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of PRAGUE. 

Henri Poincar4 complMns in various passages of his classical M~thodes Nouvelles 

de la M4eanique C41este 1) of a serious difficulty we always encounter when trying 

to apply the theory of periodic orbits to concret astronomical problems. 

The fundamentM determinant, namely the Hess ian--Jacobi- -Poincar5  2), disappears 

identically just in the cases in which celestial mechanics is most interested. I refer 

especially to the all important  example of the general problem of three bodies. 

And as a mat ter  of fact the vanishing determinant causes the necessary periodic 

solutions to remMn unattainable, as it renders every possibility of their detection futile. 

This makes the very known solutions too scarce and far between. And so it 

happened that  for a long time all theoretical efforts resulted in the general belief 

tha t  the most needed periodic solutions did not exist at all. 

Poincar4 himself puts it clearly as follows 3): 

With every other law than that  of Newton, which uses the second power of the 

reciprocal distance, we meet with lesser difficulties when trying to solve the problem 

of three bodies. (Done avec une loi diff6rente de la loi Newtonienne on ne rencon- 

trerait  plus dans la recherche des solutions p~riodiques du problSme des trois corps 

la difficult4 que je viens de signaler.) Many years ago I tried to overcome the 

aforesaid difficulty 4). With this object in view ! generalized a s u b s t i t u t i o n -  which 

although very well known even to Poincar~ himself was never rightly appreciated 

for the purpose in question. 

And, indeed, by using this infinitesimM transformation and introducing small 

parameters I succeeded in attaining another Jacobians. The trial always results in 

the possibility of suppressing a single zero factor (which represents the small parameter 

of the disturbing mass) of the determinant. 
1 - 5 2 3 8 0 4 .  Acta 7~*athematica. 88. I rnp r im6  le 24 oc tob re  1952. 
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By this very simple means the original vanishing determinant yields another 

Jacobian - -  the later generally remaining distinct from zero. In the following paper 

I shall call this method - -  for sake of brevity - -  "an operation". 

By the aforesaid process huge 5) quantities of periodic solutions - -  spread densely 

enough throughout all space - -  are obtained important  as it appears just in cases 

in which theoretical Astronomy is mostly interested. 

I tried to apply  the method in planetary problems and the investigation has 

yielded results quite satisfactory for practical use of the M6thodes Nouvelles of 

Poinear6. 

I t  stands to reason that  it is always possible to apply the same process in the 

ease of the motion of the Noon. 

But the aforesaid means is not the chief idea that  induces me to publish the 

following paper after so many years. 

This time my purpose is to call the at tention of geometers to a possibility 

which appears rather remarkable and even so unexpected. 

I t  consists of the following: 

All the authors dealing with the theory of the Moon's m o t i o n - - - f r o m  the 

beginning to the present day : Abul Vefa, Tycho Brahe, Kepler, Newton, Euler, Laplace, 

Poisson, Pont6coulant, IIansen, Delaunay, Gyld6n, v. Oppolzer, Neweomb, J. C. 

Adams, G. W. Hill, Ernst  W. Brown, Andoyer, - -  all of them faced the following 

problem : 

The Moon being "a planet of the Ear th" ,  revolves round the latter in a fixed 

Keplerian ellipse or in a rotating ellipse or else in a distorted ellipse (periodic orbit 

of G. W. IIill) and so on. These original intermediary orbits show deviations, Per- 

turbations caused by the Sun, etc. This classical, mathematical  standpoint always 

gives the disturbing parameter  (/~, as used by If. Poinear6) of an approximate amount 

1 
400' and it is understood, that  all the following approximations are to be developed 

according to the powers of this small quantity.  Now the possibility I am putting 

forward enables us to choose a parameter - -  ceteris paribus 1000 times smaller, 

1 
this being represented by the small mass of the Ear th  350 00~---O" 

And, indeed, when trying to solve the satellite problem of the three bodies Sun, 

Earth, Noon, we can start  w i t h  a n o t h e r  f o r m u l a t i o n  of  t h e  q u e s t i o n  

than tha t  which the classics had hitherto used. 

Let  us imagine two planets of the Sun, the Ear th  and the Moon (both revolving 
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round the Sun). By entirely neglecting their masses # - 0, we obtain two heliocentric 

ellipses round the Sun. - -  I suppose firstly - -  for sake of simplification - -  a circle 

for the Ear th  and a slightly excentric ellipse for the second planet (Moon) - -  both 

of them moving round the Sun a t  t h e  s a m e  K e p l e r i a n  s p e e d ,  and thus 

keeping the same start ing length M + ~ = M '  + ~z'. 

Now when introducing a rotat ing system of the velocity just mentioned, we 

immediately obtain a fixed position of the Ear th  and a small closed curve round 

it - -  the pa th  of our Moon. 

And, indeed, it is very easy to see, tha t  the original planet has changed into 

a satellite. Unfor tunate ly  this Moon revolves round the Ear th  which constitutes 

the centre of its orbit, in a year instead of a month  6). Now the idea immediately 

presents itself - -  to s tudy the analytical continuation of this curve and thus obtain 

the whole complicated motion of the Moon - -  just the same as the classical theory 

has studied the analytical  continuation of an originally simple or distorted planetary 

ellipse round the Earth.  

I f  we succeed in this endeavour, we would acquire the enormous advantage of 

1 
operating - -  ceteris paribus - -  with the disturbing parameter  instead of 

350 000 
1 

of the classical theory. 
400 

However, when approaching this so formulated satellite problem of three bodies 

and choosing the mass of the Ea r th  for a new disturbing parameter  which is a thousand 

t ime smaller, we are met  with two impossibilities within the meaning of the classics, 

mentioned above. 

1. How to pass from the heliocentric to the geocentric orbit so as to change 

the original planet into a Moon. 

2. How to set a planet in motion r o u n d  t h e  E a r t h  so as to acquire the 

requisite speed of our real Moon. 

For tunate ly  the first impossibility is reduced merely to a fitting passage from 

heliocentric to geocentric coordinates. 

Last ly the second classical impossibility mentioned above, simply means to apply 

an "opera t ion"  numely to pass from an identically disappearing Jaeob ian- - t Iess ian  to 

a determinant  distinct from zero. This is easily carried out by means of smM1 

parameters.  

Kar l  Schwarzsehild discussed 7) the convergence of the series used by G. W. 

Hill in the Lunar  theory and ascertained tha t  in the case of the periodic solutions 
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in question this convergence appears to be rather probable, but is not sufficiently 

1 
guaranteed 8) in the case of a parameter ~ la Hi l l - -Brown--Poincar6  # = 400" 

I hope in this way an extreme probability of this convergence is gained by the 

1 
considerable diminution of the amount of the new disturbing parameter 35000~' 

at least a thousand times smaller. 

In the present paper I am giving an exact demonstration of the theory explained 

and studying the analytic continuation of the undisturbed problem / ~ -  0 of the 

abovesaid two ellipses in the case of the complete problem ff > 0. The result is the 

accessibility of huge classes (manyfold infinity) of short periodic and of secular par- 

t i tular integrals of the satellite problem fornmlated herewith. 

On the whole the Lunar problem appears to be reducible to the study of analytic 

continuation of a small non-elliptic closed curve, instead of a strictly elliptic orbit 

or else a distorted Hill's periodic solution. 

In this so formulated Lunar problem the Ear th  plays the part  of the disturbing 

(third) body, instead of the disturbing Sun of the classical theory 9). 

The scope of the harvest of particular solutions obtained herewith appears to 

be so large that  I hope I am not c o m p e l l e d -  at least in these preliminary sketches 

- -  to numerical computations of the natural  phenomena. 

I content myself with showing that  all the movements of a small Moon revolving 

round the Ear th  in the aforesaid curve (this being an ellipse round the Sun in 

reality), can be freely calculated by our modern methods. 

So all the solutions of the problem in question are clearly shown to be within reach. 

F IRST PART. 

w 1. Investigations into the theory of movements in the immediate 
neighbourhood of large planetary masses. 

Let us start  with the well-known equations of motion, governing the movement 

of three bodies, Sun and two planets. If we choose rectangular, relative coordinates 

the equations are as follows 10). 
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d2$ k'z(m + k 2 m , ( X ' - - ~  x ' )  U m  : ~ ( 1  x '$  + z ' ~ )  
' ~ r ~3 , 

dt ~ 0 a l~2rn'o , t r,3 , 

The asteroid of zero mass and coordinates $, ~, ~ (the moon) revolves round the 

Sun of mass m = 1 and coordinates 0, 0, 0 and is disturbed by a planet m' (Earth) 

x', y', z', 

02 = ~2 +~/2  + ~2, r,2 = x,2 ~_y,e + z,e, zl2 = (x'--~=)2 + ( y , _ ~ ] ) 2  + ( z ' - - ~ ) 2 ,  (2) 

U the konstant of Gauss. 

Apparently the kinetic energy of the problem will be given by the expression 

2 T = \d t  ] \ d t  ] + \ a t ]  " (3) 

Now let us speciahze these well-known formulas as follows: 

In the present outline, where we shall be concerned only with the first approxima- 

tions, we arc going to suppose the mass of the Moon (asteroid) to be zero and to 

1 
be moving when undisturbed in an ellipse of excentricity approximately s - - 4 0 0 "  

For the path  of the disturbing planet (the Earth) we take simply a circular orbit of 

zero excentricity so tha t  r ' =  a" (constant). Further  we suppose that  the mean 

lengths l, V 
l - - l "  = M + ~ - -  M ' - -  ~'  = 0. (4) 

(M, M'  mean anomalies A ~' longitudes of the perihelions) start  with a zero difference 

in longitude. I t  remains to point out expressly the chief characteristics of our con- 

figuration chosen herewith: �9 

I t  is supposed tha t  the movements of both the asteroid and the disturbing 

planet, when m ' =  0 proceed with the same angular speed n -  n'. 

Now whether we introduce a rotating system with angular velocity n'  or not, 

the orbits hitherto ascertained admit the following description: 

The Ear th  revolves round the Sun with its c!lstomary mean speed n'  in a circular 

orbit. I t  is accompanied by a small satellite of negligible mass. This small body 

represents a kind of Moon, describing a small closed curve round the Ear th  as i t s  

c e n t r e  (not focus of the ellipse). But  it is important  to mention tha t  the speed 
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of this Moon is very  slow. I t  revolves round the E a r t h  with the same veloci ty as 

the Ea r th  revolves round the Sun, so t h a t  the t ime of its revolut ion round the E a r t h  

is just  one year.  

First  of all we shall proceed to s tudy  the equat ion of the small curve, closed 

round  the position of the revolving Ear th .  

Let  us in t roduce for t h a t  purpose the usual p lane ta ry  coordinates, the ecliptic 

being chosen for the cardinal  plane ~ ,  Y, the E axis aiming towards  the vernal  point.  

denotes the  length of the node of the orbit  of the Moon count ing f rom the 

ecliptic, ~ t h a t  of Moon's  p e r i h e l i  o n, (3 = ~ - -  f2 the distance of the  perihelion, 

t the inclination of the asteroid-Moon-orbit ,  e its excentr ici ty,  ~ the excentric anomaly.  

Le t  us indicate with dashes, the same signs in the case of the Ea r th ' s  orbit, and 

especially a ' ,  y/, ~' .  

I f  we take  for semi major  axes resp a, a" we immedia te ly  see tha t  according 

to the above hypotheses  r 'e = x '2 + y'2 + z '2 = a '2, r '  is reduced to a '  and we can quote 

the well-known formulas of the elliptic mot ion 

= a (cos W - -  e) (cos ~ cos (5 - -  sin ~ sin (5 cos t) - -  

- -  a V i  - -  ~2 sin y~ (cos ~ sin ~ + sin ~ cos ~5 cos l), 

= a (cos W - -  s) (sin ~ cos (5 + cos ~ sin (5 cos t) - -  

- -  a V1 - -  s 2 sin W (sin .(2 sin (5 - -  cos .(2 cos (5 cos t), 

r = a (cos ~ - -  s) sin ~5 sin t + a l /1  - -  e 2 sin F cos c5 shl t, (5) 

x '  = a '  cos W' cos a ' - - a '  sin ~ '  sin ~ '  - a '  cos (~' + a ' ) ,  

y '  = a '  cos y~' sin ~ '  + a '  sin ~ '  cos ~r' = a '  sin (~'  + ~'),  

z t=O.  

We now pass f rom excentric yJ, to the mean  anomaly  M, of the Moon, by  

means of the well known elaborate formulas of Dziobek 11) or Le Verrier 12): 

Mathemat ische Theorien der Planetenbewegungen pp. 24, 25, Leipzig, 1888, Annales de 

l 'Observatoire Nat ional  de Paris, Tome I, and obtain  the following explicit result  

= a (cos ~, - s), 

= a V 1  - J sin W = a{1 - ( 1  - 1 / 1 -  s2)} sin w, 

=a(1-~/)sinw, ~ i = l - V l - e  2, ,~=0. 

(6) 
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�9 2 t 
a~ = cos ~ + s m  2 [cos (2 ~ - h)  - cos ~ ]  = cos ( a  + ~ )  + 

�9 2 t + sm 2 [cos 8 5 -  ~5)--cos (o5 + ~)], 

�9 2 t ~  �9 
a2 = sin :~ ~ sm 2 [ s m  (2 ~ - -  :~ ) - -  sin :~], z? = (5 + ~ ,  

a3 = sin t sin (:~ - -  ~ )  = 2 sin ..2 - -  sin~ sin ( ~ -  ~) ,  

t [sin ( 2 . 0 -  A) + sin ~], fll = - - s i n  A + sin 2 

t 
f12 = cos ~ - -  sin 2 ~ [cos (2 z0 - -  ~) + cos A], 

t t 
f13 = sin t cos (A - -  ~ )  = 2 sin 2 cos (~ - -  ~2~) - -  sin a 2 cos (5 - -  ~) ,  

- - =  COS ~ - -  8, 
a 

8 3 2 3 8 2 e 3 
= c o s M - - 3 2 8 +  2 c o s 2 M - - ~ e  c o s M +  ~ c o s 3 M +  3 c o s 4 M - -  

- sin V V 1 -  s 2 

8 5 2 = s i n M + ~  s i n 2 M - - ~ 8  s i n M  

(6) 

8 2 
- -  cos 2 M + ..- 

3 

8 3 5 ~3 
s 2 s i n 3 M +  s i n 4 M - -  s i n 2 M  + + 

8 

According to our scheme - -  just  explained - -  we are able to write down the 

integral  curve of movemen t  of the  Moon-asteroid for the undis turbed problem m '  - 0, 

in case of o u r  f i x  e d s y s t e m of relative coordinates. 

This integral  is given by  the set of equations:  

3 a 8  
= a c o s ( M + ~ ) - - ~  a s c o s : ~  + ~  c o ~ ( 2 M + : ~ )  

a s  2 a s  2 3 s2 ( 3 M + A )  2 c o s ( M + ~ ) + ~ - c o s ( M - - ~ ) + ~ a  cos 

t t 
- - a s i n  2 2  c o s ( M + ~ ) + a s i n  2 ~ , c o s ( M + ~ - 2 ~ )  

3 (2 g 3 G~ 8 8 
- - 8 a r  3 cos ( 2 M  + ~) + ~ cos ( 2 M - - ~ )  + ~ -  cos ( 4M + ~)  

(7) 
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3 t 3 t 
+ 2 a e s i n  2 ~ c o s ~ - - ~ a s s i n  2 2 cos (2Y2--~) 

(18 t a s  t 
sin2 5 c o s ( 2 M + ~ ) +  5 sin2 2 cos ( 2 3 1 + 5 - - 2 t ~ ) ,  

= a s i n ( M + ~ ) - -  
3 a ~  

a e s i n ~  + ~ s i n ( 2 M + ~ )  

a a2 a ~2 3 ~2 
- -  2 sin ( M + A ) - -  ~ s i n ( M - - A ) +  8a  s i n ( 3 M + A )  

t t 
- - a s i n  22 s i n ( M + A ) - - a s i n  2 2 s i n ( M + ~ - - 2 ~ )  

3 C{ 83 a E 3 
- - 8 a e a s i n  ( 2 M + a } ) - -  ~ -  s i n ( 2 M - - ~ )  + 3 -  sin ( 4 M + A )  

3 t 3 t (7) 
+ 2 ~ ~ s in ~ 2 s in 5 - 5 .  ~ sin ~ 5 sin (2 t )  - 5 )  

a s sin2 t a e t 2 ~ sin (2M + ~ ) - - 2 -  sin2 2 sin (2M + ~ --2Y}), 

t t t 
= 2as in  ~ sin ( M + ~ - - ~ ) - - 3 a s s i n  2 s i n ( ~ - - ~ ) +  aesin 2 s i n ( 2 M + ~ - - Y 2 )  

t - - a s  2 sin 2 sin (M ~ --.(~) as2 t T s in~  s i n ( M - - : }  + t~) + 

+ as 2s in~  sin ( 3 M + 5 - - ~ )  

t 
- - a s i n  3 ~ sin ( M + : ) - - ~ ) ,  

However, it is to be pointed out expressly, that the mean anomaly of the Earth 

must not be introduced for e ' r  0. This would entirely spoil our starting supposi- 

tions of the problem restreint. Moreover the new curve of Lunar pat h would lose its 

defining meaning and the present study would lead to nothing. 

Let us now pass to a new origin of coordinates in the Earth, thus changing 

our starting heliocentric into a geocentric system. It is understood that the new 

axes of the geocentric system always remain parallel to the original heliocentric ones. 

The final expressions of the geocentric coordinates are the same except for the 

first terms on the righthandsides Of ~, U, these latter being replaced by 

a' cos (M' + ~') = a cos (M + 5), a' sin (M' + ~') - a sin (M + ~). (8) 
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The space curve fixed by the last set of equations is closed in itself and em- 

braces as its centre (not focal point) the movable position of the Earth. Thus it 

represents - -  as was explained above - -  the starting, not disturbed, orbit of the 

Moon. Only the period of revolution coincides precisely with that  of the revolution 

of the Ear th  round the Sun and so appears twelwe times shorter then the period of 

our real Moon. The newly chosen origin as well as the form of the aforesaid starting 

Moon-space-curve suggest another angle to be chosen for the new distance of the 

perihelion. This will be best defined as the fixed angle between the two directions, 

the line parallel to the n o d a l  l i n e  of the Moon-planet-ellipse- and the direction 

f r o m  t h e  E a r t h  t o  t h e  f i x e d  Keplcrian perihelion of the Moon Planet ellipse --to. 

When choosing for a moment the geocentric rectangular system of axes, so that  

runs through the node, we can immediately write down the coordinates of the Ear th  as 

x ; = a  t c o s ( M ; + ~ ' ) = a ' c o s ( M o + 0 5 " ) ,  M t = M ; ,  Zgo=0,  

y ; = a  t s i n ( M ~ J + ~ ' ) = a ' s i n ( M ; + 0 5 ' ) ,  M ; + 0 5 ' = 0 5 ,  M o = 0 ,  

M + ~ = M t  + ~ ' =  M + 05 + ~(2= M" + 05" ~- .Q', p u t ~ = f 2 " ,  (9) 

M-t  0 5 = M  t + 0 5 '  and for M o = 0 ,  M t = M ; ,  hence 0 5 = M ~ + 0 5 t ,  

and the coordinates of the M o o n - p e r i h e l i o n  as 

~o = ( a  - -  a e )  c o s  o5, 

( 7 o =  ( a - - a e )  s i n 0 5 c o s t =  a ( 1 - - e )  1 - - 2 s i n  2 2 sin 05, (10) 

1 
~o= ( a - - a e )  s i n (Ss in t ,  t " 0 " 0 0 0 2 2 5 = s i ,  i =  5 ~ t, e = 400" 

I t  is to be expressly noted that  the meaning of the constant t is the inclination 

of the plane of the starting Moon ellipse to the ecliptic, namely the heliocentric 

inclination. 

For the distance Node-Moonperihelion, we easily get the final expression 

o ' 2  ' 2  ' P 
e~ = (~0 - -  x ; )  ~ + (70  - y ; ) ~  + ~ = ~o ~ + v~  + ~ + xo  + u0 2 ~o x0 - 2 70  y0 ,  

eo  2 = a 2 + a '2 - -  2 a 2 s + a 2 ~2 __  2 ( a  - -  a e )  a" c o s  (05 - -  M o  - -  05') + 

t t 
+ 4 ( a - - a s )  a s i n  2 ~ s i n a S s i n ( M o + 0 5 ' ) , 0 5 - M o - 0 5 ' = 0 ,  a = a ,  

( 1 1 )  
~o 2 = a 2 e~ + I a 2 (1 - - s )  s in  2 ~ s in  ~ 05. 

Taking account of our starting fundamental condition (4) 
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M + A - - M ' - - z t ' = O ,  we find M o + ~ + 0 5 = M ~ + o ) ' + ~ 2 "  

and as we put the ~ axis into the direction of the node of the Moon-Planet ellipse: 

M~ + co '= 05. Recalling that  we have chosen both the Ear th  ellipse as well as the 

Moon ellipse of precisely the same major axes, it will be a -  a'. 

