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The formula to be proved in this paper has roughly the following form:
tr (Dol | 4,) — tr (Ta'T| By ) = 2cJ(0).

Here I' is a discrete subgroup of SL,(R) such that SL,(R)/I" is of finite measure, m an
arbitrary rational number, 4, the space of cusp forms of weight m with respect to I'
on the upper half complex plane §, B,_, the space of integral forms of weight 2—-m
with respect to I', o an element of SLy(R) such that I' and 1"« are commensurable, and
J(C) a complex number defined for each class C of elements of I'al' under a certain
equivalence. The double cosets I'al' and I'a " act on 4,, and B,_,, respectively, under
some conditions. An integral form of weight m is a holomorphie function f(z) on § which
satisfies f(y(2))/f(z) =t(y)(dy(z)/dz)~™/2 for every y €T’ with a certain constant factor ¢(y),
and which is holomorphic at every cusp; an integral form is called a cusp form if it vanishes
at every cusp.

If m is an integer>2, then B, ,,={0}. The formula in this case was obtained by
Selberg [5] and Eichler [2]. If m=2, B, , consists of the constants, and therefore
tr (Toe"| B,_,,) is simply the number of right or left cosets in ['a~'I". This case is also
included in [2]. It should also be mentioned that the generalized Riemann-Roch theorem
of Weil [8] is closely related to the above formula when « belongs to the normalizer of I'.

Although our formula is given for an arbitrary rational m, the cases of integral and
half integral weight with respect to an arithmetic I" seem most significant. If m is a half
integer >2, we have again B, ,={0}, and the formula is of the same nature as in the
case of integral m>2. However, if m=3/2, both A4, and B, , can be non-trivial.
Especially if I" is a congruence subgroup of SLy(Z), it is conjecturable that B, is spanned

by theta series of the type
Z,p(n) exp (2min’rz)
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with a rational number r and a character  modulo a positive integer. This is at least true
for the groups of low level. In such a case, tr (I'aI'[4,,) is effectively computable.

The non-triviality of both 4, and B, , occurs also when m=1. In this case,
however, the formula does not seem to bring forth any new information about the
modular forms of weight 1. We can only compute the trace on the space of Eisenstein
series, and also rediscover the forms whose Mellin transforms are L-functions of an
imaginary quadratic field. (See 5.8 for a more detailed discussion.) Thus our formula for
m=1 i3 not so effective in this sense, but it tells at least of what the trace formula
should be in the extreme case m=1.

To prove the formula, we adapt to our setting the methods of Kappus [4] and
Eichler [3], in which the forms of even positive weight were treated. In § 1, we consider
automorphic forms in an axiomatic way, and then construct, in § 2, an algebraic analogue
of kernel function. We work on the product of two copies of an algebraic curve, while
the authors of [3] and [4] considered the composite of two copies of an algebraic function
field. Although the theory of §§ 1, 2 as well as a part of later sections seems developable
for the curves defined over a field of positive characteristic, our discussion is restricted
to the case of characteristic 0, mainly for the sake of simplicity. In § 3, we prove the first
formulation of the trace formula, which is algebro-geometric in the sense that the right
hand side is expressed in terms of the fixed points of the algebraic correspondence
attached to I'al'. A more group-theoretical formulation will be given in § 4. In the final
§ 5, we make a few remarks and discuss some features peculiar to the cases m =3/2 and
m=1.

One remark, though obvious, may be added: A formula of the same type will
undoubtedly be proved for higher dimensional manifolds instead of a curve. For example,
we note that if I' has neither parabolic nor elliptic elements and al'«=TI", then the
above formula follows directly from the fixed point formula of Atiyah and Bott. Although
such a special case is not important from an arithmetical viewpoint, the Atiyah-Bott
formula will suggest a plausible form in a more general case. It should also be mentioned
that we do not put any emphasis on our choice of method. The framework of the present
paper has a natural limitation, while it enables us to obtain a fairly general and
practical formula in the one-dimensional case with a relatively small amount of com-
plexity. (At least we have dispensed with any discussion of convergence or limit process.)
Therefore any method, either analytic, geometric or group-theoretical, may be adopted on

its own merit in proving the higher dimensional generalization.
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1. Axioms of automorphic forms

1.1. We fix a “‘universal domain” Q of characteristic 0 in the sense of Weil’s Founda-
tions [9], and consider algebro-geometric objects rational over subfields of Q, denoted
by k, k', k,, etc. We take these fields so that Q has an infinite transcendence degree
over them.

Let V be a complete non-singular curve, which will be fixed throughout the first two
sections. If V is defined over a field &, we denote by k(V) the field of k-rational functions
on V, by ®(k) the module of k-rational differential 1-forms on ¥, and by D(k) the module of
all k-rational divisors of V. The unions of k(V), ®(k), D(k) for all fields k of rationality for
V will be denoted by (V), @, and D, respectively. It is necessary for our purpose to
consider divisors with fractional coefficients. Therefore we put Dg=D®zQ, Dq(k)=
D(k)®7Q, and deg (X;c,2;) = Z¢; for X,c,z,€ Do with c,€Q, x,€V. An element of Dy is
called k-rational if it belongs to Dgq(k). For 0+a€ (V) and 0+ w€®P(k), we can define
their divisors (which are of course elements of D(k)) as usual, and denote them by
div(x) and div (w). Let P(k) denote the set of all k-rational prime divisors of V. For
each p€P(k), we can define a discrete valuation », of £(V) in a natural manner so that
div(x)=Z,vy(x)p. We use the symbol », also for the map Dgq(k)—>Q defined by
a=Zv(a)p for a€Dq, and put v,(w)=v,(div (w)) for 0+w€ED(k). For a, DE Dy(k),
we write a >b if v ,(a —b) >0 for all pEP(k).

'1.2. To discuss automorphic forms in an axiomatic way, we consider a system

F={F, F',Z, 3} formed by the objects satisfying the following axioms (4, _,).

(A)) F and F’' are one-dimensional vector spaces over Q(V).

(Ay) To each non-zero element f of F or F', one can assign an element of Dg denoted by
div (f) satisfying

div (bf) =div (h) +div (}) for REQ(V), fEF or F'.
(A3) Z is a non-degenerate Q(V)-bilinear map F x F'—®,
(Ay) 3 is an element of Dqg such that

Aiv (Z(f, 9)) = 3 +4div (/) +div (g) (0+f€F, 0+g€F).

For 0f€F and u€F, we can define h=f"lu=uf1=uff to be the element of Q(V)
such that Af=u. This applies also to the elements of F”.

To make our notation more suggestive, we use a symbol dz instead of Z, and write

fgdz=2(},9) (fEF,gEF),
div (dz) = 3.
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Then we have div (fgdz) = div (f) +div (g) +div (dz).

For the moment, dz is merely a symbol replacing Z; it has no meaning as the differential
of z until § 3, where we take F and F’ to be the modules of automorphic forms of weight
m and 2 —m, respectively, and dz as the differential of the variable on the upper half plane.

To define “k-rational elements” of F and F', fix any non-zero element w of F. Let
k, be a field of rationality for ¥, div (w), and 3. Take a non-zero element # of ®(k,). There
is a uniquely determined element v of F' such that wvdz=7%. For any field k of rationality

for V containing k,, put
F(k) =k(Viw, F'(k)=FkTV)v.

Then we see that

(A;) Z maps F(k)yx F'(k) onto ®(k); div (f) is k-rational if fEF(k) or F'(k);
Fly) = F(kYQyky, F'(ky)=F'(k)®k, if k<k,.

Hereafter we fix kg, and consider only the fields k& containing k, as basic fields. Such
a field k will be called a field of rationality for {§. For each p€P(k) and f€F or F', we
define a rational number v (f) by div (f) =Z_v,(f)p.

A simple example of § is obtained by taking F=®, F' =Q(X), Z(f, g) =fg, and 3=0.

Remark. The modules F(k) and F’(k) depend on the choice of w. Instead of taking w,

one could start with (A;) as an additional axiom.

1.3. Let us now introduce a module R(k), which may be called the module of
“F(k)-valued adeles” in a weak sense. To be precise, we consider a map b:P(k)~ F(k)
which assigns to each p € P(k) an element b, of F(k), such that v,(b,) >0 for all except a finite
number of p’s. We denote by R(k) the module of all such b, addition being defined by
(b+c)y=b,+c,. We write b=(b,), and call b, the p-component of b. For a€k(V) and
b€ B(k), we can define an element ab of R(k) by (ab), =a-b,. Bach c€ F(k) defines an element
of R{k) whose p-component equals ¢ for every p€P(k). In this way F(k) can be identified
with a submodule of R(k).

Now for a € Dgy(k), put

R(a, k) = {b€ R(k)[v,(b,) = —w,(a) for all pEP(k)},
F(a, k) = {f€ F(k)|div (f) > —a}
= R(a, k)0 F(k),
F(a)= {f€F|div (f) > —a}.

Taking F' in place of F, we define R'(k), R'(a, k), F'(a, k) and F'(a) in the same manner.
Also we put
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L(a, k) = {f€k(V)|div (f) > —a},
L(a) = {f€Q(V)|div (f) > —a},
I{a) = dim L(a).
Here dim stands for the dimension of a vector space over Q. If 0+u€ F(k), then
(1.3.1) F(a, k)u = L(a+div (u), k), Fla)u~! = L{a+div (v)),

hence F(a, k) is finite dimensional over k, and

dim F(a) = l(a+div (u)),
F(a) = F(a, k)®,Q.
1.4. For peP(k) and w€D(k), we define the residue of w at p, denoted by Res,(w)
as follows. Put p=p,+... +p, with points p, on V. Let k be the algebraic closure of k,

and # an element of k(V) such that 7p,(t)=1. Define Res, (w) as usual to be the coefficient

of #-1 in the power-series expansion of w/df in ¢ with coefficients in £. Then we put

Res, (w) = 2i-1 Res, (0).
We see easily that Res, (w)=Try,,x(Res, (®)), and as is well known,
> oeru Res, (@) =0 for all w €D(k).
1.5. ProrosiTioN. Let a and b be two elements of Dq such that

(1.5.1) a+b=3 a+div (f)€D for every non-zero fEF.

Then b+div (g)€D for every non-zero g€ F'. Moreover, if a and b are k-rational, the vector
space F(a,k) is dual to R'(k)/[R’(b, k) + F'(k)] by the k-bilinear pairing

(f’ ’U) —)<f’ ?)> =ZpEP(k) Resp (]‘Updz)
for f€EF(a, k), v=(v,) € R'(k).

