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w O. Introduction 

Let  W be the random measure in R2+, the positive quadran t  of the plane, which assigns 

to each Borel set A a Gaussian random variable of mean zero and variance re(A), where m 

is Lebesgue measure, and which assigns independent  r andom variables to disjoint sets 

(see [6], [14], [15], [19] and [20]). I t  is na tura l  to construct  stochastic integrals with respect 

to W (see [1], [4], [7], [10], [13], [15], [18] and [20]) but  one can do more. Define a process 

W = { W ~ ,  zeR2+} by  W z = W ( R z )  , where Rz is the rectangle whose lower left hand  corner 

is the origin and whose upper  r ight  hand  corner is z. W is called the two-parameter  Wiener 

process. I t  is a continuous process, and if we write z = (s, t) and fix s, t--> Wst is a Brownian 

motion; likewise, s-~ Wst is also a Brownian motion. Since the theory  of stochastic integra- 

t ion with respect to Brownian mot ion is well-known, this opens the possibility of stochastic 

line integrals; we will see tha t  one can integrate along all sufficiently smooth curves in Re+. 

The question tha t  mot iva ted  this s tudy  was tha t  of holomorphic processes, and this 

question still forms the goal of the present article. A process �9 is holomorphic if it has a 

derivative r in the sense tha t  (I) z = (I) 0 § S~)r where the  line integral is taken over any  

sufficiently smooth curve connecting 0 and z. These processes tu rn  out to have a s t ructure 

which is in some ways remarkably  like t h a t  of classical holomorphic functions of a complex 

variable, even though  they  are real, not  complex, valued. For  instance, if q) is holomorphic, 

so is its derivative r and there is even an  analogue of the power series expansion. 

These processes are t reated in w 9. The earlier chapters are concerned with diverse 

questions. One of the foremost preoccupations is s imply to develop a stochastic calculus. 

Thus, after the various line and surface integrals have been defined, we show in w 6 tha t  

the interplay between line and surface integrals is expressed by  an analogue of Green's 

theorem, as in the classical case. An  immediate  application of this is a proof of the existence 

and cont inui ty  of the local t ime for W by  means of an appropriate  version of Tanaka ' s  

formula [11]. 
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No special effort has been made to achieve maximum generality. In  particular, we 

have not tried to pass beyond the square integrable case in our integrals. On the other hand, 

we have treated integration in greater generahty than is needed for our study of holo- 

morphic processes, partially in the hope of discovering more about martingales having 

R2+ as a parameter  set. 

The theory of martingales with a partially ordered parameter  set is still in its primitive 

state. We should distinguish between two cases: the Brownian case, in which the fields 

~ are generated by  W, and the general case, in which the ~:~ satisfy only (F1)-(F4) below. 

In  the Brownian case, Wong and Zakai [18] have proved tha t  any square integrable martin- 

gale can be written as a sum of two stochastic integrals. (We give a different proof of this 

in w 3.) This allows us to reduce many  problems to direct calculation. For instance, we show 

in w 3 tha t  all martingales bounded in L log L are continuous. (However, an example 

shows tha t  there are Ll-bounded martingales which are everywhere discontinuous, so tha t  

the question of martingale continuity is evidently more delicate than in the classical case.) 

In  fact, in the general case, the question of whether L~-bounded, or even bounded, martin- 

gales have a version which is right-continuous and has left limits is open. 

One final question which deserves mention here is that  of the characterization of 

square integrable strong martingales. This important  class of martingales crops up early 

in our story, for certain types of integrals can be defined only for strong martingales. In  

the Brownian case we can characterize them completely: they are the class of square inte- 

grable martingales which can be written in the form M~=SRz~bdW (Theorem 8.1). On the 

other hand, strong martingales have path-independent variation (see w 8 for the definition 

of this concept, which was introduced by Wong and Zakai [18]). All indications at  our 

disposal suggest tha t  path-independent variation is another characterization of the strong 

martingales, but  our results are incomplete in this direction (Theorem 8.2). 

The reader will notice tha t  the techniques used throughout the article are rather 

closely tied to the cartesian coordinates in the plane, whereas it would seem tha t  one 

should be able to integrate in a coordinate-free manner. This is true to a certain extent,  

but  one usually wants to integrate random, rather than deterministic functions, and this 

requires something like the following. 

1 ~ There is a partial ordering -< in some subset F c R  2. I f  A and B c F ,  we sayA ~ z  

if x ~ z for all x E A, and we say z ~ B if z ~ y for all y E B. A ~ B means A ~ z for all z E B. 

2 ~ There exists a family of a-fields {:~z, zEF} such tha t  

(a) if z ~z '  then 9:z C ~ , ;  

(b) if A ~ z, then W(A) is Y,-measurable; 

(e) if z ~ B, then W(B) is independent of :~z. 
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Notice that  2 ~ is satisfied if we take ~ = a { W ( A ) ,  A - (z) .  With such a family of fields, 

one can hope to imitate Ito's development of the stochastic integral to define the integral 

of ~z-adapted processes with respect to W. 

While the partial ordering does not  determine a coordinate system, it may  suggest one, 

and vice-versa. For  instance, in polar coordinates, one might use the partial ordering 

"(r, O) -< (r', 0') iff r<~r' and 0<~0'". We will not t ry  to give such a general treatment,  how- 

ever, and we will treat  nothing more exotic than Cartesian coordinates in R~+. We will 

always use " - ( "  for the partial order 

We also write 

t (s , t ) -~(s ' , t )  iff s<<.s" a n d t ~ . t .  

( s , t ) ~ K ( s ' , t ' )  i f s < s '  a n d t < t ' .  

There are two other partial orders compatible with cartesian coordinates which we shall 

find useful, corresponding to positive cones equal to the right half-plane and the upper 

half plane respectively. Accordingly, if 3z is a family of a-fields satisfying 2 ~ (a), we define 

def 

: ~  = : ~  = V 3 .  
v 

and 
de f  

:~ t  = :~o~ = V 3 ~ .  

We will usually reserve z, ~, ~, and ~ for points of R2+, while 8, t, u, v, a and ~ usually 

refer to real variables. This notation reveals an ambivalen~ att i tude toward R~+. When we 

integrate over it, it is of course just the positive quadrant of the plane. But  when it is 

the parameter set of a martingale, it becomes two-dimensional time---definitely a more 

mysterious object. 

w 1. Square integrabIr martingales 

Let (s ~, P) be a probability space and let {3z, zER2+} b o a  family of sub-a-fields of 3 

satisfying 

(F1) if z .~z '  then 3 z c  ~z,; 

(F2) 3o contains all null sets of 3; 

(F3) for each z, 3z = N z,,z. 3~,; 

(F4) for each z, 3~ and ~ are conditionally independent given 3~. 

All except (F4) are self-explanatory. The following condition is easily seen to be equivalent 

8 - 752903 Acta mathematica 134. Imprim6 Ic 4 Aoht 1975 
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tO (F4): for all bounded random variables (r.v.'s) X and all z ER~+, 

E{X[ :~} = E{ E{X] ~ }  [ ~}(1). 

In  particular, if X = I A ,  where Ae :~In  ~ ,  then E{IA]:~}=IA and so A E ~ ,  which 

implies ~ fl ~ i ~  :~z, hence ~i N ~ = :~, by (F1). 

VIere are two examples of families of fields which satisfy (F4): 

(a) Let  {:~i, s eR+} and { ~ ,  t e It+} be two independent families of sub-a-fields of :~. If 

z - -  (,, t), p u t  :~  = :~1 v Y~. 

(b) Let  {X(A): A a rectangle in R~} be a process such that  if A~ .. . .  , A~ are disjoint 

rectangles, then X(A~) ..... X(A~) are independent. Pu t  :~ =a{X(A), A < z}. 

In  the first six sections, except the third, {:~} will be a fixed family satisfying (F1)- 

(F4). If { ~ ,  z eR~+ } is a family of a-fields and Z = {X,, z e R~+ } is a stochastic process, we say 

X is O~-adapted if Xz is O~-measurable for all z. If X is :~-adapted, we shall simply say X is 

adapted. X is said to be measurab/e if (z, r is B • :~ measurable, where B is the class 

of Betel sets on R2+. 

I)V.FI~ITION. A l~rocess M={Mz, zeRO+} is a martingale i/ 

(1) M / s  adapted; 

(2) ]or each z, M, i~ integrable; 

(3) ]or each z -< z', 

B(Mz,] :~,} = M~. 

"Martingale" always means "martingale relative to {:~}". When discussing martingales 

relative to other fields, we shall always specify the fields. 

Let  us introduce a notation for rectangles. Suppose z = (s, t) and z' ,~ (s', t'). If z-~-<z', 

(z, z'] will denote the rectangle (s, s'] • (t, t']. We denote the rectangle (0, z] by Rz. A martin- 

gale is often thought of as having orthogonal increments. In  two cl~mensions, the relevant 

increments are the increments over rectangles. The increment of X over the rectangle 

A = ((s, t), (s', t')] is 

X(A) = X~.,. - X~,. - X~,, + X~,. (1.1) 

If X,t were a two-dimensional distribution function, (1.1) would give the measure of 

A, and it is often more convenient for us to speak in the language of measures. Accordingly, 

(I) In the sequel, equations between r.v.'s are to be interpreted a.s., unless the contrary is explicitly 
mentioned. 
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we say that  the process X induces a measure (also denoted by X) on rectangles by the 

formula (1.1). (This gives, in fact, a finitely additive measure on the algebra of finite unions 

of half-open rectangles.) Similarly, a measure # on rectangles induces a process X by 

Xz---/~(Rz), z e R2+. (1.2) 

There are several notions of orthogonal increments in two-dimensional time because 

there are several relevant families of fields. To take this into account, we introduce the 

following definitions. 

I)EFIHITIOH. 

Let X={X~,  zERO} be a process such that X~ is integrable /or each z. 

(a) X is a weak martingale i/ 

(1) X is adapted; 

(2) E{X((z, z'])] :~} =0 /or  each ~<<='. 

(b) X is an i-martingale (i = 1, 2) i/ 

(!) X is :~z-adapted; 

(2) z{x((z, ~'])l:~} =o/or ~ach ~-<-<~'. 

(c) X is a strong martingale i/ 

(1) X is adapted; 

(2) X vanishes on the axes; 

(3) ~{x((z,  ~'])l:~ v y~}=0 /or  ~ach ~<<~'. 

Thanks to hypothesis (F4) we have the following proposition: 

PROPOSITION 1.1. A martingale is both a 1- and a 2.martingale. 

Proo/. Suppose X is a martingale and let A=((s ,  t), (s', t')], where s<s '  and t<t' .  

Write X ( A ) ~  ( X s . r - X s . t ) -  (X~t.-Xst). By (F4), 

Similarly, 

E(X~,, - X,, I :~* } = o. 

Since ~ . ,  = ~7~i, E{X(A)I:7~t} =0. By symmetry, E{X(A)] :7~t} =0. qed 

Notice that  if {Zso, :7~o, seR+} and {Xo,, ~7o2,, ten+} are martingales, the converse is 

also true. Indeed, X being both a 1- and a 2-martingale, it is adapted, by (F4); hence if 

s<s' ,  we have, setting A =((s, o), (s', t)], 

E{X~.t - X~, [ ~7~t} = E{X(A ) I ~7~t} = E{ E{X(A  ) ] :J~t} ] ~st} = O. 
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Similarly, if t <t ' ,  

E(Xs,-x ,l =o, 

which shows that  X is a martingale. 

In  the following, the notions of martingale, strong martingale, etc., will be used for 

processes of the form {X~, z -< z0} without further comment. 

If we may anticipate, the Wiener process W = { Wst} is a strong martingale, the process 

J = {J,t} introduced in w 6 is a martingale but  not a strong martingale, while the product 

J W  = {(JW)st} is a weak martingale but not a martingale. 

Both martingales and strong martingales play major r61es in what follows, while 

weak martingales are peripheral, oeeuring mainly in the decomposition theorem (see 

Theorem. 1.5). 

The theory of martingales with parameter set R~+ is underdeveloped territory at the 

time of this writing, but  enough is known to enable us to follow the usual construction of 

the I to integral, at least superficially. Let  us say that  a process {X~} is ri~Iht.continuous if 

for a.e. w, lim~,~X~,(eo)=X~(m) for all zER2+, and that  it has left limits if, for a.e. co, 
z ( z "  

lim~._.z Xz,(o~ ) exists for all z E (R+ - {0}) 2. We denote the limit by X~_. The maximal ine- 
g'<(~ 

quality in our case (see [2]) becomes: 

THEoa~M 1.2. Let {M~, zER2+) be a right-continuous martingale. Then/or ~ >0,  

(a) )~P{suplM~[ ~>~}~ e e ~ - 1 + ~ - 1  supE{lM.II~ 

(b) E{sup[M~l '}~  supE{IM~l '} ,  p > l .  
z z 

One consequence, also proved in [2], is that  a martingale {Mz} which is bounded in 

/5 log L must converge a.s. as z ~  co to a limit Moo, and M~ =E{M~I  J~}. A second conse- 

quence is the following lemma, whose proof is exactly the same as in one dimension. 

L E p t A  1.3. Let {M ~} be a sequence o/right-continuous square integrable martingales. 

Suppose supz E{M~ +1 -M~)~}<2 -n. Then with probability one the sequence M~ converges 

uniformly in z as n--+ ~ .  

For p >~ 1, let ~ "  be the class of all right-continuous martingales M = {Mz, zERO+} 

such that  Mz=O on the axes and E{IMzlP}< oo for all z. Let  ~ (resp. ~ )  denote the 

class of continuous (resp. strong) martingales in ~P.  For our purposes, it will usually be 

sufficient to work with bounded subsets of R~, the extension to all of R~ then being routine. 

Accordingly, let ~P(z0) be the class of right-continuous martingales M={M~, z-<z0} such 
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tha t  M = 0  on the axes andE{[Mzo[v}< ~ .  We are mainly interested in the c a s e p = 2 .  

Give ~/F(z0) the no rm and inner product 

IIMII =(E{M~~ and (M, N)=E{M,~176 

As above, 7T/Pc(zo) and ~/~(Zo) will denote the continuous and strong martingales, respectively, 

in ~/~V(Zo). 

PROPOSITION 1.4. 7~/2(z0) with this norm is a Hilbert space. ~ ( z o )  and ~w are 

both closed subspaces. 

~ ( z 0 )  and M~(zo) are closed. Proo]. We must  check tha t  ~2(Zo) is complete and tha t  2 o 

Let  {M n) be a Cauehy sequence. We may  suppose, by taking a subsequence if necessary, 

tha t  [[M n+~ - i n  I[ 2 <~ 2 -n. Then, by  Lemma 1.3, i ~ converges uniformly in z <: z 0 to a process 

M. I f  A E : ~  and z-(z',  

where we can go to the limit under the integrals because {M;)  and {M~), beingL2-eonver - 

gent subsequences, are uniformly integrable. Thus M is a right-continuous martingale, 

hence ~2(zo) is complete.  The same argument applied to Mn(A), where A =(z, z'], and a 

A E :~ V :~ shows tha t  M is a strong martingale if the M = are. Finally, M is continuous 

if the M" are, by  uniform convergence, qed 

Unhappily, the Meyer submartingale decomposition theorem in two-dimensional t ime 

is true only in a weakened form. We must  give two versions, one for martingales and one 

for strong martingales. 

DEr INITON.  A process X={X~,  zERO} is an increasing process i/ 

(1) X is right-continuous and adapted; 

(2) X~=O on the axes; 

(3) X(A)  >~ 0 ~/or each rectangle A ~ R2+. 

T~EOREM 1.5. Let M E ~IF(Zo). There exists an increasing process A={Az,  z-~ Zo) 

such that {M2z -Az ,  z -< Zo) is a weak martingale. 