In this way it turns out to be 

~o=ae{l+4(~--~) sin~05sin2t2}~. (12) 

We have then to construct the direction cosinus cos &, by means of (10): 

t 

$0 --  xo ~ --  a e cos (7) 

{ (: ;1 - cos 05 1 + 4  ~- -  sin 2rSsin 2 
(13) 

from which expression we immediately gather that  

s i n ~  = 1 - c o s 2 ~  = s i n 2 o S { l + 4  ( 1  ~)cos205s in2~} .  (14) 

We easily adjust the signs of the roots, remembering that  the two directions of 05 

heliocentric and ~ geocentric differ by 180 ~ and obtain finally 

{ 1 ( 1  1) 21 1 ( 1  le) t cos ~ = --  1 + ~ ~2 -- sin2 cos 6~ + 2 ~ --  sin2 2 cos 3 ~, 

sinco = --  1 - - ~  e2--  sin 2 sin(;~ + 2 ~ - -  sin 2 2 sin3(O, 

and putting 

h =  - -  sin2 2 P l =  1 + 2 ,  P2=  1 - - 2 ,  

h 
cos 05 . . . .  p~ cos (~ + ~ cos 3 &, 

sin 05 = --P2 sin t~ + 
h 

sin 3 ~, 

h h 
cos (o5 § D) = - cos (~ + D ) -  2 cos ( ~ -  ~ )  + 2 cos (3 ~ + ~)), 

sin (o5 + ~ ) = - - s i n ( ~ + ~ ) + h  h s i n ( ~ - - ~ ) + 2  sin ( 3 ~ + D ) ,  

(15) 
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cos (05 + .~ + L) = - -  cos (,;, + [2 + L) h h c o s  (co - b - L )  + 2 c o s  (3 c~ + .O + L), 

(15) 

sin (05 + ~ + L ) = - - s i n ( ~ ; ~ + - C 2 + L ) + h  h sin (~ - -  t? - -  L)  + 2 sin (35, + b + L ) .  

These express ions  are  to  be s u b s t i t u t e d  in to  our  coord ina tes  (6) w r i t t e n  above  

as well as in to  the  d i s t u rb in g  func t ion  which  will  be f ixed  here af te r  w 4. 

Moreover  i t  is adv i sab le  to  in t roduce  - -  i n s t ead  of the  rea l  hel iocentr ic  incl ina-  

t ion  t of the  two s t a r t i ng  E a r t h  and  Moon ell ipse - -  an  average  geocentr ic  incl ina-  

t ion  i. The mean ing  of th is  func t ion  is to  be unde r s tood  on ly  as  an average  cons tan t ,  

or t he  las t  t a k e n  as a d i s t u r b e d  var iab le  of the  whole p rob l e m in quest ion.  

This new cons t an t  rep laces  so to say,  t he  inc l ina t ion  of t he  geocentr ic  Moon 

orbi t ,  a l t hough  we know f rom the  above ,  t h a t  even the  no t  d i s t u r b e d  quasi  

oscula t ing  Moon p a t h  - -  being a space (and never  a p l a n e ) c u r v e -  does no t  a d m i t  

the  precise  geocent r ica l  mean ing  of the  inc l ina t ion  of a p lane  curve in r e l a t ion  to  

the  f u n d a m e n t a l  p lane  of the  ecl ipt ic .  

W e  prefe r  to  p u t  for sake of a su i tab le  choice of geocentr ic  canonical  e lements  

a 1 
a" - 400 - 0"0025, sin t = ~ sin i,  

i 5 ~  s i n i =  0 " 0 9 = , =  
e 

sin 2 t . ~2 i2 
2 4 

i 

4OO 

(16) 

w 2. Remarks on the starting Moon-space-curve. 

W h e n  in t roduc ing  a r o t a t i n g  sys t em ~, ~), ~ wi th  angu la r  ve loc i ty  y / =  M ' =  

= n ' t  + M'o  whose ~ axis  po in t s  p e r p e t u a l l y  t o w a r d s  the  E a r t h ,  we o b t a i n  the  

express ions  

= a (cos ~ - -  e) [cos ( ~  - -  ~ '  - -  ~ ' )  cos 05 - -  sin ( ~  - -  W' - -  ~r') sin 05 cos t] - -  

- -  a V1 - e 2 sin ~0 [cos t? - w" - ~ ' )  sin 05 + sin ( t )  - y / -  zr') cos 05 cos t] 

= a (cos ~ - -  ~) [sin ( ~  - -  y / - -  ~ ' )  cos 05 + cos (z9 - -  W' - -  Jr') sin 05 cos t] - -  (17) 

--  a V1 - -  ~2 sin yJ [sin ( ~  - -  ~ '  - -  Jr') sin 05 - -  cos ( ~  - -  yJ' - -  n ' )  cos 05 cos t] 

= a (cos ~ - -  e) sin o5 sin t + a V1 - e2 sin ~ sin ~ cos 05 
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these represent ing  the coordinates  of the  slowly moving  Moon round the  E a r t h  in 

our ro ta t ing  heliocentric system. The same equat ions  can be wr i t ten  in another  form, 

more  sui table bo th  for theoret ica l  and  calculat ing studies 

= a cos ( 9 - 9 '  + ~ - - ~ ' )  - -  a s  cos ( v / +  ~ ' - - ~ )  - -  a ~  cos ( 9 - 9 '  + ~ - - ~ ' )  + 

a ~ , _ ~)  sin2 t - -  9 '  , ~ c o s ( 9 + 9 ' +  - - a  2cos (9  + ~ - - ~ ' ) +  

t 9 t t t + a s i n  2 2 c o s ( 9  + + ~ + - - 2 ~ ) + a s s i n  2 2  c o s ( 9 '  + z ' - : } ) -  

- - a s s i n  2 2  cos (~ + + 9 " - - 2  

a ~  9 '  ~=asin(9--9"+~--~')+assin(9"+n'--~)-- ~ sin ( 9 - -  + :~ - -  ~ ' )  - -  

- ~ 9' (18) a~;2 s i n ( 9 + 9 '  ~ + a ' ) - - a s i n  2 2  s i n ( 9 - -  + A - ~ ' ) -  

t 9 r  3Z r t 7~ t - - a s i n  2 ~  s i n ( 9  + + ~ + - - 2 ~ ) - - a s s i n  2 2  sin (9 '  + - - ~ )  + 

t a f t  ~0 p + a s s i n  ~ 2 s i n ( A +  + - - 2 ~ )  

g = a 2 sin 5 - sina sin (9 + :~ - -  ~)) - -  2 a s sin 2 sin (~ - -  ~ )  - -  

a #  sin t 1 5 [sin (~ + :~ - -  ~ )  + sin (9 - -  :~ + ~))], 

where we have  p u t  as in (6) ~ = 1 - - V I - - S  ~. 

And  again  we pass f rom excentr ic  9 to  the  m e a n  anomal ies  of the  Moon, b y  

means  of the  wel l -known elaborate  formulas  of Dziobek (see 11) pp. 24, 25) and obta in  

the  following explicit  resul t  

= r + / } ~ ,  (19) 

t 9'  (~1 = cos (:~ - -  9 '  - -  ~ ' )  + sin~ 2 [cos (2 ~ - -  :~ - -  - -  ~ ' )  - -  cos (:~ - -  9 '  - -  ~ ')] ,  

= sin (:~ - -  9 '  - -  ~ ' )  + sin~ ~ [sin (2 ~ - -  :~ - -  9 '  - -  ~ ' )  - -  sin (:~ - -  y / - -  ze')], (20) 

fia = sin t sin (:~ - -  ~)) = 2 sin 2 - -  sin a sin (:~ - -  ~ ) ,  
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t [sin (2 ~ - -  ~ - -  ~ '  - -  ~ ')  + sin (~ - -  ~o' - -  ~r')], fix = - -  sin (~ - -  y / - -  ~ ')  + sin ~ 

t 
fl~ = cos (~ - -  ~o' - -  ~r') - -  sin 2 2 [cos (2 t') - -  ~ - -  ~o' - -  z~') + cos (~ - -  ~v' - -  ~')],  

f l a=  sin t cos ( : ~ - - ~ ) =  2 sin 2 - - s i n  a cos ( ~ - - ~ ) ) ,  

= a ( e o s ~ o - - s ) ,  O - a g l - - e  ~sin~o, ~ =  0. 

(20) 

I f  we limit ourselves to the third  power of small quanti t ies  only (exclusive), 

we can immedia te ly  write down the  following expressions for the  r o t a t i n g  helio- 

centric coordinates of the  Moon 

= a cos ( M - - M '  + ~ - - ~ ' )  3 8 8  a s  cos (~ - -  ze' - -  M ' )  + - 2  cos (2 M - -  M '  + ~ - -  u ' )  - -  

a 8 2 a 8 2 
- -  ~ -  cos (M - -  M '  + ~ -  :z') + ~ -  cos (M + M '  - -  :~ + ~z') + 

3 ~ M '  t M '  + 8 a 8  cos ( 3 M - -  + ~ - - ~ ' ) - - a s i n  ~ 2 c o s ( M -  + ~ - - ~ ' ) +  

t M '  ~ '  3 M '  + ~ sin ~ 2 cos (M + + :~ + - -  2 D) - -  8 a ~3 cos (2 M - -  + :~ - -  :z') + 

a ~:3 a 8 3 
+ - ~ c o s ( 2 M + M ' - - ~  + ~ ' ) +  ~ cos ( 4 M - - M ' + ~ - - ~ ' ) +  

3 t 3 t g '  M '  
+ 2 a e  sin 2 ~. cos (:~--~'--M')--2ae sin 2 2  cos ( ~ +  + - - 2 ~ ) - -  

t M '  a e t M '  :z' _ a~2 sin~ 2 cos (2 M - -  + :~- -  :z') + T sin2 2 cos (2 M + + ~ + - -  2 ~) ,  

= a s i n ( M - - M ' + : ~ - - : z ' )  3 a 8  . a e  . M '  - -  - 2 - -  s i n  (:~ - -  :,t' - -  M ' )  + ~ -  s m  (2 M ~ + ~ - -  :t') - -  

a 8 2 M '  
__ 828-~ sin (M - -  M '  + ~ - -  ~ ')  - -  ~ sin (M + - -  ~ + ~')  + (21) 

3 M '  t + ~ a e ~ sin (3 M - -  + ~ - -  ~ ' )  - -  a sin z ~ sin (M - -  M '  + ~ ~ n ' )  

t M '  ~ a e sin (2 M - -  M '  + ~ - -  ~ ' )  - -  - - a s i n  ~ s i n ( M +  + ~ + ~ ' - - 2 t ~ ) - - 3  s 

a 8 3 
ae824 s i n ( 2 M + M ' - - ~ + ~ ' ) + ~ - s i n ( 4 M - - M ' + ~ - - z t ' ) +  

3 t 3 '  t zt' M '  + ~ a e sin ~ ,~ sin (:~ ~ :z' - -  M ' )  + ~ a 8 sin ~ 2 sin (:~ + + - -  2 D) - -  

a 8 sin~ t a e i 2 ~ sin (2 M - -  M '  + ~ - -  ~ ' )  ~2- sin~ 2 sin (2 M + M '  + ~ + z '  - - 2  D), 
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t t t 
= 2 a s i n 5  sin (M + ~r - -  -O) - -  3 a e sin 5 s i n ( ~ - - ~ ) + a s s i n s s i n ( 2 M + : ~ - - ~ ) - -  

t t 
- -  a e 2 sin 2 sin (M + 5c - -  ~0) a e 2 sin 2 sin ( M -  :~ + .0) + (21) 

+ 34 a e 2 sin t t sin (3 M + :~ - -  ~ )  - -  a sin a ~ sin (M + :~ - -  X2). 

To simplify our survey it is advantageous to eliminate throughout  the following 

computat ions in the expressions of ~, ~}, ~ the expliei~ t ime M" = n ' t  + c = n ' t  + M'o 

by means of the principal condition (4), M - - M ' +  ~ - - ~ ' =  0 which according to 

our oliginal assmnption, lodges both ellipses - -  the ellipse of the Moon-asteroid and 

the Ear th  ellipse - -  conveniently so tha t  the never escaping Moon changes from the 

original planet into an ideal, slowly moving satellite. In  this manner  and only so, 

we can avoid all delicate questions concerning rotat ion or libration. And indeed 

when keeping the Sun as the origin of coordinates, we introduce the rotat ing system; 

our ideal Moon always presents itself as a librating Planet, never going round the 

Sun without the Earth.  

In  this manner  the angle M is never allowed to grow go the  full amount  of 

360 ~ without a parallel growing of M" as a consequence of the aforesaid condition 

M - - M '  + ~ - - ~ '  = 0. 

However, it appears  most  important  to note that  the original meaning of M as 

a mean anomaly with respect to the ellipse round the Sun, disappears and our new 

variable M signifies quite another angle, marking the revolutions round the Earth.  

We carry out this elimination M - - M ' +  : ~ - - ~ ' =  0, but  at  the same t ime we 

pass from the starting helioeen~rie origin of rotat ing axes to geocentric ones, thus 

obtaining the following equations which represent the undisturbed Moon-path (orbit) 

of our s tudy 

- -  {2 C 2 C~ E 2 t t 

= a - -  ~ ~ c o s  M - -  - 2  + ~ c o s  2 _ ~  - -  ~ s i n  ~ 2 + ~ s i n  ~ ~9 o o s  ( 2 _ ~  + 2 ~ - -  2 ~ )  + 

3 a e  3 - -  3 t 
+ ~ c o s 3 M - - s a e 3 c o s ~ r + a s s i n  2 ~ c o s M -  (22) 

3 t - -  ( IE"  . 2 t - -  --2assin 2 2 c o s ( 2 : ~ + M - 2 . 0 ) +  ~ - s m  2 c o s ( 3 M + 2 : ~ - - 2 ~ ) ,  
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- -  a s s t 7 a s 3 
= 2 a s  sin M § - ~  sin 2 M  + a sin s 2 sin (2A + 2 M - - 2 ~ )  + --2-~sin 3 . ~ - -  

3 t 3 t 
- - 8 a s  3 s i n z l l - 2 a s s i n  s~. s i n M + 2 a s s i n  e 2 s i n ( 2 ~ + 2 ] l - - 2 ~ ) - -  

a s sin2 t 2 2 sin (3 _M + 2 ~ -  2 ~),  

t t t 
= 2a  sin 2 sin (M + ~ 5 ) - - 3 a s  sin ~ sin ~5 + a s  sin 2 sin (2M + ~5)-- 

(22) 

t a s 2 t 3 s s s i n  t - -  ass sin ~ sin (M + ~5) ~ sin 2 sin ( M - -  ~5) + 4 a  2 sin (2M + ~5)-- 

t 
- -zcs in  a 2  sin (M+~5) .  ~ =  ~5+ ~.  

On the whole in our rotating system of coordinates - -  the aforesaid path of 

the slowly moving Moon - -  appears to be a spacecurve closely rounding the position 

of the fixed Ear th  - -  during the period of one year. ] t  is easy to obtain the equa- 

tion of the curve in rectangular coordinates by eliminating the time, which enters 

into the right hand members trough the mean anomalies M and M'.  

When judging according the first, most important  terms of our rotating co- 

t 
ordinates and entirely neglecting sin 2, we are led to the conclusion that  the curve 

in question can best be approximated by a plane ellipse. The excentricity of the ellipse 

is about 0"87, but  it is v e r y  i m p o r t a n t  t o  p o i n t  o u t  t h a t  t h e  E a r t h  

o c c u p i e s  i t s  c e n t r e  a n d  n o t  t h e  f o c u s ,  as we are always accustomed to 

Suppose. Moreover, for the whole of following theory, it is necessary to express the 

coordinates of the aforesaid ellipse exclusively by means of the mean anomalies 

M , M '  (not possibly of the excentric ~, y/ or else true anomalies v, v'). As we 

immediately ascertain from the latest developments, the small slowly moving 

Moon-ellipse has a major axis 2 a s ,  twice as long as the minor one as .  This is 

easily inferred from the two 

2 a e sin M in ~. 

The triangle (end of the 

the relations 

6t 
a =  2 a e ,  b =  2 = as ,  

starting terms - - a s  cos M in the Coordinate $ and 

smal axis, centre of the ellipse and its focus) gives 

a 2 3 s V3 0"866. (23) a s - -  b s = t~ 2 
4 4a  = aSe s, e 2 
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w 3. On a system of  canonical  e lements .  

Let us consider the expressions for the fixed rectangular geocentric coordinates 

(7) of the aforesaid Moon-path as a customary transformation s la Lagrange. We 

have then to pass to new Lagrangian coordinates, for which we shall choose the 

three angles M, D, ~(2. 

I t  will be easy to construct the Lagrangian kinetic Energy of our geocentric 

system and to pass to the Pfaffian differential form. 

Now to find out the best canonical elements of the problem in question we 

have to calculate the Lagrangian impulses (momentum). 

These expressions yield manifestly periodic series, proceeding according to mul- 

tiples of the chosen angles M, ~,, ~ .  In this manner we are able to write down 

immediately the total differential form of Pfaff as follows: 

O T  d M  + O~.'dco + O T  = ~ d Y 2 - - F d t  = d S  
O M  O ~  OD 

= O T  
F : . + w . -t- ~2 = - - T - - V  

O M  OaJ O D  

V =  ]c2#1~ / ~ l= l+m~ ,  #R= ],;2#( 1 
\A 

r,2 = x , 2 +  y,2+z,2 = a,2, ~2= ~2 +~]2 + ~2, 

A z =  ( $ - - x ' )  + (~ - -y ' )2  + ~2, z ' = 0 ,  

\ 

cos a~ = 
T +2 ] Ct 

(24) 

d S signifies an exact differential. 

OT OT OT 
Now the series ~, =~, --= etc. represent clearly the integral of the simplified 

O M 0 co O f  2 

not disturbed problem, where m ' =  0. Consequently they must satisfy the Pfaffian 

condition term by term, and we can limit ourselves to calculating the simplest 

term among them. For this we choose the best, the first constant term called secular 

(in Astronomy). Now the well-known principles of analysis show clearly tha t  we 

need not even to calculate the whole expression of T as we can isolate the periodic 

series step by step. 
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OT OT O~ OT Oi~ OT O~ O~ O~ . 0~ 

OT OT O~ O TOi~ OT O~ .0~  O~ . ~  

OT OTO~ + O T  Oil OT O~ �9 O~ O~ O$ 

(25) 

as we can easily prove tha t  according to Lagrange 

o~ o~ 
~ O~ 

o~ ov o~ o; o~ o~ oi~ ov o~ o~ 

o~ o~ o~ o~ o~ o; 
~ ,  = 

o5 o o~ o 9 '  o~ 0 9  

(26) 

To simplify a general survey and facilitate computation, I rewrite the previous 

expressions (6) of the heliocentric fixed coordinates as transformed into the geocentric 

system, whose axes remain parallel to the original heliocentric fixed a x e s , -  as 

follows - -  thereby neglecting all terms of the third order (exclusively) of small 

quantities i, s : 

x' = a'  cos (M" + :~'), y" ~ a" sin (M" + ;r'), Yr = ~5 + f2, 

3 as a ,?.2 
s ~ = a c o s ( M + A ) - 2 a s c o s A +  ~ cos ( 2 M + ~ ) - -  2- c o s ( M + ~ )  + 

a s 2 3 t 
+ -8  cos ( M m ~ )  + 8as ~ cos (3M + ~ ) - - a  sin 22  cos (M + ~) + 

t 
+ a sin 2 ~ cos (M + ;~--2  ~),  (27) 

3 a ~  (~ ?2 
~ = a s i n ( M + ~ ) - - 2 a ~ s i n ~ + ~ s i n ( 2 M + ~ r )  ~ sin (M + ~ ) - -  

s i n ( M - -  )+Sa sin ( 3 M + ) - - a  ~ sin(M+~)-- 8 
t --asin 22 sin(M+~--2~), 

t t t =2asin2sin(M+z~--~)--3assin2 s i n ( ~ - - ~ ) + a s s i n  2 sii~(2M+&--~). 
-- 523804.  Aeta mathem, atlca. 88. I m p r i m 6  le 24 o c t o b r e  1952. 



18 Wladimlr W~clav Heinrich. 

As we have supposed M + A - M'  + ~', (see (4) p. 5), and ~ = a', we can replace the 

starting terms a cos (M + ~), a sin (M + ~) by a' cos (M' + ~'), a'  sin (M' + ~') and 

skip them entirely, as they remain always independent of our variables M, ty~, ~ .  