Proof. First note that q +div (f) €D holds for all non-zero f€ F if it holds for at least
one f. Now let Os=g€F’. Then fgdz€®, so that div (fgdz)€D. Subtracting a+div (f)
from div (fgdz), one finds div (g) +b€D. Now the duality in the case F=d, F'=Q(V),
3=0'is well known. In fact, let R,(k) (resp. Ry(b, k)) denote the module R’(k) (resp.
R'(b, k)) defined with F’=Q(V). In this special case, we see that b€D, and

F(a, k) = {w €D(k)|div (w) >b},

and this vector space is dual to By (k)/[By(D, k) +k(V)]. (See e.g. Chevalley [1], especially
17 — 742909 Acta mathematica 132, Imprimé le 19 Juin 1974
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p- 30, Th. 2. See also Weil [8], pp. 58-59, and Eichler [3], p. 177.) In the general case, take
any non-zero w€ F'(k). Then
F(a, kywdz = {n€®(k)|div () >b +div (w)},
wlR' (b, k) = Ry (b +div (w), k).
Further for f€ F(k) and v€ R'(k), we have Res, (fv,dz) =Res, (fww1v,dz). Therefore our

assertion for F and R’ reduces to the above special case.

1.6. Let a, b be as in Proposition 1.5 under the assumption (1.5.1). Let 0==f€ F,
0+g€F’', w=fgdz. Then
a+b+div (f) +div (g) = div (w),
dim F(a) = Ua+div (f),
dim F'(b) = I(b +div (g9)) = l(div (w) —a—div (f)),
hence by the Riemann-Roch theorem, we obtain
(1.6.1) dim F(a) —dim F'(b) = deg (a+div (f)) —g +1.

where g is the genus of V.

L.7. Let k; be an extension (either algebraic or transcendental) of k. Then we can
embed R'(k) into R’'(k,) as follows. To each b=(b,)€ R'(k), we assign b*=(b})€ R'(k,) by

b*_{bp if ¢<p,
o

0 if g<p forno pEP(k).

This embedding maps R'(b, k) + F'(k) into R'(b, k,)+ F'(k,). (Note that F’(k) is not
necessarily mapped into F'(k,).) Further it maps R'(k)/[R’(, k)+ F'(k)] injectively
into R'(k,)/[R'(b, k,) + F'(k,)], and the latter can be identified with the tensor product of the
former with &, over k. This is also compatible with the duality with F(a, k,) = F(a, k) Q@ k,

explained in Proposition 1.5.

1.8. Let a and b be elements of Dg satisfying (1.5.1). Take a field % of rationality for
& and a. Take also a non-zero element v of F'(k) and a prime divisor ¢ € P(k) of degree one
(i.e., a k-rational point of V) that is disjoint with div (v), a, and 3. Let ¢, be an element of
k(V) such that v,(t,)=1. (We call such a ¢, a k-rational local parameter at q.) Then we can
find a basis {w,, ..., w,} of F(a, k) such that

wyvdz = (85 + ¢ 13+ ...) dt,,

(1.8.1) 0oy <...< oy



ON THE TRACE FORMULA FOR HECKE OPERATORS 251

with ¢;;€k. Subtracting a suitable linear combination X, ;b,w; from w;, we may assume
that

(1.8.2) The coefficient of t7/dt, in w;vdz 18 0 ¢f §>4.

We eall {w,, ..., w,} @ g-basis of F(a, k) relative o v and i, if (1.8.1) and (1.8.2) are satisfied.
‘Now define an element u; of R'(k) so that

u, =0 for p¥+gq,
Uy =175 1.

Then {w;, u;>=Res, (w;u,,v~wdz)=3;; by virtue of (1.8.2). Therefore u,, ..., w, form a
basis of R'(k)/{R'(, k)+ F'(k)], hence every element of R'(k) is congruent to a linear
combination of the form X;c¢,u; with ¢, in k modulo R'(b, k) + F’'(k). We state this fact as

L.9. ProrosiTioN. Let g, {,, and v be as above. Then, for every r€ R'(k), there exists
an element s of R'(k) such that
( r—s€ER'(b, k) + F'(k),

8, =0 for p=+q.

sg= (2 etg™ v
with ¢,€k.

2. An algebraic kernel function

2.1. Let V and ¥ be the same as before, and k a field of rationality for §. The purpose
of this section is to construct an ‘“‘algebraic kernel function” which will play an essential
role in the computation of the trace of a Hecke operator in the next section. In the con-
struction we shall be considering ‘“‘generic points” of ¥ over k in the sense of [9). If z is a
generic point of V over k, then k(x) is a subfield of Q, isomorphic to k(V) over k by the
map g+>g(x) for g€k(V). Here g(x) is the value of g at the point . For our purpose, it is
absolutely necessary to distinguish k(V) from k(x). (Note that k(V) is linearly disjoint with
Q over k.) It is also necessary to consider the functions and the divisors on the product
¥ x ¥, which is a non-singular surface rational over k. There are three types of k-rational
prime divisors of V' x V:

(1) pxV with peP(k),

(i) V xp with peP(k),

(iii) a k-rational prime divisor of ¥ x ¥V which has a non-trivial intersection with any
divisor of the above two types.

A prime divisor of the type pxV or V xp is called left constant or right constant,
respectively. A divisor of the third type is called non-constant. Let k(V x V) denote the field
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of k-rational functions on the surface V x V. For each prime divisor §§ of the above three
types, we can define a discrete valuation vy of k(V x V).

Now we identify k(V)®.k(V) with a subring of ¥(¥V x ¥V} in a natural manner.
Namely, for a€k(¥V), BEL(V), we view a®f as the element of k(V x V) defined by
(x®B) (%, y) =a(x) f(y) with a generic point (z, y) of V x V over k. Then we define a mod-

ule E(k) by
Ek) =k(V x V)@ g (F(k)R,F'(k)) (K=kV)R,k(V)).

To be more explicit, E(k) is a one-dimensional vector spa,cé over kE(V x V) formed by all

the expressions of the form
W=H®f®g

with HE€k(V x V), f€F(k), g€ F'(k), under the rule

HRouf®pg = (2 HRIRg

for a€k(V), f€L(V). For a k-rational prime divisor  of ¥V x V, we define vy (W) as follows:

Vpyev( W) = Vpr(H) +95(f)s
Vysol W) = vyuo(H) +,(9),
(W) =vg(H) if P is non-constant.

To express W, it is often convenient to use the notation
Wiz, y) = H(z, y) [(x)9(y)

with a generic point (z, y) of V x V over k. For example, given f€ F(k), g€ F'(k) and an
element % of k(x, y), we shall be speaking of the element W of E(k) defined by

W(z, y) =nf(z)g(y).

This means W=H®f®g with the element H of k(V x V) defined by H(z, y)=7. Here
the symbols f(z); g(y) are meaningless only by themselves; « and y are merely to indicate
“the left and right variables’.

2.2. Let (x,y) be a generic point of V xV over k, and let k,=k(z). For every
HEk(V x V), define an element H, of ky(V) by H,(y)=H(x, y). (Note that y is generic on
V over k;.) Then Hw>H, gives an isomorphism of k(¥ x V) onto k,(V). Take a non-
constant prime divisor B of k(¥ x V). As a k-rational algebraic cycle, S has a generic point
of the form (z, ') over k, where 3’ € V and k(z, y’) is algebraic over k(z) =k,- Let )’ be the
k,-rational prime divisor of V, that-is the sum of all conjugates of y" over k,. Then we see
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that the isomorphism H+>H, sends the “place” B of k(V x V) to the “place” 1)’ of ky(V),
since H,(y')=H(z, y'). More symbolically, one has

H, mod 1) = H mod .
Especially we have :

(2.2.1) v (H) = vy (H,).

As a special case, take as B the locus A of (z,z) on V x V over k. We call A the diagonal
on V x V. In this case, we consider the ,-rational primé divisor consisting of the point z,
which we denote by the same letter . Then we have- '

(2.2.2) va(H) =v,(H,).

2.3. Now we consider two elements a and b of Dg under a set of conditions

(28.0) a+b=3 a+div(f)€D for0+fE€F; b+div(9)€D for 0+g€EF"

As seen in Proposition 1.5, the last two conditions are equivalent; These a, b will be
always the same throughout this section.

Take any field k of rationality for {, a, b. Let x be a generic point of V over k, and
let k, =k(x). Define the k,-rational prime divisor z as above, and take a k,-rational local
parameter ¢, at x of the form {,=7 —7(z) with a non-constant element v of k(V). (This
special form of ¢, will simplify our later discussion.) Let {f,, ..., f,} be a basis of F(a, k) over k,
and take non-zero elements w of F(k) and v of F'(k). These f,, u, and v will be fixed

throughout this section. Consider the power-series expansion of f;/u:

filu=2 0 @ut:
with ¢, €k,. Since f,/u is k-rational, we see that f,/u is finite at z, and g, = (f,/u) (x) +0.
Now take an z-basis {w,, ..., w,} of F(a, k;) relative to ¢, and v in the sense of 1.8. Then

wde = 4. )dt, G=1,..,n; 0<B,<...<B,) (2.3.1)

with non-negative integers 8;. Since fvdz is finite and =0 at x for every non-zero
f€ F(k), we have 8, =0. Put w; =X} ¢, f; with c¢,;€k,, and { =uvdz/dt,. Since dt, =dz, we see
that J€E(V), and
wivdz = (ZIrLlcijf}/u) Cdtz = (Zi.rcij(pirt;‘) C dtz'
Therefore
‘ 0 if r<p;,

2.3.2 P 1CiQy =
( ) 2 7169; {C(x)—l it r—B,.

Take elements ¢, ..., ¢, of R'(k) so that they form a basis of R’'(k)/[R'(b, k) + F'(k)]
dual to {f;, ..., f,}. Consider the embedding of R'(k) into R'(k,) defined in 1.7, and

denote by g; the image of g, by this embedding. Now define an element &, of E'(k,) by
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(2.3.3) Go= 21 (filw) () gt
By Proposition 1.9, there exists an element s of R'(k;) such that

s,=0 for all p€EP(k,) other than x,

8;= (z:‘=la'lt;ﬁ‘—l) v

(2.3.4) {
with e;€k,, and

(2.3.5) Go—8ER'(b, ky) + F'(ky).

