052M+18c054M+81c056M+

A= ¢
161 s v

3a’c
z 2Hl — ¢ CO8 ZIkM, AHOEHO'
=0 l k J

3a

)

‘w
s

k=1

We have then to take into account the various powers of the increment (series) 4.
In order to compute the influence of these terms successfully it suffices to recall
that the result hithertoo obtained is somewhat a kind of a power series in cos 2.
And indeed we are always able to pass from the multiples of the arguments of the

cosinus to the powers, by means of the well-known formulas

cos 2¢ = 2 cos® p — 1,

cos 3¢ = 4 cos® p — 3 cos ¢,

cos 4¢ = 8 cos* ¢ — 8 cos® ¢ + 1, (51)
cos 5 = 16 cos® ¢ — 20 cos® ¢ + 5 cos ¢,

cos 6@ = 32 cos® ¢ — 48 cos* ¢ + 18 cos® p — 1. 18).

It is then very easy to insert into these various powers of the cosinus their
increments ¢, and after multiplying the diverse cosinus factors to repass to the
multiples of the angular arguments [M ete.

In this manner we get the final result in the form of a cosinus series with
multiple arguments

0)” = 71M + 72(2) -+ j3 Q.
These can always be adjusted to our choice of canonical elements (35)

M, &, M—M +
in the form
o =M+ 2 d + js(M— M + Q).
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Lastly we have to carry out the change of the resulting angular variables by
means of the formulae (15) into M, &, M — M+ O thus obtaining the definite

development with the general multiple argument
w' =iy M+ i@ + ig (M -+ Q— M) (52 a)

Now in the following study we shall be interested chiefly in the transformed

.- . "+ g . . . .
indirect Lagrangian part éﬁ”_aTn?L see (38) p. 23, of the disturbing function, which

exclusively contains all secular, critical terms, becoming constant in consequence of
the commensurability of the mean movements n = »’.

This important part of the development is obtained without any special caleulus
as a result of multiplying together the well-known Besselian series for the Keplerian
elliptic motion.

The main terms result in

2
cos ¢ o € C ol ~
»Q—a,z :(F(1~5‘“s1n2~9~) cos(M—M +ao+ Q2—a’)—

~0% ]j cos (@~M+M’~Q+n’)~ai,2 7; cos(Ba+M—M + Q—x)
3 - -
5 ai,;s i@+ Q—a —M)+ (71% % cos QM —M +a+ Q2—=)

(52)
&2 ~ 3 ae?

+ gd-,z- cos (M + M +a"—a— Q)+ S e COS(3M’M’+(D+!§“‘7‘5/) +

+a—(}2$in2;cos(M+M'+w+n’*!§)
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SECOND PART.

In the previous first Part we succeeded in obtaining another formulation of the
satellite problem unlike any hitherto dealt with. The chief characteristics of the
formulation offer two advantages.

Firstly, the disturbing function of the problem appears, developed into a periodic
series, proceeding according to multiple arguments M, @, Q~, M’ composed, as usual,

of angular variables,
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However, the mean movements %, »” which occur as a rule in two distinct

amounts, appear this time reduced to a unique mean movement % = n’. This leads
. ) 1 . .
necessarily to the commensurability w1 representing the angular velocity of the
3

Moon, »’ that of the Earth. Further, the disturbing mass and consequently all the
disturbing forces of the problem become diminished to the amount of the very small
mass of the Karth,

We have now to pass to the integration of the problem.

With this in view, we first introduce another independent variable
t=1+2)1+9{A+nr,

strongly influenced by small parameters, and change the whole aspect of the differential
problem into suitable integral equations.

In the following investigation, we shall be interested chiefly in the form of the
development of the disturbing function, or rather, more particularly in the critical
terms of the development. These are build up by trigonometric expressions, whose
arguments degenerate into sums independent of the mean movements #, »’ and of
the time ¢£. We shall have to deal with the commensurability of the mean movements
n of the Moon and of the Earth »” — both of the latter concurring into one and
the same amount n = #’'.

The finding and isolating of the aforesaid critical terms is an extremely simple
matter. We have only to start with the form of the disturbing function given at
the end of the previous first Part, § 4, and remember that the critical arguments
arise merely by superposition of two term factors of the same argument. These are
to be found exclusively in the indirect Langrangian part of the development. They
turn out to be of zero order in small quantities ¢, ¢, which is in complete agreement

with the well-known classical theory of Laplace and Le Verrier.

CuapTER I

The Restricted Problem of Three Bodies.

Before going any further I must explain the method we shall be using all
through the present paper,

For the sake of clearness I limit myself at first to two degrees of freedom.
However, it is to be pointed out that this restriction does not lessen the generality

of the method in any way; it involves not only the problem restreint treated here-
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with, but governs even the most general case of the problem of three bodies, in
which the Hessian—Jacobi-—Poincaré disappears identically. Let us first imagine the
problem of H. Poincaré, dealing with the lengthening of the original undisturbed
period of movement 19).

Karl Schwarzschild 20) uses the substitution of H. Poincaré successfully in case
of the problem restreint, where the time does not appear explicitly in the right hand
members of the equations of movement, Unfortunately he fails, or rather neglects a
thorough geometrical interpretation of the transformation. And so it happens that
even in the simplest case, where the excentricity of the orbit of the disturbing planet
becomes distinet from zero (namely in the case of the so-called asteroidal elliptical
problem restreint) and the explicit time starts appearing in the developments within
the trigonometrical functions, he abandons the whole substitution and not seeing its
far-reaching consequences, has recourse to Delaunay transformations and to the
neighbouring cases of high number-commensurabilities.

In this respect Schwarzschild 7) AN 147, pp. 289—98 conforms to an erroneous
reasoning of Poincaré Méc. cél. 1, pp. 89, 90, and indeed Poincaré did not succeed in
avoiding this, as he says, difficulty. It was probable that even A. Wilkens an
Klose 21) were misled under the influence of this classical paper by Schwarzschild.

Both of the authors named clearly saw the cause of the failure, but were unable
to overcome it,

And as the Hessian dizappears identically in‘the general problem, it long remained
impossible to penetrate further.

The case of K. Schwarzschild is well illustrated by his paper 20) quoted above
or by Charlier 22), Mechanik d. Himmels II, pp. 249—281. Let us be guided by
Charlier II, p. 248 using the same notation as 1. c.

Charlier starts with the well-known Delaunay elements of the restreint with two

degrees of freedom namely

doe OF —dy, _OF
dt Oy dt O

’ k= 17 25 (1)

I = V&_) Y = la
mean anomaly (2
Ty = V“(l —é), 2=
1

F0=2x’ FZFOJF[L{Fl+IU2F2+"':F0+IUF”. (3)

[ )

Charlier puts for the constant of Gauss k& = 1.
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This original problem has manifestly a disappearing Hessian

) (6F0, aFO)

0wy O0z) _ (4)

0 (a1, x2)

Now according to the prescription of Poincaré, in this very special case the
difficulty is easily overcome by simply introducing a rotating system, moving with
the same angular velocity as the disturbing planet.

And indeed the explicite time within the arguments of the trigonometrical func-
tions appears exclusively in the combination — M’ —a’ + z. So the radical remedy

is easily reached by introducing other angular variables

xle&, ypu=l=nt+e¢, c=M,
. (5)
ro=Va(l—e?), yp=a—n't—My—a’=—n't+g, g=—My—a' +mx

In order to preserve the canonical form of the equations, we must add to the

original #, the term n’x,, so that this time

7 1 7
Fo = o + 7z, (6)

but we write Fy again.
Schwarzschild studies now the case of the small number commensurability of the

mean movements », n’

3
=8

where p, ¢ signify two integer numbers, relative prim. The undisturbed period of
movement in the two starting Keplerian ellipses for 4 = 0 (disturbing mass) is given by
_2n(ptaq) 2np.

Tl - n %, (7)

Supposing now x>0 he changes the initial constants into

V;"'ﬂl, nt+c+j/1,
(8)
Va(l—e) + By, —w't+g+y, t=0,

passing therewith to the new variables and at the same time prolonging the original
period by the the substitution ¢ = (1 + %)t
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%1:]/6;-*‘/91""(])1, 3}:nt+c+y1+1p1,
9)
Ty=Va(l =) + s+ s, Yo= —nt+ g+ oyt py

@1, P2, Y1, Yo are unknown integral functions including small deviations of the order
# and namely of ». The period of the disturbed movement will be given by

T =1+ %) f%? - The integral equations serving for the definition of the aforesaid

7

functions ¢, @ are given by the inversion of the original differential equations

dgy OF dy, _ _OF

dv ~ 0y, dv g,

(10)

dpy, OF = dyy _
dv Oy, dz

_ 6;52 ,

The meanings of @1, @g, 91, w2 can be made completely clear by summing up
of the whole mathematical process of Poincaré: He considers a Keplerian undisturbed
periodic motion in two ellipses, gives to all the starting constants as well as to the
time ¢ a displacement of the order u (disturbing parameter, mass), and investigates
the new disturbed movement, asking under what conditions it could remain periodic,
even with a prolonged period.

Evidently the disturbed, displaced movement remains periodic in case the very
complicated integral functions @; = @, = y; = ¥, = 0 disappear after the lapse of the
whole prolonged period.

The meaning of these functions clearly appears to be ‘“‘the functional deviations
of the displaced coordinates, during and towards the close of the new prolonged
period”.

In this manner we are able to write down immediately the integral equations

(inverted differential equations) as follows:

T

T, 1
D [0F” D, /'OF”
“ ~(1+x)b E dr, u —(1+%)' e dr,
T, Tla
_ 4T [j;’
?[’1—+an1+(1+x)Of(x0+ﬁ1+%)3 u(1+x)‘0 i, dr, (11)
Tla
, . F//
Vo=—un'Ty ,u(1+x)'{ 0x2d‘c.
b
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Dy, By, ¥, W, signify the values, that the functions ¢y, ¢,, ¥, w, assume towards the
close of the total period T = (1 + =) T 20).

These very complicated integral equations can easily be changed into simple
Taylor series. And indeed the whole method of solving them consists in a clever
application of the existence theorem of implicit functions (Cauchy, Weilerstrass).