In this way we obtain 

3 a s  a S 2 
~ = a ' c o s ( M ' + ~ ' ) - - 2 a s c o s ~ + ~ c o s ( 2 M + ~ r )  ~ cos (M + ~) + 

t a s  2 3 e2 (3M ~ )  a s in  2 2 cos (M •  + + ~ c o s ( M - - ~ ) + s a  cos . - -  

t 
+ as in  2 2 c o s ( M  + ~ - - 2 ~ ) ,  

3 a s  . a e  2 

~ / = a ' s i n ( M ' §  s m ( 2 M + ~ ) - -  2 s i n ( M + & ) - -  

O~ E 2 3 

- 8 s i n ( M - - ~ ) + ~ a e  ~ s i n ( 3 M + ~ ) - a s i n  22  s i n ( M + ~ ) - -  

t 
- -  a sin 2 .9 sin (M + A--  2 .Q), 

(2s) 

t t t sin (~ - -  ~)  + a s  sin ~ sin (2M + ~ - -  ~)  = 2 a s i n  2 s i n ( M + ~ - - z g ) - - 3 a e s i n  2 

and by means of (15) 

3 a = ~ S c ~  - 

a 

3 h e  3 h e  s 
c o s  ( ~ o -  ~ )  + - - 4 - c o s  (3~ ~)  2 c ~  

s2 
Its4 c o s ( c o - - ~ - - 2 M ) +  c o s ( 3 6 + ~ + 2 M ) + - ~  c o s ( M + ~ + t g ) - -  

t 
_ _~_~ 3 ~ (3 M + ~ + ~ )  + sin 2 ,/ cos (M + ~ 5 )  s C ~  cos - -  - -  

t 
- - s i n  2 .9 cos (M + ~ -  ~),  (29) 

3 3 h s  . 3 h s  . e 
2 e sin (f~ + ~)  sm (t5 --  ~)  sin (3 ~ + ~)  --  sin (2 M + ~ + ~)  + 

_~ h s s 2 
+ sin (o  - ~ - 2 M) + ~ -  si~ (3 co + ~ + 2 M) + ~ sin (M + ~ + ~ )  - -  

s 2 . 3 s 2 t 
- - ~  sm(6J+  ~ - - M ) - - - ~ -  sin ( 3 M + o + ~ ) + s i n  ~ ~ s i n ( M + o + ~ ) +  

t 
+ s i n 2 . g s i n ( M + ~ - - ~ )  
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= - - 2  sin t t t a .9 sin (,~ + M) + h sin ~ sin (c~-- M) + sin ~h  sin (3c~ + M ) - -  

t t 
- - e s i n  2 sin ( o + 2 M ) + 3 e s i n  2 s ino.  

(29) 

From these expressions, we easily form the necessary factors 

- = e n s i n ( 2 M + c o + Y 2 ) - - h e n  a ~ sin ((5 -- ~ -- 2 M) -- - 
] t e n  

2- sin (2M + ~ + 3,70) + 

n e 2 9 n 8 2 
+ ~ s i n ( M +  ~,+ ~) ne ~ s i n ( M - - ~ - - ~ ) + -  8 sin ( 3 M + ~ + ~ ) - -  

t t 
- - n s i n  2 ~ s i n ( M + ~ +  t ~ ) + n s i n  2 2.sin ( M + ~ - - ~ ) ,  

. OM: ~ '  ~ OM= ~ '  ~ O M = ~ '  (30) 

. . . .  en cos (2M + (5 + ~ ) - -  h e n  h e n  a 2- c o s ( ~ 5 - - f 2 - - 2 M ) +  ~ cos ( 3 ~ + ~ + 2 M )  + 

n e 2 n s 2 9 n e 2 
+ ~ c o s ( M + ~ + ~ ) +  -8 cos(M--~--t~) 8 cos ( 3 M + ~ + ~ ) +  

t t 
+ nsin  e~ c o s ( M + ~ +  f2)+ nsin 2 2 c o s ( M + ~ - - ~ ) ,  

t t t 
a - - - 2 n s i n  ~ cos (M + 3) -- h n sin 2 cos ( ~ - - M ) + h n s i n  ~cos ( 3 & + M ) - -  

t 
- - 2 n e s i n  2 cos ( 2 M + 3 ) .  

Similarly we find out by simple derivations the expressions necessary for the moment 

OT 
�9 a s  : 

0 3  

he l o~. l o~ esin(2M+,~+. ,~)+~sin(C~ ~ 2M) 
a 0 ~  a OCo 2 

~2 ~2 
34hesin(35~+ ~ + 2 M ) - - ~  s i n ( M + a J + ~ ) + ~  s i n ( ~ + ~ - - M ) +  

3e 2 t t 
+ 8 -  sin ( 3 M + ~ + g ) ) - - s i n  2 2 s i n ( M + c s +  t~ )+s in  ~ ~ sin (M+aJ- -X))  
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1 0 / ]  1 0 7 _  s 
aOg-J aO~ 2 c o s ( 2 M + ~ +  ~) + cos @ - -  t~ - -2M)  + (31) 

3 h s E2 E2 
+ - ~  cos ( 3 + , + ~ + 2 M ) + ~  c o s ( M + ~ + ~ ) - - - 8  cos (co + ~ - -  M) --  

3 E2 t t 
8 cos ( 3 M + ~ + ~ ) + s i n  2 2 c o s ( M + ~ + ~ ) + s i n  2 2 c o s ( M + ~ - - ~ ) ,  

o~  ~ o ;  

a O~ a O~ 
t t 

2sin 2 cos (co + M) + h sin ~ cos (~ --  M) --  

t t 
- - 3 s i n  2 h cos (3 ~ + M) -- s sin ~ cos ( 2 M + ~ ) .  

And for the monlentum 
OT 

. ,  it turns out to be 
0 ~  

1 0~ 1 0~ e he 
sin ( 2 M + ~ + ~ ) - - ~ s i n ( ~ - - ~ - - 2 M ) - -  

a O ~  ~OX) 2 

E2 ~2 
h4e s i n ( 3 ~ + D + 2 M ) - - ~  s i n ( M + ~ + ~ ) +  8- s i n ( ~ + ~ - - M ) +  

3 ~2 t t 
+ ~ s i n ( 3 M + ~ +  t~)--sin ~ 2 s i n ( i §  ~ ) - - s i n  ~ 2 s in (M+~- -~ (2 ) ,  

1 O i l -  1 0 7 _  s he 
a Or9 a 0 ~  .~ cos ( 2 M + ~ + D ) - - T c o s ( ~ - - ~ - - 2 M ) +  (32) 

h E E2 ~2 
+ T cos (3 ~ + ~) + 2 M) + ~- cos ( i  + ~ + ~ )  - -  S- ,"os (~ +. ~ - -  M) - -  

_ t t 
3 e 2 c o s ( 3 M + ~ + ~ ) + s i n  22 c o s ( M + ~ + ~ ) - - s i n  ~ s i n ( M + ~ - - ~ )  
8 

- -  O ,  

a O ~  a O ~  

After this short Lagrangian algebra, we are able to isolate - -  from the final 

product - -  periodic series - -  the first, namely the constant (secular) terms, the 

latter fixing the canonical elements of our Lunar problem 
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L = 321 
49 2 

1/(22~ 2 @ ~2na e I 
l It2 82 n a 2 a 2  t 

+ 2 h a  2sin ~2  + ~ + 2n  sin~2 + 

t t 
+ na2h2 sin2 2 + 2na2e2 sin2 2 

21 

n a 2 e 2 h 282 n a 2 21 2 t t 
G = x  2 2 + ~ - - -  + ~ n a  r  2 s i n  2 2 + 2 n a  ~ s i n  4 ~ + (33)  

t a 2  e2 t + n a  2It 2sin 2 ~ + n sin2 2 

n a 2 s 2 h 2 e 2 n a 2 2 1  
= _. ~_ _ _  @ n a 2 e  4 

H = xa 2 ' 4 ~ " 

I t  probably appears useless to mention tha t  the constant terms looked for 

thereby are easily picked up from two factors of equal arguments, and where these 

do not exist by passing from powers of trigonometrical functions to the multiples 

(namely the doubles). 

Now the canonical elements just computed represent the set of s c a l a  r variables 

corresponding to the chosen a n g u l a r  quantities M, 3, ~ both sets joining together 

through the existence of the perfect differential of the Pfaffian form, namely 

dS = L d M  + Gd~ + Hd'f2--Fdt .  (24) 

But  for further investigation it appears more advantageous, if not necessary, 

to choose for one angular variable, instead of f), the linear combination M--M"  + ~. 

When passing so to the new angular variables M, ~, M -  M'  + ~ ,  we have to 

transcribe our Pfaffian form into 

d S =  ( L - - H ) d M  +Gd,o+ Hd(M--M"  q ~2)--(F--Hn')dt ,  (34) 

finding in this simple way a new canonical system of elements 

x [ = x l - - x 3 = L - - H - A ,  y~=M, 

x~=x2= G, y~= ~, 

x~=x3=H,  y ~ - M - - M ' +  ~2, 

(35) 

21 21e2 2 + = - e  2 1 + 
O a  ~ O e . 1 6  

OA 7 0 n a  ~' OA 7 
e 4 cl 2 

16 Oa 16 

e t c .  (35 a) 
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with the equations of movement  defined by  

dx~ OF" dy'i OF' 
dt  Oyi dt  Oxi 

i = 1 , 2 , 3 ,  

I f  we drop the dashes, we gain the system 

F '  = F + H n ' .  (36) 

dxi 0 F dyi _ 0 F (37) 
d [  = 0 ~  ' d t O xi 

w 4. Development of the disturbing function. 

With the view of finding out the final form of the differential and integral 

equations of the problem and of solving them qualitatively, we are bound to look 

for a suitable development of the disturbing function. 

This q u a l i t a t i v e development although convergent strongly enough is intended 

to simplify explanation of our method and for a closer approach to the point of 

view of Poincar6's theory. 

However, I should like to point out tha t  for q u a n t i t a t i v e  purposes and 

especially for numerical computat ion another,  far more convergent development m a y  

be chosen. And indeed for the sake of computat ion we may  even t ry  to regularize 

the shock point (A = 0) of the problem. So firstly for qualitative purpose let us 

consider the customary,  unchanged p l a n e t a r y disturbing function 

/~tR = k2/s ~ COSr '2 (y), # = m~. (24) 

I t  will be noticed tha t  in our satellite case the indirect par t  namely 

cos a k2 # 
r t2 

becomes far and away the most  important ,  in consequence of our transfer of the 

origin of coordinates from the Sun to the Ear th .  

In  this way we are able to understand, tha t  just this indirect par t  yields the 

main secular and critical (commensurable terms) of the trigonometrical development.  

This appears to be the more comprehensible and natural,  as, unlike the usual 

planetary theory, the pa th  of the Moon-planet always embraces the movable position 

of the disturbing planet  - -  the Ear th  - -  as its centre. 
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Let  us start  first with the expressions (7) p. 7, and construct by means of 

these the mutual  distance of Earth-Moon, namely (24) p. 16, 

/12 = ( ~ -  x,)~ + ( ~ -  y,)~ + $~. 

As the original amounts (see the first terms of (7), (4) p. 7, (27) (28) pp. 17, 18), 

a c o s ( M + ~ ) = a ' c o s ( M ' + ~ ' ) ,  a s i n ( M + ~ ) = a  I s i n ( M + ~ ' ) ,  

remain the same all through the computations of the present paper  according to 

our chief condition and lodging of both starting ellipses M + ~ - -  M'  - -  :z' - 0, (4) p. 5, 

- -  it appears clear tha t  the aforenamed starting terms cancel out, and the whole 

distance becomes q u i t e  i n d e p e n d e n t  of the coordinates of  t h e  d i s t u r b i n g  

b o d y  (the Earth).  The chief consequence of this important  fact is evidently tha t  

no critical term of the commensurability of mean movements n, n'  of the Moon- 

1 
Planet  and of the Ear th  is to be obtained from the direct Lagrangian p a r t ~  of 

the dis turbing function. 

On the contrary many such critical commensurable terms remain contained in 

the indirect Lagrangian par t  of the disturbing function, which thus becomes the 

most important.  

An indeed the indirect par t  may be written, as z ' =  0: 

r "2 r '2 ~ + ~ ~ x ' + ~ ] y '  Qu ~2 + ~  + ~2, r ' = a ,  (38) 

and we have simply to introduce on the righthand side the explicite expressions 

(7) pp. 7, 8, thus obtaining the final development:  

COS (7 
at2 

a ( i  s 2 : )  3 a~  ( ~ t )  
a, 2 - - -~  - -  sin 2 cos (M - -  M I -~ ~ - -  n') + 2 e - -  s sin 

a s 3 e 3 s sin 2 ~ M'  
a '2 2 8 2 cos (2M + ~ - - z d )  

a ~2 3 (I ~2 
. . . .  cos (3 M -  M'  + A -  z ' )  --  8a  ' 2 c ~  ~) 8 a '2 

cos ( ~ - -  = '  - -  M ' )  - -  

(39) 

L 
a sin 2 

cos (M + M'  + ~ + ~ ' - -  2 ~ )  a12 
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a 8 3 ( /~3  

24a, 2 cos (2M § M ' - - ~  + S ) - -  3a,2 cos ( 4 M - - M '  + ~ - - u ' )  

a s  sin2 t 3 a s  sin2 + 2a  ' ~  ,9 cos ( 2 M - - M ' + ~  n ' ) +  2 a, 2 2 cos ( 2 ~ - - A - - n ' - - M ' )  

a e sin2 t M '  2a  "2 ~ cos ( 2 M +  + ~ + ~ ' - - 2 ~ ) .  

(39) 

Moreover it is to be noted that  our critical terms star t  even with such terms, 

which appear not multiplied by small factors containing the excentrieity s or inclina- 

tion t(i). This is very important  for reaching the necessary critical terms of the 

periodic solutions in question. 

From this result it can immediately be seen that  no special development of 

this chief part  of the disturbing function appears necessary, except for the well-known 

Lagrange Bessel series for purely Keplerian elliptic motion. 
] 

As to the aforementioned direct Lagrangian p a r t ~  the final expression of A 2 

is easily found to be 

( ~ _  x,)2 + ( ~ / _  y,)2 + $2 5 se + 2 s in  2 t t t 13 s4 h2 t a ~ - 2 2 + 2 s i n  4~ + 5e 2sin e"9 + ~ + sin 2~ + 

5 ]b 2 ~:2 3 t~ 2 t 
2 c o s 2 M + e  3 c o s M - s  3 c o s 3 M + 2 e s i n  2"9 c o s M +  

t t (2 M )  2 s in 2 t + 3 e s i n  2 ~ cos (2 ~ + M) - -  s sin e"9 cos ~ + 3  - -  ~ cos ( 2 ~ + 2 M ) - -  

t t t 
- - 4 s s i n  e"9 c o s M + 2 h s i n  2 ~ cos ( 2 M + 4 ~ ) - - 2 h s i n  2 ~ c o s 2 M - -  (40) 

h2 sin~ t_ h2 sin2 t 
2 2 

2 cos (2 ~ - -  2 M) 2 cos (6~ + 2M) + h eee cos & - -  

3 h2 ~2 - -  h 2e z cos 2 M  + 

h = ~ - -  s in  2 "9. 

3 - 2  2 cos ( 2 M + 4 ~ ) + ~ h  e cos ( 2 M - - 4 ~ ) + - - .  

the whole of this development can be clearly summed up by three representative 

terms, which run thus:  
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5 ~ 2  3 e2 
2 2 cos 2 M + (~ 

5 2  5 t t t 13 4 t 5 s 
2 = 2 s2 + 2 s i n  22  + 2 s i n  4 2  + 5e ssin 2 ~ + ~ + / t  2sin 2 ~ +  4h e2, 

sin s t sin~ t ] 
2 h s h e ! 4 2 4 2 t 13 ss t 

g2= e2 1 + 5 - -e '~ -  + 5 - e ~  + 2s in  s~  + 80 + 5~e sine 2 + ~] 
1 

the aforementioned small function (~ being clearly of order 400 = e. 

t 
d = - -  2 s in  e 2 

t 
- -  s s in  e 

it 2 sin2 l 
2 

I 
cos ( 2 , 5 + 2 M ) + e  a c o s M - s a c o s 3 M + ' 2 e s i n  e 2 c o s M +  

l 
+ 3 e s i n  2 2 c o s ( 2 ~ + M )  

t t 
cos ( 2 ~ + 3 M ) - - 4 e s i n  s ~  c o s M + 2 h s i n  s 2 cos ( 2 M + 4 ~ ) - -  

t 
- - 2 h s i n  s 2 c o s 2 M - -  

(42) 

cos (2 ,~ --  2 M) cos (6 ,o ~ 2 M) + h 2 e e cos ~;J - -  

3 3h2eS ( 2 M _ _ 4 5  O 4 cos ( 2 M + 4 ~ )  + ~ cos 

it 2 sins t 
2 

2 

3 hs es - -  h se s c o s 2 M + 8  

Then put  d = 0 in the expression A s. When trying to develop 

( 1 1 5 ~ s _ 3 s e c o s 2 M + ~  a = a ' .  
A a' 2 2 

(43) 

it appears that we cannot take much advantage out of the Laplacian 14) transcen- 

dents of the classical theory. Instead we can ~tse a well known formula of Eu]er, 

whose convergence strongly overshadows all hypergeometric co~ffieients. 

(See for ex. Lobatto: 15) Lessen over hoogere algebra p. 232, II. edition, Stud- 

niSka: 16) O poStu integr~Infm, Praha, 1871, p. 76.) 

1 1 1 
- - 2  log nat (1 + a  s - 2 a c o s ~ v ) =  - - ~  l o g ( 1 - - a e  ~ ) - ~  l o g ( 1 - - a e  -i~) 

a 2 a a a 4 
= a c o s q ~ + ~ -  c o s 2 q ~ + ~  c o s 3 q ~ + ~  c o s 4 ~ + - - .  

1 '~  + a ~ / - ~  ( 2a  ) 
-- - 2 2 l o g  1 1 + a  e eo s~  �9 (44:) 
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n - 

1 

2 

Now, if we put  

2a 
1 ~ - a  2 '  

1 a 2 a 3 

- - -  log ( 1 - -  n cos ~v) = 2 l o g ( 1  + a  2) + acos~v + ~ cos2~v+ ~ cos3~-4- - - .  

a 2 a 3 

1 log 2 a +  acosq~ + c o s 2 ~  + c o s 3 ( p + . . .  
= 2  n 2 

In our case 

Put  then 

1 1 (  5 ~ - 3 2  )-�89 a '  
A - a '  2~ ~e c o s 2 M + d  , a =  

1 _  1 1 / ~ 1 1 1  3~2 2 ~ - ~  
A ~ ' V ~  ~ ~ c o s 2 M + ~ l  �9 

1 

A 

3 s 2 2a  a2 5 ~2 . 1 
5 ~ 2 -  1 + a  u' 1 + - - 2 a  ~ ~ = 0, a =  

a 'g ~ l + a 2 - - 2 a  c ~  2a  ] ]  

I t  is easy to be seen, tha t  for 8 = 0 

1 1 1 
1 . 2 e~COs2M+~cos4M+~lCOS 

A 3a'~ 

(45) 

(46) 

(47) 

When introducing the Besselian functions by means of the definition i = V ~ 1, (17) 

e ~ c ~  = J o ( x ) - 2 J e ( x  ) cos 2~v + 2J4(x)  cos 4~v... + i[2J1 c o s ~ v - 2 J a ( x )  cos 3~ + ..-] (x)nl (xS I J~(~) = 2 2 (48) 
-IT- 1 1.(n+l) +1.2 . (n+l) (n+2)  . .  

we replace x by - - x i  thus obtaining 

e �9 cos ~ = H.  (x) + 2//1 (x) cos ~0 + 2 H2 (x) cos 2 ~ + 2 H3 (x) cos 3 ~ + . . . ,  

= 2M, 

we then put  

J 2 n ( - - x i )  = ( - -  ])nH2n(X), Jo .n+l(- -x i )  = ( - -  ] )n+l~H2n+l (X) ,  

(x)l (:)' I (49) 

H~ (x) = I ~ -  1 + 1. (n + 1) + 1.2. (n + 1) (n + 2) + " 

6 M +  . .  �9 

2 
3ga, (1  + a 2 - - 2 a  cos 2M) -�89 
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and finally 

e~ cosep ~ ek c o s 2 k M  "~ e c o s 2 k M  

cos 6 M + - - -  

2 1 c o s 2 M + l c o s 4 M + l e o s 6 M +  . . .  
A --1 e3 

3a' ~ 

3a 'g  / = 0  k = l  
2 H o ~ H  o. 

(50) 

We have then to take into account the various powers of the increment (series) & 

in  order to compute the influence of these terms successfully it suffices to recall 

that  the result hithertoo obtained is somewhat a kind of a power series in cos 2M. 

And indeed we are always able to pass from the multiples of the arguments of the 

cosinus to the powers, by means of the well-known formulas 

cos 2~  = 2 cos 2 q~-- 1, 

cos 3~ = 4 cos ~ q~--3 cos % 

cos 4 9 0 = 8 c o s  a g o - S c o s  2q0+ 1, 

cos5q~=  16cos 5 ~ - 2 0 c o s  a g + 5 c o s %  

cos 6 q~ = 32 cos G q9 - -  48 cos 4 9~ + 18 cos ~ 9~ - -  I. 18). 