Then Res; (f;5,d2) =<}, s) =<{f1, Z;(f)u)(@)g7> = (f,/w) (x). Therefore Res, (fs,dz)=(f/u) (z)
for all f€ F(a, k,). Substituting w,=2Z,c;f; for f, we obtain

0 if £>1,

Res, (w;8,d2) = 3¢, (fsu) (%) = 250590 = {C(x)_l i i=1

by virtue of (2.3.2). On the other hand,
Res, (w,s,dz) = Res, (w,v- v 1s,dz)
=Res, [(#8+...) O a,t:%7 ) dt ] =a,.
{0 (2>1),
a;= -1 .
{(x) (=1,
{sp =0 for x+p€Pk,),

8, = C(x) 1t .

Therefore
hence (2.3.4) becomes

(2.3.6)

2.4. By (2.3.5), we have
24.1) Go—s = A4+ B,
with A,€ER'(b, k,) and B,€ F'(k,). Define an element B of E(k) by

B(z, y) = (By/c) (y) ulx)c(y)
with any non-zero ¢ € F'(k). Note that B,/c€k,(V), and (By/c)(y) is an element of the field
ky(y)=k(x, y). Similarly, for every p€P(k,), we can define elements G,, 4,, and S, of
E(k) by

Gy, y) = (Goyle) (y) ul@) c(y),

Ay, y) = (Agyl0) (y)u() c(y),
8@, y) = (8,/¢) () u(@) c(y)-
Obviously B, G, 4,, S, do not depend on the choice of ¢. (As for u, it has been fixed at the
beginning.) From our definition of G,, we obtain
(2.4.2) Gy(x,y) =211 () g (y)  (PEP(Ky)).
With these elements of E(k), the equality (2.4.1) becomes
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(2.4.3) G,—8,=A4,+B (p€P(ky)).

More precisely, one has

(2.4.4) Stafi@) gl )= 4,,9) + Ba,y) for z+pEP(k,),
(2.4.5) —8:(x, y) = A=, y) + B(=, y).

Since 4,€ R'(D, k), we have

(2.4.6) Yrsldy) > —uB) (PEPR)),
hence
(2.4.7) VysolB) = —u,(0) (pEP(K)),

unless v,(g;,) < —v,(b) for some ¢. Furthermore, by virtue of (2.2.2), we have
(2.4.8) va(d;) =7.(d,;) > 0.

Now let 3 be a non-constant k-rational prime divisor of V x ¥V, with a generic point
(x,y’) over k. Let 1)’ be the k -rational prime divisor of V corresponding to the point ¥’
as defined in 2.2. Since —sy =Agy, + By, we have, by (2.2.1),

v (B) = vy (By[v) = vy ((8y/v) + (Ao /v))-

Since Ay€ R'(b, k), we have vy (dgy/v) >0. If P+A, we have s, =0, while if P=A, we
have 1) =z and v,(s,/v) =v,(s;) = — 1. Thus

(2.4.9) va(B)= —1; »g(B)>=0 for every non-constant P +A.

We are going to normalize B so that it has a pole only at some pre-assigned constant
divisors. To do this, we have to impose the following conditions on a:

(2.4.10) F(a—p) & F(a) for every point p of V;
(2.4.11) F'(b+p)=F'(b) for every point p of V.
Note that dim F(a—gp)>dim F(a) 1. By (1.6.1), we have
dim F(a—p)—dim F'(b+p) = dim F(a)—dim F(6) -1,

hence (2.4.10) is equivalent to (2.4.11).

Let us now prove a few lemmas which are necessary for our process of normalization.

2.5. LEMMA. Let 0=£€K(V x V). Suppose that the pole of & consists of the diagonal A
with multiplicity one, and possibly right or left constant divisors. Let p be a k-rational point
of V such that p x V is not contained in the pole of &, and let ) be the element of k(V) defined
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by n(y) =&(p, y) with any generic point y of V over k. Then v,(n) Zvyy (&) for p +qE€P(k), and
V(1) Zvyyp(€) —1.

Proof. Take an element 7 of k(V) so that v () =wyy(£). Define an element & of
EV xV) by &z, y)=n(y) &, y) with a generic point (z,y) of V xV over k. Then
Vyuol&)=0. If g% p, we see that &’ is finite at (p, g) and &'(p, y) =7(y)~1#(y). Therefore
v(7197) 20, hence v,(5) >vy(7) =y (£). Next take an element y of k(V) so that v,(y)=1.
Define two elements « and 8 of k(V x V) by a(z, y) =p(), Bz, y) =y(y). Put e=vy,,(£).
Since v, (x—pB) =1, we see that f7(8 — «)& is finite at (p, p). (In fact, vo(f~*(8 —«)§) >0 for
all k-rational prime divisors @ of V x V passing through (p, p).) Therefore, specializing
B B—a)& to px V, we find v,(y'°n) =0, so that »,(n)=e—1, q.ed.

2.6. LEMMA Put r=dim F'(b). Let qy, ..., ¢, be independent generic points of V over
a field of rationality for % and a. Then

dim F(a) if s<r,

dim F(a+23.1q) {dimF(0)+3_r if s>r.

Proof. Let 0+f€ F(k), 0<g€ F'(k) with a field k& of rationality for ¥ and a. Put
w=fgdz and b=aqa-+div (f). Then
dim F(a+ 35-1q) =UD+ 2i-144),
r=Udiv (w) — ).
Therefore our assertion can be written as

I(9) if s<r,

Ub+ 2190 = {l(b) +s—r if s>r,

which is nothing else than Weil [10, p. 11, Prop. 8].

2.7. LemMA. Let k be a field of rationality for §; p a k-rational point of V ; t, a k-rational
local parameter at p; w an element of F(k) such that 0 <wv,(w)<1; b an element of Dq( Ic) such
that div (w)+DED. Further let ¢ be an integer such that

(*) deg (div (w)+0)+c—1>2g-2,
where § is the genus of V, and let e=w,(D) —v(w). Then there exists an element f of F(k)
such that v,(f—£0) >v,w) +e—c+1, and v(f)> —v,(d) for p+qEP(k).
Proof. By (1.3.1), ar>aw gives a k-linear isomorphism of L{div{w) +c'p+D, k) onto
F(c'p+D, k) for any integer ¢’. By (*), we have
Udiv (w) +cp+D) =deg (div (w) +D)+c—g+1,
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and this holds also when ¢ is replaced by ¢ —1. Therefore
Flep+9, k) F((c—1)p+9, k)
is one-dimensional, hence our assertion.
2.8. Let us now fix a field k, of rationality for § and a, and take an extension
k of k, , which is algebraically closed, and which has an infinite transcendence degree over
k,. Hereafter we take this k as our basic field. Since k is algebraically closed, P(k) can be
identified with the set of all k-rational points of V.

Now, with this k, we fix u, v, f;, ¢,, , t,, and define G, 8,, Ay, and B asin 2.4. We
shall now show that under the condition (2:4.10), 4, and B can be chosen so that

(2.8.1) Youv(B) 2 —wy(a) for every p€P(k)—{gy, -, 4r}>

(2.8.2) Vopv(B) = =1 fori=1,..,r,

with 7 independent generic points gy, ..., g, of ¥V over k, rational over k, where » =dim F'(b).
To show this, we start from any choice of 4, and B as in 2.4, and observe that

Vov(B)+v(a)EZ for all q€P(k) by virtue of (2.3.0). Let us fix one p€P(k), and put

vy(0)= —e—¢€ with ¢€Z and 0<e <1, v, (B)—e—e = —¢c. Then c€Z. Assume that

(2.8.1) is not satisfied for this p, i.e., ¢>0. {The number of such points p is of course finite.)

Take a non-zero element w of F(k) so that v,(w) =¢’, and take a k-rational local parameter
t, at p. Put, for each q€P(k),

Ay, y) =t,(x)* alz, y)w(x)v(y),
B(@, 4) = t,(@)"“b(z, y)w(z)oly)
with elements a, and b of k(z, y). Then
(2.8.3) tp()*™® Zina(fifw) (@) (9:/v) (y) = @, y) +b(x, y),
(2.8.4) V(D) = Vpyp(B) —e—e’ +c= 0.

Consider (2.8.3) as an equality about the elements of k(V x V), and take it modulo
px V. Since f,€ F(a), we have »,(f;/w) > e, hence the left hand side is 0 modulo p x V. This
together with (2.8.4) shows

(2.8.5) Posrl@g) = 0.
By (2.4.6), we have | Vial@g) Z —vy(D) —v,(v).

Let 8 be the element of k(V) defined by B(y) =b(p, ). Then § is exactly b mobulo px V,
which is the same as —a, modulo p x V. By (2:4.9), A is the only non-constant pole of b,
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so that (2.8.3) shows that a, has the same property. By (2.8.4) and (2.8.5), we can apply
Lemma 2.5 to b and a, modulo p x V. Then we find

Vyxa(@g) = — v4(b) — v, (v) if ¢g+p,

”"(ﬂ)>{vvxp(ap)—1> —5,(0) =2, (v)—1 if g=p.

By (2.4.11), we have div (fv)> —b. By Lemma 2.7, we can find an element f of F(k)

such that
v (f—tiw)>e+e —c+1,

vq(f) = _vq(a) for Q*P, P> s Pis
()= -1 fori=1, .. 4,

if we choose sufficiently many k-rational points p,, ..., p; of ¥V not involved in a. (We take
a+py+...+p,; to be the divisor p of Lemma 2.7.) Then we define an element H, of
F'(k,) and an element H of E(k) by

Hy = (flw) (@),

H(z, y) = [(x)B(y)v(y) = (Ho/v) () u(z)v(y)-

Then H,€EF'(0, k,), and vy (H)=v,(fv)> —v,(b) for every g€P(k). Further we have
B(z, y)— H(, y) = t,(2)"~[b(x, y) — (15~ /) (2) By) ] w() v(y),
hence Vo B—H) Ze+e —c+1.
We see also that
Voxv(B—H) = Min (v (B), —v,(a)) for g€EP(k)—{p, py, ..., Pi}.
The points p; can be chosen so that pxv(B)=0. Then we have
Ypxv(B—H)=> —1.