Proo/. For simplicity, assume z 0 = (1, 1) and divide R~, into rectangles whose corners 

are at the points z~j=(2-mi, 2-~j), i = 0 ,  ..., 2 m, ] = 0  .... .  2 n. Let A~j=(z~j, zz+l. j.1]. Define 

A ' ~  by m ~ = A " ~ - a  and i j  A Z l o  Zo] - -  

Amn(A ~-- 
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By Proposition 1.1, this is positive. Let  z=(s, t)ER~, be dyadic (i.e. s and t are dyadic 

rationals). We claim that  A ran, which is defined for m and n sufficiently large, converges 

weakly when m and then n tend to r For u ~< 1, set 

2"t-i 

Since {M~,, :~:~, v~<l} is a positive submartingale, we know [16] [13] tha t  B~t converges 

weakly when n-~r to a limit B~t. On the other hand, if u<u'<~l, by (F4), 

E {M: , .  s-"<j+l) - M: , .  s - ' j l  :~u', 2-"j} 
[ 1~0 

-- E { M~.2-"<l+ t ) -  M2u. ,-,i] :~u. 2-"t}) ] :~u,} 

= 2 E {(MS ((u, 2- U), (u', 2- ~(j + 111] I:t=. ~-~} 1> 0. 

(1.4) 

Thus {B~, :~ut, u ~< 1} is a positive submartingale. I t  foUows that  (B~t, :~u~, u ~< 1} is also 

a positive submartingale, hence, again by [16] [13], 

2ms-1 

5 
t=0 

~176 2"-mi, t I 0"2 - t.tJ E { B 2 -  ( i + l ) . t - B  r176 ,n" = 

converges weakly when m-+ c~. But  by (1.4) 

2 m 8  - -  1 

rt rr Z E{B2-~(~+i).t-B2-~,.~[:~2-m~.t} =lmn S t  �9 

Since the operation of taking weak limits commutes with the conditional expectation, we 

conclude that  the iterated weak limit A~=lim~_~l im~_~ Az mn exists for dyadic z~.z o. 
If  D ~  R~ is a rectangle with dyadic vertices, a passage to the limit in (1.3) gives us 

For each z ~ %, define 

A~176 E{(M2)(D) I:~)=E(A~176 

A~ -- inf {Az~,~,, z ' ( ' (  z', z' dyadic}. 

(1.5) 

This defines an increasing process which satisfies (1.5}. qed 

The question of uniqueness of the increasing process constructed above is delicate. 

Indeed, it is closely related to that  of the existence, for a bounded martingale, of a version 
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which has left limits and we cannot show, in general, tha t  such a version exists. However, 

we conjecture the existence and we can prove it in the Brownian case, where all L log L- 

bounded martingales are even continuous. Under this condition, it is easily seen that  the 

process A of Theorem. 1.5 is unique. As it happens, the question of uniqueness is unimport- 

ant for our purposes, so we propose simply to ignore it in this article. We will just agree, if 

no other preeisions are given, to denote by <M> ={<M>z, z ER2+) any increasing process 

A such that  M 2 - A  is a weak martingale. In the same spirit, if M, NE 7112(zo), we denote 

by <M, N>={<M, N>~, zER2+} any proeess B which is the difference of two increasing 

processes and such that  M N - B  is a weak martingale, e.g. <M, N>=�89 
-<N>). Accordingly, relations such as <M> =A or <M, N> =B will signify that  A and B 

are possible choices of <M> and <M, N> respectively. 

We will say that  two martingales M and N are orthogonal if MN is a weak martingale. 

We write M • N. 

P~OPOSITION 1.6. Let M, N E Tll2(Zo). Then 

(a) E{MN(D) I~z) =E{M(D)N(D)I~z} /or each rectangle D =(z, z ' ]~  Rz~ 
(b) M •  ill E{M(D)2~(D)I :~z) = 0 / o r  each rectangle D=(z ,  z']C Rzo. 

Proo/. Since (b) is an immediate consequence of (a), we prove (a) only. If z =0, there 

is nothing to be shown. Suppose then that  OK~z-<~z'. Divide the rectangle (0, z'J into 

four disjoint subrectangles A = (0, z], D = (z, z'], B and G. A little algebra gives 

MN(D) =M(D)N(D) + M(A)N(D) + M(D)N(A) + M(D)2Y(B) + M(B)2Y(D) 

+ M(C) N(D) + M(D) N(C) + M(C) N(B) + M(B) N(C). 

I t  is then easy to see that  the conditional expectations, relative to :~z, of all the terms of 

the right-hand side, starting from the second, vanish, qed 

Theorem 1.5 holds for both ordinary and strong martingales. If we begin with a strong 

martingale, we might hope that  the increasing process has better properties, e.g. that  

M s -  (M> is a martingale, rather than just a weak martingale. We will attack this from 

a slightly different viewpoint. 

Let  ME ~ff/~(z0). We know that  for each fixed t, {Mst, :~st, s~so} is a martingMe. Thus 

let {Alt, s <~so) be the unique one-parameter increasing process which is predictable rela- 

tive to the family {~~t, s<~so) and such that  {M~t-Alt, ~~t, s<~so) is a martingale. ("Pre- 

dictable" here has its usual sense: (s, eo)~A~t(eo) is measurable with respect to the a-field 

on It+ •  generated by  all left-continuous :~t-adapated processes.) I t  follows that  
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{A~t, s ~<so} is the  unique one-paramete r  increasing process which is predictable  relat ive to 

t h e  larger fields {~ t ,  s <~So} and  such t h a t  {M~t-A~t, :~t, s ~<s0} is a mart ingale .  Indeed ,  

bo th  Mst and A~t are ~T~t-measurable for all s ~<s o, so by  (F4), if s < s '  ~<s 0, 

2 1 1 __ 2 1 = E{M~,t - A~,t [ ~ t }  - M~t - Ast. E{M~.t - As,t ] ~ t }  2 1 

We will denote  {A~t, s <~ s o, t <~ to} b y  A 1. The process A s is defined in an analogous manner .  

P R O r O S I T I O N  1.7. I/ME~2s(zo),  then/or each rectangle D c  Rzo and each z ~,D, 

(a) E{M(D)S I ~}=E{(M~)(D)] ~ }  ( / = 1 ,  2); 

(b) A'(D) >~0 ( i = 1 ,  2). 

Proo/. Le t  D = ( ( s ,  t), (s ' t ')] and  set  AI=M~, t -Mst  and A2=M,.~.-M,t,.  Then  

E ( (M s) (D) I :~l,t} = E {A~ - A21[ :~t}, 

for, b y  Proposi t ion 1.1, 

- M ~ t ,  and E{M~.t,M,t.[Yf~t}- 2 E{Ms.tMstl~l }~M~t. 

Not ing  t h a t  M(D)=A2-A1 ,  this equals 

E{2A1M(D) +M(D)S I :~t}- 

Bu t  since M is a s t rong mart ingale ,  

E{A~M(D) I ~ t  } = E{A~ E{M(D) I :~t  V :~t} I ~lt} = 0  

which proves  (a) for i = 1. 

T o  prove (b), note  t h a t  (a) implies t h a t  {M~t.-M~t, ~ t ,  s<~-So} is a submart ingale ,  

while {(M~t,-M~t)-  (A~t.-A~t), :~lt, s ~s0} is a mart ingale .  Bu t {A~t.-A~t} is a predict-  

able process of bounded  var ia t ion,  and hence mus t  be the  increasing process of the de- 

composi t ion of the  submart ingale ,  which proves (b) for i = l .  The proofs for i=2 are 

similar, qed 

The  process {A~t} is r ight-cont inuous and  increasing as a funct ion of s for fixed t, 

bu t  since we defined i t  separa te ly  for each t, we cannot  expect  it  to  have  nice propert ies  in t 

for a fixed 8. However ,  in the case of a s t rong mart ingale  we can use pa r t  (b) above to  

replace A 1 and A 2 respect ively b y  their  r ight-cont inuous versions 

inf {A~.t.At,; t<t', t' rational} and irrf {A,,^,o.~.z �9 s<8', 8' rational}. 

I t  is easily seen t h a t  this amoun t s  to a s t andard  modification,  so we can and  do assume in 

this case t ha t  A ~ and  A 2 are r ight-cont inuous increasing processes of two parameters .  
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Hencefor th  we will denote  A 1 and  A 2 by  [M] 1 and  [M] 2 respectively.  Fur thermore ,  if 

M,  N E ~2(z0), we define 

[M, N]~=�89 +N]~-[M]~-[N]~) ( i=1 ,  2). 

We will need the not ion of predic tabi l i ty  for two pa rame te r  processes. Le t  {~z, z eR2+} 

be an increasing r ight-cont inuous family  of (r-fields. Consider the  space R~+ • ~ .  We define a 

(r-field 00 of subsets of this space, called the (r-field of ~z-predictable sets: ~)q is the  (r-field 

genera ted by  sets of the form 

(z, z'] • A, where z ~ z '  and A e ~ .  

A process X = {Xz, z E R2+ } is ~z-predictable if (z, w)-+ X~(w) is ~)G-measurable. Le t  us compare  

this with the usual definition: if {~/~, s>~0} is a r ight-cont inuous fami ly  of a-fields, the  

a-field Q~, of :]4~-predictable subsets of R+ • ~ is the a-field genera ted b y  sets of the form 

(s, s'] •  where AE ~4s. Wri te  R~ • ~ = R +  • (It+ • ~) .  I t  is an  easy exercise to show tha t  

if _ I I ~ -- :~  and ~/~ = :~o, then ~q = ~ • Q~, where B is the Borel field of R+. 

PROPOSITION 1.8. I/  M E ~2s(zo), then [M] ~ is the unique ~z-predictable increasing 
process such that 

E{M(D)21 ~ }  = E((M2)(D) I :~z} = E{[M]~(D) I ~} ,  (1.6) 

]or each rectangle D-~(z, z']c Rz, (i= l, 2). 

Proo/. (1.6) follows f rom Proposi t ion 1.7 and the fact  t ha t  M s - [M] ~ is an / -mar t inga le .  

I f  we fix t, we know tha t  [M].t is predictable  relat ive to {9:~t}, i.e. Q~,-measurable. As 

t-~ [M]s~t is r ight-continuous,  i t  follows tha t  (s, t, a))-~ [M]~t(eo) is B • Q~I = 07,-measurable,  

i.e. :~-predictable .  I f  B is a second ~ - p r e d i c t a b l e  increasing process sat isfying (1.6), it 

follows tha t  

E {M~.t - M~t ] :~lt} = E {Bs.t - B~t I :~ t } ,  

i.e. {M2st-B~t, :~t, 8<-..8o} is a mart ingale.  B y  uniqueness of the  Meyer decomposi t ion,  

B = [M] 1. qed 

Note  tha t  for a s trong mar t ingale  M, either [M] 1 or [M] ~ can serve as the process 

( M )  above.  We can ask if [M] 1= [M] 2. I n  general, there is no reason tha t  it should. If, on 

the other  hand,  M is strong, it appears  the two are equal. We have  not  suecee=led in establish- 

ing this equal i ty  in general, bu t  the  following theorem covers the  ma jo r i ty  of applicat ions 

we have  in mind.  
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THEOREM 1.9. Let ME~s(Z0).  Either o/ the /ollowing two conditions implies that 
[M] 1 = [M]~. 

(a) The/ields :~z are those generated by W. 

(b) M is continuous and E{M~.} < 0% 

Proo/. (a) This follows from the uniqueness of (M>, but it can also be seen directly. 

Let  X be a bounded continuous martingale. We claim that  if z = (s, t)E Rz., 

E{XIM],}~-E{fRX:d[M]~}, (k= 1, 2). (1.7) 

Suppose z is dyadic and let zij and A~j be as in the proof of Theorem 1.5. "Write the right- 

hand side as a limit of sums of the form 

E {X~,,[M]k(ZX,j)} =.~ E {(X~,, - X~,+l .,+1) [M]~(A',)} + ! E {X~,+ ~.,+~[M]~(A,,)}. 
i , ]  l .~  z.1 

(i.8) 

The first sum on the right hand side is majorized by E{sup,.jlXz,~-X~,+~.j+~ I [M]~}, and 

this tends to zero as m, n-+ co by continuity of X. Since X is a martingale and [M]~(A,j) is 

~z~+i.~+z-measurable, E{X~,.j+~[M]k(A~j)}=E{XIM]k(A,j)}, so the second sum on the 

right-hand side of (1.8) equals E(Xz[M]~}, proving (1.7). On the other hand, the left-hand 

side of (1.8) equals (thanks to (1.6)) 

E {X~,,(M 2) (A,j)}, 
i . )  

which is independent of k. Evidently 

E{X~iM]~} = E{X~[M]~}. (1.9) 

But  if (a) holds, all bounded martingales are continuous (see w 3), hence we can choose 

M 1 M e X~ to be any bounded ~-measurable r.v. Then (1.9) implies that  [ ]z=[  ]~- 

(b) If z=(s, t)ER~, is dyadic, we know by [16] [13], that  [M] 1 is a weak limit even an 

L~-limit since M is continuous--of 

2 n s - 1 rn 

Xza- -- Y 
i=0 

E {(M 2 =( , ) . t  - M~.-,q, ~)21 ~-%.~}. 

By Proposition 1.7, this is equal 

2mS-1 2 n t - 1  

2 Z 
~=0 i=O 

E {M(A,j)z I :$~_-m:. ~}. 

Thus, it is enough to prove that  
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i=o 1=0 

{ [2m~,  - 1 2nt - 1 

L ~=0 1=0 
(1.10) 

converges to zero when m, n ~  co, since then the same argument will apply to 

n 2 n t - 1  

A~= 3 E {(M~.3-"(j+x) - M~.2-"j) ]:~.2-"j), 

permitt ing us to conclude tha t  

[- n 2 m s - 1  2 n t - - 1  " ] 2 ]  

]l 

also converges 

[ / ] ~  = [ / ]~ .  

Set 

rn n 

to zero, hence that  A~ and Az 2 have the same limit, implying tha t  

d~j = E {M(A,)21 :~l,j} - E {M(A~,)31:~z,j}. 

By (F4), d~j is :~,~+z-measurable, and if j <  j ' ,  

E {d,jd~,j,) = E {d,j E {d,,j, p~:,,w,, r }) = O. 

Thus the right-hand side of (1.10) is 

;? E(d~}  + 2 5 ( ~ E(djg,.~}). 
t , j  t , J  t '> i  

(1.11) 

We will show tha t  both these terms tend to zero. The first term is majorized by  

2:~.E {M(A,j) 4} < 2 E {sup M(A,j) 2 5 M(Az) 2} 
z . j  i , j  I , J  

~< 2[E (sup M(A~j)'} E(( ~ M(A~j)2)2}] 1/2. 
~ , i  i , j  

But 

E { sup M(A+I) 4} ~< eonst. E { sup M~,} ~< const. E {M~}, 
t, .,4, m,  n Z" < Z 

by Theorem 1.2. Hence, since M is continuous, the first factor above tends to zero as m, 

n-~ ~ .  The second factor is bounded by const. E(M~} < + ,  according to Burkholder 's 

inequality extended to the case of two parameters  [12]. I t  follows tha t  the first term of 

(131) tends to zero. 
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Let 

Passing to the second, set ~i~ = (z~+~. ~, z ~ .  ~+t]. Then 

~,J ~'>~ L J  i ' > i  *] 

,~ 2 1 

= Z E (E (M(A:j)2 I:1~ ,} [E (M(~j)21 :~1,} - E(M<~J' I :~:,j}]}. 
i , t  

H = sup (E (sup 2 1 , M(~,) I:L,,} ~ E {sup i ( ~ ) ~  I:L~,}). 
i ,  1 k , l  k ,  1 " 

Then the last term is dominated inabso lu te  value by 

E {H Z M(~s) ~} ~< [E {H 2} E {( Z M(5~)~)~}] r2 ~ const. [E {sup M(~j) ~} E { (5  M((~t,)2)2}] 1/2. 
i , j  L 1  i , t  ~,~ 

But, as before, 

E ( sup M(5,~) 4} <~ eonst. E (M~) < ~ .  
i , ] ,  m,  n 

Hence, since M is continuous, the first factor tends to zero as m, n-~ ~ .  The second factor  

being bounded by  const. E{M~) < ~ ,  it follows that  the second term of (1.11) tends to zero. 

w Sur[ace integrals 

We are going to define two different types of integrMs in this section, the first analog- 

ous to the familiar I to  integral and the second a kind of multiple Wiener integral. 