(51) 

I t  is then very easy to insert into these various powers of the cosinus their 

increments 6, and after multiplying the diverse cosinus factors to repass to the 

multiples of the angular arguments ~M etc. 

In  this manner we get the final result in the form of a cosinus series with 

multiple arguments 

O)'t = j i m  + 12(70 + i 3 ~ .  

These can always be adjusted to our choice of canonical elements (35) 

M, ~5, M - - M '  + f2, 
in the form 

o / "  = j'xM + j~ffo + j '~ (M- -M"  + ~).  
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Lastly we have to carry out the change of the resulting angular variables by 

means of the formulae (15) into M, GJ, M - - M ' +  ~2 ~:hus obtaining the definite 

development with the general multiple argument 

~o" = i~ M + i2 ,o + i3 (M + s  M') .  (52 a) 

Now in the following study we shall be interested chiefly in the transformed 

x' + ~] y' 
indirect Lagrangian part  a, a see (38) p. 23, of the disturbing function, which 

exclusively contains all secular, critical terms, becoming constant in consequence of 

the commensurability of the mean movements n -  n'. 

This important  part  of the development is obtained without any special calculus 

as a result of multiplying together the well-known Besselian series for the Keplerian 

elliptic motion. 

The main terms result in 

_ ) 0 c ~  a 1 - -  __sin2 t a, 2 a,  ~ ~ )2 cos ( M -  M'  + a, + t ~ -  S ) -  

a h  a h  
a '2 2 c o s ( ~ - - M + M ' - - ~ + ~ ' ) - - a ,  ~ ' 2  cos ( 3 ~ + M - - M ' +  [2--ze ')  

3 a  a s  M" c, ; (~ + ~ ) -  ~ ' - M ' )  + - - -  cos (2 M - -  + ~ + t ) - - ~ ' )  2 a z2 a '2 

(52) 
a s 2 M'  3 a e 2 . . . . . . .  cos (3 M - - M '  + ~ + f 2 - - n ' )  + + s a "~ cos ( M  + + ~ ' - -  co - -  [J) + S a '~ 

(~ t M t 7ff + ~ sin e '2 c o s ( M +  + ~ +  - - ~ )  

h =  - -  sin2 5' ~ =  ~5+ ~ .  

SECOND PART. 

In the previous first Par t  we succeeded in obtaining another formulation of the 

satellite problem unlike any hitherto dealt with. The chief characteristics of the 

formulation offer two advantages. 

Firstly, the disturbing function of the problem appears, developed into a periodic 

series, proceeding according to multiple arguments M, ~, sg, M '  composed, as usual., 

of angular variables. 
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However, the mean movements  n, n '  which occur as a rule in two distinct 

amounts,  appear  this t ime reduced to a unique mean movement  n = n'. This leads 

n 1 
necessarily to the commensurabil i ty = , n representing the angular velocity of the 7Z + 

Moon, n '  tha t  of the Earth.  Further,  the disturbing mass and consequently all the 

disturbing forces of the problem become diminished to the amount  of the very small 

mass of the Ear th .  

We have now to pass to the integration of the problem. 

With this in view, we first introduce another  independent variable 

t - (1 + ~) (1 + ~)  (1 + ~;) r,  

strongly influenced by small parameters,  and change the whole aspect of the differential 

problem into suitable integral equations. 

In  the following investigation, we shall be interested chiefly in the form of the 

development of the disturbing function, or rather,  more particularly in the critical 

terms of the development.  These are build up by trigonometric expressions, whose 

arguments  degenerate into sums independent of the mean movements  n, n '  and of 

the time t. We shall have to deal with the commensurabil i ty of the mean movements  

n of the Moon and of the Ea r th  n '  - -  both  of the lat ter  concurring into one and 

the same amount  n = n' .  

The finding and isolating of the aforesaid critical terms is an extremely simple 

matter .  We have only to s tar t  with the form of the disturbing function given at  

the end of the previous first Par t ,  w 4, and remember  tha t  the critical arguments  

arise merely by superposition of two te rm factors of the same argument.  These are 

to be found exclusively in the indirect Langrangian par t  of the development.  They 

turn out to be of zero order in small quantities e, t, which is in complete agreement 

with the well-known classical theory of Laplace and Le Verrier. 

CHAPTER I .  

The Restricted Problem of Three Bodies. 

Before going any further I must  explain the method we shall be using all 

through the present paper.  

For the sake of clearness I limit myself at  first to two degrees of freedom. 

However, it is to be pointed out tha t  this restriction does not lessen the generality 

of the method in any way;  it involves not on!y the problem restreint t rea ted  here- 
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with, but  governs even the most general ease of the problem of three bodies, in 

which the Hessian--Jaeobi~Poinear6 disappears identically. Let  us first imagine the 

problem of H. Poinear~, dealing with the lengthening of the original undisturbed 

period of movement 19). 

Karl  Sehwarzsehild 20) uses the substitution of H. Poinear6 successfully in ease 

of the problem restreint, where the time does not appear explicitly in the right hand 

members of the equations of movement,  Unfortunately he fails, or rather neglects a 

thorough geometrical interpretation of the transformation. And so it happens that  

even in the simplest ease, where the exeentrieity of the orbit of the disturbing planet 

becomes distinct from zero (namely in the ease of the so-called asteroidal elliptical 

problem restreint) and the explicit time starts appearing in the developments within 

the trigonometrical functions, he abandons the whole substitution and not seeing its 

far-reaching consequences, has recourse to Delaunay transformations and to the 

neighbouring eases of high number-commensurabilities. 

In this respect Sehwarzsehild 7) AN 147, pp. 289--98 conforms to an erroneous 

reasoning of Poinearfi M6e. e~l. I, pp. 89, 90, and indeed Poinear~ did not succeed in 

avoiding this, as he says, difficulty. I t  was probable tha t  even A. Wilkens an 

Klose 21) were misled under the influence of this classical paper by Sehwarzsehild. 

Both of the authors named dear ly  saw the cause of the failure, but  were unable 

to overcome it. 

And as the Hessian disappears identically in ' the general problem, it long remained 

impossible to penetrate further. 

The ease of K. Sehwarzsehild is well illustrated by his paper 20) quoted above 

or by Charlier 22), Meehanik d. Himmels II ,  pp. 249--281. Let  us be guided by 

Charlier II,  p. 248 using the same notation as 1. e. 

Charlier starts with the well-known Delaunay elements of the restreint with two 

degrees of freedom namely 

dxk 0 F dyk, 0 F 
- 0 - - '  - 0 ' k =  l ,  2, (1) d t yk d t xk 

X 1 = V a ,  Y l  = l ,  

mean anomaly (2) 
x ~ = V ~ l - - e ~ ) ,  y ~ - ~ z  

1 
/V~ = 2 X~' F = Po + f l F 1  + ~ t2/Vs -t- . . . .  F o + ~ t F " .  (3) 

Charlier puts for the constant of Gauss k = 1. 
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This original problem has manifestly a disappearing Hessian 

t0Fo 0Sol 
a ~axl' O~/ 

O (Xl, X2) = 0. (4) 

Now according to the prescription of Poincar4, in this very special case the 

difficulty is easily overcome by simply introducing a rotating system, moving with 

the same angular velocity as the disturbing planet. 

And indeed the explicite t ime within the arguments of the trigonometricaI func- 

tions appears exclusively in the combination - - M ' - - z ' +  ~. So the radical remedy 

is easily reached by introducing other angular variables 

X 1 : ] / a ,  

X~ = V J ( 1  - -  e~) ,  

Yl = 1 = n t + c, c = Mo 

Y 2 = n - - n ' t - - M ~ ) - - ~ '  = - - n ' t  +g ,  g = - -  M~)-- n '  + n. 
(5) 

In  order to preserve the canonical form of the equations, we must  add to the 

original Fo the t e rm n'x2, so tha t  this t ime 

1 
Fo' = ~ + n'x2, (6) 

but  we write Fo again. 

Schwarzschild studies now the case of the small number  commensurabil i ty of the 

mean movements  n, n '  
n p + q  

n'  p 

where p, q signify two integer numbers, relative prim. The undisturbed period of 

movement  in the two start ing Keplerian ellipses for # = 0 (disturbing mass) is given by  

2~(p + q) 2z~p 
T1 = n - n '  (7) 

Supposing now # > 0 he changes the initial constants into 

Va + ill, n t + c + ~21, 

v a ( 1 - - e ~ + f l 2 ,  - - n ' t  + g 4- 73, t = 0~ 

(s) 

passing therewith to the new variables and at  the same t ime prolonging the original 

period by the the substitution t = (1 + ~) 
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~C 1 : V ( t  @ [~1 @ q21, 

Y2= --n't+g+Y.~+~f2, 
(9) 

(~1, ~2, V1, ~2 are unknown integral functions including small deviations of the order 

# and namely of ~. The period of the disturbed movement will be given by 

Y'= (1 + z )2 r ip .  The integral equations serving for the definition of the aforesaid 
n 

functions % y, are given by the inversion of the original differential equations 

d(pl 0 F dy)l 0 .F 
d r  O~fl d r  0~vl 

dq~ _ OF dy~ OF 
d r  0~02 dv  0 ~  

0o) 

The meanings of ~vl, q)~, ~vl, ~v2 can be made completely clear by summing up 

of the whole mathematical process of Poinear~: He considers a Keplerian undisturbed 

periodic motion in two ellipses, gives to all the starting constants as well as to the 

time t a displacement of the order # (disturbing parameter, mass), and investigates 

the new disturbed movement, asking under what conditions it could remain periodic, 

even with a prolonged period. 

Evidently the disturbed, displaced movement remains periodic in case the very 

complicated integral functions ~Vl = ~v2 = ~Ol = ~v2 = 0 disappear after the lapse of the 

whole prolonged period. 

The meaning of these functions clearly appears to be "the functional deviations 

of the displaced coordinates, during and towards the close of the new prolonged 

period". 

In this manner we are able to write down inimediately the integral equations 

(inverted differential equations) as follows: 

T1 T1 

q~ = (1 + ~ ) .  ~ d r ,  = (1 + ~ )  0y2 dr ,  # tt . 
0 0 

T1 T 1 

T l = + u n T l + ( l + g )  ( X o + f l l + ~ f l ) a - - # ( l + z ) .  0-Xl-ldr, (11) 
0 0 

TI 

fOF 
" 

T ~ =  ~ ~ n ' T 1 - - / ~  (1 + ~) - - d r .  
., 0 X 2 
0 
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~)1, ~2,  ~/1, ~Y2 signify the values, tha t  the functions ~1, ~2, Yh ~2 assume towards the 

close of the total  period T = (1 + u)T1 20). 

These very complicated integral equations can easily be changed into simple 

Taylor series. And indeed the whole method of solving them consists in a clever 

application of the existence theorem of implicit functions (Cauchy, Weierstrass). 

However before performing this simple task, we must explain the meaning and 

geometrical significance of the parameter  ~. 

We started putting (9) 

.Y2 = - - n ' ( 1  + ~ ) ~  + g + Y2 + "'" 

,Y2 = - - n " ~  + g + ~'2 + Y~2, 

i n c l u d i n g  t h e  s m a l l  t e r m  u n  i n t o  Y~2 or rather  destroying it with ~ 2 = 0 ,  

before it could give rise to the explicit t ime n uv. 

Let  us suppose now, as will turn out later on, tha t  we succeed in annulling 

the functional deviations (11) ~1 = 72 = ~1 = ~02 = 0. Then we have only to return 

to the original signification of the variable Y2, by subtracting - - n ' t -  M ' o -  ~ ' +  

n' t u n'  t 
~ - - n ' t + n ' t = ~  - -  + n ' t = ~ + - -  

1 + ~  1 + ~  

t 
t =  (1 + u ) v ,  v =  

1 + ~ '  

(12) 

n" 
in order to see that  the meaning o f - - - -  i n d i c a t e s  t h e  " b i r t h "  of  a n e w  

l + u  

m e a n  m o v e m e n t  or, as one says in Astronomy, of a n e w  s e c u l a r  m o v e m e n t .  

Now let us carry out the quadratures of the complicated integral equations. 

For this purpose we recall tha t  the Hamiltonian function F appears in the form of 

a trigonometric development according to multiples of the two angular variables 

F = ~ A  c o s ( i l y l + i 2 y ~ )  (13) 

thereby the coefficients A constitute the functions of the scalar variables xl, x2. 

Now the integrals of our integral equations can easily be carried out term by 

term if we distinguish only three categories of arguments:  

1. Simple short-periodic terms of the argument 

i lyl  +i2Y2, Y l = n t + c ,  c = M o ,  y ~ = g - - n ' t ,  g = - - M ' o - - ~ ' + x e .  

ii, i2 representing whole numbers both positive and negative. 

3 -  523804. Acta mathernatica. 88. Imprim~ le 27 octobre 1952. 



34 Wladimlr W~clav Heinrich. 

cos . sin 
The quadrature changes only every particular sin into and gives the same 

cos 

result in the upper as well as in the lower limit. These two amounts being of op- 

posite signs cancel mutual ly  and give zero. 

So these short-periodic terms cannot contribute in any way to the final value 

of the coefficients in the implicit functions in question. 

2. Poincar6 further selects from the development of the disturbing function the 

so-called critical terms, corresponding to the above supposed commensurabil i ty of the 

n p + q  
mean movelnents , p, q integer numbers for which 

~t P 

i l =  sp,  i2= s ( p  + q) (14) 

s, integer number  positive or negative. 

In  this case the argument  of the particular te rm of the disturbing function gives 

n t 

i lY l  + i2Y2 = i l ( n t  + c ) - - i 2 n ' t  + i2g = -- [(p + q ) p s - - p ( p  + q)s] (1 + ~)v + 
P 

+ spc+s (p+q)g= +s{pc+(p+q)g}.  
(15) 

So it happens tha t  the coefficient of the time w disappears. 

These terms are to be integrated as a constant, independent of v. 

The result of the quadrature  is manifestly distinct from zero, a t  least in the 

upper limit, giving the value 

Tt 
1 

" I ~ d v const = const. 
T1. ! 

0 

These critical terms are extremely important ,  as they guarantee the existence of 

the  coefficients in the development of our implicit functions. 

3. Secular terms, well known from the classical theory,  in which il = i2 = 0 

These te rms equally yield a result, distinct from zero, being integrated as a 

constant  of the previous case (no. 2). 

Their existence gives a contribution to the desired coefficients of the implicit 

functions as in case (no. 2). 
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When putting for the sake of brevity for the average time value 

T 

0 

"~ = [ F ]  = ~i l i2  COS ( i l  c ~- i2g ) = i Asp,8(p-~q)cos 8 { p ~  i L ( ~  + q)g}, 
S = 0  

(16) 

summation being taken over the integer numbers s, (14) 

i l(P + q ) - - i 2 P  = 0  

we finally obtain the following four conditions admitting the possibility of the 

periodicity of the whole movement.  

0 [ F ]  _ 
4 1 = 0  " O c  - 

o I F ]  _ 
42  = 0 

Og 

p ~ sAsp, s(p+q) sin s{pc + (p + q)g}, 
s=O 

(p + q) ~ sA,~,~(p+q) sin s{pc + (p + q)g}, 
s=O 

0 [Fd OFo 02Fo 02F~ fi2 + # +.. .  (17) 

0 Fo 
T2 = 0 - - z  0x-2- + - -  02 f f  0 02 F 0 0 IF1] 

1 
t 'o  = ~ x ~ ~ + n '  x2. 

And indeed only by the disappearance of the functional displacements as defined 

by (11), the same amounts for the coordinates and their velocities at  the end and 

at the beginning of the movement can be secured. The last four conditions in the 

form of power series can define five of the implicit functions •, ill, f12, 71, V2. If 

their determinant is distinct from zero, then this important  fact includes the pos- 

sibility of developing the unknown function according to the powers of the small 

parameter  ft. 

Now the aforesaid four conditions are not independent. There exists in our case 

(of the problem restreint) the JacobiLintegral of Energy 

F C = 0. (lS) 

From this algebraic equation we can immediately draw the important  conclusion, 

tha t  one of our conditions, for example 42 = 0, will always be a consequence of the 

other three conditions 
41 = •1 = ~2 = 0. 
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And  indeed this follows f rom the integral  of energy wri t ten  in differential form 

F(qs~, T~)-- F(O, O) = C - - C ~ o  

O F  O F  O F  O F  
(19) 

O F  
The first factor  of the second t e rm Ox2 = n' ~ 0 is wi thout  doubt  distinct f rom 

zero. If  then  qb: = kP: = hu2 = 0 it is clear t ha t  r  mus t  equally disappear.  Summing  

up, we can show the existence of the five implicit functions fl:, f12, 7:, Y2, x as soon 

as we prove t h a t  the de te rminant  of the coefficients of the  first powers of the 

unknown quanti t ies  remains dist inct  f rom zero. 

Now the equat ion ~b 1 = 0 can be replaced by  q}_l = 0 because the deve lopment  
# 

of the  lef thand side reduces to # F 1 ,  see (3), (6), 

and 

F = _ _  
1 

2 2 x 1 
+ n ' x 2 + # F : +  . . . .  F ' o ' + # F : + . - .  

02 [F1]  03 [F1] 02 [ E l ]  02 [F1]  . 
~ 1  0 [ F 1 ]  d- - -  fll  d- - - - - -  /32 -~ - -  + - -  ~2 ' " ' '  (20) 
# 0 y: 0 x 1 0 Yl 0 x2 0 Yl 0 y2 71 0 y: 0 y~ 

0 Fo 

0 Yl 

and we ga ther  f rom this t h a t  instead of r  = 0 it appears  sufficient to satisfy (20). 

Consequent ly  we can leave out  the  fac tor  /~. The other  two equat ions for T1 = 0, 

and  ~ 2  = 0 can be wri t ten as follows 

~4 3 f l l  0 [~1]  
= + + . . . . .  o ,  

0 IF1] 
kP 2 = n ' ~  + # - 0 ~  + . . . .  O. 

(21) 

And indeed we easily find t h a t  

0 x 1 x i 0 x2 n ,  

0 2 Fo _ 0 2 Fo 

0 2 Fo 3 
5 '  

0x~ x, 
(22) 

Go 
0 x~ 0 xl 0 x2 
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Now our aim is to obtain conditions defining the implicit functions of # namely 

~, /71, /72, 71, 72 which would dissappear with ,a. 

According to the theory of implicit functions developed by Cauchy and Weier- 

strass, this is possible only when the defining functions do not involve the t e rm 

independent of #. We gather from this tha t  the t e rm of the starting equations not 

containing ~, fix, fie, 71, 72 as factor must  disappear, and so we find the well-known 

conditions of symmetr ic  conjunction and opposition. 

0IF1] 0 being consti tuted exclusively by a series And indeed the expression 0 Yl 

of sinus of the critical terms 

Asp,(p+q)s sin s{pc  + (p + q)g}, c = Mo, g = - - M o  + ~ - - ~ "  (16) 

we can satisfy our condition by butt ing 

c = 0, g = 0, 

c = 180 ~ g = 0, 

c = 0, g = 180 ~ 

c =  180 ~ , g =  180 ~ . 

(23) 

We have three independent equations containing five unknown quantities ~,/71,/?2, 71, 72" 

Two of them can be freely disposed of provided they remain within the limits of con- 

vergence of the development of our disturbing function. Schwarzschild simply chooses 

/?2 = 0 with the view to obtaining new orbits with movable perihelion ~ ~ 0, and 

finds three equations for the determinat ion of x, ill, }% 72 = 0 

g4 3/?1 0 [-/~1] 
+ s  + 

0 [F1] 
T~ = 0 = n ' ~  + f f  ~ x ~ -  + . . -  

02 IF1] 0 ~ [F1] r  _ 0 - a~ [F1] a ~ [F~] /?2 + - - - -  71 + - -  75 + 
,u O x l O y  1 /71 § Ox2OY--~ 1 Oy~ Oylc)y 2 

(24) 

The determinant,  namely the Hess ian- -Jacobi - -Poincar6 ,  is manifestly distinct from zero 

O (F  o OF~ t 
' c l - x l f  3n" 

A = A I ' A 2 ,  A1 == 0(xl ,  x2) - x 4 ~ 0, (25) 
0 2 IF1] 02 [F1] 02 [-Pl] _ 0, A~ - <> 0. 

0 x~ 0 Yl 0 x 2 0 Yt 0 y2 



38 Wladimir Ws tteinrieh. 

In this manner the existence of new solutions with rotating perihelion ~ is 

proved. But the way chosen by Schwarzschild is far from unique. I mention only 

that  we can just as easily secure a Jacobian distinct from zero simply by putting 

0 [F1]  

n r 0 X 2 

instead of f12 = 0, F1 proving to be a function of one free parameter  e. 