Now replace B, by B,—H,. Then B and 4; are replaced by B—H and 4;+ H for
every $€P(k,). Apply the same procedure to the new B with the same point p if still
Vpsv(B) —e —e’ <0, or with other p for which (2.8.1) does not hold. After a finite number of
steps, we can now assume that B has the following properties:

Vosv(B) 2 —v,(a) it pEP(k)—M,
Vpv(B) = —1 i pEM,
with a finite set M of independent generic points over k,, all rational over k.
Take r independent generic points g¢,, ..., ¢, of V over k,, independent of the points

of M. Apply again the procedure of taking (2.8.3) modulo px ¥V for each p€M.
Let w,, b,, and B, denote the functions w, b, and f defined above for this p (with
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respect to the new B). Since e=e'=0 and c¢=1 in the present case, we have Bz, y)=
t,(2)"1by(x, y) wy(x) v(y); B, is b, modulo p x V, and div (8,v) > ~b. By Lemma 2.6,

Fla+p+qu+..+g)/Fla+qa+..+¢)
is one-dimensional, hence there exists, for each PEM, an element f, of F(k) such that
"’p(fp - t;lwp) =0
vq(fp) = _‘vq(a) for qu(k) - {p: Q15 oees Qr}’
Vg, (fp) = —1 for i=1, ..., r.

Define an element J of E(k) by

J(xa y) = ZpEpr(x)ﬁD(y)”(y)-
Then vy (J) = —~v,(b) for all €P(k), and

Voxv(B~J)=0 for €M,
Vgxv(B—J)= —1 for 7=1, ..., 1,

Voxv(B—d)= —v,(a) for geEPk)— MU {q, ..., q,}-

Therefore, replacing B and 4; by B—~J and 4;+J, we obtain the desired properties
(2.8.1, 2), retaining the properties (2.4.2-9). It is this B which was to be constructed and
which may be called an algebraic kernel function. We conclude this section by proving
two propositions concerning the behavior of B at its pole.

2.9. PrROPOSITION. Let (z, y) be a generic point of V x V over k with the same x as in
2.4, and let ky=k(y), O +w€ F'(k). Define an element B, of ky(V) by B(x,y) = B, (x)u(x) w(y).
Then v,(B,uwdz)= —1, and Res, (Byuwdz)=1.

Proof. Let us first consider the case where w is the element » with which we con-
structed B. Take the local parameter £, =71 —(x) with 7€X(V) as in 2.3. Let s, and S, be as
in 23 and 2.4, and put {=wvdz/di,. Then (€k(V), S.(x,y)={(s./v)(y)ux)v(y), and
8, =C(@)1t; v by (2.3.6). Define an element S* of ky(V) by S*(x) = (s,/v) (y). Define also
a k,-rational local parameter f, at y by f,=t—7(y). Then

S*(e) = L@) (y) ™ = L) aly) —v(@)] ! = — (@) ()

hence §*= —1/t,, and S*uvdz= —t;ds,. Therefore ,(S*)= —1 and Res,(S*uvdz)= —1.
By (2.4.5), we have —8,=4,+ B. Define an element 4* of k,(V) by A (x, y) = A*x)u(z)v(y).
Then —B,=4*+8* By (2.2.2) and (2.4.8), we have »,(A4*) =v,(4,)=0. Therefore
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v, (B,)=v,(8*)=—1, and B,uvdz has the same residue as —S*uvdz at y. This settles
the case w=v. In the general case, put w=oav with « €k(V). Then B,=a(y)"1B,, so that
B, uwdz=a(y)Le- B,uvdz, hence our assertion.

2.10. ProrosiTION. Let the notation be the same as in Proposition 2.9. Suppose
r>0,w€F'(b, k), and v, (w)=0 for i=1, ..., r. Then v, (B,uwdz)=—1 for i=1, ..., r, and
B,uwdz has a pole only at y, q,, ..., q,. Moreover, if ¢, is the element of k(V) defined by

¢i(y) = Res, (Byuwdz) (1=1,...,7),
then c,w, ..., c,w form a basis of F'(b, k) over k, and for every g€ F'(b), one has

) g = —Zi-1(g/w)(g:) c;w.

Note that, since r =dim F’(b), the assumption r >0 implies the existence of a non-zero
element of F'(b, k). Moreover, since the g, are generic over a field %, of rationality for b,

we have v, (w) =0 for every non-zero w€ F'(b, k).

Proof. Define an element B’ of k(VxV) by Bz, y)=B'(z, y)ux)w(y). Then
vpr(B,) =Vpr(B) —Vp(u) = _vp(a) _rp(u) for peP(k) —{41, e qr}’ and 'Vq‘xV(B,) = -1
By Lemma 2.5, we have v,(B,)>—1, #/(B,)> -1, and Vo(By) 2y (B’) for all
g€P(ky) —{y, 41, ..., ¢,}- Therefore, for every g€ F’'(b), we have

div (Byugdz) > —y — D ie1q,+div (») +div (g) + § —a—div (u)
> —y—2iaq:.

This shows that the differential form B,ugdz has no pole except at y, ¢y, ..., ¢,. Especially
this applies to the case g =w. By Proposition 2.9, we have

Res, (B, ugdz) = Res, ((ghw): B,uwdz) = (g/w) ().
By our definition of ¢,
Res,,(B,ugdz) = Res,, ((g/w) Byuwdz) = (g/w) (¢:) ci(y)-
Since the sum of all residues is 0, we obtain

(g/w) (y) + 2i-1(g/w)(g:)eily) =0,

which proves the equality (*). This shows also that F'(b) is contained in the Q-linear span
of ¢,w, ..., c,w. Since r=dim F’'(b), the c,w must form a basis of F'(b) over 2. It follows
that c¢,+0, hence v, (B,uwdz) = —1. This completes the proof.
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3. The trace formula: first formulation

3.1. For a= [(: 2] €GLy(0) and 2€CU {oo}, we put, as usual,
ofz) = (az+b)/(cz +d),
and denote by § the complex upper half plane:
9 = {z€C|Im (2)>0}.

We are going to discuss automorphic forms of an arbitrary rational weight. Fix a
“weight’ m which is a rational number, and consider the set &,, consisting of all couples

(e, h(z)) formed by an element & = [Z 2] of SL,(R) and a holomorphic funetion k(z) on £

of the form h(z) =t (cz-+d)™ with t€C, |¢| =1. We make @&, a group by defining the law of

multiplication by
(@, h(2)) (B, (=) = (o, h(B(2))j(2))-

Let 7=(«, h(2))€6,,. For a meromorphic function f on §, we define a function f|z by

(1) (2) = fladlz)) Bl=) .
Let 1" be a discrete subgroup of SLy(R) such that §/T" is of finite measure with respect to
y~2dzdy. (We denote the quotient space by $/T" although we let " act on the left of §.)
By a proper lifting of U of weight m, we understand a map L: I'>@,, satisfying the
following conditions (3.1.1-3):

(3.1.1) L is an injective homomorphism of T" into &,, such that PolL is the identity map of T,
where P is the natural projection map of &, onto SLy(R).

(3.1.2) L(—1)=(-1,1) ¢f —1€l.
(3.1.3) If y= [Z 2] €L, L{y)=(y, t-(cz+d)™), then t"=1 for some positive integer n.
Since I' is finitely generated, we can take »n to be independent of p.

Let us fix such a lifting L: I'>@,,, and put

Ly) =, iy, 2) (y€D).

Then (38, 2) =§(y, 8(2))§(5, 2). Now we can define a proper lifting L’ of I' of weight

2 —m by
. LI('}/) = (')/: 7"(% ’Z)),

7'(ys 2) = iy, D7 ez + d)?
ity for = |! ] €T
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3.2. Let §* denote the union of § and the cusps of I'. Then $*/I" has a natural
structure of a compact Riemann surface. We take a projective non-singular curve V
which is complex analytically isomorphic to $*/T, and fix a [-invariant holomorphic map
@: H*—V through which §*/T' is isomorphic to V. (We call such (V, ¢) a model of $*T".)
Then C(V)ogp is the field of all I-automorphic functions: we identify C(V)og with C(V)
if there is no fear of confusion.

For fixed L and L’ as above, let F (resp. F') denote the module of all meromorphic
functions f on § which satisfy f|L(y)=f (resp. f|L'(y)={) for all y€I', and which are
meromorphic at every cusp of I' in the sense explained below. We see that F is either
{0} or one-dimensional over C(V). In the following treatment, let us simply assume that F is
not {0}, without discussing the condition for the non-triviality of F. Then F’ is also
non-trivial, and we obtain a system §={F, F', Z, 3} satisfying the axioms (A;_,) of 1.2
as follows. For (f, g)€F x F’, define Z(f, g) to be the differential form on V which can be
identified with fgdz. The divisor div (f) = Z,,(f)p for f€F or fEF’ can be defined in the
following way. Let p=¢(z,) €V with z,€H*. If 2i€H, consider the expansion of f at z,:

(8.2.1) f2) = ez —2p)* + Crpa(z—20) 1+ ..., 0.
Then we put v,(f) =k/e,, where ¢, is the order of the group

(3.2.2) (€T |y(zo) = 2} (T'N {£1}).

If 2, is a cusp of T, the last group is free cyclic. Take an element J of I" that generates this
free cyclic group, and take an element g* =(g, £(z)) of &,, so that g(c°)=z, Then

(3.2.3) 0*-1L(d)o* = (e [(1) ;’] , ezmr)

with e=+1, h€R, and 0<r<1. By (3.1.3), r must be rational. Changing ¢ for 61 if
necessary, we may assume h>0. Now we say that f is meromorphic at 2, if

Hlo* =2.,ezn €Xp [2ni(n + r)2/h)

with only finitely many non-zero c, for n<0. Then we put »,(f)=n+r with the smallest

n for which ¢, +0. Finally we put

3 =div (d2) = —Zpen(1-67) 2,
where B is the set of all the points of V corresponding to the elliptic points and the cusps
of T'; e, denotes the order of the group (3.2.2) for each point p =g(z,) € V; especially ¢,= oo

if p corresponds to a cusp. It is now easy to verify that {§ actually satisfies (A, _,) of 1.2.
(As for (A,), see for example [6, § 2.4].)
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3.3. For each p€V, there is a unique rational number y, such that
(3.3.1) 0<p,<1, v,(9)=p,modZ for0+g€EF.

This is because F' is one-dimensional over (V). We see that e,u,€Z (if e,<o0), hence

pp<l—e,". Put p,=1—e;* —pu, for each p€V, and define two elements ¢ and b of Dq by
(3.3.2) 0= —ZpenftyP> b= —Zpenpip.

Then we see that a and b satisfy the condition (2.3.0), and we have

(3.3.3) O0<p,<1, 9(f)=p, modZ forO==f€F.