I f  M and N are right-continuous square integrable strong martingales, then [M, N] ~ 

is the unique :~-predictable process which is the difference of two increasing processes and 

such tha t  M N - [ M ,  N] ~ is an / -mar t inga le  (i = 1, 2). On the other hand if M and N are 

martingales, the process (M, N) may not be unique. Recall we defined that  to be any 

process which is the difference of two increasing processes and for which MN--(M,  N )  is 

a weak martingale. This lack of uniqueness, while annoying, is not serious. The processes 

( M )  and (M, N )  will be used principally for their expectations, and for these, we have the 

following result: 

PROPOSITION 2.1. Let r be a positive :~z.predietable process and let A and B be increasing 
processes such that/or each rectangle D = (z, z'] c R~, 

E(A(D) I :~z} = E(B(D) I :~z). 

Then 

E I f  o~dAI=EI~o~dBllj~jLrRj for e a c h z 0 E R  ~. (2.1) 
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Proo/. Let  K = (~, ~'] be a rectangle and  suppose fz = ~I~(z), where a is bounded  and 

:~ume~snrable.  Then 

E{f~,.r n R J )  =E(~E(A(K N R~0),:$r 

= (~E( , (K N RJ,~:}} =E (f~~ ~dB}. 

:But (2.1) remains  t rue  for sums of such funct ions and since these generate  the  :~-predictable  

processes, the theorem follows by  a monotone  class a rgument ,  qed 

Le t  M E ~)~(zo) and let A = (za, z~.]. We define the stochastic integral  r M of a funct ion 

r = gla(z), where a is bounded and  :~z-measurable, b y  

r NR~), z~:z o. (2.2) 

Notice t ha t  a stochastic integral  is a process, no t  a r andom variable.  I t  has the  following 

properties:  

r  ?7/U(z0); r  ~c2(z0) if ME~(Zo) and r  ~s2(z0) if MET~l~s(Zo). (2.3) 

I f  r and ~f are of the above form and if M and N are in ~ (Zo ) ,  then  

r z'~z o. 
z 

(2.4) 

I n  part icular ,  

The  p rope r ty  (2.3) follows by  inspection. Let  us check (2.4). SupposeA 1 a n d A  2 are disjoint  

rectangles with lower lef t-hand corners z I and z 2 respectively.  Le t  ~1 and  ~2 be bounded  and  

J~l- and J~-measurab le ,  respectively.  Let r ). First ,  ~ . M  and 

~o-N are or thogonaI  if A 1 Cl A 2 = Q .  Indeed,  if B is any  rectangle,  say B=(z, z']: 

E(r M(B)w. N( B) I :~z) = E(~ 1 ~2M(B N A~) N(B N A~) I :~, }. 

Now B N A~ and BN A 2 are disjoint  and it  is easy to see t h a t  they  can be separa ted  b y  

either a horizontal  or a vertical  line. Suppose for  instance the  separa t ing  line is horizontal ,  

B I1 A 1 is below and B N A~ is above  the  line. I f  z" is the lower lef t -hand corner of B N A~, 

then  ~1, ~ and M(B N A1) are F~,,-measurable, hence 

E(~I~2M(B N At)E{N(B ~) A2) [ :~,,} [ :~z } =0 .  
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By Propositon 1.6, 4"M and ~ . N  are orthogonal. Thus, (2.4) follows since ~b~=0. Next, 

suppose `4, = A~--A and calculate E{4. M(B)~p. N(B)] :7~}. We have, by Proposition 1.6, 

E {4" M(B) to. N(B) I~}  = E{ (4" M) (~fl. 57) (B) [:~} 

= ~, ~ E  {M(B N A)N(B N A)[ :~} -  :r :r E{MN(B N A) [9:~} 

= ~ I ~ E { f ~ o d < M , N > I ~ } = E { f  B 4~d(M, N} 1:7~} �9 

This proves (2.4) in case .41 and A s are identical. The general case follows by dividing .41 

and A s into sub-rectangles which are either disjoint or identical. 

We say 4 is a simple ]unction if there exists a finite number of rectangles A t = (zi, z'~] 

and bounded r.v.'s ~tt, such that  ct~ is :~zt-measurable and 

4~ = 2 at IA,(z).  
| 

If 4 is simple, we define 
4" M~ = 5 zq M (.4i fi R~). 

i 

I t  is immediate that  if 4 and ~ are simple, they satisfy (2.3) and (2.4), and that  

4" M = {4.Mz} is a linear function of 4. Notice that  a simple function is ~z-predictable. 

Let /:2M(Z0) be the class of all :~z-predictable (of all adapted measurable--if M = W) 

processes 4=(4z,  z~(zo} such that  E{~nz,42d<M>}< ~ and E~ be that  of :Tz-predictable 

(adapted measurable--if M = W )  processes 4={4~, zeR2+} for which E{~R~42d(M>)<~ 

for all zeR2+. By Proposition 2.1, the definition of s and s  do not depend on the 

particular choice of (M).  

With the obvious identifications, I~2M(Z0) is a Hilbert space under the norm 

(E{~Rz~ <M)})�89 I t  is not hard to see that  the simple functions form a dense subset of 

/~(z0). The map 4 ~ 4 .  M of simple functions into 7/12(z0) is linear and (by (2.4)) preserves 

the norm. Thus it can be extended by continuity into a linear norm-preserving map of 

~:~(z0) into ~(z0) .  We will often denote the random variable 4.M~ by ~R~4dM. We 

will also write ~A4dM and M(A) instead of (4IA)'M~, and I~.M~, respectively (.4 Borel 

subset of R J .  To summarize: 

TH]~ORE~ 2.2. Let M e ~2(zo) and let 4e  s Then 

�9 ~ ( Z o )  (a) 4"MsTtl2(zo) and (by Proposition 1.4) 4 ME~(zo)  (resp. ~s(Zo) i / M E  

(resp. ~'~s(Zo)); 

(b) 4" M is linear in 4; 

(c) i / 4  and ~ are in F~M(Zo) and I:2N(Zo), respectively, then 

(4" M, ~v. N>~ = t" 4~d(M' N>; (2.5) 
J R z  
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][q~. Mz]l~=E {fn dp2d<M>} (2.6) 

Remark. One can extend the integral to M E ~  2 and r by choosing a sequence 

z~-+ ~ and defining q~. M = lim ~b,. M, where r  = r IR, .  We will use this extension without 

further comment. 

Note. Henceforth we will adopt the following convention: each time the word "pre- 
dictable" is used in expressing conditions of integrahility (for the types of stochastic inte- 

gral introduced above and hereafter), it is to be replaced by "adapted measurable" if M = W. 

I t  will be useful to be able to integrate r adapted to larger fields than ~z. We say 

is weakly predictable if it is either :~x. or ~-predietable.  We can integrate weakly predictable 

~b, but we pay a price, losing some of the nice properties of the integrals of ~z-predictable 

processes. 

Let  ME ~/~(z0). We will extend the integral so that  we can integrate ~l-predictable 

processes. We proceed as before: if A = (z~, z~] and ~ is bounded and :~zl,-measurable, set 

q~=~I~(z) and define r  by (2.2). By inspection, we have 

(r M)st is right-continuous in s and is continuous if M is; {2.7) 

r M is a 1-martingale. {2.8) 

where B=(z2, z~] and fl is bounded and :~:-measurable. If Suppose ~p~=fllB(z), 
N E 7~t/w we have 

/ .  
[r M, r N]~z = J~ r M, N] 1. (2.9) 

(The first member has been defined only for martingales. This is the only place where we 

use it for 1-martingales. The definition is the same, except that  ~ is replaced by ~z~.) 

In  particular, 

Hr Mz[[ ~ =B{f  r (2.10) 

The proof of (2.9) is the same as that  of (2.4), except that  :~z and ~ are replaced by 

~z 1 and ~z 1 V ~ respectively. 

If r is a ~zl-adapted simple function, we define r  in the obvious way and r  

again satisfies (2.7)-(2.10). I t  remains to pass to the limit. 

I t  is here that  our previous approach breaks down, for while {(r M)s~} is a martingale 

in s for fixed t, it may not be a martingale in t for fixed s. (If ez = ala(z), {(q~" M)st} will be a 

martingale in t, relative to its natural fields. However this is no longer true for simple 

functions.) Consequently the maximal theorem which allowed us to pass to the limit uni- 
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formly is no longer valid. However, we do have the following: 

2~P{supl (~-M)~t l />R}<E{(~.  2 .< 
S~So zo 

I t  follows that  if (r is a sequence of simple functions such that  E{~R~o(~+I - -~)2  d[M]l} < 

2 -n, we have: 

for each t, (r converges uniformly in s with probability one 

(the exceptional set may  depend on t). (2.11) 

Now, if ~ is :~z-predictable and E{~R,,r 1} < 0% we can find a sequence of simple func- 

tions {r such tha t  E{~R~0(r162 1} <2  -n. We then define 

llm~._,~ r M z if the limit exists, r M~ [ 0 otherwise. 

I t  is now easy to check that  the properties (2.7)-(2.10) remain true under a passage to the 

limit, giving us: 

THEOREM 2.3. Suppose M and N are in ~s(%) and suppose r and y~ are :~lz-predietable 

processes such that E(~ R~o r 1} and E{~ R~o~P2d[N] ~ } are ]inite. Then (2.7)-(2.10) ho/d. 

Remark. We have only defined the integrals of :~-predictable ~b, but of course the 

:~2z-predictable processes are handled in exactly the same way. 

We want to consider yet  another stochastic integral, which was introduced by Wong 

and Zakai [18] for W. This is not an integral over ItS, but  over It~ • R~. 

Let  us introduce another order relation in R~, complementary to " -<" .  If  z = (s, t) 

and z' =(s', t'), we say z Xz' if s<s'  and t>~t', and that  z ~z '  if s<s'  and t>t'.  (" X "  is the 

relation " -<"  turned clockwise 90~ 

PROPOSITIO~ 2.4. Suppose M e~2(zo) and let A =(zl, Z'l] and B=(z2, z~] be rectangles 

such that i / z  EA a~ul z' E B, then z X z'. De/ine the process X by 

X~=aM(A N R~)M(B n Rz), z-<z o, 

where ~ is bounded and :~z, v z2-measurable. Then: 

(a) X is a right-continuous martingale, which is continuous i / M  is. 

Suppose X is square integrable and M is a strong martingale. Then: 
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(b) M and X are orthogonal and 

= f d[M]~ d[M]~. (2.12) 

Proo/. Suppose z = (s, t ) ~ z '  = (s', t') and let D = (z, z']. Notice that  X(D) = ~M(A') M(B'), 

where A' =A N (R~.~.-R~.t) and B'=BN (Rs, t.-R,t.). Suppose z" is the lower left-hand 

corner of A'. Then both ~ and M(B') are :~z2.-measurable, so 

E (X(D) ] ~ }  = E {E{X(D) I~ . } I~}  = E {~M(B') E (M(A') 1~.}l~2z} = 0. 

A similar argument shows E{X(D){~} =0, hence X is a martingale. 

Let  us calculate 

E(X(D) M(D) I :~} = E{~M(A') M(B') M(D) I :~z}. (2.13) 

Write M(D) =M(A' N D) + M(B' N D) + M ( D - A ' -  B'). Notice that  g, M(A' N D) and 

.M(A') are ~zl,-measurable, hence, 

E(~M(A') M(B')M(A' N D) I :~} = E(~II(A')M(A" (1 D) E(M(B')I :~1,~} I :~} = O. 

Using the fact that  M is a strong martingale, similar arguments show 

E{o~M(A')M(B')M(B' N D)[ :~} = E{~M(A')M(B')M(D - A '  - B ' ) [  :~} =0. 

Thus (2.13) vanishes, and Proposition 1.6 implies XM is a weak martingale, proving the 

first part  of {b). 

Let  us also calculate E{X(D)~[ :~,}=E{~M(A')~M(B')~I :~,}. If ~'" is the lower left- 

hand corner of B' and if z a =z" V z'", this equals 

E{~"E{M(A')~M(B')~[ :~,} [ :~z}. 

But ~z 1. and ~ ,  are conditionally independent given :~z,, so 

E {M(A')2M(B') 2 [~z~} = E {M(A')21 :~z.} E {M(B')~I~.z.} 

=E{f  }" 
Thus, noting that  :~z = :~z~, 

E {X(D)21:~.} = E {e" f .. S~ d[M]'d[M]~]:~.}. (2.14) 

Checking with the definition of A'  and B', we see that  if we define l~ to be equal to the 

9 -  752903 Acta  mathematica 134. Imprim5 le 4 Aofit 1975 
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r igh t -hand  side of (2.12), the  r igh t -hand  side of (2.14) can be wri t ten  

E{A(D) ] :~}, 

where  A is the  process {Az}. Thus  X 2 - A  is a weak mart ingale ,  qed 

Le t  M E ]H~(zo), so t h a t  in par t icular  E{M~,} < c~. This  is s imply to assure ourselves 

t h a t  products  such as M(A)M(B)  are square integrable.  To simplify notat ion,  assume 

z o = (1, 1). We  wan t  to define the  integral  ~v. M M  for a sui tably large class of processes. 

F ix  an  integer  n and  divide Rzo into rectangles Aij = (z~j, Zi+l. J+l], where ztj = (2-hi, 

2-nj). I f  i, j, b and  1 are posit ive integers with i </c ~< n and l < :  ~< n, define 

~viml(~, $) = ~I~,~(~) Ia~(~), (2.15) 

where ~ is bounded  and :~ , fmeasurab le .  Define 

~ , j k l ' M M ~ = a M ( A t i  ~ R~)M(Akz f) R~), zER~ o. 

B y  Proposi t ion 2.4, ~o~jkt-MM = {~Ptj~z" MM~} is a mar t ingale  and 

(Y~sk," MM)~ = ~) d[M]~ d[M]i. (2.16) 
z x R z 

Fur thermore ,  if m < q ~<n and r < p  ~< n, let ~m~q,(~, ~)=/~I~p(~)I~q~(~), where fl is bounded  

and  ~zqp-measurable. Then  

(~%kz" M M ,  ~,n~q," M.M),  = [ - I  ~%~(~, ~) ~mvq~(~, ~) d[M]~, diMlY. (2.17) 
J J R  zxR~ 

In particular ~. MM and ~q~. MM are orthogonal if (i, ~, ~, l) =k (m, p, q, r). The proof of 

(2.17) is immediate from (2.16) and the defimtion of (., .~. 