However before performing this simple task, we must explain the meaning and
geometrical significance of the parameter s,

We started putting 9)

Yo=—n (1 +u)yT+g+ 9y, +
Yo=—n'T+ g+ ys + g
including the small term xn into y, or rather destroying it with y, =0,
before it could give rise to the explicit time nx7z.
Let us suppose now, as will turn out later on, that we succeed in annulling

the functional deviations (11) ¢q = @3 = y; = w, = 0. Then we have only to return
to the original signification of the variable y,, by subtracting —n't— Mo—a’ + =

’

, %n't
twt=n+
1+ 2 14+ 2

t
1+ %

m—n't+nt=m—

H

t=1+x)7r, 1=

in order to see that the meaning of — indicates the “birth” of a new

xn
1+ %
mean movement or, as one says in Astronomy, of a new secular movement.

Now let us carry out- the quadratures of the complicated integral equations.
For this purpose we recall that the Hamiltonian function F appears in the form of

a trigonometric development according to miﬂtiples of the two angular variables

F =73 4 cos (iy1n + (29s) (13)

thereby the coefficients 4 constitute the functions of the scalar variables z,, x,.
Now the integrals of our integral equations can easily be carried out term by
term if we distinguish only three categories of arguments:
1. Simple short-periodic terms of the argument

iy T Y, r=ntte, c=DMy, yy=g—n't, g=—Mi—a'+a.

11, 1 representing whole numbers both positive and negative.
3 523804. Acia mathematica. 88. Imprimé le 27 octobre 1952.
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. cos . sin .
The quadrature changes only every particular . into cos and gives the same
s

result in the upper as well as in the lower limit. These two amounts being of op-
posite signs cancel mutually and give zero.
So these short-periodic terms cannot contribute in any way to the final value
of the coefficients in the implicit functions in question.
2. Poincaré further selects from the development of the disturbing function the
so-called eritical terms, corresponding to the above supposed commensurability of the
n _p+tyq

mean movements —, = ——> 9, ¢ integer numbers for which
7 P

n=sp, ipg=5{@+q) (14)

s, Integer number positive or negative.

In this case the argument of the particular term of the disturbing function gives

?

0y Ty = (nt o) —hnt g =~ [(p+9ps—p(+q)s](l +x)T +

=2

(15)
+spetsiptag= +sipect+(p+q)g.

So 1t happens that the coefficient of the time 7 disappears.

These terms are to be integrated as a constant, independent of 7.
The result of the quadrature is manifestly distinct from zero, at least in the
upper limit, giving the value

1

T
17
— / dt const = const.
1.
0

These critical terms are extremely important, as they guarantee the existence of
the coefficients in the development of our implicit functions.

3. Secular terms, well known from the classical theory, in which ¢ =45 = 0,

These terms equally yield a result, distinct from zero, being integrated as a
constant of the previous case (no. 2).

Their existence gives a contribution to the desired coefficients of the implicit

functions as in case (no. 2).
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When putting for the sake of brevity for the average time value

00

T

1 . .

’j‘j Fdr=[F] =3 A, cos (iyc + 139) = >, Aspsp+a €08 s{pc+ (p +q)g}, (16)
0

§=0
summation being taken over the integer numbers s, (14)

1 +q) —ip=0

we finally obtain the following four conditions admitting the possibility of the

periodicity of the whole movement.

LO[F ® .
D =0= 6%] == 2 sdswro sinsipet (p+q)gl,
o[F < .
Dy =0= F[ZIJ =—(p+9g ZOSAsp,S(pH) sin s {pe + (» + 9) gl,
. 0F,  0%F, 0% F, 0[F,]
971—0_%5;1—+0x% ﬂ1+0x10r2ﬁ2+# 0 x; L (17)
0F, 0*F, 0*F, 0[F4]

T G dmdm T o2 PR gy

Fy = éii‘ + 1 2.

And indeed only by the disappearance of the functional displacements as defined
by (11), the same amounts for the coordinates and their velocities at the end and
at the beginning of the movement can be secured. The last four conditions in the
form of power series can define five of the implicit functions s, By, B, Y1, ve- 1
their determinant is distinct from zero, then this important fact includes the pos-
sibility of developing the unknown function according to the powers of the small
parameter u.

Now the aforesaid four conditions are not independent. There exists in our case

(of the problem restreint) the Jacobi-Integral of Energy
F—C=0. (18)

From this algebraic equation we can immediately draw the important conclusion,
that one of our conditions, for example @, = 0, will always be a consequence of the

other three conditions
@1 = Tl == ]_“[12 = O



36 Wiadimir Wéclav Heinrich.
And indeed this follows from the integral of energy written in differential form

F(D, W)—F(0,0)=C—C=0

oF oF oF ., oF ‘ -
The first factor of the second term P n’ 2 0 is without doubt distinct from
2

zero, If then @, = ¥, =¥, = 0 it is clear that @, must equally disappear. Summing
up, we can show the existence of the five implicit functions fi, 8, 1, V2 % as soon
as we prove that the determinant of the coefficients of the first powers of the
unknown quantities remains distinct from zero.

Now the equation @; = 0 can be replaced by ?i; = 0 because the development
of the lefthand side reduces to uFy, see (3), (6),

F=_—,+nutpuF + - =F +ulby+-
2 @
and
D, _O[F] , 0°[Fy] 0*[Fy] 0*[F1] 0*[Fy]
p T 0n om0 P anay T o M Gyt
JdF,
_.__=O,
Oy

and we gather from this that instead of @; = 0 it appears sufficient to satisfy (20).
Consequently we can leave out the factor . The other two equations for ¥; =0,
and ¥, =0 can be written as follows

3B O[F4]
< B = )
! A # 0z, ’
(21
_ ’ a_[FIJ .
Vy=n'u+pu 0x2+ <= 0.
And indeed we easily find that
OF, 1 0F _ . OF 3
dz; & Bz 822 2t
(22)
0*Fy _ 0*Fy _ 0

0z Ox 0,
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Now our aim is to obtain conditions defining the implicit functions of x namely
%, P1, P2, y1, v2 which would dissappear with u.

According to the theory of implicit functions developed by Cauchy and Weier-
strass, this 1s possible only when the defining functions do not involve the term
independent of 4. We gather from this that the term of the starting equations not
containing »x, ff1, B, y1, o as factor must disappear, and so we find the well-known

conditions of symmetric conjunction and opposition.

. . O[F . . . .
And indeed the expression -0[71\] = 0 being constituted exclusively by a series
1
of sinus of the critical terms
Asp,wrgs sin s{pe + (p +q)ag}, c¢=My, g= — Mo+ n—a (16)

we can satisfy our condition by butting

c=0, g=20,
¢ = 180°, g=20,
. (23)
¢ =0, g = 1807,
¢ = 180°, g = 180°.

We have three independent equations containing five unknown quantities », f1, fa, ¥1, Ya-
Two of them can be freely disposed of provided they remain within the limits of con-
vergence of the development of our disturbing function. Schwarzschild simply chooses
fs =0 with the view to obtaining new orbits with movable perihelion » = 0, and
finds three equations for the determination of x, 8y, y4, y2 = 0

*® 3/31 a[Fl] T

Tl:oz —;:i + xl M 0.%‘1

YVo=0=n"n+u a[il] (24)
2

D, _ O*[Fi] O*[Fy] 02[F1J *[Fy]

1 ~ 0" nou Pt 02y 01y Pat a2 1T Gy oy

The determinant, namely the Hessian—Jacobi—Poincaré, is manifestly distinet from zero

aF,

pmn a0 e

[ T o R T (25)
L R VR Y

69516% 0250y, dy;

1
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In this manner the existence of new solutions with rotating perihelion x is
proved. But the way chosen by Schwarzschild is far from unique. I mention only
that we can just as easily secure a Jacobian distinct from zero simply by putting

N 0[F,]

n 0 xy

instead of 5 =0, F; proving to be a function of one free parameter e.

And indeed our secular part of the function [F] fixed above involves solely
the coefficients A;p s+ (See (14), (17)), these latter being built up exclusively of the
scalar Keplerian elements of the starting ellipses a, ¢, a’, ¢/ = 0.

It is to be noticed that only the critical terms of the second and third categories
mentioned above guarantee the existence of a real x, as they contain exclusively the
cosinus series distinet from zero term by term. The starting development [F] consists
of a cosinus series which leads, after two differentiations of the arguments, again
only to a cosinus series. And according to our choice of a symmetrical conjunction
or opposition, all the cosinuses are reduced to 1, namely to coefficients build up solely

by scalar Keplerian elements a, e.

.. 0*[F,] .
The same remark concerns the coefficients O] in (24)
0 y; 0 yi
When considering the three new equations, we get
v, e
Wi=0, “F=0, E=0 (26)

clearly showing a determinant distinct from zero

_o_3b O[Fy]  p O[F] 1
Fr=0-= ! T 0wy o 0 2y w?JK o
Y. __ 0°[F] 0*[F4] 0[F,] ,
)7 =0= 0x, 0z, Pt 022 Pot Oz, (27)
21 0*[F1] 0*[F4] 0*[F4] 0% [F4]
“t== + + + +o
v T om0 " 9man T g T 000,
0[Fy] 0(F,]
KR S =
dyy # Iy
nl 2 2
where 0[1111 = 0 as previously, while M = (l[fi = 0, as mere sinus series of
dy 02,0y, Oxy0yy

critical terms for the symmetric conjunction or opposition (23). The corresponding
solutions coincide with those of Schwarzschild, but this is not always the case In

more general problems:
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And indeed, unfortunately, the general equations of dynamics bear the following
character: F has the form (see Poincaré, Méthodes nouvelles de la Méc. cél. I,

p. 133. 1))
F:F0‘+“F1[LL+F2/A2+"'

Fo = f1(m1) + fa(m) + fs(23) + fa(@4),

(28)

while at the same time [y (xs) = f4 (%) = 0. Now these parts furnish the undisturbed
mean movements

aF, 3R, dF, 0F,

721:—@') Nhg = ax': 7&2:7@4:8;‘* S (29)
1 3 2

which circumstance causes the Hessian—Jacobi—Poincaré to disappear identically

0F, 0F, 0F, O0F, 0F, oF,

6 » T AT ~T ) '”_—) a = -
Oz, Ozy Ozz Ozy _ ) Lo (30)
Y (w1, Za, T3, T4) 0 (w1, 2a, T3, Ty) ’

Still we are always endeavouring to get this determinant distinet from zero, as it
happens to coincide with our determinant as given above and proving the existence

of the implicit functions, and admits the possibility and reality of a periodic solution.

CrarTER II.
The General Problemi of Three Bodies in a Plane.