And indeed our secular part  of the function [F] fixed above involves solely 

the coefficients Asp, s(p+q) (see (14), (17)), these latter being built up exclusively of the 

scalar Keplerian elements of the starting ellipses a, e, a', e " -  O. 

I t  is to be noticed that  only the critical terms of the second and third categories 

mentioned above guarantee the existence of a real ~, as they contain exclusively the 

cosinus series distinct from zero term by term. The starting development [F] consists 

of a cosinus series which leads, after two differentiations of the arguments, again 

only to a cosinus series. And according to our choice of a symmetrical conjunction 

or opposition, all the cosinuses are reduced to 1, namely to coefficients build up solely 

by scalar Keplerian elements a, e. 

The same remark concerns the coefficients 

When considering the three new equations, 

0 2 IF1] 
0 yi 0 y~. in (24) 

we get 

W ~ = 0 ,  - -  = 0, - -- 0 (26) 
# # 

clearly showing a determinant  distinct from zero 

0[/~1]  # 0 [ ~ 1 ]  1 T I = 0 =  3fll + #  + 
x~ -Ox: n' oXl ~'~ 

# 

# 

A . . . .  I 

02[F~] fll + 02[F'] 0[F2] + . . . ,  

02 [F1] 02 [F1] 02[Ed ~1+ ~ +  - 7 1 + - -  
O -  OxlOy 1 Ox20y 1 Oy~ 

where 0 [F1] _ 0 as previously, while 02 [F1] 
0 Yl 0 xl 0 Yl 

(27) 

critical terms for the symmetric conjunction or opposition (23). The corresponding 

solutions coincide with those of Schwarzschild, but  this is not always the case in 

more general problems: 

02 [F1] 
OylOy 2 Y2 § + 

0 [F1] 0 [F2] 

-f- O~51-1- + #  O y 1 §  

02 [F1] _ 0, as mere sinus series of 
Ox2Oyl 
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And indeed, unfortunately,  the general equations of dynamics bear the following 

character:  F has the form (see Poincar6, M6thodes nouvelles de la M6e. c61. I, 

p. 133. ~)) 
F = F o + F I # + F ~ # 5 + . .  

(28) 
-~0 = /1 (Xl )  -~- /2 (X2)  -~- /3  (X3) @ /4 (X4), 

while at the same time /2(x2)=/4(x~) ~-O. 

mean movements 

0 Fo 0 F 0 
n l  = - -  0 X  1 ' n3  --  0 X  3 ' 

Now these parts furnish the undisturbed 

0 F o _  0 F  0 = 0  (29) 
n.2 = n4 0 x2 0 x 4 

which circumstance causes the Hessian--Jacobi--Poincar6 to disappear identically 

lOro O~o OFo OFol (O~o O~o ) 
o ~Oxl 'aTi '  b ~ '  b74f o ~ax~' o, ~O-xT' o 

~ 0 .  
0 (Xl, x~, za, x4) 0 (Xl, x~, xa, x4) 

(3o) 

Still we are always endeavouring to get this determinant distinct from zero, as it 

happens to coincide with our determinant as given above and proving the existence 

of the implicit functions, and admits the possibility and reality of a periodic solution. 

C H A P T E R  I I .  

The General Problem of  Three Bodies in a Plane.  

The secular solutions t reated in this II.  c h a p t e r -  intended for the use of 

Planetary Orbits - -  bear the following description: 

Let  us imagine the problem of three bodies: Two planets of relatively small 

mass revolving about  a big central body in the same plane. Let  us suppose the 

undisturbed mean movements of the two planets to be commensurable. Then it is 

shown below: 

In the neighbourhood of every type of commensurability of the mean movements 

there always exists a multiple infin!ty of secular solutions. The orbits of both 

planets in question are given approximately by two rota t ing ellipses. 

The rotational speed of one of the two upsides can outrun possibly the other 

apside thus far, tha t  during one period only of the whole movement,  this upside 

catches up with the other - -  af ter  having described One, or more full angles of 

360 ~ degrees. 
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The synodical period of the perihelia is not confined to the accurate and a t  

the s tar t  # = 0 prescribed length of the original undisturbed period of the aforesaid 

ellipses, but  can differ from it even within the scope of the size of the small mass #. 

To facilitate explanation let us take up the case of the general problem of 

three bodies in a plane, and s tar t  with the equations of Charlier, volume II ,  

p. 216, using the same notation only slightly modified, and to follow up the con- 

clusions of my  previous paper  Publ. de la facult4 des sciences de l 'Universit6 Charles 

Nouvelles classes des solutions s6culaires du problSme g6ngral des 

dxi OF dyi  OF 
- - -  - , i =  1 ,  2 ,  3 ,  

dt  Oyi'  d t  Oxi 

x~ = /3 ;  l/a, u~ = M + ~ - - ~ ' ,  /3 = ~/31', 

x2 =/3~' ] /a (1 - -  V1 - e2), y2 = - ~ + ~' ,  /3' = #/32', 

No. 15, 1923, 

trois corps 4). 

=/3~' M" 

]~2 rp ]C 2 pp 
(21 ~nc ( 2 2 ) ~ c  

F~ = 2 a + 2 a '  

F = F o + # E l  + #2F2 + " ,  

t t  
~lt. 1 = ~'I'b = ( 2 1 ~  = ~ b ,  

0 J~o ~ 3 
- -  = n l  n =  f l  a - ~ ,  

0 x~ 

~ b  m e  ]c ~q't b ?ne 

~ + mo /3 - V ~ +  

r~ 2 = m'  = a-~'tt = ms (31) 

= k~ ( 1 r cos ,~ t 
-F1 A /~  ] '  

OFo = n" = , 
0 X 3 - -  ~3  --t a '  2 

m~(~.b § ~ . c )  ]~.~,~V.~c(mb + mc) 
, / 3 /  

n~ + m~ + m~ Vm~ + mb + m~ 

Let  us s tudy the case of the commensurabil i ty of the mean movements  (p q 

relative prime numbers) 

n p + q  
, (32) 

n r p 

the undisturbed period of the movement  in two ellipses # = 0, is 

2:~p _ 27~(p + q!. 
To (33) 

no no 

To help in clearing up the formulation of the problem let us recall that ,  in 

the right-hand sides of the equations of motion, the Hamil tonian function F and 

especially the par t  F I #  + F 2 # 2 +  . . . .  F "  appears to be a suitably developed periodical 
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series. The general argt tment  of the  t r igonometr ica l  cos terms found by  Laplace  

and Le Verrier has the form ~ o " - i l y l  4, iey~ 4. iaya where i~ represent  integer  

numbers  bo th  positive and negat ive.  

The Hessian o f  the problem disappears identically,  as the coefficient of t in 

ye is missing. I n  order  to avoid this inconvenience of which Poincar4 complains in 

vain M4th. hour .  I. p. 68, p. 119, p. 133, I I .  p. 47, I first in t roduce other  angular  

variables by  pu t t ing  
t = (~ + ~) (~ + ~) ~: (34)  

t 
r pt t ,  yl = Yl 4. ]cl no t 4. 11 no t kl no + 11 no 

I 4.~9 = Yl 4- n i t ,  nl  - 

y~ = y~ 4. ]c2 . . . .  no t 4. 12 n~)t = ,, 
i 4. ~ Y2 4, n2 t, 

y3 = Ya 4- ]c3 'no t 4, 13 no t ,, 
' ~ = Y3 ~- n 3  t ,  

1 + ~  

t 

" ] c 2 n 0  4 -  [ 2  n o  

~ ' 2  ~ ~ '  
l + v ~  

,, k3 no + la no 
~t3 ~ 

l + z ~  

(35) 

]~1, ll, k2, 12, k3, 13 represent ing quite  a rb i t r a ry  integer  numbers  bo th  positive and nega-  

tive, thereby  supposing t h a t  we are dealing with the  commensurab i l i ty  s o _  p + q, 
n o  ~o 

and no, n~, represent  fixed cons tan ts  equal to the  osculat ing funct ions  n = no, 

n ' - n ~ .  This only means  urging the  appearance  of explicit  t ime within the  t r igono-  

metr ical  a rguments  of the development  of F as we have to replace every  yk by  

, ki no t § li no t 
Y i - - -  

1 + 

t 
, kl no t + /1 no t 

YI = Yl . . . . . .  
l + v ~  

p 

, k2not  + / 2 ~ 0 t  
Y2 = Y2 

l + v ~  

, ]C3 no t + k3 n~ t 
Y3 = Y3 

l + v ~  

= y ~ - - ] c  i n  o(1 § u) T - - I  ln~)(1 4 - u ) ~ -  y ~ - - n l ' ( 1  + g ) ( l + v  ~)T,  

y , ~ -  k2no(1 § ~ ) ' r -  12n'o(1 + u)'r = y~- -n~ ' (1  + ~)(1 + v~)'r, 

(36)  

- Y3-- kano(1 + ~ ) r - - / a n ~ ( 1  + ~)~ = y'3--n'3'(1 + z)(1 +v~)~ 

�9 r 
- kl no + 11 no ,, k2 no + 12 no . ka no + 13 no 

T t l  - -  ' T t 2  - -  ' • 3  . . . . . .  
1 + z 5  l + v  ~ l + v  ~ 

Of course we  h a v e  t h e n  t o  t a k e  s p e c i a l  c a r e  t h a t  t h i s  e x p l i c i t  

t i m e  r e m a i n s  c o m p a t i b l e  w i t h  t h e  p e r i o d i c i t y  o f  t h e  r e s u l t i n g  d i s -  

t u r b e d  p e r i o d i c  s o l u t i o n  (see p. 47). 
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In order to preserve the original canonical form of the equations of motion 

the three complementary terms must be added to the function F o 

k'l ~/0 -~ lln~) ]c2n o + I~*'o kano + lan'o 
- -  1 ~ - - ~  x~ --- - i +  v ~ - -  x~  1 + v ~ Xa. ( 3 7 )  

We shall put  then t = (1 + y.) (l + ~9) r and t ry  to annul the expressions of the 

fimetional increments q~l, qP2, ~a, Wl, F2, ~va thereby starting with the values 

x~ : ill' VJoo + fi~ + ~ , ,  

x~ - /~ i '  l/go (1 - V 1 -  ~,~) + G + ~%, 

x~ : fi',' 1/70 + & + ~ ,  

y~ = M0 + :~--:~'  + nT + (ktno + l~G) r + 

y'3 = 3I'o § n ' v  + (k3 no q- la n'0)r § 73 § ~/)3, 

M = Mo + n t. (38) 

I t  is to be expressly noted that  in the argumental part  of y~ namely Wi 

are contained the terms S(nok~ + n,01~), these being intended to distroy by annulling 

the final functional deviations see (42) and (43). On the contrary in the general 

trigonometrical argument of the development of F "  namely, 

k 2 A  cos ('ily 1 + i 2y  2 + ~'3Ya) 

after the transformation (36) and putt ing t = (1 + u)(1 + v ~) r, 

k2 A cos lilY'1 + i2Y~ + l a y ' a - - ( i l n ' (  + i2n'2' + ian~') t] (39) 

the two terms 

(1 +,Y) J . . . . . . . . . . . . . . . . .  | ( ' t ln l  q- i2~z2 if- ~ 3 ~ 3 ) r - - ( Z l n l  q- z2n2 + ~3n3)T} 

cancel out mutually,  whereas - -  ~ (n'{ i ,  + n~ ~'2 + n.~' ie) (l + ~) r remains as the newly 

appearing explicit time. 

Two planets, defined by the undisturbed elements a, e, M, ~, a', e', M',  :~', 

describe two strictly elliptical Keplerian starting paths for # = 0. 

Let  us imagine the same movement many times (r) repeated, so tha t  

T1 _ 2 : ~ p r  2zr(p + q)r  (40) 
n'  n ' 

p, q being integral numbers. 

When displacing the original positions by the small amounts fli, 7~ to be deter- 

mined, we are ~rying at  the same time to displace, namely to prolong, the period 

by the quantities ~, 0 in putt ing t = (1 + g)(1 + O) T, so tha t  the final disturbed 

period goes over into 
T = (1 + x) (1 + v q) T 1. (41) 
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It is now our chief purpose to destroy the complicated functions pi, pi, expres- 

sing the functional displacement (finM deviation),  thereby defining the suitable 

starting amounts  of the implicit functions xi(flO, yi(yi).  

The differential equations for ~i, pi, as well as their inversion in form of integral 

equations are easily obtained as follows 

~/)1 ~ 0 

TI 

- /31 ( o! Fo,t ~ 
0 X 2 o; j~ 

0 

1/) 2 ~ 0 

P3 = 0 = 

T1 
f O F 1  -+ n z T1 + n ~ 1'1 + n ~ 0  T1 + (kl no + 11 n'o) ~ :F1 - -  # O~xl- d r - -  
0 

TI 

, f oft + ( G  no + I2 no) y. 1'1 - -  ,u bx-2 d r - -  

0 

(42/ 
T 1 TI 

= - & ~  o~--~t~ ~'~T~+,~'OT~+~'~OT~ + (~~.,o + l ~ ; ) ~ T ~ - - # .  0;3 -~ d~  . . . .  
0 0 

T 1 T1 7' 1 T 1 

t'- - f t ' - - -  + , , f  02 F1 02 El  d T ~---,, (iT q- 

ff, .~ O xi 0 Yi 
0 0 0 0 

T~ T: P1 T: 

0 0 0 0 

T1 T1 T1 T1 
f 02F1 ( 02Flv- ,Jz  l 02F1 f 02F1 

, u  ~ OxlOye  .~ OxaOY2 OYlOY2dV + 
0 0 0 0 

(431 
Tx T1 T1 T~ (O~F~ fO~F1 fOFl+fOF~ 

0 0 0 0 
T1 T 1 T1 ]'1 02F1 ~ ' 0 2 F 1  ( 0 2 F 1  f 0 2 t ~ 1  

~a = 0 = fit.  O x l O y  a d v  ~ f l~ - - -  d z  + fia - -  d r  + y l  d v  q- 
ff  ' . 0 X 2 0 Y3 ~ 0 Xa 0 Ya 0 Yl () Ya 

0 0 0 0 

f Tl 02 P; / 1  ;IoF*')" d " ~ - ' ' "  - - - -  02 F 1 " 0 F 1 
Fx d r + y 3  ...... 2 d r +  elf  + # 

+ 72. O y~ 0 Y3 ., 0 Y3 O Y3 .J  0 Y3 
0 0 0 0 

As a consequence of the wel l -known Jacobian integral of energy, the fourth 

and sixth of our equations ave not  independent of each other, and indeed it is easy 
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to show that  p~v a -  (p + q)~l = 0, because the right hand sides of (43)are reduced 

merely to the critical terms of argument ~ as we shall see hereafter pp. 46--54 ad 

1, 2, 3, 4, 5 and then it is clear tha t  

0 2 IF1]  0 2 [F1] (44) 
P OylOy k (P § q) OyaOy k 

Just  as in the previous asteriodal case all terms in ~i = 0 independent of the 

small increments fi~, 7~ must disappear. 

Thus we have the three conditions 

0 IF1] 
~0 Yi = O, i = 1, 2, 3. (45) 

thereby putt ing for the sake of brevity 
T1 

[F i ]=~  Fld3. 
0 

Now the left hand sides are formed by series of the sinus of critical terms such as 

(see hereafter ad 2. p. 48) 

k2A-sv,-s(v+q),s(v+q) sin s {(p + q ) M ' - - p M - - ( p  + q ) ( ~ - -  ~')} = 
(46) 

= k2A sin s { - - q y 2 - - p y l  + (p + q)Y3} 

and these can best disappear term by term if we accept:  

M~, Mo, ~ - -  ~' = 0, 180 ~ (47) 

which conditions are interpreted as the starting symmetrical conjunction or opposi- 

t ion of both planets. 

The development of the disturbing Hamiltonian function is consti tuted by cosinus 

series of the structure F = k 2 ~ A cos (il Yl + i2 Y2 + i3 y3),A containing solely the scalar 

elements xk. Consequently all expressions including odd numbers of derivations in the 

02 [F1] will be composed of sinus series, whose angular elements Yk such as for instance 0 yk O x~ 

arguments vanish owing to the supposed symmetrical conjunction and opposition. 

Thus it immediately appears clear tha t  our integral equations when putt ing 

TI 

[F1] = Tll F1, dr, etc., 
0 

will be reduced to the following form: 
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, 03 Fo 
n ~  + n ~  § (klno 4.1 l n o ) ~ - f l l  0-x~- 4 . . . .  

4" (ks no + 12 n~) 

n '~  + n'vq + (k3 no + 13 n0) 

0 3 [F1] 
~1 0 y~ 

0 2 [F1] 
71 O y l O y  2 

o [rl] 
- - #  ~ - 1  4.n~v~4. . . . .  0. 

0 [F1] 
- - #  ~ x 2  + . . . .  O. 

02 i~' 0 0 [F1] 
--f13 O x ~ - - - t  ~ --Ox3 4 . n ' , ~ O +  . . . .  0 .  (48) 

02 [Eli 0 [F2] 0 2  I F 1 ]  4" Y3 + 4" " 0 .  

- - - - -  § Y2OylOy~ 2 O y l O y  3 O~-yl # ' =  

02 [F1] 4. ~'3 4. # 4. . . . .  O. 
- -  4. Y2 0 y~ 0 Y2 0 Y3 

0 Fo 0 Fo ~v~ F ~ - -  

n 0 x 1 0 x 3 

The coefficients of these equations are built up by critical terms, which just 

provide the necessary elements of the solving determinant Hessian-Jacobi-PoinearS. 

Let  us examine the new mean motions holding true throughout the resulting 

periodical (secular) movement. These are easily found by mere analysis of the 

infinitesimal substitution in question. 

As we have replaced the original time t by 

t = (1 4. ~r 4. vq)T and y~ by y~ = yi 4. noki 4. n~ (36) 
l + v ~  

we have to carry out the quadratures of the integral equations in such a way that  

the new variables y~. may yield, at the beginning and at the close of the period, 

deviations which disappear entirely, save for the finite amount of the full angles 

2 z = 360 ~ 

Every mean movement, even one produced artificially through the introduction 

of the new dependent (primed) variables y~, will be preserved by our suitable choice 

o f ' t he  starting conditions for the periodic or secular solutions. 

In the case fixed above our integral equations give the result 

r 7/:' t ~ - -  7ff Yi = Mo + ~r-- + nT  4. (nokl 4. nol l )v  4- ~21 Mo + n + 

n + kl no + 11 n'o 
-4- 

( 1 4 . z ) ( 1  4 .v  ~) 

y~ = Mo 4. n 'T  + (nok3 4. n'ola)~: + Ya 

k2no + 12n~ 
4. 

(1 + z)(1 + O) 

= i ~  4. 
n'  + nok3 +'n~13 

4. 
(1 + x ) ( 1  + ~) 

t + Yl 4. (~1 = 0),  

(49) 

t + Y2 + (~2 = 0),  

t + Y3 + (F3 = 0),  
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Returning now to the original unprimed variables by subtraction of 

t 
k i ~ o  + lino 

. . . . . . . .  t 

1 + v~ 

we immediately find for the mean movenlents of the disturbed resulting motion 

�9 f 
n -}- k l  no + 11 no ]c 1 n o f- [1 no 

in M + a - - n ' , / ~  = -(1--+~;j-(1--~ O) - -  1 + 0 = 

in  - - ~  b- ~ ,  f2 = 
(~ + ~)(1 + o) 1 + # 

i n  M " ~  
n" + k3 no + la n~ ka no + 13 no 

/~ = ~ i  + - ~ ) ( i ~  o)  . . . . . . .  i + ~ = 

(1 + o)(1 + ~) 

(k2 no + 12 n{)) 
(1 + o)(1 + ~) 

(50) 
! �9 

n _ ~ ( k a n  o + 1 3 n o ) .  

(1 + 0 ) ( 1  + ~ )  (1 + 0 ) ( 1  + z )  

( 1 +  v ~)(1 + a )  

It appears most important to known the accurate amounts of these angular 

velocities thoroughly, whose origin has been forced by the introduction of our new 

(primed) variables and by annulling of the integral conditions ~i =~o.i = 0. 

And indeed these quantities always figure in the development of the disturbing 

function being combined with the old variables M + ~ - - ~ ' ,  - - n  + ~', M'.  In this 

way the explicit t ime appears inside the trigonometric terms see (39) and we have 

to take special care tha t  the periodicity of the movement is not spoiled. 

Let  us pass to the study of the individual terms of the disturbing function 

thus approaching the next  task, namely that  reekening of the quadratures of our 

integral equations term by term. As previously we have to examine the terms of 

three categories. The Hamiltonian function has the form: 23), 24), 5), pp. 14--16. 