We say ~v is a simple/unction if it is a finite sum of funt ions  of the  fo rm ~ for  some 

n. For  simple functions ~v we define ~v- M M  to  be the  sum of the  corresponding ~v~- MM.  
One easily checks t ha t  this definit ion is independent  of the  par t icular  representa t ion  of ~p 

as a sum. F r o m  Proposi t ions 2.4 and (2.17) 

y~. M M  ~ ~ ( z 0 )  and is cont inuous if M is; (2.18) 

z• 

Let  0 be the  a-field on R~ • R~ • g2 generated b y  the simple functions.  We  call 0 

the field of predictable sets--there will be no confusion with the class of ~z-predietable sets 

we have  defined before, since the la t ter  are subsets of R~+ • s We  say  t h a t  a process 

~v = {~v(~, ~): ~, ~ R ~ }  is predictable if it is 0 -measu rab le  as a funct ion of (~, ~, to). We  say  

t h a t  ~v is adapted if ~v(~, ~) is ~:v~-measurable  for each ~, ~. I n  the following, these notions 

will be used for processes of the form ~v = {~p(~, ~): ~, ~ <~ z0} wi thout  fur ther  comment .  
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Let 1~,2MM(Zo) be the class of all processes y~ = {y~($, s ~, s ~: z0} satisfying 

(1) ~ is predictable; 

(2) ~p (~, ~ )=0  unless ~ ~ ~; 

(3) E{~n=o~,~0~(~, ~)d[M]~d[M]~} < o~; 

and let s be the class of all processes ~ on R~ • 1{2+ satisfying (1), (2) and (3) for all z o E R~. 

We give s the scalar product 

( ~ , ~ ) = E ( f f ~  zo • t~ zo 

Then, with the obvious identifications, s is a I-filbert space and the simple functions 

form a dense subset. The map ~p-+y3.MM of simple functions into ~2(z0) preserves the 

norm by  (2.19), hence it can be extended by  continuity to a linear map from F~MM(Zo) into 

~2(Z0). To summarize: 

THEOREM 2.5. Let M be a right-continuous strong martingale/or which E(M4zo} < c~. 

Then the mapping v / ~ w  M M  defined above is a norm-preserving linear map o/F~M(Zo) into 

~2(Zo) which satisfies (2.18) and (2.19). Furthermore, yJ.MM is orthogonal to M. 

Remarks. 1% The fact that  yJ. M M  is continuous, if M is, follows from Proposition 1.4, 

Moreover, ~p. MM_L M is a consequence of Proposition 2.4 (b). 

2 ~ In  general, v 2. M M  is not a strong martingale. 

3 ~ We will often denote ?;-MM~ by ~Rz• We will also write ~ A  • B~gMdM 

and S~ A • B ~Z d[M] 2 d[M] 1 instead of (yJI A~ B) " MM~o and ~ A~ s ~(~, ~) Z(~, ~) d[M]~ d[M]~ 

respectively (A, B Borel subsets of Rz~). 

4 ~ Cne can extend the integral to M E ~  and ~E/:~M and we will use this extension 

without further comment.  

We can get some insight into the integral ~. M M  by considering it as an i terated 

integral of the form 

~~ MM~= f~o(L VJ(L #)dM,) dM:" 

Here, yJ" MMz is the integral, first of an :~-adapted process, then of an :~-adapted pro- 

cess. To make this rigorous, we must  prove a type of stochastic Fubini 's  theorem. We will 

confine ourselves to the case of a martingale ME~4s(zo) such that  [M] 1 and [M 2] are 

deterministic, i,e. independent of w. (IneidentalIy, this is another case where we can prove 

tha t  [M] 1= [M]2.) Then we have the following theorem: 
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TH~,OR~M 2.6. I/V2E F~MM(Zo), then ~(~, ") is ~-predictable and E(~ R~. ~(~,~)d[M]~} < 
/or diM] ~ - a.e. ~ ~ z o. Furthermore, we can de/ine a process ( I (~), ~ ~ Rz.} such that 

(a) I(~) is ~-predictable; 

(e) I(~) = ~.~.~(~, ~)dM~ for d[M] ~ - -  a.e. ~; 

(d) j'.~, I(~) dM:= ~p. MM~,. 

Remark. If we interchange 1 and 2 above, (d) becomes the "stochastic Fubini's thee, 

rcm": 

Proo/. Let us suppose ~p is of the form (2.15). If we adopt the notation of (2.15), we can 

let 

I(~) = ala,,(~) M(Ak,). (2.21) 

One sees by inspection that  I(~) is ~-predictable and that  its integral is given by 

I .  Me. = aM(At~) M(Ak~) = ~" MMz~ (2.22) 

Furthermore, 

E { f Rz. I2( ~) d[ M]'I = E { :c2[ M]2( A~j) M ( hkZf }. 

Both a and [M]~(Aij) are :~z~kvmeasurable, while E(M(Akz)e[:~} =E([M]l(A~z)[:~z~z}, so 

if we condition first by :~lz~z, the above becomes 

= E (~[M]2( Aij) [M]I( Ak,) ' = E { ~ ~ 2 1 5  ~~ ~2( ~, ~) d[M]~ d[M ]~ }. 

Thus (a)-(d) hold for ~ of the form (2.15) and, by an easy extension, for simple v 2. 

In general, if ~0 E s there exist simple ~ such that  

E {f f -W($' 
By taking a subsequence, if necessary, we can suppose that,  for d[M]2--a.e. ~, 

E (v2n( , , )  < 2 - ' ,  (2.23) 
z~ 
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for all large enough n. Let  In(~ ) = yJ~(~, �9 ). M~0 and define 

i ( ~ ) = f h m n _ ~ I = ( ~ )  if the limit exists, 

l0 otherwise. 

Then (c) holds and  since each 1~ is ~ -p r ed i c t ab l e ,  so is I and (a) is satisfied. Moreover,  

f rom (b), which holds for  simple 9, we have  

E { f ~o (Im(~) - In(~)?d[M]~}~- E { f f R~o ~o (Wm(r ~) -Wn(~' ~))~d[M]~d[M]~ }" 
Since {yJ=} is a Cauchy sequence in s {I~} is also a Cauchy sequence and its l imit  

mus t  be ! .  Thus we can pass to the limit to get (b). Fur thermore ,  by  Theorem 2.3, 

I .  M~ 0 = lim I n �9 M~~ 
rt--~O 

where the limit takes  place in L 2. At  the same t ime we have  

In" M~o = %~ . MM~o 

and ~?. MMz~ = lim V, .  MM~,, 
n ~  

where the  l imit  again is in L ~, which implies t h a t  I .  Mz, =~o. MM~~ 

w 3. The representation of square integrable martingales 

I t  is well-known tha t  every, squarc- integrable mar t ingale  relat ive to the  na tu ra l  fields 

of Brownian  mot ion  can be wr i t ten  as a cons tant  plus a stochastic integral.  This  is an 

immedia te  consequence of I to ' s  or thogonal  decomposi t ion of a square integrable  funct ional  

of a normal  r a n d o m  measure  into mult iple  Wiener  integrals [8] and the  r emark  of I t o  (see 

[8], Theorem 5.1) t ha t  in the par t icular  case of Brownian  motion,  these integrals  become 

i tera ted  stochastic integrals.  Such a decomposi t ion is no longer possible in the case of the 

two-pa ramete r  Wiener  process, a t  least  if by  stochast ic  integral  one means  the  stochast ic  

integral  of an adap ted  function. However ,  it is possible if one allows stochastic integrals of 

funct ions which are :~-  or :~ -adap ted .  More precisely, we have  the following theorem,  

which was recent ly proved  b y  Wong and Zakai.  For  this section, the fields :~z are those 

genera ted by  W: :~z = a{ W e, ~ ~ z}. 

T H ~ O R ]r M 3.1. (Wong and Zakai) I / M  = {Mz, :~, z E R2+ } is a square integrable martin- 

gale, then/or each z E R2+, 

M z = M o +  4. W~+V. WWz, (3.1) 

where r e ~2w and ~f e ~rw. 
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This was proved in [18]. Because we will need it in what follows, we thought i t  worth- 

while to give an elementary proof here, based on Green's formula (6.8) and the completeness 

of the Hernfite polynomials. 

We begin with a simple lemma, which is a special case of a result (not given here) on 

products of stochastic integrals. 

If A is a rectangle, Ya (resp. YAa) is the class of functions r e s (rasp. %0 E I:2ww) such 

that  for each ~EA (resp. $, ~EA)~(~) is O~-measurable (resp. %0(~, ~) is O:v~-measurable), 

where ~ =a{W(A fl R~,), ~e, .~ ~}. 

Lv.~MA 3.2. Let A 1 and A 2 be two disjoint rectangles contained in Rz. such that A x (J Aa 

is a rectangle A. I[ ~iEyA~ and %0tEY~A~ ( i=1,  2), there exist ~EY,4 and %0Ey,4 A such that 

Pro@ We must verify that  each of the four terms of the product on the left-hand side 

can be written in the form of the right-hand side. We will only consider the fourth term. The 

verification in the other three cases is similar, and in fact simpler. We have 

where %0 =~ '  +%0", with %0' and %0" defined by the following formulas in the case where A 1 

is to the left of A~: 

{: ff( %01d~dWif~'~A2' 
otherwise, 

(3.3) 

if ~6A x and ~6A2, 

/ 0 otherwise, 

where Qg is the strip bounded by the axes and by the horizontal line which passes through ~-. 

To prove this for simple functions it is enough to consider %01 and %02 of the form 

%0~(~, ~)=~tlBi•162 ~), 

where Bi, B't are rectangles contained in Ai, such that  B i A B'i0) and having lower left- 

O) Bi]kB~ iff ~EB~ and ~EB'~ implies ~A~. 
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hand corners at  z~ and z'~, respectively, and where ~ is a bounded ~z#z~-measurable r.v. 

(i = 1, 2). In  this case, 

, ] y dW dW = ~ ~2 W(B~) W(2)  W(B2 N Qz) d W~ + W(B~ (1 Qz) d Wz 
•  l 2 

= 5 1  52 ~ V ( B t l ) W ( B 2 ) W ( B 1 ) W ( B 2 ) =  ff . .w,w dW. 

For the general case, we consider two sequences of simple functions {~p~} and {~o;} 

converging to ~1 and Y~2 in YA, A, and :TA, A, respectively. I f  we define ~pn by  (3.3), starting 

with ~p~ and ~o~, we have by  the foregoing tha t  

Each term on the left-hand side converges in L 2 to the corresponding term on the left- 

hand side of (3.2). On the right-hand side, an easy calculation shows tha t  

+E{~ (~2-~'~)2(~,~)d~d~}], 
zo • RZo 

which implies tha t  the right-hand side also converges to the right-hand side of (3.2). qed 

Proo] of Theorem 3.1. Notice tha t  the representation is unique (up to negligible sets), 

since if M =r W +y,  WW=r W +~p" WW, then 

0 = E { [ ( , / , -  4,') �9 W~+ (~o- V/) �9 WW~] ~} 

I t  is enough to prove tha t  if z 0 E R2+ and if X E L 2 is an :~z,-measurable r. v., then there 

exist r e E~w(Z0) and ~0 E s W w(Zo) such tha t  

X=E{Xi+ f, oCdW+ (3.4) 

Indeed, if M is a square integrable martingale, let z~ = (n, n). Then there exist ~ and ~o~ 

such tha t  (3.4) holds with z0, X, r and yJ replaced by  z~, Mz,, ~ and y3~ respectively. 

Taking conditional expectations, if z ~z~ 

Mz = E{M~, I :~} = E{M~,} + r  W~ + ~ , .  W W~. 
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B y  uniqueness,  wi th  probabi l i ty  one, r  = r  and  ~0, =~0,_ t a.e. on R:,_~ and  Rz,_~ • Rz,_~ 
respectively,  so t ha t  (3.1) holds wi th  r =~,(~) ,  if $ E R:. ,  and  ~0($, ~) =y3,(~, ~), if ~, ~ e R : .  

Le t  z o E R~ and divide Rzointo mn congruent  subrectanglesAhs = (z~j, z5+1. S+l] (i = 1 ..... m, 

7" = 1 . . . . .  n). Fix  i and ?" for the m o m e n t  and  set  

~r = W ( (z , , ,  z ,  +~]). 

Then  {Wz, z e R O )  is a two-pa ramete r  Wiener  process and  if Hp(x, t) is the pth Hermi te  

polynomial ,  an  appl icat ion of Green 's  formula  (Theorem 6.1) gives, for p >~ l, 

Hv(Ww, .Ahj[ ) f = H~_a(14 e, IR~l)dJ~, 

where w=z~+l,i+t-z,+ and IAI is the area of A. The  lef t-hand side is just  Hv(W(A,j ), 
[Ahjl) and the first  t e rm on the  r igh t -hand  side is 

fA H, 1(A,1 R~, [A,j (7 n R~[)dW~. 
5i 

The second t e rm on the r igh t -hand  side can be wri t ten  

f f $) H'p_I( W (A~j fl N R:.,,~ I ) dW:dW~. I~>(~ ,  R:v~), [A,j 
Atj • Aq 

Thus,  for each i, j and  p >~ 1, we have  

where r JA~ and y~tE :/A,,.A~; Since the Hermi te  polynomials  form a complete  or thogonal  

sys tem in L2(R, exp ( - x~/2t) dx), if / is in t h a t  space for t = I Ai;I, it follows tha t  1( W(A.))can 
be wr i t ten  in the  form of a constant  (which eomes f rom the t e rm H 0 -  1) plus a t e rm of 

the  t ype  given in (3.5). Consequently,  if for each i, j, ] .  EL2(R, exp ( -x2/21A~t] )e/x), we have  

5=1 t=1  5=1 t=1  O" ~t• A~] 

Now this is a sum of a cons tan t  plus t e rms  of the fo rm 

c~162 w'dWdW ), 
where the  produc t  is over  some subset  of {(i, j): 1 <i<~m, 1 ~<j~<n}. B u t  each of these 

p roduc t s  can be represented in the  form (3.4). This  can be seen, using L e m m a  3.2, b y  induc- 
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tion first on the rectangles belonging to a single column of the subdivision of R~., and 

then on these columns. Hence (3.4) is true for the X in L 2 of the particular form 
1-[m n ~=1 IIj=l/~j(W(A~j)). The passage to the X in L 2 of the form/(W(All ) ,  ..., W(Am~)) and, 

afterwards, to the general :~z0-measurable r.v. 's X in L 2 is then routine, qed 

One result which can be deduced either from Theorem 3.1 or directly (see [14]) is the 

zero-one law. 

n o . . . .  v :~z is trivial. COrOLLArY 3.3 The/ ie ld  :~1 2 

Here is another immediate consequence of Theorem 3.1. Recall that ,  in this section, 

the fields :~ are those generated by W. 

COROLLARY 3.4. I /  M is a martingale such E{ I Mz I log + I M~ I } < ~ ]or all z e R~+, then 

M has a continuous version. 

Proo/. This holds for square integrable M since the stochastic integrals in (3.1) are con- 

tinuous (Theorems 2.2 and 2.5). The extension to the i for which E{IM~]log+]Mz I } < 

is immediate thanks to the maximal inequality (Theorem 1.2). qed 

_Note. We can not extend Corollary 3.4 to Ll-bounded martingales. In  fact, such martin- 

gales can have oscillatory discontinuities and do not necessarily have a right continuous 

version, as the following example shows. This is based on known examples and the observa- 

tion that  one can construct independent two-(space) dimensional Brownian motions {Bs} 

and {/~t} such tha t  {(Bs,/~t)} is ~st-adapted. To do this, define 

Bs = 1/2 (W~. 1/2 - W1.1/2, W~., - Ws. 1/2 - W1.1 + WI. 1/2), s >~ 1, 

B t =  V2 ( W1/2. t -  W1/2.1, W I . t -  W1/2. t -  I/VI.1-}- W1/2.1), t >~ l.  

Then {(Bs, Bt)} is ~st-adapted. Let  ] be defined on the product of the unit circle with itself, 

and let 

a = i n f  {s~>l: IB~I =1}, ~=in f  {t>~l: IB I =1}. 