The secular solutions treated in this II. chapter — intended for the use of
Planetary Orbits — bear the following description:

Let us imagine the problem of three bodies: Two planets of relatively small
mass revolving about a big central body in the same plane. Let us suppose the
undisturbed mean movements of the two planets to be commensurable. Then 1t 1s
shown below:

In the neighbourhood of every type of commensurability of the mean movements
there always exists a multiple infinity of secular solutions. The orbits of both
planets in question are given approximately by two ”rotating ellipses.

The rotational speed of one of the two apsides can outrun possibly the other
apside thus far, that during one period only of the whole movement, this apside
catches up with the other — after having described one, or more full angles of
360° degrees.
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The synodical period of the perihelia is not confined to the accurate and at
the start u = 0 prescribed length of the original undisturbed period of the aforesaid
ellipses, but can differ from it even within the scope of the size of the small mass u.

To facilitate explanation let us take up the case of the general problem of
three bodies in a plane, and start with the equations of Charlier, volume II,
p. 216, using the same notation only slightly modified, and to follow up the con-
clusions of my previous paper Publ. de la faculté des sciences de I’Université Charles
No. 15, 1923, Nouvelles classes des solutions séculaires du probléme général des

trois corps 4).

ds, _OF  dy_ _0F

dtza—yi’ dt:_ézi’ 1=1,2, 3,
zy = B Va, n=M+a—a, B=ppl,
2= Va(l—V1I—&), ypo=—a+ta, p=ups,
a5 = sV, ys =M’
gy Bame  Rdime A G

2a 2a"

F:F0+MF1+//L2F2+,,.’ F1:k2 (l_?COSO‘)

Y| 72 )’
dF -3 OF v 3
10 :nlznzéa 2, _470:713:7%/:@/@/ 2,
0 x4 0 0z,
_ Mpme = kmy me , . ma(my -+ me) ﬁ,:kmanc(mb J;nj)

0 = ) = —— = ’ 3 -
mpy + Me Vmb + Mg Ma + My + Me Vma + mp + me

Let us study the case of the commensurability of the mean movements (p ¢

relative prime numbers)

n_Pre, (32)

the undisturbed period of the movement in two ellipses u = 0, is

T0:27Z’17:2%(70+Q). (33)
no g

To help in clearing up the formulation of the problem let us recall that, in
the right-hand sides of the equations of motion, the Hamiltonian function ¥ and

especially the part Fyu+ Fou®+ - = F" appears to be a suitably developed periodical
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series. The general argument of the trigonometrical cos terms found by Laplace
and Le Verrier has the form w” = 1;y; + %2y, + 2393 where ¢ represent integer
numbers both positive and negative.

The Hessian of the problem disappears identically, as the coefficient of ¢ in
Y5 18 missing. In order to avoid this inconvenience of which Poincaré complains in
vain Méth. nouv. I. p. 68, p. 119, p. 133, II. p. 47, T first introduce other angular
variables by putting

f= (%)l +0)7 (34)
’ kl nOt + ll n:)t ” ’” kl Ny + ll n(,)
— gy AR T AR ol — T1fo T 170
noh 1+ 9 hitm 149
! k2 nOt -+ 12 nat v ” kz Ng + Zz n£)
gy o MMl IRl s g = R2e Tt 35
Y2 = Y2 ) Y2 + m2t, 2 ) (35)
, ksnot + l3mot . v gmg 4 1310
Y3 = y3 -+ 7370 R Bk Q_ = y3 -+ ng t, ng = 3 *04_;_0 .

1+ 1+

k1, U, ks, 1y, ks, I3 representing quite arbitrary integer numbers both positive and nega-

. . . . - 7 +
tive, thereby supposing that we are dealing with the commensurability n—(,) = qu,
0

and mg, mo, represent fixed constants equal to the osculating functions n = ny,
n’ = ng. This only means urging the appearance of explicit time within the trigono-
metrical arguments of the development of F as we have to replace every y: by

, kingt +1; IZE)}

i ——

1+

’ kyngt +1 ‘n,t ’ ’ ’ 1"
ylzyl—ﬁl'folfb%—o:yl—klno(l+x)r—llno(1+x)r:y1-n1(1+x)(l+ﬁ)t,

, kamgt + lymot

T yo—hamg(l + %) —Ilyno(1 + 2)7 = yo—n2 (1 + %) (1 + 9) 7,
(36)
. ksmot + kgmot , —
Y3 = Ys— 3n0#0 =y3—kgng (1 + )t —Ilgng(l + 2}t =ys—ns(1+2x)(1+38)7
o kgt limo o, kamgtlno e kamg o,
! 1+9 77 1+9 =7 1+ 9

Of course we have then to take special care that this explicit
time remains compatible with the periodicity of the resulting dis-
turbed periodic solution (see p. 47).
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In order to preserve the original canonical form of the equations of motion

the three complementary terms must be added to the function F,

_kimgtlimy o kymg +lomo  kame + lymo
149 = 1+9 © 1+9 (37)

We shall put then ¢ = (1 + »)(1 + &) and try to annul the expressions of the
functional increments @i, @s, @3, Y1, @a, Wy thereby starting with the values

a1 = B Vay + 1 + g1, yvi=My+a—a +nt+ (kyng + Lino)r +
+y1rty

Z= B Vao (01— V1) + Bot gp,  vo— —m+a + (hano + lan0) T + ¥p - 9o,

23 = s Vag + Bs + @3, ys = Mo+ 0’7 + (kgng + l3n0) T + y5 + v,
M= My + nt. (38)

It is to be expressly noted that in the argumental part of y; namely wp;
are contained the terms s (ngk; + npl;), these being intended to distroy by annulling
the final functional deviations see (42) and (43). On the contrary in the general

trigonometrical argument of the development of F” namely,
k* 4 cos (t291 + 129 + 13Ys)
after the transformation (36) and putting ¢ = (1 + ») (1 + &) 7,
k* A cos [iyyi + Tays + tgys — (izn1 + tamp + izn5)t] (39)
the two terms
(1 + ) {(dynd + dans + dgm) T — (i n] + 1gms + 13m5) T}

cancel out mutually, whereas — % (nf4; + 521y + %5 45) (1 + #) 7 remains as the newly
appearing explicit time.

Two planets, defined by the undisturbed elements a, e, M, =, o', ¢, M', 7,

describe two strictly elliptical Keplerian starting paths for u = 0.

Let us imagine the same movement many times (r) repeated, so that

Qs
T, — n’pr:2n(p+q)r’ (40)
n 7

P, ¢ being integral numbers.

When displacing the original positions by the small amounts f;, y; to be deter-
mined, we are trying at the same time to displace, namely to prolong, the period
by the quantities », ¢ in putting ¢ = (1 + %) (1 + 9)7, so that the final disturbed

period goes over into

T=(1+x(1+9) 7T (41)
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It is now our chief purpose to destroy the complicated functions ¢, i, expres-
sing the functional displacement (final deviation), thereby defining the suitable
starting amounts of the implicit funections x; (i), #:(yi).

The differential equations for g, i, as well as their inversion in form of integral

equations are easily obtained as follows

P = 0=
e o
T O0°F N TOF
= w/)’1./ —a—v;c%od'r%— nxdy +ndTy +nud Ty + (king + o) Ty —pu 0;11 dv—- -
Tla
Qf)z:O: _*_(;{2,}20 -+ lzné)le—‘,uf "‘E}d'{*"'
0z,
0
o "o
= —f 3—§—dr+n wTy+a" 0T+ 0/ 29Ty + (ksmo + lyno) 2 Ty — / 0 dv—--
J x5 J Oz

T

T : 7, 7
| ,)2 2 h 2 A 9
ﬁz@z&/f—( FLd 4132 R dr%ﬁ:;/ rF —dr+7ljgﬁ1dr+
. : ;

7 Oxy 0y, Oxs0y 0230, 0v;
e oy o
o | O Fy F 0 Fy "0,
by T 0y2 + vy [ dy Oyg dt +j ia dT +/,ka I dr +
0 (4] 0
Ay roe Ry
P2 _ o _ 3 1 0°F, Fy [ " F,
Iu, O ﬁloj awlayz (lr+‘32 0 aJZ d‘[% ﬂ3 0 ay dT+'}/1 a a d +
(43)
Yo p Fooer OF T‘aF
S O AT 1 0Ly 4 ...
”2.0[ o 1) 00 / e ) oy T

T

1 T
B _o_g [ EH o, [ 0° Fy _
o0 oo SR PR P ””Sfa m d’”lfa P

0
O F i FoF,
1 —— P
H/Q[Oyzajg y;;/ dt +j —(ZT+ [0 dr +

As a consequence of the well-known Jacobian integral of energy, the fourth

and sixth of our equations are not independent of each other, and indeed it is easy
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to show that p@s;— (» + )¢y = 0, because the right hand sides of (43) are reduced
merely to the critical terms of argument ¢ as we shall see hereafter pp. 46-—54 ad
1,2, 3,4,5 and then it is clear that

TR (1 g S (14)

aylayk_ k 03/36%

Just as in the previous asteriodal case all terms in ¢; = 0 independent of the
small increments f3;, y; must disappear.

Thus we have the three conditions

OlF) _

R A (45)

thereby putting for the sake of brevity
T,
Fil=— [ Fd
[ 1] - Tl 107T.
0

Now the left hand sides are formed by series of the sinus of critical terms such as
(see hereafter ad 2. p. 48)

sz*sp,—s(pﬂ),S(pH) sin s {(17 +q)M —pM— (p + q) (77“7‘/)} =

(46)
=k A sins{—qy—py + (p + @) ys}
and these can best disappear term by term If we accept:
My, My, n — o/ =0, 180° (47)

which conditions are interpreted as the starting symmetrical conjunction or opposi-
tion of both planets. '

The development of the disturbing Hamiltonian function is constituted by cosinus
series of the structure ¥ = k%> A4 cos (1,41 + 73 ¥2 + %3 ¥3),4 containing solely the scalar
elements xz. Consequently all expressions including odd numbers of derivations in the.
02 [Fy)

will be composed of sinus series, whose
0y 0 xx

angular elements y; such as for instance

arguments vanish owing to the supposed symmetrical conjunction and opposition.

Thus it immediately appears clear that our integral equations when putting

T,
1
[Fl] = Ef Fl,df, etc.,
0

will be reduced to the following form:
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nx + nd + (kyng + lyno) x — By ;ﬁ;o ~/J¢a[ 1]+nm9+~~:O.
+ (kymg + lano) % —u 0(,512] . =0.