F 1 = I~2~A cos ( i l y l  + i2y2 + i3y3), (39) 

7 2  Pt f)tt 2 2 " " 
FO __ tC alp1 k 32f12 k~ no + 11 n'o k2 no + 12 n'o ka no + la n'o 

1 + ~  xl  l + ~ X 2 - - - ] : U ~  ...... x3, (37) 

the coefficients A being the functions exclusively of the scalar elements xk: 

1. Simple short periodic terms of the argument 

il Yl + i2 Y2 + ia Ya 

Yl = n t  + c + ~ r - - : r ' ,  Y2 = - - a t  + ~ ' ,  Y3 = n ' t  + c', c = M o ,  c' = M'o.  

After introducing the new primed variables and the distorted time z we immediately 

state the false appearance of explicit t ime r (or t) obtaining for t = (1 + ~)(1 + O)r  

in the argument in question 
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+ /lno ' '~'2 no + l~ n~) t 
/ lY l  + ~'2Y2 ~- i3Y3 ~lYl 4- 72Y2 + '~3Y3--~:1 klTt0 , = " ' ' ' " ' -- t - -  7' 2 @ 

' 1 + t $  ~ 1 + 0  

kano + 
lan[~t = i l n T  i l (klno + l~n~)z~ ~ (310 + z - n '  + yl)i~ + i~F~ + 

+ ~,a l + v a 

+ -- i2(k2no ~ 12n~))~r + ( - - ,n  + ~' + r J i 2  + i~v2 + i a n ' v - -  (35) 

- -  ia (ka no + la n;) z ~ + (M;  + r3) ia + % ~a. 

The false appearance of time must remain compatible with the total  period 

of the motion, which circumstance gives rise to three conditions 

T1 _~ 27~pr, _ 2zer(p + q), T = Tx(1 + 0)(1 + ~) 27~pr, (1 + t9)(1 + ~) = 
no n o //o 

: 2~(~ < q) (I + ~)(I + o). (51) 

no 

/1T  = • 2 ~ s l ,  /2T  = _+ 2z~s2, /aT  = +_ 27~sa 

sk representing integral numbers. 

These conditions expressed by means of our /k  fixed above (50) lead to the result: 

/1 T = 

/ 2 T =  +_ 2 ~ s 2 -  

n - -  Z(klno + lln'o) 2~ pr (1  + z ) ( ]  + tg) = [- 27/'81 = 27g(p -~- q) T + 
(I+~)(i+o) n '  - - 

(P ~- q)~'l @ P l l  

Z(]C 2n 0 + 12n~) 2 
(1 + ~ ) ( 1  +~9) n 7 p r ( 1  + z ) ( 1  + 0 )  = 

, 2 ~ (p + q) r ~ (k2 no + 12 no) 2:~p?" (k 2n0 + [2no);4 . . . . . .  ' 

this leads to 

__ 82 Tt/ 82 ~t 82 
= + x-2no +  2no - + q) k2no + 12no (52) 

/3 T = _ + 2 z s a =  
n'  - -  ~r (ka no + la n'o) 2 

(1 + ~ ) ( 1  + O) n ~ p r ( l +  ~ ) ( ~  + O) = 

= 2 z p r  +_ 2~  
(p + q )  ka + P l 3  
( p + q )  k 2 + p l e  s2. 

Hence if all sk are to remain integral numbers we find beside the condition 

= -T 82 
r [(p + q)k2 + p /2] '  

( 5 2 )  
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the necessity tha t  
(p + q)k2 + p 1~ - + s2, (53) 

or its divisor. 

This s ta tement  enables us to succeed in carrying out all quadratures of the 

shortperiodic te rms in question. And indeed we have proved tha t  all arguments  

of the form 

1 ! n0 t n~ t, . . . . . .  kl no + ' lee no + 12 n~ ]~3 no + 13 
il Yl ~- ~'2 Y2 § ia Y3 : ~1 Yl § ~e Y2 + ~3 Y 3 -  ] § ~ 1 § v ~ t 1 § 

(35) 
give the same result save for the whole number  of 2 n  ~ 360 ~ 

The quadrature  changes only every part icular  cos into sin and gives the same 
v s i n  c o s  

value in the upper  as well as in the lower limit, tha t  is: at  the s tar t  and at  the 

close of the whole period. These two amounts  being of opposite signs cancel mutua l ly  

and give zero. We immediately  conclude from tha t :  

1. The short periodic te rms cannot contribute anything to the final value of the 

coefficients in the implicit functions in question. 

2. In  the second place let us exanfine the critical terms in the development of 

the disturbing function F. These are terms which become independent of t ime by  

n _ p-~-q p , q  signifying the supposed commensurabil i ty of the mean movements  n '  p ' 

integral numbers.  In  order to isolate these terms we have to select all il, i2, ia for 

which il = - - s p ,  i2 = sq, /3 = s (p + q), s signifying integral numbers both  positive 

and negative 7 a). 

I t  is necessary to ascertain tha t  these critical te rms really exist, for only their  

existence secures the possibility of solving the integral equations and satisfying 

them by  means of real s tar t ing increments fli, yi. Thus for example the case of 

the non existence of the aforesaid terms, the sinus terms in our developments 

disappear, and the de terminant  of the integral equations contains a subdeterminant  

of a zero amount.  

In short, in case the critical terms are entirely missing, every proof of any 

real existence of the integrals in question would become meaningless. 

The argument  of these part icular  te rms of the disturbing function leads to 

iX YX + i2 Y2 + ia Ya = S ~ = S { (p + q) M ' - -  p M - -  (p + q) (~z-- 7e') } = s { - -  p Yl § q Yu § (P § q) Y3 }. 
(54) 

When passing from the original (31) to the pr imed angular-variables (35) we get 

new right-hand sides which show the false explicit t ime inside the tr igonometric te rms 
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Y l  = M + ~ - - ~ "  = y ' i - - k i n o ( 1  + x ) ~ - -  lin~)(1 + ~r = y ' i - - n ' (  (1 + x)(1 § ~)T, 

y2 = - - 7 ~  § yc' y.~--/ten0 (1 + x ) v - -  l . . . .  = ~2~0(1 § ~ )T  = y 2 - - n 2  (1 § ~ ) ( 1  § vQ) V, 

Ya = M "  = y ' a - - k a n o ( 1  + x)~--lan~)(1 + X)v = y'a--n'a'(1 + 7r + v~)v 

n~' = /~'i no § ll n ~ ,, k2 no + 12 no ,, ka no + 13 no 
l + v  ~ ' ~ -  l + v ~  , n 3 =  - - l+v~  " 

(55) 

The primed coordinates y~ are finally obtained in the form 

y'l = Mo + z l - - z '  § n T  + (k ino  + lin'o)~ + 7i + ~1, 

P ! ! 

Y2 = - - ~  + Jr § (k2no + 12no)~ + 72 + ~2, 

t , t 

Ya = Mo + n 'T  § (kano + /3no) ~ § ~'a + ~v3. 

(56) 

The functions ~v i = ~v 2 = ~v 3 = 0 as final deviations of the s tar t ing configuration 

become zero, if only the conditional integral equations for the increments x, v ~, ill, 7i 

turn  out to be solvable. In  this case clearly the whole movement  is governed by  

the same conditions at  the s tar t  as well as towards the close of the period T = 

= Ti (1  + x)(1 + ~) and becomes periodic. 

Now our principal aim is so to prove the solubility of the conditions (48) or, 

which is the same thing, to find out a suitable non-disappearing H e s s i a n - - J a c o b i - -  

Poincar6. 

For  this purpose it first appears  necessary to make sure tha t  all the factors 

of the apparent ly  explicit t ime mentioned above disappear in (36) entirely from the 

critical arguments,  s ~ in question. And indeed it is only in this case tha t  a cor- 

responding critical t e rm changes from a tr igonometrical  t e rm to be integrated into 

a simple constant  h, whose integration is carried out by  adjoining the factor  ~ and 

inserting the upper and lower limit, namely h T - - h . O  = h T  etc. Indeed it is only 

through the existence of these constant  terms, the possibility of non-disappearing 

elements of the determinant ,  and the solution of the conditional equations for 

~, v~, fli, ~'~ can be guaranteed. I t  is only in this way the existence of a not dis- 

appearing Hessian can be reached. 

Now the coefficients of the t ime v become annulled by  the choice of the s tar t ing 

increments x, vq, fl~, ?i, and by annulment  of the ~1, ~2, ~a as a consequence of the 

supposed commensurabili t ies of ] i , /2 , / a .  

When constructing the critical a rgument  we have to pay  special a t tent ion to 

the cancelling out of the apparent ly  explicit t ime-terms contained in the addit ive par t .  

This means we must  choose all a rb i t r a ry  numbers  k~, k2, ks, Ix, l~, 13 in such a 

4 -  523804. Acta mathematica. 88. Imprim6 le 27 octobre 1952. 
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way tha t  the whole factor of ~ T disappears. We have to build up the whole argument 

t 
containing the artificially appearing explicit time ~ . . . . .  

(1 + ~)(1 + ~) 

With this in view we insert the expressions y~ in (34), (35) into the original coordi- 

nates yi (56), s~. Then all terms not containing ~T namely 

in Yl, + P (klnO + llnO) "c --  p (//1 no § [1no) r, 

in Ye, § q (k2 no + 12 nO) v - -  q (//2 no + 12 nO) T, 

in Y3, + (P + q) (//3 no + la nO) v --  (P + q) (ka no +13 nO) r, 

cancel out, the ~f~ likewise containing the factors ~ n ,  z n "  disappear according to the 

supposed fulfilment of our integral equations (42), (43), (48) and the explicit time expres- 

sions --  ( k i n  o + ll nO) u v, - -  (~~2no + 12nO) ~r ~, ~- (kazoo + la nO) ~ v  remain within Yl, Y~, Y3 

respectively. Thus we have to pay specia ! attention that  these parts disappear 

through a suitable choice of the hitherto free integer nmnbers //~, k2, k3, l~, l~, la 

which appear only in the combination 

s ~  = s ( - - p y  1 + qY2 + (P + q)Ya)--{--P(klno + /1nO) + q(//2no + /2no) + 

+ (p § q)(t:3no + l~no)} ~ T s  
which leads to the simple condition 

no {P]Cl--q/~:2--(P + q)//3} + n ' o { p l l - - q l 2  - (P § q)13} = 0 

or by means of our supposed commensurability h o p - - n o ( p  + q), 

(p + q) p t"1 - -  (p + q) q//2 - -  (p + q)~ k~ + ~211 - -  ~ q 12 - -  ~ (p + q) I3 ~ 0 (57) 

and this fundamental condition is to be supplemented by our previous result (53): 

( p + q ) k 2 + p / 2 =  --+ 1, + s ~ .  (5s) 

Let  as state two particular cases, for the sake of an instructive example: 

1) k l = k 2  = k a = 1 3 = 0 ,  1 1 = 1 2 = 1 ,  p = q = l ,  n~=n0 ,  n,2=nO, n ~ = 0 .  

2) 1 1 = 1 2 = - - 1 ,  Ia= ], //1= 1, k•=//a = 0 ,  n i : - n o  no, n.z --no, h a = n 0 .  

On summing up, we have got as yet two diophantine equations for the admissible 

choice of our six arbitrary numbers kl, k2, k~, 11, 12, 13 both positive and negative, 

which give ,the structure o f  a suitable rotating system of coordinates. The resulting 

rotational velocities are obtained in the form 
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n ~ ( l q n o  + l:n;) 
]1 = (1 -i- ~) (] + N) i l  -,'--~)-(1-+ ;@' /2 -- 

51 

(1 + # ) ( i  + s ) '  (50) 

n '  s (lea no + 13 n;) 
= i i  + + 

In finding the two diophantine relations (57), (58) we only carry out two guiding 

principal rules : 

(a) tha t  the 

separately, which 

critical argument, 

final deviations of the coordinates 91, 92, 93, ~I, ~2, ~3, disappear 

conveys the disappearance of the time increment of the whole 

(b) we destroy the appearance of the explicit time by a suitable choice of the 

arbi t rary integral numbers both positive and negative ki, li, i - 1, 2, 3. 

I t  is only in this manner tha t  terms of the second category (2) turn out to be 

really secular, to be constant, without a trigonometric, periodical par t  ready for an 

integration. 

I t  is just these terms which constitute the real, non-disappearing coefficients of 

the conditional equations, and only they maintain the existence of a new, non- 

disappearing Hessian--Jacobi--Poincard determinant,  thus entirely avoiding the dif- 

ficulty which for so many years baffled all the efforts of Poineard and his disciples. 

3. Now let us pass to the third category of critical terms of argument (see Ken:- 

pinski 7 a)) 

~" = ( p  + q) M '  - -  p M - -  p ( ~  - -  :re') - - -  p Yl  + (P + q)  Y3 .  (59) 

One may be inclined to t ry  to annul in a similar manner the false par t  of 

explicit t ime clearly appearing even in the latter. And, indeed, if we succeeded in 

this endeavour, these terms would equally yield only further  constant (secular) 

critical parts as in no. 2. ]gut it can be shown that  this is impossible. When super- 

imposing a similar condition as in no. 2 with this view we easily get a further 

diophantine equation 

(p + q) p]c: - -  (p + q)2 k3 + p2 l: - -  (p + q) p 13 - 0. (60) 

But unfortunately we can never satisfy both of these conditions (57), (60) without 

spoiling and annulling our chief purpose, namely the newly arising mean movement.  

And in fact when substracting both of the last conditions from each other, we are led 

to the relation 
k2 p - - ( p + q )  qk2--12pq~:0, or 
12 p + q (61) 

and k2 no + 12 n~ = 0, 
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which clearly expresses the disappearance of the whole mean movement aimed 

at. Thus only the first argument of the structure ~s leads to a really critical, 

constant, secular terms, While s~ '  remains periodical even after the quadrature. 

Such a periodical trigonometric term naturally shows a long period, being affected 

moreover by a small divisor, as a result of the integration of the original periodic 

term in question. 

In our conditional integral equations (42), (48) these terms disappear entirely, con- 

tributing nothing to the real elements of our determinant aimed at. They appear 

only in the final periodical development of the coordinates, causing the well-known 

long periodical perturbations of the classical theory. 

4. An almost identical result is obtained for the terms of the form ml~ + me ~', 

ml, m2 being' fixed particular integral numbers. They c'ontribute in no way to the 

constant coefficients of the conditional integral equations (42), but unlike the real 

critical terms they appear only in the periodical part of the final development as 

terms of long period. 

It is to be expressly noted that the wide freedom of choice among the admissible 

solutions of the two diophantine equations (57), (58) allows a great variety of corre- 

sponding periodic orbits. 

Last but not least, instead of s ~ we can just as well choose the diophantine 

equation (60), thus taking s~' or even ml~ + m2~' instead of s~ for real critical, 

constant terms. Then just the remaining possible arguments s~ and ml~" + m2~; 

resp. s ~, s ~' yield ~nly long-periodic terms. In the third eventuality, the conditional 

diophantine equation is naturaly to be suitably modified as 

ml{(P +q) [~hP- -k2q- -L '3 (p  +q) ]  + i O [ l l p - - 1 2 q - - l a ( p  +q)]} 

-~- ~Tt 2 {(~9 @ q) [.]c l p - t '  3(p + q)] @ P [/lp --13 (p ~- q)]/~- O. 
(62) 

It is to be borne in mind that one argument only can always remain constant 

and really critical, while the other two kinds of arguments become long-periodicM. 

5. Finally let us consider the secular terms within the meaning of the classics. 

These terms are formed 

(a) by really constant terms (without trigonometrical argument) whose structure 

is built up exclusively of scalar elements a, e, a', e'. 

They are the only accessory terms, contributing to the constant coefficients of 

the conditional integral equations. As a rule one includes them in the whole series of 

critical terms ~s. 
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But the question arises, whether their existence alone may be sufficient for 

proving the existence of the new periodic orbits in question. 

However it can easily be seen that  such a proof without the ~ terms never 

can be given. 

And indeed the derivation for the sake of obtaining the necessary coefficients 

0 2 F 0 2 F 
- -  O .  

OxiOyk = OykOyi  

as the correspor/ding cosinus and sinus terms, according to our supposition, do not 

contain the necessary y~ at all, always yield zero. This makes the Jacobian show 

a subdeterminant 
02 F 02 F ] 

2 ~ 0 0 0 Oy~ OylOY2 = 0 

02 F 02 F 
0 0 0 Oyl~y--  2 ' Oy~ 

disappearing identically - -  see p. 45, and (48) of this paper. 

Thus the same calamity of which Poincar6 was complaining 1. c. occurs in 

another way M6t. nouv. I. p. 68, 119, 133. 

(b) by secular terms of arguments ee' cos ( n - - n ' ) .  

I t  is easy to see that  these terms can only lead to new long-periodical terms 

of the categories 3 and 4. 

I t  is clear tha t  the argument can be writ ten down as: 

Y2 = - - ~  + z '  = Yz + F2- -  k~no(1 + u)T--/2vt~(1 + ~)~ 

and no possibility remains save exceptionally to annul or get rid of the false time 

T z, by a suitable choice of the numbers k2, I2, as we have already disposed of 

these numbers by solving our diophantine equations (57), (58) and abolishing the false 

parts containing the time ~ in the terms of 2. p. 48. 

Naturally the result just explained concerned with the various terms of the 

categories 1, 2, 3, 4, and 5, has given merely the final contribution to the non- 

disappearing coefficients of our conditional integral equations (42), (43), (48). 

As to the formation of the real periodical developments of the integrals, this 

is obtained without inserting both integral limits. 

For  this purpose only the critical ~ terms no. 4 prove to be constant,  whereas 

all the other terms of categories 1, 3, 4, and 5 lead to short periodical or else to 
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secular long-periodical terms 3, 4, and 5. But  they contribute nothing at all to the 

coefficients of our integral equations. 

On summing up we must bear in mind that  for the construction of real, non- 

disappearing elements of the determinant  in question solely the terms of the second 

category are to be respected. 

Now let us proceed to our main task, the solution of the conditional integral 

equations which determine the starting increments of the initial non-disturbed 

Keplerian elements xl, x2, xa, y~, y~, y.~ namely ill, fi2,/3a, 71, 72, 7a, n, v~- 

All through this intricate consideration, we must be clearly aware of the large 

freedom by which the supernumerary unknown quantities can always be disposed 

of. And indeed the number of the unknown is always greater than that  of the indepen- 

dent equations. 

Moreover the coefficients of the left-hand sides of our conditional integral 

equations (42), (43) are built up entirely of scalar elements, which constitute constant 

starting p a r a m e t e r s, otherwise freely eligible. 

In our planetary case let us consider the commensurabili ty of the mean move- 

n p + q  
ments , which par t ly  fixes th~ Keplerian starting axes of the two ellipses 

n'  ~0 

a, e, a' e'. Then we are free to choose among the increments ill, f12, flu, 71, Y2, Ya, ~, v~ 

and the parameters e, e' which form the aforesaid coefficients of the disturbing 

function and the integral nmnbers both positive and negative kl, k2, ka, 11,/g, la, r, 

81~ S2~ 83. 

So for example after disposing of s~ = 1, we have 

(p +q) k 2 + p I 2 =  1 

1 8 2 /~ 0 I F  1 (r et)] (52) 

r r { (p  + q) l~.2 + ply} . . . . .  ' k2 no + 12 no 0 x2 

The two starting excentricities can always be chosen so as to satisfy the last 

relation, whose left-hand side appears to be fixed and given. 

Then the conditional integral equations (48) may be rewritten ia the final 

form after leaving out in the second, forth and fifth equation the constant 

factor H : 
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02 Fo 0 [F1] 
O F~ z~ - -  /31 - -  + 0 + 0 + 0 + 0 + 0 - - #  q- 
0 xl 0 x~ -a77 

+ n (1 + O) + k I n o + 11 *t~ 

k2 no + 12 n~) 

0 2 [F1] 0 2 [F1] 0 2 [F1] 0 [F2] 
/31 ~ - X ;  /32 0 X2 2 /~3 0 X 2 0 X 3 # 0 X 2 - 0  

OFov~ 02Fo 0[F1] n ' ( l + v  ~) + kano+lan;  
O Xa + 0 + O- - f l u  O x~ - -  # C) xa - + lc2 no +12 n'o 

0 ~ [F1] 0 ~ [F~] 
Yl Oy~ + y2 0 Yl 0 Y2 

03 [~1] ~_ # 0 [ F 2 ]  

+ Y30ylOy a - -0~  

0 2 IF1] 0 2 IF1] 0 IF2] 02[F1] +72  +Ya + #  
71 0 Yl 0 Y2 0 y~ 0 Y2 0 Ya - 0 ~ f  

0 [~'1] 
# - o T j  + . . . .  o 

(63) 

O [F~] 
zTO  + . . . .  o 

+ ' ' - = 0  

+ ' ' ' = 0 .  

This last form of the conditions gives a very clear survey of the coefficients 

of all unknown quantities, thereby showing the structure of elements of the 

fundamental Hessian--Jaeobi--Poincar6. We have shortened the second of them 

,, 0 IF1] and dividing the whole equation by #. by making ~tse of the relation ~r O x2 

Our chief purpose is to survey especially all coefficients of the first powers of the 

Cauchy development. 