I f  / is integrable, then 

Mst=E{ / (Bo ,  B~)l:~t}, (1, 1)<(s,  t), 

is a martingale and if h is the biharmonic function on the product of the unit disc with 

itself which has boundary values/ ,  then 

M~t=h(Bs,  Bt) for l <~s<a and l~<t<v. 

We know we can choose / such tha t  

lim sup h(B~,/~t) = ~ and lim inf h(B~, JBt) = - ~ .  
s t , . t t~  st , . t t~ 
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This shows t h a t  l i m ~ t , . t t , : M ~ t  doesn ' t  exist. (See [17], [9] and  [2], which also gives some 

fur ther  references.) 

Now we can use this to construct  worse examples  in various ways.  For  instance,  let us 

notice t h a t  we can define countable  families of independent  two-dimensional  Brownian  

mot ions  {B: ,  n = l ,  2 . . . . .  s~>l} and {B?, n = l ,  2, ..., t>~l} b y  essentially the  same tr ick 

as above and in such a way  t h a t  the  processes {(B~,/~?),  s, t ~ 1}~__~ are independent  and 

~:~t-adapted. Le t  

a n = i n f { s ~ l :  IB~I = 1 }  and  v , = i n f { t ~ l :  I/2~1 =1}.  

Then {(a~, v~), n = 1, 2 . . . .  } are i.i.d, and thus  it is easy to see tha t ,  with probabi l i ty  one, the  

family  (a~, r , )  is dense in ((s, t): s ~> 1, t/> 1}. Define 

oo 

n = l  

Then {M~t , s, t ~> 1} is an LX-bounded mar t ingale  with lim sup = ~ and  lim inf = - ~ a t  

each (an, ~ ) .  These being dense, i t  follows tha t  a t  each point  (s, t)>- (1, 1), 

and 

l im sup M ~  = lim sup M,~ = c~ 
(u, v)~(s ,  t) (u, v)$(s ,  t) 

lim inf M u ,  = lim inf M , v  = - ~ . 
(u.  v ) t ( s ,  t) (u, v)$(s ,  t)  

w Line in tegra ls  

Le t  1 ~ be a curve in R~ given by  the  paramet r ic  representat ion:  

{z: z =?(a) ,  0 < a ~ < l } ,  (4.1) 

where ~,: [0, 1 ] ~ R ~  is a cont inuous function. Let  M E  ~ 2  and suppose F is an increasing 

pa th ,  i.e. ~,(a) ~ ? ( a ' )  if a ~<a'. We can define line integrals along F with respect  to M: just  

notice t h a t  No~Mr(~)  , 0 ~ a ~ < l ,  is a classical square integrable mar t ingale  and t h a t  

therefore one can define S r r  = S ~ r  as an I to  integral.  B u t  this works only for 

increasing pa ths  and  wouldn ' t  allow us, for instance,  to in tegrate  a round  a circle. We will 

t ake  another  t ack  which will allow us to define line integrals for all reasonably  smooth  

paths ,  including all increasing paths .  We do this b y  first  defining two integrals,  denoted b y  

~rr and ~rC~2M. One might  th ink  of these as the integrals  of the  stochastic differential  

forms r and r (We will use the no ta t ion  ffr for line integrals to avoid  confusion 

with the surface integral  ~ r  
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Let  F be an oriented curve with the parametric representation (4.1). There is a curve 

of the opposite orientation, which has the representation 

{z: z =p(a)=r(1 -a), 0<a<l} .  

DEFINITION.  I ~ i8 O[ type I i/ it is an increasi~y path; o/ type I I  i~ (r<~a' implies 

y((~) A ~,(a'); and o/type I '  (resp. I I ' )  i / F  is o/ type I (resp. type II) .  We say F is o/pure type 

i / i t  is o/ type I, I I ,  I '  or II ' .  

Remarks. A type I curve is linearly ordered b y "  C" ,  a type I I  curve b y "  A" .  Horizontal 

(resp. vertical) lines are simultaneously of type I and I I  (resp. I and I I ' )  but this will cause 

no confusion. I f  F is of types I or I I ,  the fields fflo) increase with ~; if F is of type I or I I ' ,  

ff~(o) increases with a. 

Given a curve F of pure type, we will define two processes on F, M r and M r,  which 

may  be thought of as coming from the horizontal and vertical increments, respectively, of 

M. A suggestive notation for this would be dM{" =~IM and dM r =~2M. 

The easiest way to describe these processes is to introduce them first for stepped 

paths. A polygonal curve F is said to be a stepped path if its segments are either horizontal 

or vertical. Let  P be an increasing stepped path  with successive horizontal segments 

h 1 = [a 1, bl] .. . .  , h~ = [a~, bn] and vertical segments v 1 = [Cl, dl] . . . .  , vm = [cm, din/, and with 

initial and final points z 0 and z~ respectively. Suppose, for the moment,  tha t  M is continuous 

and define 

M[(z / )=  ~ ( i b ~ - i , ~ )  and Mr(zs) = ~ ( i ~ k - i c , ) .  (4.2) 
j = l  k = l  

One could proceed to define M r and M r for arbi trary type I curves by approximating them 

by  stepped pa ths - - :md we shall do this l a t e r - -bu t  there is a more direct way. I f  zER2+, 

let Hz (resp. Vz) bc the horizontal (resp. vertical) line segment connecting z and the t-axis 

(resp. s-axis). I f  zEP, denote by /)z 1 (resp./)z 2) the closed area bounded by  Vr., Vz (resp. 

Hr., Hz), P and the axis, and let D zi = Dr-1 _ Vro (resp. Dr2 =D2z_Hz,)" Then, according to 

(4.2), we have 

Mr~(zl) = i ( n ~ , )  and Mr2(zr) = M(D~t ). 

Thus, suppose F is a curve of pure type with initial and final points z o and z I respectively, 

and define D~ and Dz 2 as above. 

D]~FINITION. Let M E ~2.  1 / F  is o/type I or I I  and i = 1 (resp. o/type I or 11' and 

i =2) put 
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M T ( z r )  - ' - M(D~t), 

D ~ :~i M r ( z ) = E ( M (  ~,)] ~}, z e r .  (4.3) 

Note that  D~, = Diz + (D~-D~)  and, if i = 1, for instance, that  this last term is the 

union of (D~] -D~)NV~  and ( D ~ - D I ) - V ~ .  i being a martingale, E ( M ( ( D ~ , - D ~ )  

M D 1 1 - V~) I :~1) =0. Thus.�9 if (( z , -  D~) n V~) = 0 (resp. M((D~,-D~)2 2 N Hz) =0), 

Mrl (Z) = M ( D  1) (resp. M[(z)  = M(D~)). (4.4) 

This is the case if M does not charge vertical (resp. horizontal) lines, which happens for 

example if M is continuous, or if F contains no vertical (resp. horizontal) segments, or if M 

simply does not charge F. 

PROI'OSITIO~ 4.1. I1 F is o I type I or I I  (resp. I or I I ' ) ,  then (Mr(z), :~, zeF}  (resp. 

(Mr(z) ,  :~, z e F~ ) is a one-parameter square integrable right-continuous martingale, which is 

continuous i I M is. 

This is immediate, except for the continuity. Before tackling that,  we give some 

simple approximation properties. 

PROPOSITION 4.2. Let F and F' be curves o I type I or I I  (resp. I or I I ' )  both having 

initial point z o and final point zf. Suppose F" lies above (resp. on the right o/) F. I /  A is the 

open area enclosed by F U F',  

E ((Mr'(z~) - Mr(zs)) z} = E ( ( M )  (:~ - F)} (i = 1, 2). (4.5) 

This is immediate since M ( . 4 - F ) - - M r ' ( z / ) -  Mr(z / ) .  Two direct consequences are: 

COROLLARY 4.3. Let F and F" be curves o I pure type with the same initial point z o 

a n d / i n a l  point z/. 11 M does not charge F 0 F' and i I A is the area enclosed by F U F', 

E ((Mr'(z/)  - Mr(z/))  2} = E ((M~ (A)) (i = 1, 2). (4.6) 

COROLLARY 4.4. Let F be a curve o / t y p e  I or I I  (resp. I or I I ' )  with initial point z o 

and / ina l  point z/. Let (Fn} be a sequence of curves such that F~ lies above (resp. on the right o]) 

F. I[  F~ converges to F, then Mrs(z/)  converges to M~'(zj) in L 2 1or i = 1  (resp. i=2) .  

Note that  a curve of pure type can be approximated from either above or below by a 

stepped path. For instance, if F is of type I, choose points z o .~ z 1.4 ... -< z~ =z  r on F. Then 

let F + and F -  be the upper and lower parts of the boundary of (J j'_-01[zj, z~+l]. The distance 

from any point of F + or F -  to F is less than supj I z j+ t - zjl. By taking finer and finer parti- 

tions of F, we obtain sequences {Fn) (resp. {F;))  of stepped paths decreasing (resp. increas- 

ing) to F. 
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Now suppose F is of pure type---say type I - - a n d  let {Fn} be a sequence of stepped 

paths decreasing to F as per Corollary 4.4. We may suppose, by taking a subsequence if 

necessary, that  E{(Mrx~(zl) - Mr(zs)) 2} < 2 -n. If z 0 = (So, to) and zj = (sl, tl), define for s o ~<s ~<sl, 

Nn(s) = E {Mr-(zr)171o}, 

N(s) = E {Mr(zr) I~0}. (4.7) 

By the maximal inequality, Nn(s ) converges uniformly to N(s). By (4.4)--see also (4.2)-- 

if M is continuous, so is Nn(s) and it follows that  N(s) is too. But if (s,t)EF, then 

Mr(s, t)=N(s), hence Mr(z) is continuous and we have proved Proposition 4.1. 

Note that  it is only for type I curves that  we have simultaneously defined M r  and M2 r. 

Denote the restriction of M to F by Mr:  M r  ={Mz, zEP}. Then we have: 

P~OPOSITIO~ 4.5. Let F be an increasing path with initial point z o. Let M, NE 7tl ~ 

and suppose M does not charge F. Then 

(a) MrI •  i.e. {Mr(z)lY~(z), ~ , z E P }  is a martingale; 

(b) My - Mr. = Mr(z) + Mr(z); 

(c) ( / r } ~ =  (Mr>~+ (M~>~. 

- Dz, - Dlz, B = 1)~, - D~, where /)~z is defined as before. Proo/. Let z < z '  and set A -  1 

Notice that  since F is increasing, Mr  and N~ are adapted. Thus 

E {Mr(z) N(B) I ff:} = E {Mr(z) E {N(B) I ~ }  I ~ }  = 0, 

since N is a martingale. Similarly E{M(A)Nr2(z)I 7~}=0. I t  follows that,  since Mr(z')= 

Mr(z) + M(A) and Nr(z ') =N2r(z) + N(B), 

E {Mr(z') N[(z') I ~ }  = Mr(z) N~(z) + E {M(A) N(B) I ~z}. 

We must show the last term vanishes. If R ~  A is a rectangle with upper left-hand corner ~, 

E{M(R) N(B)] ~ }  = E{M(R)N(B N R~) I ~z} + E{M(R)N(B - R~) I ~} .  

The first term vanishes, since B fl R ~  R~ and E { M ( R ) [ ~ }  =0, while the last term vanishes 

because E{N(B - R~)[ ff~} = 0. As M does not charge F, we can write M(A) ---lim n-,~o M(An), 

where An is a union of rectangles, so that  

E{M(A)IV(B)I ~ }  =lira E{M(An)N(B)I T~} =0. 
n--~oo 

To see part  (b), just note that  if we take z =z  o above, 

i z . - i ~  =M(A U B) =M(A) +M(B) =Mr(z)  +M~(z), 

for M(A N B)=0 ,  since A N B ~ F .  Finally, (e) follows from (a) and (b). qed 
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I f  F is of type  I or I I  and  i = 1 ,  or of type  I or I I '  and  i = 2 ,  then Mr={M~(z), ~, 
z EP} is a one-parameter  square integrable martingale.  Let  ( M r )  be the ~ -p red ie t ab l e  

increasing process associated with M r. I f  F is of type  I or I I  and if 4 = {4~, z E P} is :~-pre-  

dictable and such tha t  ~r42d(M [) < ~ a.s., then one can define the I to  integral with 

respect to M r in the usual way:  

4"Mr(z), zEF. 

Since there is some danger  of mistaking this for the integral 4" M, we will denote it, in 
general, by  

f r  4 ~ M ,  zEF,  (4.8) 
z 

or just  j ' r4~ lM for the integral over all of F. Similarly, if F is of type  I or I I '  and 

4={4~, zeF} is :~2z-predictable and such tha t  ~r4~d(M r) < ~ a.s., we can define 4 . M  r as 

an I to  integral, which we denote by  

~ r 4 ~ 2  M, E F. (4.9) Z 

$ 

]f  F is of type  I '  or I I '  (resp. I '  or II) ,  we define 

/r4~lM= - f~ 4~lM (resp. /r4~2M= - f~ 4g2M), (4.~0) 

where 1 ~ is defined in (4.2). Finally, if F is of pure type,  we let 

fr4~M= j ; ~ M  + frgP~M. (4.11) 

Let  us remark tha t  the definition of ~r r M can be immediately  extended to compact  

curves which can be broken into a finite or countable number  of curves of pure type.  We 

will say tha t  a curve is piecewise-pure if it consists of a finite number  of curves of pure 

type.  

If  F is an increasing path,  one can define ~r r  directly, as discussed at  the beginning 

of this section. If  M does not  charge F, the two definitions agree thanks  to Proposi t ion 

4.5. 

We close this section with a theorem which tells us when lim~_,~o ~r,4n~M=~r~iM. 
Let  F and F~, n = 0, 1, 2, ..., be curves of the same type,  either I or I I ,  all having the 

same initial point  z 0 = (So, to) and final point  z 1 = (s 1, tl) and such tha t  F and F~ lie entirely 

below F0. Denote the area enclosed by  I ' 0  F~ by  A~. For  s~>0 and any  curve A, let VA(S) 



(a) 

(b) 

(e) 

Then 
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be the  po in t  (s, T), where ~ = i n f  {t: (s, t ) e A } .  I f  M e  ~ 2 ,  define mar t inga les  ( re la t ive to 

{~,0}) f i  and  N~ b y  (4.7). Then 

f ir(s)= M[(vr(s)),  s o < s < s l, 

fin(S) = M[~(Vr~(S)), n = 0, 1, 2 . . . . .  s o ~< s < s v 

P R O P O S i T i O N  4.6. Let M e  ~ and suppose that {r and  {r n = 1, 2 . . . .  , are :~lz- 

predictable processes defined/or z in F and Fn respectively. Define/unctions ~f and YJn respec- 

tively by ~p(s) : r  and y~,,(s) : r  s o <s  <~s 1. Suppose that 

l i m n ~ E  {Me(An)} = 0; 

E {S~o y~(s) di f io)s} < oo, E {j'~: yJ2(s) d<fi0)s} < oo; 

l i m , _ ~  E { ~  (~fn(s) - y)(s)) 2 d<fi0),} = 0. 

l i m ~  ~ n ~ l M ~  f y , ~ l M  in  L 2. 
n..-~oo j Fr, " 

Proo[. Suppose for the  m o m e n t  t h a t  P o and  F are s t epped  pa ths .  Using  the  fac t  t h a t  

F 0 lies above  F and  t h a t  M is a s t rong mar t ingale ,  we see t h a t  f i  and  N 0 - N  are  or thogonal .  

This  remains  t rue  in the  general  case, since then  one can a p p r o x i m a t e  Fo and  P b y  s tepped  

pa ths  and  use Corol lary  4.4 to pass to  the  l imit .  Similar ly,  N n and  N o - N n are or thogonal .  