WD (kg + L) B %‘2— , L] 1] kB 0. (48)
aay[gy] e 626[5%1} e aa;[gis ' 67'55’“‘ Pl

The coefficients of these equations are built up by critical terms, which just
provide the necessary elements of the solving determinant Hessian-Jacobi-Poincaré.

Let us examine the new mean motions holding true throughout the resulting
periodical (secular) movement. These are easily found by mere analysis of the
infinitesimal substitution in question.

As we have replaced the original time ¢ by

=(1+x%)(1 +9)t and % by yézyi+@°—h—+n—ol—i

1+ 9 (36)

we have to carry out the quadratures of the integral equations in such a way that
the new variables y; may yield, at the beginning and at the close of the period,
deviations which disappear entirely, save for the finite amount of the full angles
27 = 360°.

Every mean movement, even one produced artificially through the introduction
of the new dependent (primed) variables %;, will be preserved by our suitable choice
of “the starting conditions for the periodic or secular solutions.

In the case fixed above our integral equations give the result

=My+ma—a +nt+ (noky + nolh)t + =My +n—a +
%+ kyng + 1y no
m(zl*—l-lﬁ)o t+ oy + (y = 0),
Yo= —m + '+ (noky + noly) T + ys =—ga+a + (49)
ko ng + lymo
(1+x)01+39)
Yo = Mo+ n' 7+ (noks + nols)T + s = M +
0 + noks + o I3
1+xQ1+

t+72+(%=0),

t+ ys+ (w3 =0),
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Returning now to the original unprimed variables by subtraction of

’
ky ng + lino

1+

we immediately find for the mean movements of the disturbed resulting motion

: ke e Eymgtlmo o om (R, ny o)
in Mta—a’, = (1 + =) (1 +9) 1+9  (1+9)(1+x) (A+9)1+2)
. , kang + Iano kot -+ Lo no #{kymg + lang
— 7+ — e . e — LA T BT
i AL s N ) 1+ ¢ 1+ 9)(1+ )
(50)
i M [ Wt hano tlymy  kymo - lyno n' o #lksme tlyno)
’ P11+ ) 1+ 9 (L+9) 1+ (1+8)(1+=%)

It appears most Important to known the accurate amounts of these angular
velocities thoroughly, whose origin has been forced by the introduction of our new
(primed) variables and by annulling of the integral conditions ¢; = y; = 0.

And indeed these gquantities always figure in the development of the disturbing
function being combined with the old variables M + w—=x’, —a + #', M’. In this
way the explicit time appears inside the trigonometric terms see (39) and we have
to take special care that the periodicity of the movement is not spoiled.

Let us pass to the study of the individual terms of the disturbing function
thus approaching the next task, namely that reckening of the quadratures of our
integral equatibns term by term. As previously we have to examine the terms of
three categories. The Hamiltonian function has the form: 23), 24), 5), pp. 14—18.

F, = l’v22A c0s (i Y1 T taYa + I3Y3), (39)

Bal B2 Kas By king + lyng kang + lyno kyng + I3 no
Fo= AP D2 HiTyg 170 ey 2 K37 3 Y
0 9t %22 1+9 & 1ro = 1 T (D

the coefficients A4 being the functions exclusively of the scalar elements x:

1. Simple short periodic terms of the argument
Y F ey T 3Ys
h=nt+c+a—a, yo=—a+a, ys=nt+c, c=M, ¢ =M.
After introducing the new primed variables and the distorted time T we immediately

state the false appearance of explicit time 7 (or ¢) obtaining for ¢ = (1 + »)(1 + 9)*

in the argument in question
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. ) ) e kg F o amg 1y no
uYr t Yy Ty = Yy b teye T igys 1y "1’*'197_"{;‘*’5_ iy 10';’192”'

. ]Cg 77/97“}‘ 713 nb

7/371 —‘:19 I = ?:1')?/7* 7:1 (klno -+ ll’ﬂé))%'b' -+ (I‘JO + - 7[/ + ’}/1) 1.1 -+ 7;1'(/)1 -+

+ —dylkang + lno)xT + (— 7 + 7 + py)ia - oy + ign T — 35
0 4 k%

— 7:3 (k3n0 + Z3W6)%T + (M6 + ’}/3) i3 -+ 7.31/)3.

The false appearance of time must remain compatible with the total period

of the motion, which circumstance gives rise to three conditions

7, = 27P0 2D g gy (1) = TP (1 9y (1 - ) =
no Ny ng
P R
- —2—’—”';’9 D gy e, OY
0

f]_T: iQTCSI, sz: i 27'[32, f3T: i 27{83

si representing integral numbers.

These conditions expressed by means of our f; fixed above (50) lead to the result:

hT = Ttm (o) prl+o)(1+9) = +2xs, = 2a(p+q)r +
(p+ @k + vl
4+ gug A B
ST ke ol Y
ol = & 2y = — AlEemo Hlmo) 2 g g

TENEDE

2xpr , 2a(p -+
= =% (k B Py i = S
' (k2 mo 270) % n

)

1)1 % (

kg Mg + Zz 7L(I))

this leads to

’

— 8 n . So n . So
x=F 2 ;= ;= : (52
pr kyng + lang +7'(p+q) kamg + lyno +r[(/erq)lferplz] (52)

" — 3 (k3mo + l3mo) 2
BT = & 2y = T OB 2T 1 (14 0)

(p+a)ks + 2l
= Qnpr+ 2m B8
R s Y N

Hence if all s; are to remain integral numbers we find beside the condition

I A ) o
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the necessity that
P+ ke + ply = T 5y, (53)
or its divisor.
This statement enables us to succeed in carrying out all quadratures of the
shortperiodic terms in question. And indeed we have proved that all arguments
of the form

: . : e e kgt hino . kamg + lymg,  kgmg + lgno
Gyt lals Yy = Gyl Tyl dgys— T e e

—_— 7 2 ¢

1+9 1+ 1+9 7
(35)
give the same result save for the whole number of 27 = 360°.

. cos . sin .
The quadrature changes only every particular . into and gives the same
sin cos

value in the upper as well as in the lower limit, that is: at the start and at the
close of the whole period. These two amounts being of opposite signs cancel mutually
and give zero. We immediately conclude from that:

1. The short periodic terms cannot contribute anything to the final value of the
coefficients in the implicit functions in question.

2. In the second place let us examine the critical terms in the development of

the disturbing function F. These are terms which become independent of time by

- : + e -
the supposed commensurability of the mean movements % = %_q > p, ¢ signifying

4

integral numbers. In order to isolate these terms we have to select all ¢, 75, 73 for
which 4 = ——sp, 15 =59, i3 =s(p + ¢), s signifying integral numbers both positive
and negative 7 a).

It is necessary to ascertain that these critical terms really exist, for only their
existence secures the possibility of solving the integral equations and satisfying
them by means of real starting increments f;, ;. Thus for example the case of
the non existence of the aforesaid terms, the sinus terms in our developments
disappear, and the determinant of the integral equations contains a subdeterminant
of a zero amount.

In short, in case the critical terms are entirely missing, every proof of any
real existence of the integrals in question would become meaningless.

The argument of these particular terms of the disturbing function leads to

nyrt iyt iys=sl=s{(@+ ) M —pM—(p+q)(n—a) =s{—py+qys+(p+q) ys}.

(54)
When passing from the original (31) to the primed angular-variables (35) we get
new right-hand sides which show the false explicit time inside the trigonometric terms
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p=M+a—a =yi—Ikyng(1 + )1 —lhno(l + %)t =91—n'(1+»)(1+ Ir,

Yo=—m+a =ypr—heng(l +x)T—lano(l +x)t=9y2—mnz(l +x)(1+39)7, (55)
ys =M’ =ys—kyng(l + w)t—lLno(l +x)t=ys—ns (1 +2)(1 + 97

o _kamgthno e kymotlno . ksmo F lyno,

" 1+9 "™ Tiye 0" 1+ 9

The primed coordinates y; are finally obtained in the form
Yi=My+a—a +nt+ (kyng + Lno) T + p1 + 1,
2/2 = —gm + 7'[/ + (k2 Mg + lznz)) T+ ’}/2 + 1/)2, (56)

ys = My + 0’7+ (ksng + lgmo) T + y3 + vs.

The functions y; = ys = 93 = 0 as final deviations of the starting configuration
become zero, if only the conditional integral equations for the increments », &, Si, v:
turn out to be solvable. In this case clearly the whole movement is governed by
the same conditions at the start as well as towards the close of the period T =
=T:(1 + %)(1 + ¥) and becomes periodic.

Now our principal aim is so to prove the solubility of the conditions (48) or,
which is the same thing, to find out a suitable non-disappearing Hessian—Jacobi—
Poincaré.

For this purpose it first appears necessary to make sure that all the factors
of the apparently explicit time mentioned above disappear in (36) entirely from the
critical arguments, s in question. And indeed it is only in this case that a cor-
responding critical term changes from a trigonometrical term to be integrated into
a simple constant A, whose integration is carried out by adjoining the factor = and
inserting the upper and lower limit, namely A7 — 4.0 = AT etc. Indeed it is only
through the existence of these constant terms, the possibility of non-disappearing
elements of the determinant, and the solution of the conditional equations for
%, 0, Bi, yi can be guaranteed. It is only in this way the existence of a not dis-
appearing Hessian can be reached.

Now the coefficients of the time T become annulled by the choice of the starting
increments x, 9, fBi, v, and by annulment of the vy, ys, w3 a8 a consequence of the
supposed commensurabilities of £y, /s, fa.

When constructing the critical argument we have to pay special attention to
the cancelling out of the apparently explicit time-terms contained in the additive part.