Obviously p,=u,=0 if p¢R. Moreover one has

(3.3.4) F'(b) = F'(0),

so that F'(b) consists of all the elements of F’ which are holomorphic on § and also
holomorphic at every cusp. We have 0<u, <1 —e;" if p corresponds to an elliptic point.
If p corresponds to a cusp, define r by (3.2.3) under the condition 0<r<1. Then p,=r or
1 according as r>0 or =0. Therefore F(a) consists of all the elements of F which are
holomorphic on § and vanish at every cusp. Thus F(qa) is the vector space of all cusp forms
with respect to the automorphic factor j(y, z).

Let g denote the genus of V. Define o(H/T") by

(T = (2n)’1J- Yy 2dx dy.
$IT

It is well known that v($)/I") =2 —~2+Z,cz (1 —e,?). Moreover one has
(3.3.5) deg (div (f)) = (m/2)-v(H/T") for O+fEPF.

To see this, take a positive integer » so that mn€Z and j(y, 22" =(dy(2)/dz)~™" for all
€. Such an integer n always exists by virtue of (3:1.3). Then div (f) = (2n)~! div (f2"),
hence (3.3.5) follows from [6, Prop. 2.16].

If Of€F and 04-g€F’, we have

deg (div (f) +a) = (m~1)o(H/T)/2 4 Spen {1 —¢51)/2 —ptp} +4 1,
deg (div (g) +B) = (1 —m/2)2(H/T) — Spen st
By (1.6.1), we obtain
(33.6)  dim F(a)~dim F/(b) = (m—1)o(H/T)/2 +Zpen{(l —&51)/2 — o).

Further it can easily be verified that
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(3.3.7) If (m/2—-1)v(H/TY+Zpeppp>1, then F'(b)={0}, and the condition (2.4.10) is
satisfied.

34. LeMma. Let (B, R)E®, and Plzg) =2, with 2,€S. Put o'=[z° z"]. Then

11,
], h(zo) =7 with complex numbers { and 1 such that |l| =|n|=1. If § =

e

[Z 3] and h(z)=t-(cz+d)", then {=czy+d, n=t{™. Especially if BET and (B8, h)=L(B),
then n=4(B, zo) ={ 2, where e=e, and pu=p, with p=q(z,).

Proof. Almost all assertions can be verified in a straightforward manner. The relation
n={"2°* can be obtained by considering the expansion (3.2.1) for 0+f€F and the
equality f|L()={. (This is a consequence of our assumption F{0}.)

3.5. Hereafter till the end of this section, we fix an element 7 = (a, h) of &,, satisfying

the following two conditions:
(3.5.1) I’ and a'T'x are commensurable;
(3.5.2) L{ayox )y =7-L{y)t! forallyel naTe.

Put I'*=L(T"). Then, by [7, Prop. 1.1], the projection map I*z['**~Tal is one-to-one.
Let f* denote the element of I'™*¢I™ corresponding to an element # of ['al', and put
(3.5.3) B*=(B.Mp,2) (BETaT).

Especially v=o*=(a, k(a, 2)). By [7, Prop. 1.0, Prop. 1.1], I'* is commensurable with
7I™7~1. Moreover, if I'al'= J,T'«, is a disjoint union, then I™a*I™* = U, ™*a} is a disjoint
union.

Now we define a linear transformation [Tal'}* on F by
fl [Fal—‘]* = prld: = zvf(“v(z))k(“w z)—l (fEF)

It can easily be verified that [T'«I'}* maps F(a) into itself.
Furthermore, put I'y, =L'(I'), and

(3.5.4) Bs= (B KB, 2), -
K(B, 2) = h(B, B(2)) (dB(2)/dz)~* for BETaT.

Then it can easily be seen that o ! satisfies (3.5.1, 2) with respect to L’. Therefore, with a
disjoint union I'a~'I'=|j,I'8,, we define a linear transformation [I'a-T'], on F' by

flICa T =2, f|Bye = Z,{(BDH (B,, 2 (fEF).
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This maps F’(b) into itself. Our main purpose is to prove a trace-formula of the form
tr ([Dal'T*| F(a)) —tr ([T T, | F'(0)) = Zeex 1(8),

where I(£) is a certain complex number defined for each ““fixed point” & of I'al’ on V,

whose precise description will be given in the next paragraph.

3.6. Define an algebraic curve 7'=T(I'aI") on V x V by

T = {p(z) xp(a(2))|2€H*},

where (V, @) is the model of $*/I" fixed in 3.2. Let us now assume the following condition
on lal™:

(3.6.1) If 7 denotes the natural map of SLy(R) onto SLy(R)/{+ 1}, one has
(a1 To N T') = a(oTe) N 7(T).

This is satisfied whenever — 1€T". Let I'al'= J%,T'«, be a disjoint union. Then we
write d =deg (I'al'). Under the assumption (3.6.1), d is the degree of the covering

§*/(a-Tan T) - §*T,

and the algebraic correspondence 7' maps a point ¢(z) onto the points g(o,(z)). Let us further
assume that «¢{+1}I". Then +1¢I'al’, and T is different from the diagonal.

A point ¢(z) on V with z€§* may be called a “fixed point” of T' if (and only if)
z€Tlalz. However, we have to take account of “‘the branches of the correspondence”
T passing through ¢(z). Therefore we consider all z,€ $* such that z,€'al'z, and fix a
complete set of representatives E, for such z, under [-equivalence. Then let & =E(Tul’)
denote the set of all couples (zy, I'8) with 2,€E, and 'S < I'al" such that I'fizy=1I"%. We
call Z a representative set of fized points of T'al'. (The number of elements of Z is not
necessarily equal to the intersection number of T with A.)

We are going to define a complex number I(&) for each &=(z,, I'5) € Z. Choose § so

that B(z,) = 2o, and call & elliptic, hyperbolic, or parabolic, according to the type of f (which
depends only on £).

(I) Elliptic case. Put ¢ = [Zlo z{,] By Lemma 34, we have o lfo= [?) 2],
h(B,z) =7 with |A] =|n|=1. Then we put
1(8) = tA-seK](1 ~ -5,

where e==¢,, yt =u, with-p=ep(z,). Note that 421 since f¢{+ 1} I'. By virtue of Lemma
3.4, I(£) depénds only on &, and not on the choice of §.
18 — 742909 Acta mathematica 132. Imprimé le 19 Juin 1974
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(IT) Hyperbolic case. Let' § be an arbitrary hyperbolic element of SL,(R), and z, a
-1
fixed point of f on R U {eo}. Take g € SL,(R) so that g(o°) = z,. Then p~fp = [?) Z] with

real numbers A and x. We call z, the upper fixed point or the lower fized point of §, according
as |A] >1 or |4| <1. This does not depend on the choice of p. If z, is the upper fixed point
of §, then the other fixed point is the lower fixed point.

Now suppose that SE€T'al", and z, is a cusp of I". Take an element g* of &,, with g
as its projection to SL,(R). Then we have

ore-(;

with a complex number 7 such that |n|=|4|™ Now, for £=(z, I'f), we put

—n7' if y,=1and |A]|>1,

0 otherwise,

I(E)={

where p=(z,). Since I" and '8~ are commensurable, 22 must be a rational number. (See
also Lemma 4.2 below.)

(III) Parabolic case. Let z, be a cusp, and let 6 be an element of I" that generates
{y €T |p(2o) =2o}/(I'N { £ 1}). Take the above p so that g~1dg=¢ [(1) ;] with e=+1, and
take an element o* of &, whose projection to SL,(R) is o. Then

11
Q*"IL((S) Q* = (8 [0 1] , e?dlf/‘) .

/

where g = p,, with p =g(z,). Now let & = (2, ['§) with a parabolic 8 such that f(z,) =z,. Then

svo=(} 0

with ¢c= =1, z€R, || =1. We put then
'1(5) = n—lezni/tz/(l -‘—62"“").

In each of the three cases, the number I(£) is independent of the choice of g.

We are now ready to state our main result:

3.7. THeorREM. Let [Tal']* and [I'aT"], be as in 3.5, under the assumption (3.6.1).
Suppose that «é{+1}T", and the divisor a defined in 3.3 satisfies (2.4.10). Then
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tr (Dal'}*| F(a)) —tr ([(Fa'T | F'(0) = Zgez 1(8),

where B and I(&) are defined as in 3.6.
The proof will be completed in 3.11.

3.8. As a preliminary step, let us make a few observations about the field of
rationality for automorphic forms, although these are actually dispensable. Let I';=
I'noT'x, and let (¥, ¢,) be a model of H*/I',. Then V, is birationally equivalent with
the curve T'. Obviously the restriction of L or L’ to I'; are also a proper lifting of I';, hence
we can define §§,={F,, F1,Z,,3} for V, and T';. Now there are two projection maps
nw and z’ of V; onto V defined by mo@, =¢ and n’op, =goa. Fix any non-zero f,€ F and
f1€ F,. Then we see that both f,/f, and (f,|a*)/f, belong to C(V,)op;,. Fix any field of
rationality k, for §, 1. 7, @', fo, foffe, and (fo| a*)/fo. Then if ky<k, we see that

(3.8.1) F(k) = Fn Fy(k), F'(k) = F' 0 Fi(k);
(3.8.2) € F(k)= f|a* € Fy(k).

In fact, if f€F(k), then f=(rog)f, with r€k(V), so that f=(romoq,)f,:(f1/fo) € Fy(k)

and f|o* =(ropoa)(fo|a*)fs'fo = (roa’ ogy) (fy| &*) fo fo € Fu(k), q.e.d.
Let I'al’= U, ', be a disjoint union. Then we see easily that

(3.8.3) For f€ F(k),let r be an element of k( V) such that rogp, = (f | oc*)/f. Then (Trycy,ymonyr) o@) f=
fIITal'T*, where Tr is defined with respect to the injection k(V)—>k(V)om< k(V,).

This shows especially that [T'«']* maps F(k) into itself.

3.9. For each field k of rationality for {}, define E(k) as in 2.1, and let E denote the
union of E(k) for all fields k of rationality for {§. Then E is a one-dimensional vector space
over G(V x V). With each X =A®[®g€E with A€C(V x V), fEF, and g€ F', we associate
a meromorphic function X(z, w) on § x § by

X(z, w) = A(p(2), p(w)) fZ)gw) ((z w)EH x §).

This does not depend on the choice of 4, f, g for a given X, and
X(y(2), 6(w)) =X(z, w)j(y, 2)j' (6, w) for (y,d)€T xI".