Thus 

<No) = <N)  ~- <N O - N )  = <-/~n ) + <No - ~3~n)' 

I t  follows t h a t  d<f i )<d<No)  and  d<fin)<d<No).  Since <N-ZYn)<---2<N)+2(fin),  we 

have d < f i -  f i . )  < 4d<fi0). Now 

f r M - f r M = ;': 'P dfi - f (: 'P. dfi. 

= ( W - w . ) d X +  - ~ , ) d ( f i - f i n )  + w d ( f i - f i n ) .  
o o 

Each  of these  in tegra ls  tends  to zero in L 2, as n-~ ~ .  Indeed ,  

which tends  to zero by  hypathes i s .  S imi la r ly  
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which also tends to zero. Finally, 

Write ~o 2 = ~v~I(ivl<m> + FeI(l~l>m> <~m~+ ~P~I(l+l>~). Then the above expectation is 

<~ m~E { f i~i d ( N -  N,~} } + 4E { fsi'~P2I<l~j>,,,> d(No}} 

= m2E {M2(A~) } + 4E { f i~: v22I(l~l>,,) d(No}}. 

Let  first n and then m tend to infinity. The first term goes to zero by hypothesis (a) and 

the second by the dominated convergence theorem, qed 

Our main applications will be to the case where M = W. In this case, d(N0} = tds, so 

the conditions become simpler. 

COROLLARY 4.7. Suppose r =(r zeR2+} is an ~-adapted measurable process such 
that 

(a) E{r ~ bounded/or  ~ in ~ompa~ s ~ ;  

(b) for all s, t, limr-+t E {(r - +,t) 2} = O. 

I/  F and F,, n = 1, 2 ..... are curves of type I or II,  having the same initial and /inal 

points and such that the area enclosed by F and F n tends to zero as n-+~, then we have 

lim ~ r w= fFr in L ~. 
n-=~o J F n 

Of course the symmetric versions of Proposition 4.6 and its corollary hold for integrals 

with respect to ~2M and ~ W. In particular, if r is :~-adapted and measurable, we can 

apply Corollary 4.7 to both ~1 W and ~ W to get the following result: 

COROLLARY 4.8. Suppose r162 zeRO} is an adapted measurable process which is 
continuous in the L2.mean. I] F n and F are curves of the same pure type, having the same 

initial and final points and such that the area bounded by F U Fn goes to zero, then 

n.--~<~ J F n 
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w 5. A mixed integral 

Let M E ~(Zo).  Let H~t be'the horizontal line segment connecting (s, t) with the t-axis 

and consider the integral 

I~., = j,,.o. CaaM. (5J) 

Under suitable conditions, which we shall make precise shortly, we can integrate Is. t with 

respect to t to get an iterated integral 

;.f: r M dt = Jo I~,tdt. 

Note that  it would make no sense to integrate over t first, then with respect to ~xM, for 

~ M  depends on t. 

Recall that  the process [M] x is the unique process which is increasing and :~t-predictable 

in the first parameter and such that  M 2 -[21/] 1 is a 1-martingale. Suppose we have chosen 

[M]~t measurably in the pairs (s, t), which we can certainly do if, for instance, M is a strong 

martingale, for [M] x is then right-continuous. If ~ is a positive measurable process, then 

tO / Fso \ 

(Jo 
makes sense. 

PROPOSITION 5.1. Let ME ~S(z0) and suppose that q~ is :~lz-predictable and satisfies 
E(~o ~o r t ds[M]~ ~ dr} < cr Then there exists a measurable process (Ix, z -<z0} such that 

(a) /or  a.e. (Lebesgue) fixed t <~ to, 

P { I , =  f ,  CeaM, /or eachs<so}=l ,  

and consequently {Ist, ~]t, s <~ So} is a one-parameter right-continuous martingale, continuous 
i/ M is; 

(b) E{sups<~, Is2t} is a.e. finite and is integrable i~ t; 

(c) E {(S~oIs.dt) ~} < toe {S~ o ~'r 

Proo]. Once we know (Ix) is a mesurable process satisfying (a), (c)follows from the 

Schwarz inequality and the fact that,  for a.e. t <to, 

t; } i ~ 2 1 

The proof of (a) is straightforward. If r is a simple tunction, writing down the integrals 

1 0 -  752903 Acta  mathematica 134. Imprlmd le 4 Aofit 1975 
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explicit ly makes  it  clear t h a t  i t  holds. I f  4 is :~zLpredictable, we can, b y  now-famil iar  argu- 

ments ,  f ind a sequence {4~} of :~l.-adapted simple funct ions such t h a t  

B y  tak ing  a subsequenee,  if necessary,  we can suppose t h a t  for  a.e. t: 

for  large enough n. I t  follows t h a t  for  a.e. t, S~,,4nOlM converges a.s. un i formly  in s to 

�9 Ira, 401 M. Thus,  define 

l lim [ 4~0, M if the limit exists, 

Then  (a) clearly holds. Fm~hermore ,  b y  the Doob inequali ty,  for a.e. t, 

{; } E(supI~t)<<.4E(I~ot)=4E 4~t d,[M],~ , 

which is t - integrable b y  hypothesis ,  qed 

Define 

where I~t is as in Proposi t ion 5.1. 

R~,narks. By symmetry, one can also define ~~ S~ 0 4 ~ M d s  for ~-pr~dietable 4. One can 

th ink  of 81Mdt and 8zMds as stochastic measures  on R2+. Accordingly,  we will of ten use 

no ta t ion  such as ~AC~lMdt, where A ~  R~. 

COROLLARY 5.2. With probability one, the process S ~ a , ~ l  Md$ is ri~jht-continuous in 

z and is continuous i ] M  is. 

def 

Proo]. We have  Ilsotl <~sup~<~,lI~t I =St. Using (b) and  Fubini ,  we see t h a t  St(co ) 

is integrable---even square integrable---for  a.e. co. Choose ~o such t h a t  St(o)) is in tegrable  

and  I~t(eo) r ight-cont inuous in s for a . e . t .  B y  domina ted  convergence, if s '  r s and  t '~t ,  

then  

I f  M is continuous,  so is s~ I~ ,  for a.e. t, and the same conclusion holds as (s', t ' ) ~ ( s ,  t). 



STOCHASTIC INTEGRALS IN THE PLANE 147 

w 6. The measure JM and Green's formula  

I f  M={Mz,  zER2.} is a martingale, it induces a measure on R2+ which is not, except 

in trivial cases, a product measure. Thus, in general, dM ~= 81Ma2 M. But  there is a measure 

which does correspond to 8IMS~M and which we will call JM. Let 

y~((,~)=~l if ( ~ ,  
[0 otherwise. 

Suppose M E 7/~s4(zo) is continuous. Then [M] 1 = [M] ~ by  Theorem 1.9. Denote the common 

value by (M>; this is permissible by the remark following Proposition 1.8. Define 

JM(Z)=~v.MM~, z <z  o. 

I t  is not obvious from this formula tha t  JM induces ~:M~2M. Let  us look at  it from a 

slightly different point of view. Divide R~. into squares with corners at  the lattice points 

z:~=(2-niSo, 2-nit0), i, }=0, 1 ... . .  2 n. Let A~t=(z~j , zt+L/+l] and put  

(~i]=(Z0j '  •i,141] and s~j=(z~o, z~+:.j]. 

A,j 

8tt 

Define 

and 

J~(z) = M(~j A RA M(eij N R )  

J~M(Z) = Z J~(z). 
i.j=O 

n _._> This is an approximation to ~p. MMz and in fact JM JM" Furthermore,  i t  is clear that  

J~(A~) = M(e~j) M((~), 
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which gives the connection between JM and ~1M~2 M, for M(e~) is the increment of M 

over zijzi+l, j and M((~ij) the increment of M over z~jzi,~T~. 
Let us calculate ~ .  M dM. Approximate M by M ~ defined by  M~ = M~,~, if z e A~, and 

M ' =  0 on the axes. Let us write: 

f R  2 n - 1  2'~-I 
M~dM = ~ M~,jM(A~j) = ~. M~,j(M(~,,j§ - M(eij)) 

�9 o L/=O i . ] ~ 0  

2 n - 1  2 n - 1  

= ~ (M~,j+IM(ei,J+I)-M~,M(e~j))+ ~ (M,,s-M,,,j+l)M(ei.J+l). 
L t = 0  L i = O  

The first sum on the right telescopes in j, while in the second, M~,j- M~, j+l = -M(6~j). 

Writing M(el, j~i)= M(~j )+  M(A~r the right-hand side becomes: 

2 n -  1 2 n -  1 2 n - 1 

Z M,,,2,M(e,.~.)- Z M(~,)M(e,j)- ~ M(d~)M(A~j). 
t = 0  t . j = 0  t , / = 0  

We can identify all three of these sums. Indeed, if H~~ is the horizontal line segment 

joining z 0 to the t-axis and if we define 

M'~s't'= { M2-'i~*'t~176176 s = 0 ,  

{M(6.) if zEA~, 
6n(z) = 0 on the axis, 

the above can be written in the form 

Thus, 

:Now~ 

Hzol~"~l M - J~M(Zo) -- fnz~ b'~dM" 

sup (M2 - M~) 2 ~< 2 sup (M2) 2 + 2 sup M~ ~< 4 sup M~, 
n,z<z  o n. zC, Zo Z(Zo z<zo 

(6.1) 

hence, by Theorem 1.2, 

E ( sup (M~ - M~) 4} < const. E {M~.} < ~ .  
n , z ( z  o 

In  view of the continuity of M, SUpz,z~ ~0, a.s., so the above implies tha t  
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S n E { up . . . .  (M~ - M~) 4}-+ 0. Furthermore 

z~ z r Zo 

4 (E {sup (M2 - M~)'} E { ((M)~~ ~j~. 
2<Zo 

(6.2) 

But as ( M ) =  [M] 1, {(M>z, z EH~.} is the increasing process associated with the ordinary 

martingale {M~, z E H~.}; hence by Burkholder's inequality (see [5], p. 276), E{((M>~.) ~} ~< 

const. E {M~.}, so the right-hand side of (6'.2)tends to zero. Similarly 

E { (E { s u p ( . M ~ -  Mz)~} E { (<M>~o)~}) ~j'~, 
o ZEHzo 

which tends to zero, Turning to the last term of (6.1) and using the strength of M, we get 

{(L E &' d M  < E {sup M(O,~)2<M)J ~< (E {sup M(~j) 4 } E {( (M)j2})  ~/e, 
z~ i , j  L J 

which tends to zero because of the continuity of M and the fact that  

E { sup M(6~j) 4} ~< eonst. E {sup Mz 4} ~< const. E {M4z.} < oo. 
n , ~ , 3  Z ( Z o  

We conclude from this that  the right-hand side of (6.1) converges in L 2. The left-hand 

side converges in L ~ to JM(Zo), giving us 

JM(Zo)= f,~ M~M- f,~ MdM. (6.3) 

But  now since M is continuous and ( M ) = [ M ]  1, 

"M2z -M 2( ~  ( ) J .  Therefore, 

Remarks. 

the line integral in (6.3) is just 

1 ~ fR 
Ji(zo) = ~ M~o - M d M  - I(M),0. (6.4) 

zo 

1 o. If M = W, we will write J instead of Jw. 

2~ JM is orthogonal to M in the sense that  the product MJM is a weak martin- 

gale. In general, J u  is a martingale. 

3 ~ For each z ~ z  o = (So, to), according to Theorem 2.5, 
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In  what follows, we will denote the element of measure d(JM),t by d~(M)s~dt(M),~, 

so tha t  if ~ E E~x(z0), we have 

E {(r E {fR~ ~S~td~(M)~d~(M)~t }. 

Note that  

d~(M}~dt( M)~t <<-d~( M)~t, • dt(M)~,t. 

(6.5) 

(6.6) 

The classical version of Green's theorem requires the existence of partial derivatives. 

In  our context, if (I) = ((1)st } is a process, the analogue of the existence of a partial derivative 

relative to t is the validity of the following equation: 

fv., ,dv, (6.7) 

where Vst is the vertical line segment connecting the point (s, t) with the s-axis, and where 

~b and ~ are ~-predietable  processes such tha t  

; f ~,~d~(M},~< ~ a.s. and [~vldv< ~ a.s. 
0 

I f  (6.7) holds for a fixed s and each t ~ t  o, we say tha t  r has stochastic partial derivatives 

(or, more simply, stochastic partials) g~ and v 2 with respect to (M, t) along the line Vat0. I f  (6.7) 

holds for each s <~s o and t <~to, we say tha t  d) has stochastic partials with resped to (M, t) 

in the region R~~ The stochastic partials relative to (M, s) are similarly defined. 

I f  /(x; s, t) is twice continuously differentiable in x and continuously differentiahle 

in s and t, then, by  I to ' s  formula, the process (](Ws~; s, t), s, t>~O} has stochastic partials 

with respect to both (W, s) and (W, t) everywhere. 

One special case that  deserves note is when (I) is a martingale. In  that  case, one can 

see tha t  the function ~ in (6.7) vanishes and we say then that  q) has a stochastic partial  ~. 

We will make one further restriction: we suppose for the remainder of the section tha t  

the increasing process ( M )  is deterministic, i.e. independent of o). This is true for M = W, 

for instance, but  is in general extremely restrictive and will be in force for this section 

only. 

T~EOR~M 6.1. (Green's formula for rectangles) Let z0=(s 0, to) and suppose that the 

processes ~ and y~ are ~-predictable and satis/y 
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and 

Suppose in addition that the ~P is an ~z-predictable process, having stochastic partials ~ and yJ 
So 2 with respect to (M, t) along V~o, /or d(  M).~~ - a.e. s ~ So, and such that E ( ~o ~ so ds(M)8~,} < c~ . 

Then i/ A c Rz~ is a rectangle 

where the line inteqral is taken in the clockwise direction. 

Proo[. Let  A =(zl, z~], where z 1 =(sl ,  t l )~,z2=(s2,  4). We can assume t h a t  �9 = 0  on 

the lower edge of A. Indeed,  if we write (Ia:~ =(Pst ,§  ((P:t-(I)st,), (s, t)CA, then  since (I)st, is 

independent  of t, 

which is just  

fo~ (I4tj 81 M. 

Hence (6.8} holds iff it holds for ((I)~t-(I4~). 

We first  suppose r and  v 2 are bounded simple functions.  We can write A as a union of 

subreetangles At on which ~ and  ~ are constant .  Notice t h a t  

since the  line integrals over  the interior  port ions of the boundaries  of the A i cancel out.  

Since the r ight  side of (6.8) is the sum of the integrals over  the A~, it  suffices to  prove  (6.8) 

for  A = A ~, or equivalent ly,  for  the  ease where r and  ~ are cons tant  on A. I f  these cons tan t  

values are r and Yh respectively,  we can write 

dP~t =r +yJl(t-h), (s, t) CA. (6.9) 

Note  t ha t  JM(A) =JM(Rs, t,) --JM(Rs, t,) -JM(Rs~t,) + JM(Rs, t,), so tha t ,  by  (6.3), 

(6.10) 

I f  (Nt )  is a continuous mar t ingale  with a one-dimensional  p a r a m e t e r  set, I t o ' s  formula  
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gives 

d((t - t l )  Nt) = N t dt + (t - tz)  dN *. 

Applying this to N t ~ M s ,  t - M s ,  t below, we get 

fA~oz(t-t~)dM,,=w,ft: ( t - t , ) d t ( M , , t - M s , , )  

=~Ol(r t=- Ms, t.,)-~o I (Ms, t -  Ms, t)dt 
1 

~'t' / / '~ '  ~Pl d~ M~,) (6.11 = foff,(t-t,)e,M- J,, [J,, dr. ) 

In view of (6.9), we need only add (6.10) and (6.11) and rearrange the terms to get (6.8). 