This means we must choose all arbitrary numbers &y, ks, ks, Iy, I3, I3 in such a
4 — 523804. Acta mathematica. 88. Imprimé le 27 octobre 1952.
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way that the whole factor of » 7 disappears. We have to build up the whole argument

containing the artificially a in licit time v t

: g earing explicit time 7=, -~ — -

¢ y app £ CXDhc (L+2)(1+%)

With this in view we insert the expressions y; in (34), (35) into the original coordi-

nates y; (56), s{. Then all terms not containing %7 namely

in yy, + plking + lino) v — p (kyng + l1no) 7,

in ys, + q(kyng + lynb) T — q(kang + lynd) 7,

in gy, +(p+q)(ksne + lgno) T — (p + ) (ksne + l3no) 7,
cancel out, the y: likewise containing the factors x#, xx’ disappear according to the
supposed fulfilment of our integral equations (42), (43), (48) and the explicit time expres-
sions ~— (kyng -+ luno) v, — (kamng + lyno) %7, — (k3ng + lyno) » 7 remain within yy, ¥y, ¥s
respectively. Thus we have to pay special attention that these parts disappear

through a suitable choice of the hitherto free integer numbers &y, ks, ks, Iy, lo, I3

which appear only in the combination

sC=s(—py +ay2 + (0 + Qys) —{—»(kino + L1m0) + q(kang + lyno) +

+ (p + q) (k3ng + lymo)} % Ts
which leads to the simple condition

nolpky—qks— (p + Q) by} + ”6{pl1~‘1l2_(2’7 +q)lz} =0
or by means of our supposed commensurability ng» = no(p + ¢),
(p+Q)pki— (@ + Qahke— (0 + 0)hs + p° L —pals —p(@p + )ls=0  (B7)
and this fundamental condition is to be supplemented by our previous result (53):
P+ ke +ply= 11, *s,. (58)
Let us state two particular cases, for the sake of an instructive example:

1) kl:k2:k3213:0, l]_:lz:I, p:q:17 ni:n(’), né:no, ’n’3=O.

2) L=ly=—1 L=1, k=1, ks=1ks =0, nl=mng—no, no= —ngy, ns=no.

On summing up, we have got as yet two diophantine equations for the admissible
choice of our six arbitrary numbers Xy, ks, ks, i, ls, I3 both positive and negative,
which give the structure of a suitable rotating system of coordinates. The resulting

rotational velocities are obtained in the form
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o (kg D) [y = % ka0 + Iymo)
LT+ (1 ) Q1 +x BT+ 914w (50)

fom o #(kamg F o)
Py (1+9) A+ +x)

In finding the two diophantine relations (57), (58) we only carry out two guiding
principal rules:

(a) that the final deviations of the coordinates ¢, @s, @3, 91, Yo, ¥s, disappear
separately, which conveys the disappearance of the time increment of the whole
critical argument,

(b) we destroy the appearance of the explicit time by a suitable choice of the
arbitrary integral numbers :both positive and negative ki, I;, 7 =1, 2, 3.

It is only in this manner that terms of the second category (2) turn out to be
reaHy secular, to be constant, without a trigonometric, periodical part ready for an
integration.

It is just these terms which constitute the real, non-disappearing coefficients of
the conditional equations, and only they maintain the existence of a new, non-
disappearing Hessian—Jacobi—Poincaré determinant, thus entirely avoiding the dif-
ficulty which for so many vears baffled all the efforts of Poincaré and his disciples.

3. Now let us pass to the third category of critical terms of argument (see Kem-
pinski 7 a))

U=@+qM —pM—pr—a')=—py + (® + 9 ¥s. (99)

One may be inclined to try to annul in a similar manner the false part of
explicit time clearly appearing even in the latter. And, indeed, if we succeeded in
this endeavour, these terms would equally yield only further constant (secular)
critical parts as in no. 2. But it can be shown that this is impossible. When super-
imposing a similar condition as in no. 2 with this view we easily get a further

diophantine equation
0+ @pk—(+ ks + p°L—(p + @)pls = 0. (60)

But unfortunately we can never satisfy both of these conditions (57), (60) without
spoiling and annulling our chief purpose, namely the newly arising mean movement.
And in fact when substracting both of the last conditions from each other, we are led

to the relation
ky _ »
ly p+q (61)

—(p +q)gks—lpg=0, or

and Tong + lang = 0,
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which clearly expresses the disappearance of the whole mean movement aimed
at. Thus only the first argument of the structure (s leads to a really critical,
constant, secular terms, while s ¢’ remains periodical even after the quadrature.

Such a periodical trigonometric term naturally shows a long period, being affected
moreover by a small divisor, as a result of the integration of the original periodic
term in question.

In our conditional integral equations (42), (48) these terms disappear entirely, con-
tributing nothing to the real elements of our determinant aimed at. They appear
only in the final periodical development of the coordinates, causing the well-known
long periodical perturbations of the classical theory.

4. An almost identical result is obtained for the terms of the form m, ¢ + my{’,
myq, Mg being fixed particular integral numbers. They contribute in no way to the
constant coefficients of the conditional integral equations (42), but unlike the real
critical terms they appear only in the periodical part of the final development as
terms of long period.

It is to be expressly noted that the wide freedom of choice among the admissible
solutions of the two diophantine equations (57), (58) allows a great variety of corre-
sponding periodic orbits.

Last but not least, instead of s{ we can just as well choose the diophantine
equation (60), thus taking s’ or even myl + my{’ instead of s for real critical,
constant terms. Then just the remaining possible arguments s{ and my + my;
resp. s¢, s’ yield only long-periodic terms. In the third eventuality, the conditional

diophantine equation is naturaly to be suitably modified as

my (e + Q) [kip—keqg—Iks(p + @l + plhip —La—Ilzs(» + I}
+ me {(p + @) [k1p — ks (0 + 0)] +plhp—1l(p + @)} =0.

(62)

It is to be borne in mind that one argument only can always remain constant
and really critical, while the other two kinds of arguments become long-periodical.

5. Finally let us consider the secular terms within the meaning of the classics.

These terms are formed

(a) by really constant terms (without trigonometrical argument) whose structure
is built up exclusively of scalar elements a, e, o/, ¢

They are the only accessory terms, contributing to the constant coefficients of
the conditional integral equations. As a rule one includes them in the whole series of

critical terms Cs.
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But the question arises, whether their existence alone may be sufficient for
proving the existence of the new periodic orbits in question.
However it can easily be seen that such a proof without the { terms never
can be given.
And indeed the derivation for the sake of obtaining the necessary coefficients
0*F 0*F
0ridys  Oydy;

0.

as the corresponding cosinus and sinus terms, according to our supposition, do not
contain the necessary w; at all, always yield zero. This makes the Jacobian show

a subdeterminant

0*F 02 F
0 0 0 A g
03 0y 0ys |
2 2 -
0 0 0 02F 02 F

a?/layz’ 0y§

disappearing identically — see p. 45, and (48) of this paper.

Thus the same calamity of which Poincaré was complaining 1. ¢. occurs in
another way Mét. nouv. I. p. 68, 119, 133.

(b) by secular terms of arguments ee’ cos (m — ).

It is easy to see that these terms can only lead to new long-periodical terms
of the categories 3 and 4.

It is clear that the argument can be written down as:
Yo = —m+ 7 =ys+ ps—hkang(1 + )7 —Ilymo(1 + )7

and no possibility remains save exceptionally to annul or get rid of the false time
Tx, by a suitable choice of the numbers k,, I, as we have already disposed of
these numbers by solving our diophantine equations (57), (58) and abolishing the false
parts containing the time 7 in the terms of 2. p. 48.

Naturally the result just explained concerned with the various terms of the
categories 1, 2, 3, 4, and 5, has given merely the final contribution to the non-
disappearing coefficients of our conditional integral equations (42), (43), (48).

As to the formation of the reél periodical developments of the integrals, this
is obtained without inserting both integral limits.

For this purpose only the critical ¢ terms no. 4 prove to be constant, whereas
all the other terms of categories 1, 3, 4, and 5 lead to short periodical or else to
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secular long-periodical terms 3, 4, and 5. But they contribute nothing at all to the
coefficients of our integral equations.

On summing up we must bear in mind that for the construction of real, non-
disappearing elements of the determinant in question solely the terms of the second
category are to be respected.

Now let us proceed to our main task, the solution of the conditional integral
equations which determine the starting increments of the initial non-disturbed
Keplerian elements zq, s, 3, ¥1, ¥2, ¥3 namely Bi, Bas Bs, V1> V25 V3 %, D.

All through this intricate consideration, we must be clea;rly aware of the large
freedom by which the supernumerary unknown guantities can always be disposed
of. And indeed the number of the unknown is always greater than that of the indepen-
dent equations.

Moreover the coefficients of the left-hand sides of our conditional integral
equations (42), (43) are built up entirely of scalar elements, which constitute constant
starting parameters, otherwise freely eligible.

In our planetary case let us consider the commensurability of the mean move-

n +
ments — = pre
"

!

> which partly fixes the Keplerian starting axes of the two ellipses

a, ¢, &’ ¢, Then we are free to choose among the increments fy, fa, 83, Y1, ¥2» Vs> #, ¥
and the parameters e, ¢/ which form the aforesaid coefficients of the disturbing
function and the integral numbers both positive and negative ky, ks, k5, L, ls, I3, 7,
81, Sa, S3.

So for example after disposing of s; = 1, we have

»+ ks +ply =1

1 Sa _p O[Fi(ee)] (52)
= r{(p+ Q) ks + plst  kamg + lano 0z,

The two starting excentricities can always be chosen so as to satisfy the last
relation, whose left-hand side appears to be fixed and given.

Then the conditional integral equations (48) may be rewritten in the final
form after leaving out in the second, forth and f{fifth equation the constant

factor pu:
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_ Ok o oy UE]
5o ﬂlaz+0+0+0;0+0 O
WU 9)+homg iy O],
kyng+lgno "o Ty
0*[F4] 0% [F4] *[Fy] a[Fz]
ﬁaxlﬁx Z 013 ﬁ@x Ozs P 0z, -0 (63)
OFO . aiEo— a[FIJ ,(].+’l9)+k3’n0+13n6 a[Fl] o
O ﬁ+0+0 /33' daz " 0y ks ng +Iano H,axzijL =0
0% [Fy] 0*[Fy] 0*[F] 6[F2]
+ =0
o TV By 0y, P 0wy M0y,
0*[Fy] + ?[Fy] 0*[Fy] + a[Fz] =0

Moy bys T2 0l VP Oy0y, M Oy,

This last form of the conditions gives a very clear survey of the coefficients
of all unknown quantities, thereby showing the structure of elements of the
fundamental Hessian—Jacobi—Poincaré. We have shortened the second of them

r a - . . -
by making use of the relation xns = 0[511 and dividing the whole equation by pu.
2

Our chief purpose is to survey especially all coefficients of the first powers of the

Cauchy development.