Thus we have five conditions for seven unknowns. The last equation namely 

02 [F1] 02 [F1] 0 [F2] 0 2[F1] + Y2 - -  + ~'3 - -  + + 0 
21 OylOy~ a O y 2 0 y  3 Oy2a ~ # . . . .  

can be suppressed, through its being a consequence of the two foregoing, which 

circumstance has been shown above p. 36, (19) by the existence of the energy integral. 

As both the coefficients 

y2  pr 02 Fo _ 3 ~ a t  02 Fo 3 k2 a~' 
- - 0  - ___+_ /3;5 X3 X3 

are distinct from zero two of the seven unknown quantities ~, ill, f12, flu, yl, Y2, Ya 

are freely eligible. And if we choose for example /31 = 0, 7 a -  0 we finally obtain 

five equations for five unknowns t~,/32,/3a, Yl, y2, showing a functional determinant 

clearly distinct from zero. 
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CHAPTER III: 

On the Problem of  the Moon.  

This second general ease has led us very far from our original satellite problem. 

Still I was obliged to explain it most thoroughly as I was aiming to expound the 

whole subject of an "operat ion"  clearly and step by step. See p. 2 of this paper. 

After these explanatory remarks let us re turn to our Moon-problem (see previous 

p. 29). I t  can easily be shown that ,  to reach a complete solution, we have only to 

apply the same principles, namely a similar "operat ion"  to this particular case of 

commensurabili ty of the mean movements n = n ' .  

In order to approach this most interesting question with success, we shalI s tar t  

with the equations of the ordinary planetary problem which we formulated and 

adjusted near the end of the previous First  Par t  w 3, (37). 

In the right-hand sides the equations (37), First Part ,  contain the development 

intended for dealing with two planetary Keplerian ellipses round the Sun. 

The path-ellipse of the disturbing Ear th  appears reduced to a circular orbit 

(namely an ellipse of zero excentricity) while the Moon-Planet describes a second 

ellipse of small exeentrieity (1/400). The speed of movement along both these ellipses 

is presumed to be the same for the two bodies. 

When introducir~g a rotating system of the velocity just mentioned, we im- 

mediately obtain in this rotating system a fixed point, marking the position of the 

Ear th  and a small closed curve round it consti tuting the path  of our Moon.. In 

this manner we have succeeded in changing the Moon-Planet into a satellite. 

Unfor tunate ly  this "Moon" revolves very slowly round the Earth,  as its centre 

(not its focus), taking a whole year for its circuit round the Earth.  And our chief 

purpose is to bring about  a new mean movement  quickening the slowly turning satellite 

into our real Moon, tha t  appears twelve times as quick. 

With this in view and copying the previous ease of two planets pp. 39, 40 I apply 

the same operation and put  forward the following canonical variables (35), p. 21: 

x'~ = A = L - - H ,  y'l = 31 ,  
t t 

x2 = G, y~ = D, (64) 

x a = H ,  y a = M - - M ' +  , 

I drop the dashes x~- = xi and t ry  to annul the expression of the functional increments 

~i, yJ~ thereby starting with the original values for ,u > O. 
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fflO -[- fll + ~91, 

Go -r fi2 + q~z, 

Ho + fia + %, 

M _t_ ~1 _t_/fl, 

+ 9+2 + ~fz, 

--n't + M +  .0--M'+Ta +V3, 

(65) 

which means adding to the Fo of + 2n'H. 

The orbits of our two planets are fixed by the canonical elements found out 

in the previous First Par t  p. 21, (35). 

The equations of movement are this time given by:  

dxi OF dyi OF 
d t -  Oyi dt Oxi i = 1, 2, 3, 

F = - - / I A - - i ~ a - - S t l  + ~ + v z  + 2 n ' H ,  

T, 2 

a,+. 1, (66) 

energy, see p. 16, (24). 

A, ~, r '  signifying the distances between resp. Ear th  and Moon, Sun and Moon, 

E a r t h a n d  Sun. At the start  the two planets, Ear th  and Moon, are describing two 

Keplerian undisturbed paths # = 0. 

The period of their movement appears to be 

2 n p  n p + q 
Ti ; ~ - '  n'  p 

Ti = rT~.  

1, q=-0 .  
(67) 

When as usual displacing the original starting positions of the elements by 

small amounts fi~, fi2, f13, Y~, Y2, ~a to be determined, we shall at the same time t ry  

to distort the independent variable t into 

t = (1 + z)'r.  (68) 

This means we prolong algebraically the period into 

T =  (1 + ~)T1. (69) 

Through this change of variables the equations of movement are converted into:  

or else, 

OF dxi = (1 + u) OF dyi (1 + ~)Oxxi' 

dq~__ ( 1 +  OF d~f~ __ _ ( l  + z) OF 
d r  ~ ) 5 yu ~ ' tiT: O ld '  

i = 1, 2, 3. 

(70) 
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Evidently the disturbed and displaced movement remains periodic only in case 

these very complicated functions ~vi, F2, q3, ~Vl, ~v2, ~fa disappear entirely towards the 

close of the whole prolonged period. 

The differential equations (51) can immediately be converted into the integral 

equations 

T~ Ti T1 

~1=(1+~) f 0 F 1 ,  ~-~=(l+~)f O F l d v ,  ~vA=(l+z)f 0F1 
# 0~j1 aV, # 0 Y2 # 0 Ya 

0 0 0 

Ti T1 

f dv w ~ = n z + ( l + z )  :r (A, G, H) 
0 

OF1  , 
+ . . . .  ~ (1 + ~) ~ ~ a~, 

0 

~)2 
fl 0 2 Fo 0 2 Fo 

~ Ox~ O ~  ~ ~ 

T1 
02Fo (1 § ~) i OF1 

~ o ~ o x~ - ~ TI J b x~x~ d ~ 
0 

02//'o 
~oa = - -  n '  ~ - -  f l i  0 x l  0 x3  

T1 
02Fo 02Fo (1 § E) ( O F  1 

0 

d~, 

( 7 1 )  
§ .-. 

+ ... 

These do not show the false time mentioned above, and we are led to new 

periodical satellite orbits analogous to the well-known restreint e' = 0, asteroidal case 

of Schwarzschild--Poincar6 (I sorte), see Charlier, Mech. d. ttimmels II. p. 251, in our 

foregoing analysis Chapter I. (This time three degrees of freedom.) Now although these 

orbits have the advantage of movable-nodes they do not satisfy our claims to ascertain 

orbits wherein the satellite moves round with the desirable speed of our real Moon, 

and indeed our satellite has not yet changed the length of its period of revolution. 

Should there be any change the period always remains the same as the slow period 
7bt~ 

of the nodes 

n' t n' 
+ n ' t  = - -  t. (72) - - n ' ~ + n ' t  1 + ~  1 + ~  

Moreover the existence of this new genus of satellite orbits appears limited by 

the condition 
0 [Fi (s, e', t)] ~_ 0. (73) 

0 x~ 

But in order to obtain very many classes of particular integrals suitable for 

the use of celestial mechanics and Lunar theory, it would appear necessary to pass 
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to another set of variables, combined with a more general change of the inde- 

pendent time t. 

Returning again to a simple copy of the general case treated above Chapter II, 

let us imagine the same movement many times (r) repeated we shall this time put 

t - ( t  + (1 + #) (1 + 

The original starting elements for # = 0, are: 

A, G, H, M, 6J, - - n ' t  + M - - M '  + ~,  (74) 

and the same elements for /t > 0 are: 

A + fll + ~1, n ~ + Mo + 71 + ~vl 

G + f12 + ~2, ~ + Y~ + vp~., (75) 

H + f l a + ~ a ,  - - n ' T §  ~ + y a + ~ v a .  

k 2 ( ~  Q cos ~) (76) F = ~- + 2 H n '  + t~k 2 a, a , 

dxi OF 
xl = A = L - - H ,  Yl = M, d t 0 y~' i = 1, 2, 3. 

x2 = G ,  Y2  = (o,  

y z = H ,  y a = - - n ' t + M - - M ' + f 2 ,  dy.__~i= OF. 
dt  Ox~ 

We are studying the ease of the commensurability of the mean movement 

n p + q  
, q = O , p = l .  

The period of the movement in the two undisturbed ellipses is 

2 ~ P r = r T ~ ,  T = ( I + ~ ) ( l + @ ) ( 1 + ~ ] ) T 1 .  (77) T1 - n '  

When passing to the disturbed case of # > 0, we find the starting amounts of 

variables by means of the following integral equations 

~vl=0= 

~2=-0 = 

0 2 F o 

,~ 0 ~Fo "~ 0 ~Fo 

02 Fo 02 Fo 

0 2 Fo 
0 0 x3 

T1 

02Fo  # f OFld 
/~3 0 X 1 0 X 3 T 1 0 x 1 T § 

o 
T~ 

02 Fo # f OF1 - 
~a Ox20xa T1 0 x2 

o 

T1 

02 Fo # f OF1 - 

o 

(TS) 
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# 

T1 T1 T1 TI 
f ( 02F1 f 0 2 F 1  

f (~2(1 02F1 (/r  -~ ~3. Ox30Y 1 ([r !- ~1 I 0712 
- -  0 = [~l.] OXlOY 1 (l~V _L f12 -OX20Y 2 

0 0 0 0 
T~ T~, T~ 

f 02F1 f 02F1 ['OF2 
~- V2 OylOY~22 d r  -}- "~'3 OylOy-- 3 d r  ~ it ] Oy 1 d r  -~ -..  

0 0 0 
TI 

# J Ox~OY2 
0 

T1 T1 T1 fO2F1 ~ /" 02~1 ; 02F1 
. . . . .  ~ r  @-~2 ?x2~Y ~ ~ r  ~ /~3.1 0~3-~  2 ~T @ ~21 OylOy  2 

0 0 0 
T, T~ T, 
I02/~1 f O 2 F l  (OF2 

+ ~ = J o ~ l  d r + r ~  ov=ov~ d r + ~ .  b~= dry . - .  
0 0 0 

TI T1 T1 T1 

dr+ 

- - d r ~ -  

Cf 3 [* 02 F 1 f 02 F 1 f 02 tI~ 1 f 02 t~ 1 
O=fl~JOxlOy3 dr+fl~ O~oy=dr+fi3jOx3Oy3dr+;~JOy~y3 dr+ 

0 0 O 0 
TI T~ TI 
f 02F1 f 0 2 / ~ 1  f 0 F  2 

0 0 0 

These show the same determinant  as before p. 58. 

In  order to avoid this fatal  inconvenience much complMned of by t t .  Poincar6, 

we must  t ry  to give rise to new mean motions big and small enough, as the case 

m a y  be, to satisfy , a t  claims concerning the real Moon. 

Moreover we must  t ry  to isolate the increased mean angular velocity in M and 

prove tha t  its relatively large amount  12n '  is a t ta inable  by  our parametricM means. 

For  this purpose I first introduce other angular variables by  put t ing 

n't rp 

Yl = M+ " - (1 + ~) (1 + ~) 
n't ,t 

Y2= ~ +  (1 + 7)(1 + ~) 
,, n '  t 

y3 = M - - M '  + t ) -  (1 + V) (1 + ~)' 

(79) 

at  the same t ime changing the independent t into r, 

t = (1 + ~) (1 + ~) (1 + 7) r. (s0) 

This only means introducing explicit t ime within the trigonometric arguments of the 

development  of F. And as a mat te r  of fact we have to replace every Yk by  y~' 
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n' t  
Yl = Yl' - -  = yi '  - -  n '  (1 + ~]) 72, (~ + 0)(1 + ~) 

n ' t  
u2 = y~' - i i  :F~i ~i + ~ )  = u~' - ~' (1 + ~) 72, (8~) 

n~t 
Y~ = Y;' + ( f +  v) (~  + ~) = y~' + ~' (~ + ~) 72. 

We have then to take special care tha t  the false explicit t ime remains compatible 

with the periodicity of the resulting disturbed periodic solution (see the analysis of 

terms of the category 1, p. 47). 

For this purpose we have only to recall the explicit development of the disturbing 

function, proved in detail for the present satellite purpose in the previous First Par t  w 4. 

F = F 0 + HF", F "  - l~2~ A cos ~o" = k 2 ~  A cos (il Yl + i2 Y2 + i8 Y3), 
(82) 

{o" = i~y~ + ~&v',; + ~;ay'a'- - i~n ' (1 + rl)72- i2n'(1 + a)72 + ian '(1 + v~)72 

compare (55) 

dxi " OF OF d y ~  (l + z) (l + O) (l + ~) , i = 1 , 2 , 3 .  (83) 
d72 

Further,  for preserving of the canonical form of the starting equations of motion, 

the last, change of variables requires adding the following three complementary terms 

to the original function F0 
tX ,, . . . .  n '  x~ _ n '  x2 n 8 

~o = ~o - (~ + o ) (~  + ~) i i  ; ~i  ( i +  . )  + (~ + v) (~ + ~)'  
k2 (84) 

F o = ~ + n ' x  a.  

Now we shall t ry  to annul the functional expressions ~vl, 9)2, 9%, ~Pl, ~g2, ~3 by 

applying suitable parameters ~, ~], 0 introduced through the time changing substitution 

t = (1 + ~) (1 + ~) (1 + ~) 72. (8o) 

This time the starting values  of the elements appear to be 

" tt tl 
X 1 = A @ f l l  @ ~21, Y l  = M o  -I- Y l  -~- Wl ~- n72 @ nt72 -}- 

x2 = a + t 3 2  + ~2,  Y 2 ' =  ~ + ) J 2  + F 2 '  + n ' 7 2  ( 8 5 )  

xa - H + fia + ~va, y 's  M o - -  M'o + ~o + Ya + ~fi~ + n72- -n '  72--n' 72 
tp 

thereby involving the small increments such as n' % n' ~, - - n ' O  resp. into ~o[', ~v~', ~o8. 

Our chief purpose is to destroy the complicated functions ~i, ~o~' giving the 

functional displacement, final deviation, thereby defining the suitable starting amounts 

of the explicit ~unctions xi (rid, yi (7~). 
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The 

integral equations are easily obtained as follows _F = F~)' + #Fx  

" 0_P 
dq_i= ( l + x ) ( l §  dv i  _ ( l + x ) ( l + v q ) ( l §  
d r  yi d T 

From these equations the final deviations at the end of 

T = ( l + x ) ( l + v ~ ) ( l §  are found to be: 

V i ' = 0  = n ( x +  v ~ §  ~ ) T I +  n ' ~ T  i -  
Tx Ti Tt T! 

- ~ j  Ox~ O~Ox2~r-'~J ~Ox~ ~r 
0 0 0 0 

tt 
V2 = 0 = + n'z9 T 1 - -  

Ti 

differential equations for ~v~', Fi as well as their inversion in the form of 

i = 1 , 2 , 3 .  (s6) 

the total period 

0 

~,'~' = 0 = - -  n '  v~ T i  - -  

T1 T t  TI T t  

- - f l i . f  O2-F~ " - - f12 . (  02F~ d T - - f l 3 . (  0 2 F ~  f O F l d  " 
�9 OXl O~x3 aT Ox20xa Ox~ -Oxa T + 

0 0 0 0 

T1 T1 T I  

t" f 02/~1 f ~  dr+73 o~F~ dr+~3 - - e r +  0 I 

~]1 d 0 y~ 0 Yi 0 y~ 0 Yi 0 Y3 # 
0 0 0 

2, T~ 

f oF1 f oF~ + ~i-dT+~ ~dr+ . . .  
0 0 

T1 T1 T1 
--  : f 02-F1 ( 0 2 F 1  f 02-F1 
q?2 0 = Yt d T + y a  d r +  Ya d T  + 

J 0 Yi 0 y~ . 0 y~ . ]  0 Y2 0 Ya 
0 0 0 

Tt T, Tt 

fo~F1 fO~Fl f o ~  q~a = O = yl  - -  dT + y~ - - d r + 9 , 3  d r +  
tt O yi O y3 O ye O ya 

0 0 0 

~T 1 T1 

[ OF~ f OF~ + J OY2 d r +  fl Oy 2 d r + "  
0 0 

T 1 Ti 

+ ~Y3 d T +  # Oy a 
0 0 

(87) 

f O 2 Fo 
- - / ~ l  | 

J 

T1 T1 Ti  

- - - e ~  ~ f --o~-~ Ox~Ox~ d~- Ox~ d~+ 
0 0 0 
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As a consequence of the well-known Jacobian integral of energy, the fourth and 

sixth of our equations (87) are not independent of each other. And it is easily seen 

that  ~v i - ~v3 as the right hand sides of the last three equations (87) are reduced merely 

to the critical terms of argument ~ (see the study of the particular terms of various 

categories carried out hereafter ad 1, 2, 3, 4, 5, pp. 67--70) and as such show clearly that  

03 [F1] (92 [ F d  
- -  - -  ( s8)  

(g Yl (g Yk O y3 O Yl~ 

Just  as in all previous cases every term independent of the small increments 

fli, 9'~ must disappear namely 

T~ T~ T~ 

f O-F1 (gF1 (gF1 

0 0 0 

Otherwise neither fl~ nor 7i could be annulled with the disappearing /l. As usual 

these equations lead to the conditions of a symmetrical conjunction and opposition. For 

more details see pp. 37, 44 of the present paper. Moreover all terms containing one 
0 2 Fi 

single derivation in yk namely 0 yk (gxk are composed of sinus series, whose arguments 

vanish owing to the supposed symmetrical conjunction and opposition. In this way 

it is immediately found that  our integral equations are reduced to the following form : 

Let  us put  for the sake of brevity,  as previously in case II  (general case of 

three bodies) p. 44, Chapter II,  Par t  II,  for the average value 

T~ 
1 / .  

I FidT = [Fi], etc. (90) 
T1 

0 

020x-~-F~ 02 Fo f13 03 Fo 0 [F1] 
nx+ (n+n')~+ nv ~- f l i  --fl2OxiOx2 (gxiOxa l t ~  + .=0, 

02 _F o 02 17' 0 0 [F1] 0 5 Fo ~3 ~ - ~3 ~ ~ - ~  + 
-~- n '  %~ - -  fll O x 1 0 x  2 O X 2 0 x  3 

- -  n '  %~ - -  f l l  02 "F0 02 F 0  02 F0  0 [F1]  
OxiOx3 f120x20x3 fl3-O~-x~ - -  ~ Ox3 + 

_ _  _ _  0 [F3] 02 [F1] 02 [F1] 02 [/~1] _~_ ~ -t- 

71 0~ - i  + 72 O Yi 0 Ye + 7 3 0  Yi 0 Y3 OYl-i 

_ _  02 [F1] 02 [F1] 0 [F2] 
(92 [F1] -I- 72 -}- 9,3 - -  + # -{- 

9'1 (9 Yi (9 Y2 0 ~ (9 Y2 (9 Y3 

02 [/~1] 02 [/~1] (9 IF2] 
~ [--ZF1-] + 9'3 - -  + 9'2 ~ :, + z - 0  y~ + 9'10 Yi 0 Y3 (9 Y30 Y3 

�9 = 0,  

�9 = 0, 

�9 = 0, (91) 

" ' ~ 0 ~  

" ~ 0 .  
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As will be shown later (see critical terms of category 2), the coefficients of 

these equations, which define our unknown implicit functions ~vi, ~fi are build up of 

trigonometrical terms, which just provide the necessary elements of the resolving 

determinant Hessian Jacobi--Poincar6.  

With the view not to interrupt the most intricate analysis of the particular 

elements of the Hessian--Jacobi--Poincar5,  I shall postpone the full explanation of 

solving these lat ter  conditional equations till a more suitable moment (see pp. 70, 71). 

S o  let us first admit tha t  we have succeeded in solving these equations & la 

Cauchy--Weierstrass,  defining our implicit functions ill, fie, flu, yx, Y2, Ya etc. through 

whose medium only the existence of periodic solutions can be guaranteed. 

Then we can proceed to examine the mean motions holding true through the 

resulting periodic or secular motion. 

These are easily found as previously in Chapter I and II  by mere analysis of the 

infinitesimal substitution in question. 

As we have replaced the original time by t = (1 + ~) (1 + 0) (1 + ~]) T and yk by resp.: 

! 

n t  

t 

n t  
Y~' = Y2 + = Y2 + n '  (1 + O)~, (79)  (81)  

(1 + ~)(1 + ~) 

n~t 
Y3' = Y3 - -  (1 + ~]) (1 + ~ )  = y~ --  n' (1 + O) T, 

we must carry out the quadratures of our integral equations in such a way tha t  

the new variables y;' may yield deviations at the beginning and at the close of the 

period T -- (1 + z)(1 + 0)(1 + r])1'1 which disappear entirely except for the finite 

amount  of the full angles 2~, 360 ~ 

Every  mean movement,  even one produced artificially through the introduction 

of the new dependent (primed) variables y'k', will remain preserved by a suitable 

choice of the starting conditions for the periodic or secular solution, which we have 

just admitted. 