This proves the theorem for simple functions. Before completing the proof, we need a 

lamina. 

L~MMA 6.2. Suppose that r and ~ satis]y the conditions o] the theorem and that X and 

Y are :~-predictable processes such that, [or d (M} . t~  s <s  0, 

x.,= fv. r and rs,= fv  dv, 

/or all t ~ t o. Then u,e have 

E X d M  <~E X~zM <~ E{r  (6.12) 
*a * . 1 0  . t 0  

Proof. We have 

where we have used the fact that  (M} is deterministic. Similarly, by the Schwarz ine- 

quality, 

 .ev) i toL 
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Then (6.12)-(6.14) follow from this and  the  fact  t ha t  

and 

E{(fR~oXdM)2}= fr~~ E(X~)d(M) 

I t  is now easy to finish the proof of Theorem 6.1. I f  ~ and  yJ sat isfy the conditions of 

the theorem,  we can find sequences {r and {y~) of bounded  simple funct ions such t ha t  

f f~  f l ~  {( r t) - r t) )2} d~( M) sto dr( M)sot --9- 0 

and (~~ l "to 
jo/ /to E {y~n(s, t) - ~p(s, t)) ~} d,(M),to dt-> O. 

Then (6.8) holds for 

*J Vs t  t 

But  by  L e m m a  6.2 and (6.6), we can pass to the  limit, as n-~ ~ ,  to see t h a t  (6.8) holds for (I). 

qed 

T H v . o ~ E ~  6.3. Let D c  Rz, be a region whose boundary ~D is piecewise-pure. Suppose 
that M does not charge ~D and that alp, r and ~p satis/y the conditions o[ Theorem 6.1. 

Then 

f~D(I)~M= fD~PdM + j :  ~dJM+ ~ y ~ M d t ,  (6.15) 

where the line integral is taken in the clockwise direction. 

Proo/. Let  us b reak  ~D into a finite n u m b e r  of curves F~, i = 1 . . . . .  p ,  each of which is 

of one of the types  I,  I I ,  I '  or I I ' .  Approx imate  each Fi by  s tepped pa ths  F n~, of the same 

type  as F~ and having  the  same initial and final points  as Fv We can do this in such a way  

tha t  F[ ~ and  F~ intersect  a t  mos t  a t  their  end points. Le t  D n be the  region bounded by  

[ ~F~. We can write D n as a finite union of disjoint  rectangles A~ and app ly  Theorem 6.1 

to each of the A i separately.  Bu t  notice t h a t  

Thus, if we add over  the A~, we get  (6.15) with D replaced b y  D". 
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Now, for each i, let the open region Bt.  enclosed by F~ 0 F~ satisfy lim sup._.~o B~= = ~ .  

By Proposition 4,6, 

limfr162 i n L  2, 

hence 
liLf~OD(~IM=;~D(~II~/If i n L  2. 

But now the surface integrals over D ~ on the right-hand side of (6.I5) clearly converge, so 

we can pass to the limit, as n ~  0% and the proof is complete, qed 

The symmetric equation to (6.15) is 

where here we suppose that  r is :~-predictable, has stochastic partials ~ and ~3 with respect 

to (M, s) and that  the hypotheses analogous to those of Theorem 6.1 are satisfied. Sub- 

tracting (6.16) from (6.15) gives 

If d) is known to be a martingale, then both y and v) must vanish and (6.17) simplifies 

considerably to 

f~D~P~M=fD(~b--~)dJM . (6.18) 

If M = W, then ~ and ~ must be equal by Theorem 9.12. This may be true in general. 

One application of this theorem is to get a "two time-dimensional version" of Ito's 

formula. We consider only the simplest case. Suppose / is four times continuously differenti- 

able on R and / " (W) , / " ' (W)  E F.,~. By Ito's formula along the line t =constant,  

f: ;fo /(Wst) ~/(0) + /'~W,~t)d~ Wu~+ /"(Wut)du. (6.19) 

Applying Green's formula (6.15) to the stochastic integral, the right-hand side of (6.19) 

becomes: 

/(o)+ fR.r(w)dw+ f,,r(w)dJ+ cs '[jo f . . . .  (W~,)du Wuo]dv+ f / 
(6.20) 
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Now, by Ito's formula, we can write 

1 , "Sut"qw ~d Vfo ~v 1 ;  ~s] (Ws,)=jo~,  ,,,uv, uW~v+~ u] (W~v)du§ ["(Wuv)du. (6.21) 

If we solve this for the integral involving f "  and substitute the resulting expression for 

the term in brackets in (6.20), we get 

+ fR,,t'(w)eJ 
1 uv iv 1 -~ fRs, [f"(w)+~ / (W)] dudv-~ f~R. /"(W)(udv-vgu), (6.22) 

which is the formula we advertised. We consider that  it is less useful than Green's formula 

and Ito's formula used separately, but  it has some applications. Here is one. 

THEORE:~ 6.4. There exists a process (~(x, s, t): x eR ,  (s, t)eR~.} which is a.s. jointly 
continuous in x, s and t and such that,/or a.e. w, 

uv!(Wu,(o))dudv= s,t; /(x)dx, (6.23) 

]or each bounded Borel ]unction ] on R and each (s, t) eR~+. 

Proo]. Let g~eC4(R) be of compact support and such that  ~v(.)~�89 
Then g~ satisfies the conditions which allow to apply (6.22). Solve this equation for the 

integral of ~v: 

f uvg~V(W~,)dudv=4g~(O)-4g~(Wst)+ 4 f  g :~(W)dW+4~ g:'x(W)dJ 
jR st J Rst J Rs t 

Rs~ 

I t  is easily seen that  we can actually let ~V(y)=�89 ) without affecting the 

validity of (6.24). Now let 8-~0 and note that  lim~_~o g~(y)=~[(y-x)+]a, lim~_,o g'~z(Y)= 
�89 ~ and lim~_~og:'~(y)=(y-x) +. I t  can be verified without difficulty that  each of 

the integrals on the right-hand side of (6.24) converges and that  the limit and the integral 

can be interchanged. I t  follows, that  the left-hand side converges as well and we have 
def 1 f 

=~[(-x)+]~-~[(N~-x)+]3+2 [(W-x)+]~dW+4 (W -x)+dJ 
st st 

- 2 fo (W-x )+(udv -vdu ) -2  f . . . .  (6.25) 



156 R .  C A I R O L I  A ~ D  J .  B .  W A L S t : [  

:Now r s, t) is clearly continuous in (s, t), by  Theorem 2.2. In  fact  i t  is continous in the 

triple (x, 8, t). This  is clear for all t e rms  except  possibly the two stochastic integrals.  I f  

x, ye [ -x0 ,  ~0] and ~oea~_, then, since I(W-~)+-(W-y)§ I < I~-ul, 

E {sup ( [ (W - x )+]8 .  Wz - [ (W - y ) - ] 2 .  Wz)2} <~ 16 E { ( [ (W - x ) : ]  2. W ~ . -  [ (W - y)+]2 .  Wz~ 
z ( z o  

= 16fR E {([(W - x);] 2 - [(W - y)z]2) 2} dz <~ const.  (x - y)2, 
zo 

where the  cons tant  depends on x 0 and  z 0. By  a theorem of Kolmogorov,  for  each z, x-+ 

[(W - x ) + ]  2. W~ has a continuous version, and  in fact  this version will be equicontinuous 

as z varies in a bounded  set. Thus  since we a l ready know tha t  z~[ (W-x)+]  2. W~ is con- 

t inuous,  it follows t h a t  (x, z ) ~ [ ( W - x ) + ]  2. W~ is continuous.  Exac t ly  the  same reasoning 

holds for ( W - x ) + - J ~ ,  which establishes the  cont inui ty.  

Now let us ver i fy  (6.23). Le t  h~ be in C4(R), of compac t  suppor t  and  such t h a t  h~(y) = 

�89 I:~, . . . .  .+~l(y)dx'. Replace g~ b y  h~ in (6.24), let e-~0 and note  t h a t  h~zIV(y) converges 

to I(0. ~)(y), while h~x, h'~ and h~"~ converge to their  limits denoted by  hx, h'z and h~, respectively.  

Since the limits and the integrals can be interchanged,  (6.24) becomes 

fRuvI~o. ~)(Wu~)dudv=4h~(O)-4h~(W~t)+ 4f~h'x(W)dW 
+ 4f .n:(W)dJ- h : ( W ) ( u d v - v d u ) - 2 f ~ . ,  h:(W)dudv. (6.26) 

y ! 
But  h~(y)= So g~'(Y)dx, where g~(y)= ~ [ ( y -  xV]  a, and it is easily seen t h a t  we can change 

the order  of in tegra t ion of each of the  integrals  on the r ight  of (6.26), e.g. 

h'~(W)dW= g'~,(W)dx' d W =  g'~.(W)dW dx'. 
sl J R ~t \ J 0 / 8t 

Do this to each t e rm  and compare  with (6.25) to see t ha t  

f a uvI<o, x)( W,,:) du dv = f RI(o. x)(Y) r S, t) dy �9 (6.27) 

This verifies (6.23) in case/ (y)  = I(0.x)(Y). I t  follows tha t ,  for a.e. to, (6.23) is t rue  simultane- 

ously for all / of the form I(x, ~,j, where x 1 and  x 2 are rationals.  Since bo th  sides are l inear in 

/, a monotone  class a rgumen t  shows t h a t  (6.23) holds s imultaneously for all bounded  Borel 

measurable  functions.  (ted 
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Now ~ differs from the local time by the factor uv appearing on the left-hand side of 

(6.23). This may  or may  not seem awkward. However, we can define the local t ime at  x 

up till t ime (s, t) by 

L(x, s, t) = | 1 duv q~(x, u, v). 
J R,t  u v  ' 

Remark. The existence of a local t ime can also be proved starting with the local time 

Lt(x , s) at x for the Brownian motion {W~i , sER+} and setting 

L(x, 8, t) = f l  L~(x, s) dr. 

One can show that  L(x, s, t) so defined is jointly continuous in x, s and t. 

w 7. Increasing processes associated with line integrals 

In  this section and for the remainder of the paper, we suppose tha t  :~ =a(W~, ~ 4< z). 

Let X = (Xz, z E R~+ } be a square integrable martingale which vanishes on the axes. I t  

has a continuous version and we know, by the Wong-Zakai theorem (Theorem 3.1), that  

E 2 there exist r Ew and ~ E s such that  

X = r  W +~v. WW. (7.1) 

As we have seen, the increasing process (X> associated with X is given by 

(X> is absolutely continuous, so X does not charge sets of Lebesgue measure zero in R~. 

In  particular, it does not charge rectifiable curves. Hence, the theory of line integrals 

developed in w 4 is valid for X. 

I f  F is a curve of type I or I I  (resp. I '  or I I ' )  the process {Xr(z), :~ , zEF)  (resp. {X2r(z), 

:~, z q F}) defined in w 4 will be a continuous square integrable martingale with a one dimen- 

sional parameter  set. Thus, there is a unique continuous increasing process, which we will 

denote by  ( x r >  (resp. (Xr>) such tha t  

{(xr(z)) z - (Xr>z, :~z, z E F} (resp. {(Xr(z)) ~ - (X~'>z, ~2, z E F}) 

is a martingale. As usual, one defines the eovariation of X r and y r  by  

<X r, yr> = ~ {((Z + r)r> - <X~> - < fr>} (i = 1, 2). 

We will calculate these increasing processes explicitly. We begin with the case where 1 ~ 

is a horizontal or vertical line segment. By (7.1) it is enough to calculate <(r w)r>, 

((V" w w )r >  and ((~. W) r, (y). ww)r>.  
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The case of r W is easily handled: it is a strong martingale and the increasing process 

along a horizontal or vertical line segment is the same as the two-parameter increasing 

process (Theorem 1.9). 

PROPOSITIO~ 7.1. Let r ~EE~, a n d p u t M = r  I /  H is a horizontal 

line, 

<M~>~=<M>~=JR4~dr z6H; (7.3) 

\M , ,M~>~= ~:~d~ ,  zeH.  (7.4) 
JR z 

Similarly, i/ V is a vertical line, 

4,:d~, z6 V, (7.5) 
~ R  

z 

Finally, 

P 
M v ~ \  _ | ~, ~ / ~ -  r  

J R  z 

z e V. (7.6) 

<M~>, = <M~'], ~ 0. (7.7) 

The case of the martingale ~-WW is not so simple. The one-parameter increasing 

process is no longer the same as the two-parameter increasing process. 

We need to say a few words about measurability of functions defined by integrals. 

If/(z, z', m) is jointly measurable in z, z' and o~, and if for each z', [(~, z', �9 ) is ff~-adapted and 

E{SR=[a(~, z')d~} < o% then SRJ(~, z')dWc makes sense for each z'. Using an argument of 

C. Doleans-Dade [3], one can define this integral simultaneously for each z' and jointly 

measurably in z' and ~o. Under our hypotheses we can only define it for a.e. z', for 

E{.~R,/~(~, z')d~} is only finite for a.e. z'. However, this suffices for our purposes and a 

simpler argument of the type given in w 5 provides the joint measurability. 

PROI'OSITIO:S 7.2. Let ~bEs and let V, vE~ww �9 De/ine M = r  N = v .  WW and 

=~. WW. Let H be a horizontal line and let A be the area under H. Then 

L(L <N,">~= : V(~,~)dW: d~, zs (7.8) 

<N~',2l">~=/~o(f ~(C,~)dW~) (f e(':',~)dW:.)d~, zeH. (7.9) 

I /  V is a vertical line and B is the area to the le/t o] V, 

L(L ) <N~>~= : V(r ~)dW~ dr ze V; (7.10) 
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Finally, 

N v ~ v  

<N~>~ = <N~'>~--- 0; 

zqV. (7.11) 

(7.12) 

<MH, NH}~=fRr zqH; (7.13) 

Proo]. (7.9) and  (7.11) are direct  consequences of (7.8) and (7.10), while the pairs of 

equat ions (7.8) and  (7.10), (7.13) and  (7.14) are symmetr ic .  Since (7.12) is clear, it is enough 

to prove  only (7.8) and  (7.13). 

Le t  us first  r emark  t ha t  if z E H and ~ ~ z, then  ~vlA(~, ~) = 0 unless $ is also domina ted  
by  z, since ~(~, ~) = 0  unless $ A A ~. Thus  the stochastic integrals over  A in (7.8) and (7.13) 

are really integrals over  R~. 

Le t  us consider (7.8) in the case where ~v is a simple function. Let  z -< z' EH, z :~ z', and  

par t i t ion  R z, into a finite number  of half-open rectangles A i such t ha t  v2($, ~) is cons tant  on 

A~ • Aj. We can assume tha t  every  A~ lies ei ther ent i rely in R~ or in R~.-R~.  Let  fl~j be the 

value of ~v on A~ x A t and  write 

N~. - lVz = Y fl~j W(A,) W(A~). 
l,): 

A i C R z, - R z 

Then 

E(N2z.-N2z]:~I} =E{(Nz . -  N~)2I:~} = Y E{fl,,fik, W(A~) W(Aj) W(Ak) W(At)I:~}.  
i , t , k , l :  

A i ,  A l  C R z , -  R z 

I f  ?" 4-1 the  condit ional expec ta t ion  vanishes,  so this equals 

y E{fl,,~, W(A~) W(~) W2(~,)l:~ 1} =E{  : W~(~,)~.fl,,&, W(a,) W(~)I:~1} (7.15) 
i, 3, k: : . 