Thus we have five conditions for seven unknowns. The last equation namely

LR | P, O[R], O[F)

=0
MGy bys V2 00y, TP 0y oy,

can be suppressed, through its being a consequence of the two foregoing, which
circumstance has been shown above p. 36, (19) by the existence of the energy integral.
As both the coefficients

PF, Slcza_'{ g2 0®F, 3](:2(1,2/ g
02 i P10 02 x5 T2

are distinct from zero two of the seven unknown quantities 9, By, fa, Bss Y1, Vo, V3
are freely eligible. And if we choose for example B, = 0, y3 =0 we finally obtain
five equations for five unknowns @, B, B3, ¥1, 2, showing a functional determinant
clearly distinct from zero.
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CuapTER III.

On the Problem of the Moon.

This second general case has led us very far from our original satellite problem.
Still T was obliged to explain it most thoroughly as I was aiming to expound the
whole subject of an ‘“‘operation” clearly and step by step. See p. 2 of this paper.

After these explanatory remarks let us return to our Moon-problem (see previous
p. 29). It can easily be shown that, to reach a complete solution, we have only to
apply the same principles, namely a similar “‘operation” to this particular case of
commensurability of the mean movements n = »'.

In order to approach this most interesting question with success, we shall start
with the equations of the ordinary planetary problem which we formulated and
adjusted near the end of the previous First Part § 3, (37).

In the right-hand sides the equations (37), First Part, contain the development
intended for dealing with two planetary Keplerian ellipses round the Sun.

The path-ellipse of the disturbing Earth appears reduced to a circular orbit
(namely an ellipse of zero excentricity) while the Moon-Planet describes a second
ellipse of small excentricity (1/400). The speed of movement along both these ellipses
is presumed to be the same for the two bodies.

When introducing a rofating system of the velocity just mentioned, we im-
mediately obtain in this rotating system a fixed point, marking the position of the
Earth and a small closed curve round it constituting the path of our Moon.: In
this manner we have succeeded in changing the Moon-Planet into a satellite.

Unfortunately this “Moon” revolves very slowly round the Earth, as its centre
(not its focus), taking a whole year for its circuit round the Earth. And our chief
purpose is to bring about a new mean movement quickening the slowly turning satellite
into our real Moon, that appears twelve times as quick.

With this in view and copying the previous case of two planets pp. 39, 40 T apply
the same operation and put forward the following canonical variables (35}, p. 21:

2 =A4=L-—H, y1 =M,
G, Yo = @, (64)
H, vo=M—M + 0,

’
2

=

[

!
T3

I drop the dashes a; = z; and try to annul the expression of the functional increments

@i, p; thereby starting with the original values for u > 0.
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A0+.61+‘P1> M+)/1+1/}1,
GO + ﬂz + P2, @ + Ya +Q/)2, (65)
Hy + B3 + @3, —n't+ M + _(5—][1’+y3 + oy,

which means adding to the Fy of + 2n'H.
The orbits of our two planets are fixed by the canonical elements found out
in the previous First Part p. 21, (35).

The equations of movement are this time given by:

Cre 08 dyi 98 9
dt dy; dt 0y =123

(66)

Fe—MA—aG—QH+T+Vu+2nH, F - (211J' ;‘)”)

1 @ cos o

Ve (g-

4 T ) T energy, see p. 16, (24).

A, p, ' signifying the distances between resp. Farth and Moon, Sun and Moon,
Barth and Sun. At the start the two planets, Earth and Moon, are describing two
Keplerian undisturbed paths g = 0.
The period of their movement appears to be
_2n n p+q

T3 ;7 ? ‘I:_‘A—h:l’ q::O'
wooow o p (67)

Tl = 7']‘1.

When as wusual displacing the original starting positions of the elements by
small amounts fy, fa, Bs, Y1, V2, ¥s to be determined, we shall at the same time try
to distort the independent variable ¢ into

t=(1+zx)t. (68)
This means we prolong algebraically the period into
T=(1+2xT,. (69)

Through this change of variables the equations of movement are converted into:

(l:piﬁ i oF dyii or
(ﬁ‘(lJr”)@{ P G ) Yo

.or else, (70)
%‘%’:(1+x)‘ﬁ, M:~(1+K)QE7 i=1,2,3.

Oyl; dr 090@'
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Evidently the disturbed and displaced movement remains periodic only in case
these very complicated functions ¢y, ., @a, 91, wa, ws disappear entirely towards the
close of the whole prolonged period.

The differential equations (51) can immediately be converted into the integral

equations

Ty i
(pl _ faFl (,Dz_ faFl (p3_ faFl
=1+ —dr, = =(1+ ——dr, ==
@ ( %)0 0y, 1z ( ”)0 0y, )%

T, T
dt

wlzn%+(1+%)fm7)+"-—ﬂ(l+%f 1d‘L’
0

= — B azFo aZFo — B 0> F, _ (1+%_.)f aFld + - .
2 Y0z, 0y 20xy 0y 0z,
T,
0% F, 0*F, 0*F, (1 + =) 6F1d7+

¢3=—"%—51m’_ﬂzaxzax b gz ) o,
0

These do not show the false time mentioned above, and we are led to new
periodical satellite orbits analogous to the well-known restreint ¢’ = 0, asteroidal case
of Schwarzschild—Poincaré (I sorte), see Charlier, Mech. d. Himmels IT. p. 251, in our
foregoing analysis Chapter I. (This time three degrees of freedom.) Now although these
orbits have the advantage of movable-nodes they do not satisfy our claims to ascertain
orbits wherein the satellite moves round with the desirable speed of our real Moon,
and indeed our satellite has not yet changed the length of its period of revolution.
Should there be any change the period always remains the same as the slow period

7

n
of the nodes 5w

n't , n' x
1+%+nt~1+xt. (72)

! !

—nmTtnt=—

Moreover the existence of this new genus of satellite orbits appears limited by
the condition

a [Fl (8, e,, t)
a Ty

=0. (73)

But in order to obtain very many classes of particular integrals suitable for
the use of celestial mechanics and Lunar theory, it would appear necessary to pass



The Satellite Problem of Three Bodies. 59

to another set of variables, combined with a more general change of the inde-
pendent time ¢.

Returning again to a simple copy of the general case treated above Chapter II,

let us imagine the same movement many times (r) repeated we shall this time put
t— (L4 (1l + 1+
The original starting elements for u =0, are:
A, GH M & —n't+M—M + 2, (74)
and the same elements for 4> 0 are:

A+ﬁ1+¢1, nT+M0+'y1+1p1

G+ Bt gy, OFy+yy, (75)
H+ﬂ3+¢3, —n'T-i—Mo**ME)+.Q+y3+1p3.
k* , {1 pcosc
= ! — > 6
2a+2Hn+,uk (A - ) (76)
@y—A=L—H, y, - M, dos _OF . 45 3
t Oy
Tg = G’ Ya = d):
- o ’ =~ dyi . 6F
y3_H’ Y3 = n't+ M M+,Q, —d—t— 0:1;11
We are studying the case of the commensurability of the mean movement
n_Ptyg - =
n/ P ’ q 05 P 1.

The period of the movement in the two undisturbed ellipses is

2 ,
T1=—::,£7-=7T1, T—(1+x)(1+9)1+n T (1)

When passing to the disturbed case of u>>0, we find the starting amounts of
variables by means of the following integral equations

5, 0o

o 62F0 B azFO 0F1
Py1=0= n (x+tyt+d)— 152 528x10z2 5309513903 0x1d T
N NN T ) _,faFl
Po=0= .316361 /32 —Bs 3 02, 04 axzd - (78)
N g PFo g 0Fy Ry OF s .
Y3=0=—n"(x+79+9) ﬁlaxlax3 ﬂzaxzax?, 3 0al Tlf 0$3d i
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T Ty

T
PL_ PF 0P F, O0Fy, L [ PF
M_O /)’1 03: 6J1 ﬂz PP ajzd‘rw‘ ﬁg e ayldrf/lb i dt +
l Tl
0 F, 0?F, *OF,
+ ‘)/20 6?/10?/2 dT+}3J\a%@3dTF/tb/ 0?;1 d‘[‘{ o
Y, Fo Y.
P2 _ o _ ) Hm; _ Fl_ . Fl. [ dT
w o N Geadn, 1T Iay0u 1T G0, T Gy 1T

Ty T, T,
0*F, 0% 1, [0]«’2
+’}/2f67yg‘d‘[‘i‘?;;\/\ayzay:sd‘[‘l—[ul 'a'y'z'df“r .
0
7 T
9 F,

3 _ o= RS U
1 0 ﬁlo axlays dT 18 a 0y3d'[+ﬂ3fa ay dT+j/1fa

T,

f 0* I, dt +y3f —5 dT+M[,,3
0y20y3 0 Ys

These show the same determinant as before p. 58.

In order to avoid this fatal inconvenience much complained of by H. Poincaré,
we must try to give rise to new mean motions big and small enough, as the case
may be, to satisfy ~ur claims concerning the real Moon.

Moreover we must try to isolate the increased mean angular velocity in M and
prove that its relatively large amount 12x' is attainable by our parametrical means.

For this purpose I first introduce other angular variables by putting

144 n t
-M L
A Y
o= (79)

n't

at the same time changing the independent ¢ into T,

—1+x1+9)(1+nT (80)

This only means introducing explicit time within the trigonometric arguments of the

development of F. And as a matter of fact we have to replace every yx by wx
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= — - n - n'(l-+n)t
NERT O LA e
Yo = Yo — = W n' (1 + Mt (81)
./2 Yo (1 + 77) (1 + %) Y2 3
Ys = Y3 + b =5 +a' (14 9)T.

(1) (1 +2)

We have then to take special care that the false explicit time remains compatible
with the periodicity of the resulting disturbed periodic solution (see the analysis of
terms of the category 1, p. 47).

For this purpose we have only to recall the explicit development of the disturbing
function, proved in detail for the present satellite purpose in the preﬁous First Part § 4.