In this way E can be identified with the set of all meromorphic functions X(z, w) on
H x H such that X(z, w)f(z)Lg(w)-! is an element of C(V x V) for 0=f€EF, 0=+g€ F".
Let I'al’ = U,T', be as before. We now define X|7T to be an element of E such that

(X|T) (2, w) = Z, X(a,(2), w) h(cr,, 2)~2.
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More algebraically, we have

XI T =Trew < micvn(d)®f®g,

where A’ is an element of C(V; x V) such that

A'(py(2), plw)) = Algl(z), @(w)) (] a*) @)/ (2).
In view of (3.8.3), this shows that
(3.9.1) X|T€E k) if X€E(k) and k contains the field k, of 3.8.
Suppose that the diagonal of ¥ x V is not contained in the pole of X. Then we see that

X (2, 2) is a I'-automorphic form of weight 2 in the ordinary sense. Therefore X(z, 2)dz can
be viewed as a differential form on ¥V, hence the residue Res,(X(z, z)dz) at each p€V is

meaningful. We write
X(z,2)dz =X,_,d>2.
It can easily be seen that

(3.9.2) X,_,dz is k-rational if X € E(k).
3.10. We take the field &, of 3.8 so that the points of R, a, b, and 7 are all rational over

ky,, and take an extemsion k of k, which is algebraically closed and has an infinite
transcendence degree over k,. With this k as the basic field, we define objects f,, g,
u, v, Gp, S,, 4,, B, and ¢, as in §2. Put

n =dim F(a), r=dim F'(b).

In § 2, we chose an arbitrary {g,} dual to {f,}. Here we fix a ky-rational point ¢ of V —R,
which is neither a fixed point of 7', nor contained in the image or the inverse image of
R by T. Then we choose {g,} so that

(3.10.1) g, =0 forg+p€P(k).

This is possible by virtue of Proposition 1.9. Note also that the set of points {g,} is
disjoint with the image and the inverse image of {g}U R by 7 and also with the fixed
points of T, since the ¢, are generic points of V over k,. We can also choose « and v so
that

(3.10.2) vo(u) = p,, v, (v) =p, forallp€RU @(E,).

For brevity, let us write 7*=[[al']*. To compute tr (T*|F(a)), put f,|T*=
Xa1ay;f; with a,€k. Since {g,} is dual to {f,}, we have

5= Zpepe) Res, ((f;] T*)g,,d2) = Res, ((f;] T*) 91 d7)
by (3.10.1). By (2.4.4), we have
(3.10.3) 21/i®g=4,+B.
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By (2.4.9), a non-constant divisor B of £(V x V) is contained in the pole of B if and only if
% is the diagonal A. By (3.10.3), 4, has the same property. Since 7' is different from the
diagonal, both (B|7T),_,dz and (4,|T),_,dz are meaningful, hence

(3.104)  tr(T*|F(a))= Ti1ay= Res, (Ag] T).ndz) + Res, (B T).—ud2).

Now by (2.4.’7),‘ (2.4.9), (2.8.1), (2.8.2), we have

(3.10.5,) Vyso(B) =0 (peEV—RU{g}),
(3.10.5,) voolB) 2y (PER),

(3.10.5,) Voy(B) 20 (pEV—RU {gu, ..., &,}),
(3.10.50) vxv(B) 2,  (pER),

(3.10.5,) Voo (B) = =1 (i=1,..,7),

(3.10.5,) : ‘ Ya(B) = —~1 (A: diagonal),

(3.10.5,) ru(B) =0 (B non-contant, ==A).

(In § 2, we considered only k-rational prime divisors. However, since B is k-rational, we
see easily that the above inequalities hold for any points or divisors which are not
necessarily k-rational.)

By (2.4.6), we have v,,,(4,)>0. Now let g=eq(z,) with a point 2, of @.vFor any
BETAL, put p=p(B(z)). By (3.10.3) and (3.10.5.), we have v,,y(4,) >0. It follows that
A,(B(z), 2) is finite at é=z,, for every S€Tal’. (One cannot have jo=q because of our
choice of ¢.) Theréforev Res, (4] T),—d2) ==0 On the other hand, (B|7T),_,dz is a
differential form on V, hence 4

Zpev Res, ((B| T),_,dz) = 0.
Therefore (3.10.4) becomes

(3.10.6) . tr (T*| F(0)) = Res, (B T),_p2) = — Zpiq Res, (B| T)oewdz)-
(By (3.8.1,2), (B|T),_,dz is k-rational, but we do not need this fact.)

3.11. Our task is thus to compute Res, ((B| T'),_,dz) for each p=+q. Let us first show
that the residue can be non-trivial only when either p is a fixed point of T', or p belongs
to the inverse image of {g;, ..., ¢,} under T. Let p=g(z,), p’' =(B(z,)) With any z,€H*
and any B€T'al’. Suppose p=+q and p'¢{p, ¢y, ..., ¢,}. Take u,€F and v,€F’ so that
Yy (4y) =g and v,(0;) =pp. Put B(z, w) = By(z, w)u,(2)v,(w). Then

(3.11.0) B(B(2), 2)h(B, 2)~1dz = B, (B(z), z) (u, | f*) (2) v,(2) dz.

By (3.10.5), B, is finite at (B(z,), 2,). If z, is not a cusp, we have v,(v;dz) = —u,> —1, and
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u, | B* is finite atb z,. If 2, is a cusp, then »,(v,dz) = —u,> —1, and u, | §* vanishes at z,, since
B(z,) is also a cusp, and v, (u;) =y, >0. Therefore, in either case, the form (3.11.0)
measured by a local parameter on V at p has order > —1, hence the desired conclusion.

To compute the residue at a fixed point p of T, take z,€Z, so that p=gp(z,), and
consider & = (z,, I'f) €Z such that f(z,) =z,

(I) First suppose that § is elliptic, hence z,€9. Let D denote the unit disc, and put

= ﬁo zlo]’ 0(8) = (38 + 2p)/(s +1) for s€D,

and define a holomorphic function x on D by
#0) =1, %(8) =(s+1)" (s€ED).

Then ¢ maps D onto §, and 06(0) =z, By Lemma 3.4, if B€T'al" and B(z,) =2y, we have

oo = [g g] s BB, 29) =1

with |A]| =|5| =1. Moreover we can easily verify that
(3.11.1) (B, 0(5)) =1+ (A=) (s).

Let us write e, u, u’ for e, u, u, with p=@(z). By (3.10.2), we can put u(a(s))=
8°*u,(s), v(o(s)) =8°#'vy(s) with functions %, and v, which are holomorphic and =0 at the
origin. Put B=B,®u®v with ByeC(V x V). Further put y=goc and
D(s, t) = (8¢ —t°)s—#1~*F"B(a(s), a(t))
= (=19 Byfpls), () ue(e)vo(t) (5, )ED x D).

Now s° is a local parameter at z,. Therefore, by (3.10.5), we see that D(s, t) is holomorphic
at (0, 0). Consider the differential form

By(y(s), y(t) u(o(s))vlo(s))do(s) = (8 ~#°)2 D(s, t) s +F vy(s) vy(t)~ do(s).
By Proposition 2.9, viewing ¢ as a constant, the residue of this form at s*=¢ is 1. Since
eu+ep’ =e—~1 we have
(3.11.2) P da(s) = eto'(8)d(s7),
hence e1¢’(£) D(t, t) =1, especially
(3.11.3) e~16'(0) D(0, 0) = 1.
Putting 2=0(s), we have, by (3.11.1, 2),
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B(B(2), 9h(B, 2)1dz = Blo(h~%s), o(s)) h(B, o(s))do(s)
= (A—%s° —&®) 1 (A 2s)°P 5°F D(A~2s, sy~ u(A=28) " 2¢(s) do(s)
=9I BA(Q 2% - 1) Lg%’ (s) D(A2s, s) %(A~28) L x(s)d(s%).
By (3.11.3), the residue of the last form at &#=0 is —I(£) with &=(z,, I'f), hence

(3.11.4) Res, [(B| T),_dz]= — Z I(8),
the sum being taken over all &=z, I'§) with the fixed point z, in question.

(II) Suppose p=g(z,) with a cusp z, of I, B(z,) =2, with a hyperbolic element fE€Tal".
We may assume z,=c°, and take #(z) =¢>™ ag a local parameter. Again we write y and
u'" for u, and u,. By virtue of (3.10.5), if we put

H(t(z), t(w)) = t{uz)~ #(u'w) (Hz) —H(w)) B(z, w),

then H is holomorphic at (0, 0). Define B, as in (I). Then

By(p(z), o(w))u(z)v(z)dz 7

= (tz) — t(w) 7 H(#(2), #(w))v(2)t(p'2)~ vlw) " #(p'w) (20)~ di(2).

Viewing #(w) as a constant, this has residue 1 at #(z) =i(w), by virtue of Proposition 2.9,
hence H (t(w), t(w)) =21, especially
(3.11.5) H(0, 0) =2mi.
At o

Now we can put = [ 0 Z] and A(f, 2) =7 with A€R and 5€C. We have seen that A2

is a rational number. Put x =4-% Then f(z) =z, and
(3.11.8) B(B(z), 2)h(B, 2)2dz
= M(2) (e + ) 2) (B(xe2) —H(2) )L H (E(x2), 8(z)) (200) 7 dit(2).

If <1, we have

H(2ep + 1) 2) [ ((2) —1(2)) = tp' (1 —2)2) (1 —¢((1 —%)2)),
hence the residue, or more precisely the coefficient of #(z)-1di(z) of (3.11.6), is either O or
71 according as y' >0 or y’'=0, by virtue of (3.11.5). If »x>1,

H{(o + 1) 2 (8(02) —8(2)) = =8 — 1) ) (1 ~£(( — 1)2),
hence the “residue” of (3.11.6) is 0. Thus (3.11.4) holds also for hyperbolic &.