In the case dealt with above our integral equations give the result 

n ' t  
y ~ ' = M +  = M o + n z + n ' z + y l + ~ o ~ ' = M  o +  (92) 

(1 + v~)(1 + ~) 

n t  n't 
+ § 

(1 + ~)(1 +;~)(1 -+-~i yl, § 
(I + ~)(I + ~)(I + ~) 
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n' t n'  t p t  

Y:2'= ~ + (1 +~])(1 + ~ )  C o + n ' ~ + 7 2 + y ~ 2  D + ( l + a ) ( 1  +r])(1 + z )  + 7~' 

y'a' = M - - M '  + [5 . . . . . . . . . . .  n l t  . . . . . . . .  M o - - ~ '  + Mo + ~ - - n ' ~  + 7a + ~o~' = 
(1 + v)(1 + z) 

, n ' t  

= Mo - -  Mo - -  ~ '  + X) - -  (1 + a) (1 + ~) (1 + ~) + ~3, 

and returning now to the original unprimed variables by subtraction of resp. in 

Yl,  Y2, Y3: 
n ' t  n ' t  n ' t  

--(1+u)(1 +a)' - ( l §  +~])' + (1 +~)(1 +~) 

we immediately find out for the movements of the disturbed resulting motion, 

( 1 + ~ ) ( 1 + a ) ( 1 + ~ )  ( l + ~ ) ( l + a ) ( l + ~ )  

/ 5  = a n '  
--(1+u)(1 +a) ( i+@'  (93) 

a n' 
/3 ~: § (1 + g)(1 + a)(1 + v) 

As to the secular movement in the starting not primed variable Ya = M + ~ - -  M'  

we have ascertained it to be 
a n '  

(1 + u)(1 + a)(1 + ~) (94) 

and at  the same time in 

Yl = ~I, n --  ~ n' 
(1 + u) (1 + a)(1 + ~/)' (95) 

from which we gather that  the resulting mean secular movement in the angle 

- - M '  will be 
n ' ( a  + ~) n '  

(i + ~)ii+-a)(i +-~)- (1 + x)(1 + a)(1 + ~/)' (96) 

consequently in the longitude of the node itself 

n ' ( a  + v) 
(1 + u)(1 + a)(1 + ~) 

and in the original starting length of the perigee N - - ~  + ~) 

(97) 

(a + ~ -  a ) n '  

(1 + ~)(1 + a)(1 + ~) (1 + :,)(1 + ~)(1 + ~) 

5 -  523804. Acta mathematica. 88. Imprim~ le 28 octobre 1952. 

(98) 
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By this most simple method we have succeeded in finding three angular veloci- 

ties (mean movements) namely /1,/~,/a- 

1. The first of them /1 consists of two parts. And it clearly appears that  

n 
even the first part  (1 + ~)(1 + 0)(1 +-~]) can easily reach just the necessary speed 

of our real Moon. 

This amount, about twelve times as large as the mean movement of the Ear th  

12 n', can always be attained by a suitable choice of the free parameters (see the 

last page of this paper, the small divisor in (35 a) p. 21). On the contrary the 

amount  ~ can always be chosen so as to correspond to the small secular motion of 

the Lunar node t~. 

2. The angular velocity /2 in to gives the secular motion of the Lunar  perigee. 

3. The total  mean movement in the variable y~;, namely /a, must disappear 

entirely, and it is only in this way that  we are able to secure the existence of the 

most important  critical terms (see later on, the terms of second category p. 68), 

and it is only in this way that  the necessary critical cos coefficients of the Cauchy--  

Weierstrass conditions can be supplied. Let  us postpone the full explanation till the 

analysis of the particular periodical terms on pp. 67---70. 

Still I should like to point out that ,  although the total  final amount  of rotational 

velocity in y'a' + y'2' = M - -  M '  + ~ + ~2 namely ]2 + / a  disappears identically, still we 

have easily gathered that  the resulting secular movement in ~ appears to be fixed by 

n'*] . (99) 
-I- (I-+ x)(i + ~)(i + *]) 

I t  appears most important  to know the accurate amounts of these angular 

velocities thoroughly, whose arising has been urged by the introduction of our new 

(primed) variables y~.', and by satisfying the integral equations ~i = ~,i = 0. 

And indeed these quantities always figure in the development of the right-hand 

sides through the disturbing function, being unseparably combined with the old non- 

primed variables, in this way the explicit t ime appears inside all trigonometrical 

terms, where any yk is contained. 

We then have to take special care tha t  the periodicity of the resulting movement 

is not  spoiled. 

With this in view let us pass to the s tudy Of all individual trigonometrical 

terms of the disturbing function, thus approaching the next  task, namely the reckoning 

of the quadratures of our integral equations term by term. 
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As previously in chap. II. we shall have to examine the terms of three cate- 

gories of F 
F~ = k~ ~ A cos (ixy I + i~y~ ~- i~y~), F = Fo' + f f  ~# + " (100) 

i~ integers 

~2 ~tXl 

2~ ( l + z ) ( l + a )  
9'b ~ X 2 7b t X 3 

-- ( f 4  ~) (1 +~)  + (1 +~)(1 + ~  

Y~-~} / ,  Y2 = r y 3 = M - - M ' +  ~ .  

(IOl) 

(74) (76) 

1. Simple short periodic terms of the argument ix y I + ~2Y2 + i3y3. 

After introducing the new primed variables and the distorted time, we im- 

mediately state the false explicit t ime ~ (or t) obtaining by t = (1 + ~) (1 + v~) (1 + U) v 

in the argument in question 

. . . . . . . . .  i x n' t i2 n'  t 
~lYX + ~2Y~. + i~ya = ~xY~ + ~Y2 + ~Y~ --  (i + ~ i ( i  + ~i - -  (1 + ~)(1 + ~) + 

ia n'  t 
+ . . . . . .  (102) 

(~ + ~)(1 + ~) 

-1 i 3 (M o - -  M~) - -  ~'  + Y2o - -  n' T + Y3 + ~fa). 

Now the false t ime must remain compatible with the total  period of the motion, 

which circumstance gives three conditions, see (77) 

n -  n ' , T i -  2 u p  T x = r T ~  T = ( l + u ) ( l + v  ~)(1 +~])Tx (103) 

T / 1  = 27~81 ,  T / 2  =: 2 3 : S 2 ,  T / 3  = 2 ~ z s 3 ,  ( 1 0 4 )  

r, sk representing integral numbers. 

These expressions by means of our "]k found above lead to the result 

n - - n ' ~  
f i t  = 2~-~(1~ + ,a)(1 + ~)(1 + s)(1 + ~)(1 + ~)(1 + ~) 

2z~ p_~ r 1 - -  ~ n '  = - -  27~ p r ~  
~aT ( + va)(1 + z ) (1  + U)(1 + ~)(1 + 0.)(1 + ~) 

2 ~ p r  On '  
/ a T  n '  ( 1 + 0 ~ ) ( 1 + ~ r 1 6 2  = 2 7 ~ p r O  

= 2zepr- -2~7:cr  p = _+ 27~si, 

= +_ 2zs~,  

(lO5) 
= • 2~sa. 

Hence if all sk are to remain integers, we find the conditions limiting the choice 

of the small parameters v~ and U (see later p. 72). 



68 Wladimfr Ws Heinrich 

This s t a t e m e n t  enables us to ca r ry  out  successfully all quadra tu res  of the  short-  

periodic t e r m s  in question.  We have  found t h a t  all a r g u m e n t s  of the  fo rm 

i~yl + i2y2 + iaya = whole n u m b e r  of 2 n  = 360 ~ (106) 

give the  same result  in the  uppe r  and lower l imit  of in tegrat ion,  except  for a whole 

n u m b e r  of 2 ~  for eve ry  cosinus te rm.  
cos . - - s i n  

So the  q u a d r a t u r e  changes  only eve ry  par t icu lar  sin into cos giving the  same  

value in the  uppe r  as well in the  lower limit,  t h a t  is a t  the  beginning and  a t  the  

end Of the whole period. These two amoun t s  being of opposi te  sings, cancel m u t u a l l y  

and  give zero. 

Thus we find t h a t  the  short  periodic t e rms  of the  first  ca tegory  cannot  cont r ibu te  

any th ing  to the  final value of the  coefficient in the  in tegral  equat ions in quest ion.  

2. Now let us examine  the  critical germs. These are t e rms  which become 

independent  of the  t ime  by  the  supposed commensurab i l i t y  of the  mean  m o v e m e n t s  

n P + q  1, q = O .  
n' I) 

In  order  to isolate these te rms ,  we mus t  pick up all a r g u m e n t s  for which ~ =  y~' + y;', 

and their  mul t ip les  s $, (s integer  posi t ive or negat ive) .  

When  passing f rom the  original to the  p r imed  angula r  var iables ,  we get  new 

r ight -hand sides which show the  false explicit  t ime  inside the  t r igonomet r ic  t e r m s  

. . . .  n' ~]t 
Yl = Yl - - n ' ~ v  = Yl - -  (1 -t- z ) ( l  + 19)(1 + ~ ) '  

n '  t~ t 
Y:: - -  " , (81) Y'2= - n ' tgT -= y,, - -  (1 + ~ ) ( 1  +zg)(1  + rl) 

n'v~t 

Now the  p r imed  coordinates  y~.' are finally ob ta ined  f rom our in tegra l  equat ions  

in the  fo rm 
n t  n ' t  

Yi' = n r  + n ' r  + M o + 71 + ~v~' = i i ~  ~ i  i + ~ i ( 1  + :~i + (1 + ~)(1 i ~)(1 + 'O) + 

+ Mo + 72 + ~o~', 
t n t  

y~' - n ' T  + D + 72 + ~o~' (1 + ~)(1 + ~])(1 + v ~) + a, + Y2 + ~02, (107) 

,, , ,, _ n' t 
Y3 - - - n ' v  + M o - -  M o - - n '  + t2 + Ta + ~o3 = ( 1 + ~ ) ( i + - ) ( 1 _ §  

+ M o -  M ; -  :~' + ~O + 73 + V~;', 

so t h a t  the  mean  m o v e m e n t  in the  original yi is found to be in 
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n'~] 
Y l - - ( 1  + z)(1 +t9)(1 §  

v2 - (1 + ~)(1 ~ o ~ i - +  ~)' O0s) 

ton' 
Ya § (1 + ~)(1 + v)(1 + to) 

The functions ~0~' = ~ -= ~f~' -- 0, ~ = 0, giving the final deviations of the starting 

configuration, become zero if only the integral equations prove to be solvable for 

the starting increments ~, to, ~1, D1, fl~,/~2, 71, ye, ya of the implicit functions in question. 

In this case clearly, and only in this case, the whole movement is ruled by the 

same conditions at the start  as well as towards the close of the prolonged period 

and the disturbed motion becomes periodic. 

Our principal aim is to prove the solubility of the conditions (91) p. 63) or, 

which is the same, to find out a suitable non-disappearing Hessian--Jacobi--Poincar& 

For this purpose it first appears necessary to ascertain whether all the factors 

of the false time mentioned above disappear out of the critical argument ~. I t  is 

only in this way that  a corresponding critical term changes from a trigonometrical 

term to be integrated into a simple constant h, whose integration is carried out by 

adding the factor t and inserting the upper and lower limit, namely h T - - h 0  = h T, 

etc. Only through the existence of these constant terms, the possibility of non- 

disappearing elements of the determinant and of a solution of the integral equations 

for the implicit functions z, O, ~], fli, yi, can be guaranteed. The aforesaid elements 

are constituted by critical cosinus terms of zero argument�9 

The existence of a non-disappearing Ilessian can be proved only in this way 

s~ = s(y'u' + y '3 ' ) - -sn ' tov  ~ sn ' tov .  (109) 

This time, fortunately, we are no longer obliged to satisfy special diophantine 

equations as int he previous case Chapter II ,  p. 50, this being brought about by the 

simplicity of the structure of our disturbing function. And indeed the latter, in our 

satellite case, proceeds according to multiples of the two mean anomalies M,  M' ,  

n t, n ' t ,  which are reduced because n = n'  to one simple anomaly and a Fourier 

series of one time argument only. 

Just  in view of these simplifying circumstances the fundamental  transformation 

(79), (80), (81)~ has been constructed. 

On the whole we see tha t  this time it is solely our choice of suitable variables 

which guarantees our aim, the entire disappearance of time from all critical arguments. 
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3 and 4. Judging from our previous s tudy Chapter I I  we now have to examine 

the terms analogue to ~' and m 1~ + m2~' pp. 51, 52. However,  the whole structure 

of the present  satellite case shows clearly tha t  these small divisor-terms do not exist 

at  all. 

5. Finally we have to consider the secular terms within the meaning of the 

classics. 

These te rms are formed by  

a) really constant terms, without tr igonometrical  argument,  build up exclusively 

from scalar elements o:, ~, a',  e'. 

These t e rms  clearly contribute to the constant coefficients of the integral equa- 

tions. However,  their  mere existence would not suffice to prove new periodic orbits 

by  the same reason as explained in the previous case Chapter I I ,  no. 5, p. 53. 

As was ascertained therein the mere derivation for the sake of obtaining the 

necessary coefficients, elements of the de terminant  

02 F 02 F 
O y i O x k  - 0 y~Oyk z O, (110) 

yield zero everywhere,  as according to our supposition (a) they do not contain 

angular arguments  y~, at  all. 

Consequently the most  impor tan t  par t  of the Hessian disappears identically 

and thus the calamity which Poincar6 complains is brought  about,  in another  way, 

viz. the Hessian is zero. 

(b) terms of arguments  e e' cos ( z - - ~ ' ) ,  non critical and still independent of M, 

see in the expression (42), First  Part ,  w 4, p. 25 namely  ~ . . . .  + hee 2 cos ~ + .-. etc. 

I t  can easily be seen tha t  these terms lead only to new long-periodical terms. 

The arguments  can clearly be writ ten 

n '  t ~ r, t r, ~t ~ T -}- ~f2 - -  ~t~ ~ - -  n t Y2 O Y2 - - n  (1 + ~ ) t  = Y2 = " ~ - - n ' v  ~ #. 
(1 + v)(1 + ~) 

and there is no possibility to destroy or get rid of the false t ime z. These long- 

periodical terms caused by  small divisors never  cease to exist. 

Now let us pass to the solution of our integral equations (91) which determine 

the unknown implicit functions and their  s tar t ing increments fli, 7i, x, v q, ~/, and tha t  

has been postponed hitherto for the sake of clearness (see p. 64). Again as in the 

previous instructive case Chapter  I I ,  pp. 54, 55 we must  be fully aware of the large 

freedom by which the supernumerary  unknown quantities can always be disposed of. 
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And indeed the number of the unknown is always greater than that  of the in- 

dependent equations. Morover the coefficients of the aforesaid equations prove to be 

composed entirely of scalar elements, which represent further variable starting para- 

meters, freely eligible. 

In our satellite problem , where we are concerned with the commensurability of 

the mean movements n = 1, we have full l iberty to choose among the parameters 
n 

= a', s, e' and the increments fli, yi ~, ~, v ~, U, with the restriction of five integral 

equations and three further equations fixing up the parameters a, v ~, *1- There still 

remain 12--(5 + 3)= 4 free quantities. 

But  it appears more recommendable to clear up these large points of vantage 

by explaining the top important  configurations thus attainable. 

Let  us return to our concrete system, considering our starting ellipse of the 

Moon-Planet and the circle of the Sun (namely to our integral equations written down 

above pp. 62, 63). - -  I first remember tha t  in consequence of the existence of the 

Jacobian Integral of Energy the last and the fourth equation ~1 = 0, ~a = 0 become 

dependent one on another. By this fact we are enabled simply to skip the aforesaid 

fifth equation and to retain only the five remaining ones namely 

tt tt y, 
yJ* = ~2 = ~a ~1 __ ~2 0. (87) 

If written down explicitly, including all parameters u, ~, U, they clearly show the 

possibility of solutioff in case u = ~ = ~  = 0. Even so in the more general case 

t reated herewith, where ~ ~ v~ ~. U ~ 0, the Hessian--Jacobi--Poincar6 has a form 

which clearly shows its value, although most of the elements of the determinant 

resp. matr ix  
py tl 0 (W~, ~2, ~') , (111) 

0 (~ ,  ~ ,  ~ )  

0 ~ Fo 02 Fo 02 Fo 
n n + n '  n - -  0 ~  0 x l0 x ~  0 x l 0 x a  

0 ~ Fo 02 Fo 02 Fo (112) 
I 0 0 n' 0 Xl 0 x2 0 x2~ 0 x~ 0 xa 

0 0 - - n '  02 F~ 02 F~ 02 Fo 
0 X 1 0 X 3 0 X 2 0 X 3 0 X3 

disappear. 

In order to approach our aim I destroy the generally non-disappearing terms 

of the second and third equations O[FI] 0 [F1] " dx2 ' -O~-a ' by putt ing 
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0 [F  1 (e, e', t)] 
n '#  : # - 0 x  o , (113) 

0 IF1] 
- - n ' O =  # Oxa o 

1 
and choosing # = �9 

p r  

The r igh t -hand  sides of these equations,  being functions dependen t  upon  the  

th ree  s ta r t ing  e lements  (freely eligible) ~, e, t ', can a lways  br ing abou t  the  possibi l i ty  

of these  two equal i t ies ;  there  a lways  remains  a cer tain f reedom in the corresponding 

choice of t. 

Our sy s t em of in tegral  equat ions  changes to the  r e m a r k a b l e  fo rm 

,, 02 Fo 
y ~ l = 0 = ~ n + ~ ( n ' + n ) + n 0 - - f l l  Ox~ 

02 Fo 

- -  fll 0 X 1 0 X 2 

pp 

~v2 = 0 = 

~ ' = 0 =  

~91 02 [F1] 

# - Yl 0 y~ 

q)2 02 IF1] 
# - ~ 1 3 y l O y  2 

02 Fo 02 Fo 0 IF1] 
&OxbOw2 ~3 ~x~ Ox~ ~ ~ + 

02 Fo 02 Fo 20 IF2] 

02 Fo 02 Fo 02 Fo 20 [F2] 
- -  f l l 0 x  10x3  - -  8 2 0 X 2 0 X 3 - -  f130~-X32 - - / 4  ~ X 3 -  3 + - 

_ _  0 [G] 02 IF1] 02[F1]  @ # @ �9 = 0, 

+ r20y~0 ~ + r30yl0y  3 ~ 

0 [F2] 02 IF1] 02 IF1]  -~- # OY22 -[- " = 0. 

(114) 

(115) 

In  this w a y  a new H e s s i a n - - J a c o b i - - P o i n c a r 6  reappears ,  and moreove r  we get  5 

equat ions  for  de te rmin ing  eight  unknowns,  n a m e l y  ~, ~], ill, f12, fin, Yl, Y2, Y3- As we 

choose the c u s t o m a r y  Y3 = 0, we are able to pu t  fll = 0, thus  obta in ing  five equat ions  

for six unknown  functions,  which run  thus  

" 02 F0 f13 02 F0 0 IF1] 
~fl = ; 4 n §  §  §  OxlOxa - - / t ~ x l  § . . . .  O, 

- 02 [Fi]  ~ 02 IF1] 03 [F2] 
v ~ :  - &  0 4  ~ o ~  - ~ - o ~  + . . . .  o, tt 

02 Fo 20 [F2] ,, 0 2 Fo fia 0, 
~f3 = - -  fi2 0 x2 0 xa 0 x~ - - #  -0 xa + . . . .  

~A= 0 ~[F~] O ~[F1] + . .  + 0[F~] 
# Yl O y ~  § Y 2 0 y l O y  2 t t ~ y  1 § . . . .  O, 

_ _  02 [F1] 0 [G] ~P~ = 02[F1] + Y2 - -  § " ' + + . . . .  0. 
# Yl 0 Yl 0 Y2 0 y~ " # 

(116) 
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Their determinant being manifestly distinct from zero, the problem is solved. 

I do not intend to enter into more details in these preliminary outlines. I will 

only add some further explanatory remarks concerning the most propable increase of 

the angular speed of our ideal Moon caused by all previous proceedings. With this 

in view I should like t o  call the at tention of astronomers to the remarkable set of 

small divisors ascertained by the construction of the canonical elements studied at  

the end of the previous First Part .  The ne~essary derivations of the chosen canonical 

elements carried out in detail see (35 a) I p. 21 show clearly the strong increase of 

in agreement with the well-known reckoning in the case of asteroidal Hecuba 

movement of perihelion and nodes affected by small divisors l.c. e (excentricity of the 

asteroidal orbit) etc. (see Schwarzschild A.N. 160, p. 395. Heinrich A.N. 192.). Fur ther  

we shall recall tha t  the necessary critical (secular) terms of the disturbing function 

appear exclusively in the indirect Lagrangian part  namely r cos ~ and as such, 

, t but  manifest the full zero (finite) are not diminished by small factors e, e ,  sin 2 '  

order. Furthermore the free choice mentioned above admits always to put  ~ n - 12 n'. 
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