F=Fy+uF’, F'=123 4cosw’ =k Acos (iy4; + iays + i3ys),
o =Gyl thye Fisus —an (L+g)r—an(1+dHr+ign 1+
compare (55)
d x; OF dyi oF
P (1+x)(1+z9)(1+77)a;;,> g7 —(1+%)(1+19)(1+17)6wi,
Further, for preserving of the canonical form of the starting equations of motion,

the last change of variables requires adding the following three complementary terms
to the original function Fy

(82)

i=1,2,3. (83)

n' x n'x n'x
F'/ - F o 1 — 2 o 3 s
RO U s Sl Qe G Sl N § R
. (84)
F(] = 2_0(. +n Ty

Now we shall try to annul the functional expressions ¢y, @a, @3, ¥y, Ws, W3 by
applying suitable parameters x, 5, ¢ introduced through the time changing substitution

t=(L+%)(L+3)(1+7t (80)
This time the starting values of the elements appear to be
@ =A+ B+, yi=My+y +oi +nt+nt+
To=G +Pa+ s yo= @ Fya+ys+a't (85)
g =H + fs+ @3, ys=My— Mo+ Qy+ps+ys +nt—n'v—n't
thereby involving the small increments such as n'%, n’ 9, — 2’9 resp. into 7, 3, ¥3.
Our chief purpose is to destroy the complicated functions ¢;, ¢ giving the

funetional displacement, final deviation, thereby defining the suitable starting amounts
of the explicit functions z;(8;), s (y:).
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The differential equations for o7, ¢; as well as their inversion in the form of

integral equations are easily obtained as follows F = F§ + uFy

do 0F  dyi __ , oF
s (1+”)(1+ﬁ)(1+n)6m’ (1+x)(1+z9)(1+17)6xi,

i=1,2,3.

(86)

From these equations the final deviations at the end of the total period

T=0+%1+39) 1+ n T, are found to be:

wi’=0=n(%+ﬁ+7])T1+n’nT1~
T

02F0 0*F, 0F,
_ﬁlf dr — PP axzdr ﬂ3fa 0903 [ dr +-
1/),2,=O:+%19T1—‘
Ty
0% F, am, F,
—h m;z‘“*ﬂz dr— ﬁsfaz 92y _”fa dv -
by

ys =0=—n0T —

T,
02 F, { 0*F, [OzFo
—ﬂl_[ 0xy 0x3dT ‘82,, 0y OxsdT Bs dv—
0 by

T i Ty
(pl aZF]_ /. 62F1 f BZFI
P m g [T ety [0 dr dv -+
@ hofay? yzb By 0y T 7 ) 9y, 0y,

2
d+fa

faFld'r+

dr + -
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As a consequence of the well-known Jacobian integral of energy, the fourth and
sixth of our equations (87) are not independent of each other. And 1t is easily seen
that ¢, = @3 as the right hand sides of the last three equations (87) are reduced merely
to the critical terms of argument { (see the study of the particular terms of various
categories carried out hereafter ad 1, 2, 3, 4, 5, pp. 67—70) and as such show clearly that

0*[Fy] _ 0°[Fy]

Oy 0yr  Oys Oy

(88)

Just as In all previous cases every term independent of the small increments

Bi, yi must disappear namely

aFl laFl aF‘l
av- [ 2L dr= [ g 89
fayl dy, * " ; dys ° =)

Otherwise neither f; nor v; could be annulled with the disappearing u. As usual
these equations lead to the conditions of a symmetrical conjunction and opposition. For

more details see pp. 37, 44 of the present paper. Moreover all terms containing one
2

. L. F . .
single derivation in yz namely P Pl composed of sinus series, whose arguments
Yr UV Tk

vanish owing to the supposed symmetrical conjunction and opposition. In this way
it is immediately found that our integral equations are reduced to the following form :

Let us put for the sake of brevity, as previously in case Il (general case of
three bodies) p. 44, Chapter II, Part II, for the average value

Til f IFldr = [Fy], ete. (90)
;
nx+ (nta)y+ nd—pF a;fzo ﬂzaizFo —bs 66;1];(;3 _#06[511] o=,
+”"9*ﬁlai§; -5 on ’330(12?; - 60[521] =0
T e P
o S B
Mawon T B T gt 0
WP PR PR 0

oy 0ys 2Oy, 7P 04 dys
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As will be shown later (see critical terms of category 2), the coefficients of
these equations, which define our unknown implicit functions ¢y, y; are build up of
trigonometrical terms, which just provide the necessary elements of the resolving
determinant Hessian—Jacobi—Poincaré.

With the view not to interrupt the most intricate analysis of the particular
elements of the Hessian—Jacobi—Poincaré, I shall postpone the full explanation of
solving these latter conditional equations till a more suitable moment (see pp. 70, 71).

‘So let us first admit that we have succeeded in solving these equations a la
Cauchy—Weierstrass, defining our implicit functions fy, fs, Sa, 71, V2, ¥s etc. through
whose medium only the existence of periodic solutions can be guaranteed.

Then we can proceed to examine the mean motions holding true through the
resulting periodic or secular motion.

These are easily found as previously in Chapter I and IT by mere analysis of the
infinitesimal substitution in question.

As we have replaced the original time by ¢ = (1 +x)(1+9) (1 +#)7 and ¥ by resp.:

g n (1 + n)

BB i1 +n & T

5=y + L n'(1+ %) (79) (81)
A T T L ’

r” %/l ,
Ys =Ys— 7 =ys—n (1 + )T,

we must carry out the quadratures of our integral equations in such a way that
the new variables y; may yield deviations at the beginning and at the close of the
period 7T = (1 + %)(1 + 9)(1 + 5) 7y which disappear entirely except for the finite
amount of the full angles 27, 360°.

Every mean movement, even one produced artificially through the introduction
of the new dependent (primed) variables g, will remain preserved by a suitable
choice of the starting conditions for the periodic or secular solution, which we have
just admitted.

In the case dealt with above our integral equations give the result

y'{:thmjrf%f)=Mo+n7:+n’1+y1+y/f=M0+ (92)
n nt n wt N
Qrl+nl+x A+HIL+nd+z 77
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v w'e o, "o o't
Y2 = @ +(1+n)(1+%)fwﬂ nT+tytyr=0w -+ (1+19)(1+77)(1+H) + va,
ys =M — M -+ Q» L S = —My—a" + My + !~2—n’r + yg + 1/1'3' =

(L + 7)1+ x)
’ ~ It
=My—Mo—=n" + Q— n

A+ A+ +a 7

and returning now to the original unprimed variables by subtraction of resp. in

Y1, Yo, Ys:

n't n't n'

_—

4
Cemed) Taeaen Tl

we immediately find out for the movements of the disturbed resulting motion,

_ n L B
h= A+x)1+)A+n) QA+x0+9)A+7)
on'
fe = BT, ©3)
f, = on'
y = _vn _

HET LTI

As to the secular movement in the starting not primed variable y3 = M + Q—M
we have ascertained it to be

On'
9
(1 +x)(1 +3)( +n) (94)
and at the same time in
n="M, L L (95)

1+ %) (1+9)1+79)

from which we gather that the resulting mean secular movement in the angle
Q— M’ will be

B n' (& + n) . n' ’ (96)
A+2)1+0A+7) (A+=xA+9A+7q)
consequently in the longitude of the node itself Q
(1 + M;b( 1(ﬂ++19;]()1 + ) @7
and in the original starting length of the perigee @ = @ + 0
(@) . n'n - (98)

Q+x1+HA+n  A+x0+8)A+9)

5~ 523804. Acta mathematica. 88. Imprimé le 28 octobre 1952.
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By this most simple method we have succeeded in finding three angular veloci-

ties (mean movements) namely f, /s, /5.
1. The first of them /, consists of two parts. And it clearly appears that
n

Lo asily reach just th cessary speed
(14 2)(1+8)(1+7) can easily reach jus e necessary spee

even the first part

of our real Moon.

This amount, about twelve times as large as the mean movement of the Karth
12 %', can always be attained by a suitable choice of the free parameters (see the
last page of this paper, the small divisor in (35 a) p. 21). On the contrary the
amount 7 can always be chosen so as to correspond to the small secular motion of
the Lunar node £.

2. The angular velocity f, in @ gives the secular motion of the Lunar perigee.

3. The total mean movement in the variable yy, namely f;, must disappear
entirely, and it is only in this way that we are able to secure the existence of the
most Important ecritical terms (see later on, the terms of second category p. 68),
and it 1s only in this way that the necessary critical cos coefficients of the Cauchy—
Weierstrass conditions can be supplied. Let us postpone the full explanation till the
analysis of the particular periodical terms on pp. 67—70.

Still I should like to point out that, although the total final amount of rotational
velocity in o5 + 45 = M — M’ + & + £ namely fa + /5 disappears identically, still we
have easily gathered that the resulting secular movement in & appears to be fixed by

7

g .
! (I +2)(1+2)1 +7n) (99)

It appears most important to know the accurate amounts of these angular
velocities thoroughly, whose arising has been urged by the introduction of our new
(primed) variables y¢, and by satisfying the integral equations ¢; = w; = 0.

And indeed these quantities always figure in the development of the right-hand
sides through the disturbing function, being unseparably combined with the old non-
primed variables. In this way the explicit time appears inside-all trigonometrical
terms, where any y; 1s contained.

We then have to take special care that the periodicity of the resulting movement
is not spoﬂed.

With this in view let us pass to the study of all individual trigonometrical
terms of the disturbing function, thus approaching the next task, namely the reckoning
of the quadratures of our:integral equations term by term.
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As previously in chap. II. we shall have to examine the terms of three cate-

gories of F
Fy =k 4 cos (iyyy + iaYs + 13Ys), F=F;+ Fyrput+ (100)
i Integers
Flo— B way o nay PR "'z . (101)
T %0 (141 +d) QA+t (L= +7n)
=M, yo—0, ys—=M—M + Q. (74) (76)

1. Simple short periodic terms of the argument 4,93 + 49ys + t3¥s.
After introducing the new primed variables and the distorted fime, we im-
mediately state the false explicit time 7 (or ¢) obtaining by ¢ = (1 + 2)(1 + 9)(1 + )7

in the argument in question

. i A S 't fg 'l
0 + 15 =g 7 1 - -+
1Y1 22 7 l3Y3 1 Y1 2 Y2 3Ys 14 9)(1 1 %) T
-
TRENN, L (102)

= ’L‘]_('}’LT +7L’T + ]V_[O -+ Y1 + 1,01) + 22(@ + /ﬂ’T + Ya + ’l/)z) +
+ ’1’3(4M0_M6_7Z/ - Qo_n/f + V3 + QP3)

Now the false time must remain compatible with the total period of the motion,

which circumstance gives three conditions, see (77)
n=nT1==—, Ti=rT1, T=00+x)1+H1+nT (103)

Tf1:27[81, Tf2 :':2.7'[82, Tf3=27533, (104)

r, sy representing integral numbers.