(IIX) Still with zy=co, suppose § parabolic. We can put

r={elo 1)
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with 6=+ 1, 2€R, [n| =1. Put {, =", {,=€>"#*. With the same #(z) and H as in (II),

we have
B(B(z), 2)h(B, 2)"1dz =771 Cot =)o H (G4t 1) (270) 1 d,

hence the residue at t=0 is 5=1¢,/(¢; —1) = — I(£).
(IV) Suppose r(=dim F’(b)) >0, and p belongs to the inverse image of {g,, ..., ¢,}

under 7. Let g,=g(z;) for j=1, ..., 7. Then the sum of Res, [(B|T),_,dz] at all such p is

equal to
Z;=1 2r‘6w=rz; R’esw [B((S(Z), z) h(ér z)‘ldzL

where the second X is extended over all I'd © I'aI” such that I'éw=T"z,; w is any point satis-
fying I'dw=1I"z,. Take a set of representatives {f} so that I'a-I'=U I'f = UAT. Then
Tal’= UI'8-1, and the above sum becomes
(3117) i1 3 sResp, (BB~ (2), D h(B, 2) de]
= 57155 Res, [B(z, B ¥ (8,2 de],
where %’ is defined by (3.5.4). Fix an element g of F'(b) such that Ve, (9) =0 for i'=1, ey Ty
and define an element B, of C(V x V) by B=B,®u®g, and further define ¢,€C(V) as
in Proposition 2.10 with ¢ in place of w. Put
H(z, w) = (2—2,) By(p(2), p(w)) u(2) g(w).
Since @(2;) +¢((z,)), we see, by (3.10.5), that H,(z, w) is holomorphic at (z;; B(z,)):
Therefore, by Proposition 2.10, viewing w as a constant, we. obtain
¢ilp(w)) = Res, [(z—2,)7 H,(z, w)g(2) g(w) " dz],
hence H (z;, w)g(z;)/g(w)=c,(p(w)), especially, putting a,(z) =c,(p(z)) g(2), we have

(3.11.8) H (zy, Bles)) = a,(Blz,)atz).
Therefore {3.11.7) equals '
513 Res, [(z—2) " H,(z B) ¥'(B, )" dz]
= 25-12pH,(z, B) ¥ (B, éj)_l
=25-19(2)7 20, (B2) ¥ (B, %)
= 25-19(z)"'by(z),
where we put b;=a,;|[I'«™'I'l,. By Proposition 2.10, {a;} is a basis of F'(b), and
b= —27-1(b./g) (z;) - a;, hence y
tr (Do Tl | F'(6)) = — 35-1(8,/9) (),
which is exactly (—1) times (3.11.9).
Combining the results of (I, II, III, IV) together, we obtain Theorem 3.7.

(3.11.9).
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3.12. Remark. In this section we have considered only a special type of divisors
a and b, while a more general case was discussed in § 2. Actually we could state our
theorem in such a general case, provided that [['al'T* (resp. [T'eI'],) maps F(a) (resp.
F'(b)) into itself. In general, however, it is not easy to obtain a criterion for this requirement.
A discussion is given in Elchler [3] for a questlon of the same type in a somewhat different

formulation.

4. The trace formula: second formulation
4.1. We shall now express the sum 2.z I(&) of Theorem 3.7 in a more group-
theoretical fashion. We do this not only for its own sake, but also to weaken the condition
(2.4.10) under which the formula was proved. We shall introduce certain equivalence
classes C in I'al’, and define a ’compléx number J(C) for each C<T'«l'. Then the sum
2eezI(8) will be expressed as XgcrorJ(C). To define J(C), first put, for each gelal,

Zr(B) ~ €T |y =By}
Let ®(I'al’) denote the subset of T'al’ consisting of:

all scalar elements of I'al’,
all elliptic elements of 'aT,
all hyperbolic elements of I'aI” whose upper fixed points are cusps of T (see 3.6, (IL)),
all parabolic elements of I'al’ whose fixed points are cusps of I'.
We call two elements § and f' of ®(I'«l’) equivalent if:
f=p when 8 and §’ are scalars,
yByt =p’ for some y €T, when f and ' are elliptic or hyperbolic,
yB'y1€Zp(B)f for some yEI', when ,8 and §' are parabolic.

We denote by ®(I'al'/T") the set of all equivalence. classes in ®(I'«l’) in this sense.
Let fe®(I'al"). If B is elliptic or parabolic, then f has a unique fixed point z; in §*. Then
Zp(B) ={y €T |p(zp) = 2o}-

If B is hyperbolic, one has Zp(f) =T'n{+1}.
Now we define, for each C€®(I'aI'|T"), a complex number J(C) as follows:

(T n{£1}: 17"y "2 (m =) w(§/T) if f*=(F L),

[Zr(B): 117 7Y (1—27%) if B is elliptic,
J(O)={ ~[Dn{+1}: 17y (1~ 1) it B is hyperbolic,
p tePmir (271 — y) if B isparabolicand f€{+1}-T,

L~ €2 (] — ¢2mi) if B is parabolicand B¢{+1}-T.
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In each case we pick any ffrom C, and define 4,7, 4, and z for § as in 3.6, (I, 11, ITII). We have
|[A] >1 for hyperbolic 8, since we consider only the upper fixed point of 8. Obviously
J(C) does not depend on the choice of 8. Note also that J(C) =0 even if § is hyperbolic
and p<l.

4.2. LEMMA. Let § be a hyperbolic element of Tal with a cusp z, as its fized point. Let
0 be an element of I" that generates

{r €T |y(zp) =2}/(Cn {£1}).
Let g* be an element of &, whose projection g to SLy(R) is such that o~10p =¢ [1 1} with

01
e==1, and put
1 1
*—lat #=( [ ]’ 27:1/‘),

y R '
*—10x % _ , .
e ([0 A] ”)
Then 2% is a rational number. Moreover, put A2 =s[t with positive integers s and t such that
(8,8)=1. Then
(1) ﬂas_: et—satﬂ;
(i) s—2 ¢s even, if —1¢I" and ¢=—1;
(iii) (s—t)u€Z.
Proof. We have

ey el 2]

hence the rationality of A2 follows from the commensurability of I' with 8~1I'8. Then
(i) is immediate. If —14¢I', e=—1, and s~ is odd, then §~%4*= — B, which contradicts
the assumption (3.6.1). To prove (iii), we may assume 86°=6'8. (If e= —1 and s—¢ is
odd, then —1€I'. Take —§ in place of 4.) Then g@*-1(§7‘f6%)*0*=p*'f*¢* hence
e2™p~h .y —=p  which proves (iii). (Note that (iii) is a consequence of (3.5.2).)

4.3. LEMMA. Let x be an indeterminate, and let { be a primitive k-th root of unity with
a positive integer k>1. Then, for b=0, 1, ..., k—1, one has

JE L)1 - L) = ka®[(1 — o),
kolp=ab/(] — %) = (k—1)/2 —b.

The proof is easy, and therefore omitted.
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4.4. For any subgroup I'; of I' of finite index, we can consider the restrictions of
L and L' to I';. Then we can define objects F,, Fy, a,, b, with respect to I'; corresponding
to F, F’, a, b. If an element v=(a, k) of &,, satisfies (3.5.1, 2), then it satisfies the same
conditions with I'; in place of I". Therefore [T, «l',]* and [T",0™T';], are meaningful.

4.5. TueorEM. Let v=(x, h) be an element of &, satisfying (3.5.1,2) and (3.6.1).
Suppose that 1" has a normal subgroup U; of finite index with the following properties:

(i) deg(T'al’) =deg (I';al',);

(i) Tal’y =Tal’ =Tal}

(iii) Fy(ay—~p) + Fy(0y) for every p€V,=9*T;
(iv) I'; and « satisfy (3.6.1).

Then, without assuming (2.4.10) for F(a), one has
tr ([Tal'T*| F(a)) —tr ([Fa* Ty | F'(5)) = Zceararm J(0)-

Proof. Let us first prove the case a= +1. Put o*=(«, t) with |t| =1. Then (0 1)y=
(, ), hence f|[['al'T*=t"f, g|[To "]y =t-1g. Therefore our formula follows from (3.3.6)
and Lemmas 3.4, 4.3.

Next let us prove the case I'=I";, assuming a¢{+1}-I". In this case, our task is to
transform the sum .z I(£) into X J(C). Let £=(zy, I'f) be as in 3.6, and suppose that &

is elliptic and f(z,) =2, with z,€$). Let y be a generator of Zy(f), and put = [zlo zf] By

Lemma 3.4, we can put

0
oy = E C] s Jy, zg) = L3k,
i 0 .
o= | itz

where e=e,, u=u, with p=g¢(z,). Let C, denote the class containing y°f for a=1, ..., k,
where k=[Zy(B):1]. Thus & corresponds exactly to these k classes C,. Now k=2¢ or e
according as k is even or odd, and in both cases one has

2a-1J(C0) =25k 1y~ {Peek(1 - A7)

= A2 272 < I(§)
by Lemma 4.3.

Next suppose that § is hyperbolic. Without losing generality, we may assume
oo ig the upper fixed point of f. Define §, ¢, 4, 1, s, and ¢ as in Lemma 4.2.
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(We may assume p*=1, so that 6=s[(1) i]) Put I',={y€I'|y(c0) = oo}. We have
s >t, since |A] >1. Let us first assume that —1¢I' and e=-1. Then
{0 €T BS"|o(00) = oo} = {0"B*|m € Z} = I, fo".
Consider all £€E of the form & =(oo, ['88*). Now 6"f¢* =d*6"*"45", hence we obtain from
such a £ a class O’{conta‘ining elements of the form &"8. Suppose yd"fy~1=6"f with
y€L. Then j/EI‘w, and such a y exists if and only if m=n b(mod s—t), by virtue of Lemma
4.2, (i), (ii). Thus there are exactly s—¢ classes C, represented by 6”8 with n=1, ..., s—¢.
On the other hand, if y0”fy—! has oo as its upper fixed point, y must be contained in Iy,
so that T'yd"fy—1=Tho" with n€Z. Now [f6"=TB6™ if and only if m=n (mod s). Thus
there are exactly s different &= (oo, I'88*) for k=1, ..., s corresponding to the C,. Since
A2 —1=(t—s)/s, we have
L1 e
S8 (Cr) = Sazty e e (A2 1)={0 K - 1

by virtue of Lemma 4.2, (iii). Thus X,J(C,) =% I(&). The same conclusion holds also in
the case —1€I’ or ¢=1, by a similar and simpler argument. »

Still with I'=T';, consider a parabolic & =(z0,v I'B). Then there is a unique C in
®(Pal'/T) containing B, and conversely C determines £ uniquely. According to our
definition, we have J(C)=1I(§) trivially. This completes the proof in the case I'=T.

Now let us consider the general case assuming a¢{+1}-I'. Fix a normal subgroup
I, of I" satisfying the conditions (i-iv). Let .S be a set of representatives for I'/T",. Define
P: F,—F and P': Fi—F by

P =TT Z,esL(y),
P/ = [[: Ty EesL ().

We see that, for any y€I', (3.5.1,2) and (3.6.1) are satisfied by a*»* and I}, hence
[T, oeyT, 1* and [Ty~ ], are meaningful, and [y oyl J* = [T aly1* Ly), [Ty el =
L'(y™)[T,aT';]4. Since our formula is true for I';, we have, for every yE€S,
tr ([T eyl J*| Fiy(a)) —tr ((Tyy~! a Ty ] I Fi(5,)) = Z¢,J(Cy),
where C,; runs over all classes in ®(I",ay'y/T;). By our assumptions (i, ii), [[«'* (resp.
[T'a1I',) is the restriction of [T, al'y* (resp. [['ya I ]14) to F (vesp. F’). Furthermore, P
(resp. P’) defines a projection map of F,(a,) onto F(a) (resp. F1(b,) onto F'(b)). Therefore
tr ((TaIl'1*| F(a)) —tr (T T | F7(b))
= [[: 1417 Zypes{tr ([T’ oyl I* [ Fy(ay)) —tr ([I'yp? a1y ] I F1(6,))}
=[I: T4 ZpJ(D),
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where D runs over all classes in U @ (' op'y/T). Observe that I'al' = U sy oapTy,
and this is a disjoint union by (i, ii). Let C €D (I"al'[T"). If C is elliptic or hyperbolic, it can
easily be seen that C' contains exactly [I: I';Z(f)] classes D of U,s@(Ioply/T),

where §€C. Now we have
[[: 141 = [T: Ty Zr (B2 (B): 11(Zr, (B): 1172,

hence J(C)=[T: T 2y J(D).
It remains to prove the last equality for parabolic C. Let EC €D al'/T") with a
parabolic 8. We may assume f(o0)=oco. Put

T = {y€T|y(o0) =}, Typ=TyNnTY.
Let us first consider the case —1¢T". Then we may assume that I, is genérated by an ele-

ment § of the form d=¢ [(1) i], withe=+1. Put k=[",: ['}0], andﬂ*=(c[(l) ﬂ, 17).

Let D be an element .of U ,¢s®(";xpTy/T';) contained in C. Then D contains an element
of the form y6"fy—1 with y€T". It can easily be seen that yd"8y~1 and '6"8y'~! belong to
the same D if and only if y—1y"€I', T, and m=n (mod k). Let P be a set of representa-
tives for I'/1';T'. Then [I': I';] elements

y&" Byt  (yEP;n=1,..., k)
form a set of representatives for all the classes D contained in C. If p6”°8y~1€ D, then
J(D) — n—lev2nin,ue2ni/u(z+n)lk/(l . e2ni(:r+n)lk)’

where u, is defined with respect to I';. We can put ku —u, =b with an integer b such that
0<b<k. Then '
Specd (D)= [[: T Do}yl ebmitude Sk g~ Rrindlc)(1 — gimita mi)
=k-[[: D Telyte?™im(1 — ™)
={T":T1J(C)

by Lemma 4.3. The case —1€I" can be treated in a similar way, which concludes our proof.

5. Supplementary results and remarks

5.1. We observe that the couple (F(a), F'(D)) is almost symmetric. Therefore if
F'(b) satisfies (2.4.10), i.e., if F'(b—p)=F'(b) for every p€V, then we can repeat the -
whole discussion interchanging F(a) and F’'(b), and obtain a formula of the type

br ([T 3T, | '(6)) — tr ((Tal'T*| F(a)) = S J'(C),
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where the sum is taken over all ¢’'€®(I'aI'/T"). Let us now show that this becomes
exactly —1 times the previous formula.

First we prove a formula corresponding to 3.7, with the sum X, I'(£') extended over
all & €E(I'e™I"). In this case, since 0<u,<1, we have to define I'(&') for & =(zy, I'B)

with a parabolic § by

77! if py=0 and |i|<1,
0 otherwise,

I'(f’)={

-1
where 0, 'By04= ( [g (;)L] , 17) with a suitable g, €®2_,,. Then we can repeat the dis-

cussion of § 4, and arrive at the desired conclusion. As a consequence, we obtain

5.2. THEOREM. The formula of 4.5 holds also when the condition (iii) is replaced by the
following
(") Fi(by—p) + Fi(by) for all p€Vy=§*Ts.

5.3. As a simple example, take the case where m=2, and L is defined by
L(y)=(y, (cz+d)?) for y= [’: ;’] €. Then we see that L'(y)=(y, 1), =0, F'(b)=C, and

F'(b—p)={0}+F'(b) for every p€V. Therefore (iii') is satisfied with I'; =T", and the
trace-formula is valid. In this case, F{a) is exactly the space of cusp forms of weight 2 in
the ordinary sense. Therefore (2.4.10) is satisfied if and only if F(a)+{0}. Thus our
discussion shows that the trace-formula holds even if F(a)={0}.

5.4. There is still another symmetry between F(a) and F’(b). First, to indicate
that a and b are defined with respect to L and L, put a=a(L) and b=0B(L’). Now,
interchanging L and L', we can define a(L’) and b(L). More explicitly,

a(L) =b(L') —~Z,esp,
H(L) = a(L) +Zyesp,
where § is the set of all cusps p € R for which u,=1 (i.e., 4, =0). Then F(b(L)) is the space

of all integral forms with respect to L, and F'(a(L’)) is the space of all cusp forms with
respect to L’. Our formula applied to this case gives the difference

(5.4.1) tr ([Tal']*| F(6(L))) —tr ([(TaT')y | F'(a(L))).

We have of course F(a(L)) = F(b(L)) and F'(a(L’))< F'(b(L')); the complementary parts
are spanned by Eisenstein series. Therefore (5.4.1) gives the sum of the value given in
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Theorem 4.5 and the traces of [I'al']* and [['e~I'], on Eisenstein series with respect to
L and L'. As a special case of this fact, we obtain, from (3.3.6),

(542)  dim F(O(L))—dim F(a(L)) +dim F'(6(L')) —dim F"(a(L'))
= the number of cusps p on V for which u,=0.

5.5. Let us now consider the case of modular forms of half integral weight. For a
positive integer N, put

T (V)= {[Z 2] €SL,(Z)|c=0 (mod N)},

I, (N)= {[z 2] €Ty (N)|a=d=1 (mod N)},

and define functions 6(z) and j(y, 2) for y €L, (4) by

0(2 =>%_ _. exp (2min’z),
7(% 2) = 6((2))/6(z) (Y€T((4)).

Then j(y, 2)*=(cz+d)? for y= [Z 2] €T'y(4), and hence the map y+>(y, j(y, 2)) €®, defines

a proper lifting of T'y(4) of weight . (For this and other facts on modular forms of half
integral weight, the reader is referred to [7].) Now fix an odd positive integer k, a positive
multiple N of 4, and a character y modulo N such that y(—1)=1; put then

Liy) = (y, x(@)i(y, =)
L'(y) = (y, z(d) j(y, 2)*%)

These are obviously proper liftings of I'((N) of weight k/2 and (4 —k)/2, respectivey. The

b
or y= [Z d] €T, ().

elements of ¥ and F’ defined with these L and L’ are exactly the modular forms con-
sidered in [7]. In this case as well as in the case of ordinary modular forms of integral
weight, [T'al']* has a certain commutative property with the map f(z) +>f(—2), from
which we can deduce a somewhat simpler form for the trace-formula; but we shall not go
into details of this topic.

Let us now fix our attention to the case k=3, which is of special interest because both
F(a) and F’'(b) can be non-trivial. To simplify our discussion, we consider only the case
N =4M with an odd prime M. ' '

5.6. ProrosiTioN. If k=3 and N =4M with an odd prime M, then the condition
(iii") of 5.2 is satisfied by I'y=1"1(N) and L' defined as above.
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Proof. Let (Vy, @o), (V, @), and (V,, ¢,) be models of H*/I'(4), §*/T'o(N), and H*/I'y(N),
respectively. Note that F;(b,) = F(0) and F;(b, —p)=F1(—p) for every p€V,=5*/T'\(N).
Therefore it is sufficient to show that for every p€ V,, there is an element % of Fi(b,) such
that »,(k)< 1. Let div,, div, div, denote the divisors measured on V,, V, V,, respectively.
Now I'y(4) has three inequivalent cusps 0, oo, 1, but no elliptic elements. By (3.3.5), we have
deg (div, (6)) =%, from which we can easily conclude that div, (6)=(})-@,(}), which is
actually a well known classical fact. There are exactly two points p(}) and ¢((2M)™") on V
lying above gy(}) with ramification index 1 and M, respectively. Further, above each

one of them, there are exactly (M —1)/2 points on V, with ramification index 2. Therefore
divy (0) =2i-1((1/2) pi + (M[2)q) (= (M -1)2)
with these points p; and q,. Put g(z) =0(—1/Nz)z~%. By [7, Prop. 1.4], g€ F1(b,), and
div, (9) = 2i-1((M/2) p, + (1/2) g).
Therefore, for every p€V,, we have either »,(0) <1 or »,(g) <1, q.e.d.

9.7. Let n be a positive integer, and let

- [”-1 0], ot =7 = (o, 1) €G-
0 n :
Then we see that the conditions (3.5.1,2) and (3.6.1) are satisfied by «, 7, and
I'=T"y(N) with the above L. Moreover, (i, ii, iv) of 4.5 are satisfied by I'; =I',(¥). Therefore,
by 5.2, the trace-formula holds for [I'«I']* and [['«-'I"], in the present case with k=3.
The operators [[al']* and [['«-T'], differ from T3 ,(n?) and T7;(n?) of [7] only by
constant factors. In this case, it is plausible that F’(b) is one-dimensional and spanned
by 6 if y is trivial and N/4 is a prime. In such a case, tr ([['al']*| F(a)) is effectivély

computable.

.5.8. We conclude our study by making some observations in the case m=1.

Consider a lifting of the type

a b
L) = 2@ o) (= [c d] er,)
with a character y modulo N such that z(—1)=—1. By an argument similar to the
proof of 5.6, we can show that our trace formula holds for the ordinary Hecke operators
on the space of modular forms of weight 1 with respect to L. Unfortunately, however,

it can be verified that the difference
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tr ([Tal'J*| F(a)) —tr ((Ta-T'], | F/(5))

with a natural choice of «, say 06=n_*[(1) 2] , produces nothing particularly significant:

it shows either that something which must be 0 is actually 0, or that the trace on the space
of Eisenstein series is computable, which we could do anyway without the trace-formula.
(Note that this is so even if y2==1.) If we take an element of the form «f instead of o with

0
N

becomes somewhat more non-trivial. But still this gives only the trace on the space

a suitable element 8 of the normalizer of I'|(N), say f=N ‘*[ —(1)] , then the formula

of cusp forms corresponding to L-functions of imaginary quadratic fields with abelian
characters. In this way one can obtain at least, or at most, a certain characterization of

such cusp forms.
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