These expreséions by means of our f; found above lead to the result

_2mpr .o i n—n'n T o=+
LT =" (1)1 + %) (1 + 77)(1 TaA Ay 2nmrp =+ 27sy,
2apr — 90’
= - - — -+ 9
fo T p (14 ﬁ)(1+%)(1+n)(1+")(1+19’)(1+77) 2aprd + (71'[0852;
_ 2mpr . §n' _ -
[T = Y (1+0)(1+x)(1+17)(1+x)(1+0)(1+7?)—2npm9 + 2ms;.

Hence if all s; are to remain integers, we find the conditions limiting the choice

of the small parameters ¢ and % (see later p. 72).
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This statement enables us to carry out successfully all quadratures of the short-

periodic terms in question. We have found that all arguments of the form
{191 T 1aYs + 13y3 = whole number of 27 = 360° (106)

give the same result in the upper and lower limit of integration, except for a whole

number of 2z for every cosinus term.

. cos . sin . .
So the quadrature changes only every particular . into giving the same
sin cos

value in the upper as well in the lower limit, that is at the beginning and at the
end of the whole period. These two amounts being of opposite sings, cancel mutually
and glve zero. .

Thus we find that the short periodic terms of the first category cannot contribute
anything to the final value of the coefficient in the integral equations in question.

2. Now let us examine the critical terms. These are terms which become
independent of the time by the supposed commensurability of the mean movements

no_ptqg_ 1, ¢=0.

In order to isolate these terms, we must pick up all arguments for which &=y + y3,
and their multiples s, (s integer positive or negative).

When passing from the original to the primed angular variables, we get new

right-hand sides which show the false explicit time inside the trigonometric terms

— U — v n’nt
NZORTRATTR T A1+ 9)(1 + )
' o n 9t
g = yo —n’ =Y — ’ 1
Y= T S e () (81)
n' ot

Us =W EWIT =Y e e T

Now the primed coordinates y; are finally obtained from our integral equations

in the form

1 t n' ¢
—nr+n't+ M 7= " _ :
I I L ey e R e S ¥ iy o

+ My + y1 + w1,
P , - ' n't o
=0T+ @+, + = : + o
Yo =N T+ 0+ yg + P =+ +d) @+ vy + pe, (107)

n't n
(1 + %) (L +75) (1l +9)
o+ My— My—a' + 2 + 3 + v5,

’

Y3z = —n't+M0~-M{)*n’+!§+y3+zp§—— —

so that the mean movement in the original y; is found to be in
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_ n'
NTAT a0y
n' 9
T AL AN+ ) (108)
N on' _
BEA 00+ +9)

The functions i = v = w5 = 0, @; = 0, giving the final deviations of the starting
configuration, become zero if only the integral equations prove to be solvable for
the starting increments s, @, 0, B1, B2 2> Y1, V2, ¥3 0f the tmplicit functions in question.
In this case clearly, and only in this case, the whole movement is ruled by the
same conditions at the start as well as towards the close of the prolonged period
and the disturbed motion becomes periodic.

Qur principal alm is to prove the solubility of the conditions (91) p. 63) or,
which is the same, to find out a suitable non-disappearing Hessian—Jacobi—Poincaré.

For this purpose it first appears necessary to ascertain whether all the factors
of the false time mentioned above disappear out of the critical argument C. It is
only in this way that a corresponding critical term changes from a trigonometrical
term to be integrated into a simple constant %, whose integration is carried out by
adding the factor ¢ and inserting the upper and lower limit, namely AT — A0 = A T,
etc. Only through the existence of these constant terms, the possibility of non-
disappearing elements of the determinant and of a solution of the integral equations
for the implicit functions x, 9, 1, i, y:, can be guaranteed. The aforesaid elements
are constituted by critical cosinus terms of zero argument.

The existence of a non-disappearing Hessian can be proved only in this way
sC=s(ys +ys)—sn' Ot +sn' It (109)

This time, fortunately, we are no longer obliged to satisfy special diophantine
equations as int he previous case Chapter II, p. 50, this being brought about by the
simplicity of the structure of our disturbing function. And indeed the latter, in our
satellite case, proceeds according to multiples of the two mean anomalies M, M’,
nt, n't, which are reduced because n =n' to one simple anomaly and a Fourier
series of one time argument only.

Just in view of these simplifying circumstances the fundamental transformation
(79), (80), (81), has been constructed.

On the whole we see that this time it is solely our choice of suitable variables

which guarantees our aim, the entire disappearance of time from all critical arguments.



70 Wladimir Waclav Heinrich.

3 and 4. Judging from our previous study Chapter II we now have to examine
the terms analogue to ' and myC + mel’ pp. 51, 52. However, the whole structure
of the present satellite case shows clearly that these small divisor-terms do not exist
at all.

5. Finally we have to consider the secular terms within the meaning of the
classics.

These terms are formed by

a) really constant terms, without trigonometrical argument, build up exclusively
from scalar elements «, ¢, o/, €'.

These terms clearly contribute to the constant coefficients of the integral equa-
tions. However, their mere existence would not suffice to prove new periodic orbits
by the same reason as explained in the previous case Chapter II, no. 5, p. B3.

As was ascertalned therein the mere derivation for the sake of obtaining the
necessary coefficients, elements of the determinant

0*F 0?F

ayiaxk: 6y¢0yk50’ (110)

vield zero everywhere, as according to our supposition (a) they do not contain
angular arguments ¥;, at all.

Consequently the most important part of the Hessian disappears identically
and thus the calamity which Poincaré complains is brought about, in another way,
viz. the Hessian is zero.

(b) terms of arguments ee’ cos (w —n’), non critical and still independent of M,
see in the expression (42), First Part, § 4, p. 25 namely 8 = --- + h%¢? cos @ + - - ete.

It can easily be seen that these terms lead only to new long-periodical terms.
The arguments can clearly be written
n't

(—l-m:nr+zp2—n T—n 9 =—n 0.

Y= 0 =yz—n' (1 +9)t =yz —
and there is no possibility to destroy or get rid of the false time 7. These long-
periodical terms caused by small divisors never cease to exist.

Now let us pass to the solution of our integral equations (91) which determine
the unknown implicit functions and their starting increments i, vi, %, ¥, 7, and that
has been postponed hitherto for the sake of clearness (see p. 64). Again as in the
previous instructive case Chapter II, pp. 54, 55 we must be fully aware of the large

freedom by which the supernumerary unknown quantities can always be disposed of.
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And indeed the number of the unknown is always greater than that of the in-
dependent equations. Morover the coefficients of the aforesaid equations prove to be
composed entirely of scalar elements, which represent further variable starting para-
meters, freely eligible.

In our satellite problem, where we are concerned with the commensurability of
7 .
the mean movements W 1, we have full liberty to choose among the parameters

x=a, g ¢ and the increments B yi, %, 9, , with the restriction of five integral
equations and three further equations fixing up the parameters x, @, . There still
remain 12—(5 + 3)=4 free quantities.

But 1t appears more recommendable to clear up these large points of vantage
by explaining the top important configurations thus attalnable.

Let us return to our concrete system, considering our starting ellipse of the
Moon-Planet and the circle of the Sun (namely to our integral equations written down
above pp. 62, 63). — I first remember that in consequence of the existence of the
Jacobian Integral of Energy the last and the fourth equation ¢; = 0, g3 = 0 become
dependent one on another. By this fact we are enabled simply to skip the aforesaid

fifth equation and to retain only the five remaining ones namely

L S W - I
W1v1p2—w3~lu——ﬂ~0. (87)
If written down explicitly, including all parameters x, &, 5, they clearly show the
possibility of solution in case » =9 =% =0. Even so in the more general case
treated herewith, where » = 9 = =0, the Hessian—Jacobi—Poincaré has a form
which clearly shows its value, although most of the elements of the determinant
resp. matrix
0 (yi, vz, y3)

0 6e b B) ()
R e iy oy 1
oo wegmlin il
o 0 = "aig(;3“ai§[;3”a;f§0
disappear.

In order to approach our aim I destroy the generally non-disappearing terms

0[F,] O[F,]
Z3

of the second and third equations o0 92’ by putting
2
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O[F, (e ¢, 0)]
S04y
0[F,]

— 71’19 = u —6‘;8*

n'd=pu (113)

and choosing ¢ == 1
pr
The right-hand sides of these equations, being functions dependent upon the
three starting elements (freely eligible) «, ¢, ¢/, can always bring about the possibility
of these two equalities; there always remains a certain freedom in the corresponding
choice of «.

Our system of integral equations changes to the remarkable form

S

g 0[P, O[R , OPMR, O0[Fi]

= 0.
M le?ha?h Ve dy; 7/38?/26?/3 a a?/2

In this way a new Hessian—Jacobi—Poincaré reappears, and moreover we get 5
equations for determining eight unknowns, namely x, %, 1, B2, B3, Y1, Y2, V3- As we
choose the customary y; = 0, we are able to put f; = 0, thus obtaining five equations

for six unknown functions, which run thus

wi/=%n+n(n’+n)+nﬂ—ﬂz(,}a;§;2— 3?9%25303 h[uaa[ill] =0,
5
i = — Be ailg‘; e ¢ F” 00[5:] =0, (116)
P2 _ 0?[Fy] " 02[F1]+"‘+M6[F2] =0

7 P18y, 04, 942 dys
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Their determinant being manifestly distinct from zero, the problem is solved.

I do not intend to enter into more details in these preliminary outlines. I will
only add some further explanatory remarks concerning the most propable increase of
the angular speed of our ideal Moon caused by all previous proceedings. With this
in view I should like .to call the attention of astronomers to the remarkable set of
small divisors ascertained by the construction of the canonical elements studied at
the end of the previous First Part. The necessary derivations of the chosen canonical
elements carried out in detail see (35 a) I p. 21 show clearly the strong increase of
» in agreement with the well-known reckoning in the case of asteroidal Hecuba
movement of perihelion and nodes affected by small divisors l.c. e (excentricity of the
asteroidal orbit) ete. (see Schwarzschild A.N. 160, p. 395. Heinrich A.N. 192.). Further
we shall recall that the necessary critical (secular) terms of the disturbing function

7 COS O
a’®

appear exclusively in the indirect Lagrangian part namely — , and as such,

are not diminished by small factors ¢, ¢, sin g, but manifest the full zero (finite)

order. Furthermore the free choice mentioned above adinits always to put »xn = 122’
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