A j  c R z , -  R z A t C 1 ~ , -  2~  

We can ident i fy  the  sum over  i and k, for  

W(Aj) = f ~(~, zj+ )dW~, 
i J R z  

where zj is the lower lef t -hand corner of Aj and ~v(~, z j+  ) = lim~_~z;~V($, ~). Thus the right-  
zj :<~ 

hand  side of (7.15) is equal  to 

A j  c R  z , -  R z 
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NOW ~(~,Zj+)  vanishes if ~eA-R~ , ,  so we can replace R~,by A in Sa~,y)(~, z~+)dW~ 
without changing its value. Since 

E { W~( A,) (f A~(C, z, § )dWc) 21Y~}= E Im(Aj) ( f AY'($, zj + ) dW )2 ''1}, 
"*'here m is Lebesgue measure, (7.16) equals 

}. (7.17) 

Set 

Then A = {A~) is :~-adapated and continuous, hence :~-predictable. We have just seen tha t  

{N~-  A~, z EH} is a martingale relative to {:~}, hence, by  uniqueness, A = (N~) .  

This proves (7.8) for simple functions. In  the general case, if y)El~Zww, there exists a 

sequence ( ~ }  = l:~w of simple functions such that  for all z, 

f fa=• E{(%,(~, ~)--~P(~, ~))2)d~d~-+O. 

Since ( ~ .  WW~)Z~(~ �9 WW~) 2 in L 1, the theorem will be proved if we can show tha t  

i n L  1. 

Applying the Schwarz inequality: 

which goes to zero as n ~  0% since the second term is bounded, while the first term goes to 

z e r o .  

The proof of (7.13) is similar, so we will give fewer details. Keeping the same nota- 

tion, 

E{M,, N z, - M~Z~[ ~I) = E{(M,. - Mz)(N z. - N,)J ~ ) .  
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If  r and ~ are bounded and simple and if ~, is the value of r on A,, the right-hand side 

becomes equal 

E{ ~ ~,fl~ W(A,) W(Aj) W(A~)IT~}. 
i ,L  k: 

A~,AkcRz,-- I~ z 

The conditional expectation vanishes unless i = k, so the last term equals 

i: J 
A ~CRz,-  R z 

Thus, if 

we have seen that  

= E{fn=,_n r (fA~f(~,})dW~.)d}]:~z }" 

E (M~,Nz,- M~NzI~ 1} = E (B~,- B,I ~ } .  

Since B ={Bz} is adapted, of bounded variation and continuous, this identifies B with 

(M~,  Nln}. The passage to general ~ and ~fl being similar to the previous calculation, we 

leave it to the reader, qed 

The next  two theorems extend Propositions 7.1 and 7.2 to more general curves. 

Let  F be a curve' of type I or I I  (resp. I or II ').  We denote by D{ (resp. D~,) the region 

bounded by F, the s-axis (resp. t-axis) and the lines parallel to the t-axis (resp. s-axis) 

which pass through the initial and final points of F. If  F has the parametric representation 

{z: z=7((r), 0~<g~l} and if z=y(v) EF, Fz will denote the curve {z: z=y((r), 0 <a-<<~}. 

TJzEORE~ 7.3. Let r163  Then i /M=r W, 

</r>~ = ( 2 r zeF (o/type I or II)," (7.18) 
JD 

<M2)~- r z~.I' (o] type I or II'). (7.19) 
,,I D~z 

Proo]. If I '  is a stepped path, (Mr}  will be constant on the vertical segments, while 

on the horizontal segments we can use (7.3) to compute d(Mr}. The result is (7.18). In  

general, if P is of type I (resp. II), let z -< z' E F (resp. z A z' E F) and let {F~} be a sequence of 

1 1 -  752903 A c t a  m a t h e m a t i c a  134. I m p r i m 6  l e4  Aof i t  1975 
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stepped paths decreasing to r and such that  F O F~ includes z and z' as well as the initial 

and final points z 0 and zr, respectively, of F. By Corollary 4.4, Mr,(zr) converges in L ~ to 

Mr(z/). Now, for ~ E F, Mr(~)= E{Mr(z~)I :~} and the equation also holds with F replaced 

by Fn. Since z and z' are in r fl rn, it  follows that  

E {Mr,(z') ~ - Mr-(z)~ I:~z} -* E {Mr(z')* - Mr(z)2 I:~.}, 

the convergence being in L 1. On the other hand, D(~,)~ decreases to D~,, hence ~v(~,) ~b~d~ 

decreases to ~D~, ff~ d~. I t  follows that,  if we let A~ = ~D~ ~ d~, 

E {Mr(z') ~ - Mir(z)~ 17'~} = E {A~, - A~I 7'~}. 

Since A--{Az} is adapted, continuous and increasing, we can conclude, by the uniqueness 

of the increasing process, that  A =(Mr). This proves (7.18) and, by symmetry, (7.19). qed 

We need some notation. Let I ~ be a curve and let z = (s, t). We denote by A~(F) the 

region {(u, v): v~<inf (~: (s,~)Er}}, and by B~(F) the region {(u, v):u<~inf (a:(a, t)EF}}, 

where inf ~D =0. 

T a E O R ~  7.4. Let ~Es ~pEs and set M=r W and N = w  WW. Then, i / r i s e r  

type I or II, 

; ( N r ) z =  ~,(r162 d$, zEr; (7.20) 
, ~(F) 

I / F  is o/type I or II', 

(N~)~= ,(r)~0(~, ~)dW~ d~, zEF; (7.22) 

The proof of Theorem 7.4 is entirely similar to that  of Theorem 7.3, so we leave it. 

Notice that  in Theorems 7.3 and 7.4, if F is increasing, the increasing processes are adapted 

and are thus the processes associated with the martingales considered relative to the fields 

7~ as well as Tz. 

The formulas in Theorems 7.3 and 7.4 can be given more simply if we write them in 

terms of differentials: if M =~b. W and N =~ .  WW, we have 
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t dv 2 ds, 

d Rst 

=d<M2, ~>= dur  ~fl(u,t;~)dW~ dt. 

By Proposition 4.5, if X is a square integrable martingale and l" an increasing path, 

<xr> = < i t>  + <xr>. 

This gives us a way to compute the increasing process associated to X along any increasing 

path. In  terms of differentials, we can write 

a<x> = al<x> + as<x>. 

One particular case is X = W: 

~1( W> = tds, ~< W> = sdt, 

and 
~ W = t d s + s d t .  

w 8. Strong martingales and path-independent variation 

We begin this section with a characterization of the strong martingales. Again, the 

fields ~ will be those generated by W. 

THE 0 R EM 8.1. X E ~ 2  is a strong martingale i//  there exists ~b E E2w such that X = 4" W. 

Proo/. Suppose that  X =4" W, where r E s Then X is a strong martingale, by Theorem 

2.2 (a). Conversely, suppose that  X E )/l z is a strong martingale. By the Wong-Zakai 

theorem (Theorem 3.1), there exist r E s  and y~ E s such that  

X = r  
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Since r W is a strong martingale, it follows that  v 2. W W  is also a strong martingale. We 

will prove that  v2. WW==.O. :For that  purpose, consider a rectangle A=(z,z'],z-<-<z', and 

divide the rectangle (0, z'] into four disjoint subreetangles (0, z], A, B and C (B to the left 

of A). We have 

~ow, the conditional expectation of the last three terms on the right-hand side, given 

~ V ~ ,  is zero, while that  of the first term equals 

(This can be easily seen by considering first simple functions and then passing to the limit.) 

Hence 

E(v2 .WW(A)  5 '  = [ z V~  2) E(v?(~, ~)l~ 1 V ~ } d W c d W ~ ,  (8.1) 
• 

and since ~p. WW is a strong martingale, both sides of (8.1) vanish. Thus 

(E v 
C 

which implies tha t  E(~p(~, ~)] :~i V :T~) =0,  and hence that  E(v2(~, ~)] :~}=0,  for a.e. pair 

($, ~) E B • C. This being true for each z, z', for a.e. pair ($, ~), we have 

E{~(~, ~) I ~.~} =0, (8.2) 

for a.e. z E Re v e, by Fubini's theorem. Take such a pair (~, ~) and choose a sequence z. E R: v 

such that  (8.2) holds and z , / ~  V~. Since ~r162 : ~ ,  it follows that  

v(r  = : l i m  = 0  

qed 

Let  X E ~ .  We say that  the variation of X is path-independent if for any two increasing 

paths F and A with initial point 0 and the same final point z, 

(xr)~=(XA)z. 

The idea of path-independent variation was introduced by Wong and Zakai [18] and 

turns out to be connected with the concept of strong martingale. Indeed, a strong martingale 

has path-independent variation, for, if X E ~/2s and if H~ and Vz denote respectively the 

horizontal and vertical line segments connecting the point z with the axes, then (XH~z = 
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(XV~}z=(X}z, by Theorem 1.9, and consequently, if P is an increasing path, z, z 'EF, 

z -< z', and z" denotes the intersection of H z. with the vertical line through z, we have 

E { (x r )  '~ - (Xzr)~ I:~z} 

= E {<x>:. - <X>:l :~z}. 

We have not succeeded in proving that,  in general, the converse is also true, i.e. that  

each martingale with path-independent variation is a strong martingale. However, 

several indications let us believe that  path-independence is a second characterization of the 

strong martingales. 

We will prove here the converse for a particular class of martingales. 

THEOREM 8.2. Suppose that X E ~ has the representation 

x = ~ . w + z . J ,  

where r E ~ and Z EI~. I / the variation o/ X is path-independent, then Z ' J  =--0, 

Proo/. By hypothesis, 

( x ' + , %  = < x  ~',,>~. 

If we vary  t, keeping s fixed: t+(XV*,}st increases. Thus t'->(xH~)st also increases. (This 

is the only place we use the fact that  the variation is path-independent.)Let us calculate 

(xH"}. By Propositions 7.1 and 7.2, setting 

~p(s, ~; a , t )={ ~(a, 7;) if s < a and t < 

in (7.8) and (7.13), we have 

<X"%= f~. r ~)dad~ + 2 fn r ~) ( ;  Z(a, v)do W.o) dadv 

+ X(~, v)d~ Wov d~d~. (8.3) 

If {Mt} is a continuous square integrable one-parameter martingale such that  _11" o =0, then, 

by Ito's formula, 

M~ = 2 3 L  dM~ + <M)t. 
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If  we apply this (for a.e. a) to the mart ingale (relative to  {~t}) 

M~ = 7.(a, v)d~ W~v, t >/0, 

we get 

r,vt l r,w ) f~vt 
X(a,l )d~.W~. dM~, +a Z~(a,v)dv. 

Put t ing  the above in (8.3) yields 

<XH").= f,~. @2(a, v)dadv + f,~. Z~(a, T)~T dadT 

+2f~ r Z(a,v)dvW~Od~dv+2fR., [f ( f  Z(~,v')d~'Wov')dM~]d~dv" 
The first two terms on the r ight -hand side increase in t, as does (X~,,)~t. I t  follows tha t  the 

sum St of the last two terms is of bounded variat ion in t. On the other  hand,  the first of the 

last two terms is clearly a continuous martingale,  while the second, being of the form 

SR,,(~M~dM~)d~dT, is a continuous local martingale.  We conclude tha t  {St} is a conti- 

nuous  local martingale of bounded variation.  Hence St---0, and so { S ) t - - 0 ,  where (S)t 
is the associated increasing process. Now, (S) t  is easily calculated: 

I t  follows that ,  for a.e. (u, v)E Rst, 

But  (s, t) is arbi t rary,  hence, for a.e. (s, v), 

f; ) Z(s,v) is, T)§ )C(s,v')dvW,,, d I = 0 .  (8.4) 

We can eliminate the exceptional set of measure zero for which (8.4) fails by  modifying Z 

slightly: s imply set i~(s, v; m ) = 0 ,  whenever {8.3) does not  hold, and leave it unchanged 

otherwise. This changes Z only on a (s, v; o))-set of measure zero, so tha t  Z - J  remains un- 

changed, and likewise, the stochastic integral in (8.4) is unchanged except for a set of 

s of measure zero. Wi th  this modification, we have tha t  (8.4) holds, for a.e. s, identically 

in v. 
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t Let  t > 0 .  F ix  an s for which So]r v)]dv< ~o a.s., f~E{z~(s, v)}dv< ~ and (8.4) holds 

for all v < t. Notice t ha t  
def ~ v /  ~V 

is a cont inuous square integrable  mar t inga le  (relative to  {:~0~v}). We know tha t ,  with pro- 

babi l i ty  one, v->M r is cons tant  on an  in terva l  iff v-->(M}, is cons tant  on the  same in terval  

( (M}  is the  associated increasing process). Now, it  is easy  to see t h a t  

fo (M}~ = s ~r ~) dr, v < t. 

I t  follows that ,  with probabi l i ty  one, v-->Mv is cons tant  on an in terval  iff Z(S, v ) = 0  a.e.  

on the  same interval;  hence, with probabi l i ty  one, the to ta l  var ia t ions  of v-~Mv over  [0, t] 

and  over  the  closure of {v: Z(S, v) ~e 0} coincide. Bu t  f rom (8.4), for each v in the closure of 

this set, we have  

M,, = - ~'" r r )dr .  
do 

I t  follows that ,  wi th  probabi l i ty  one, v-~Mv is of bounded  var ia t ion  over  [0, t], hence 

cons tant  on this interval ,  which implies t h a t  g(s, v ) = 0  for  a.e. v E [0, t]. We conclude t h a t  

Z(S, t) =0 for  a.e. (s, t) and  hence t ha t  Z . J = 0 .  

w 9. Holomorphie processes 

We say t h a t  a process (I) = {(I)z, z E R2+ } is holomorphic in R~+, or, more  simply,  holomorphic 

if there exists an adapa t ed  measurable  process ~ = {~z, z ER2.} such t h a t  E{9~z a} is bounded  

for z in compac t  sets and  such t h a t  for all zERO+ and any  increasing pa th  r c R e +  with 

initial poin t  0 and final point  z, 

o~ = Oo + frr (9.1) 

where 0 o is a constant .  We call r a derivative of O. I n  te rms  of stochastic differentials, (9.1) 

is 

~0 = t a w .  

I n  spite of the  fact  t ha t  we are working  with  pure ly  real-valued processes, we th ink  

there is some iustif ication for the  adject ive  holomorphie.  Several  of the  classical theorems 

abou t  holomorphic  funct ions have  their  analogues here, no tab ly  the theorems t h a t  a 
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holomorphic process has a holomorphic derivative, tha t  the integral of a holomorphie 

process is holomorphic, and the theorem of the existence of power series expansions. 

Let  us begin with some remarks. I f  r is holomorphic, we can ~Tite, for all z, 

~p~=~po + fH r = ~Po + f v qb~W. (9.2) 

We will say tha t  a process q)= {qP~, z fi R2+ } is weakly holomorphic if there exists an adapte:l 

measurable process ~b = {~b~, z E R2+ } such that,  for each z, ~nE{~b2}ds and ~vE{~2}dt are 

finite and (9.2) holds for a constant q)0. In  this case, we will call ~ a weak derivative of r 

We have just seen that  a holomorphie process is weakly holomorphie. Conversely, if 

(9.2) holds for all z, it is easily seen tha t  (9.1) holds for stepped paths F. I f  ~ were continuous 

in the mean, we could approximate a given piecewise-pure curve by  stepped pa th s  and 

use Corollary 4.4 to pass to the limit. In  this case, weakly holomorphic would imply the 

validity of (9.1) for any pieeewise-pure curve F c  R~+ with initial point 0 and final point z, 

hence, in particular, it would imply holomorphic. Since we are making no such assumption 

on 4, the class of weakly holomorphic processes i s - -apparen t ly~ la rge r  than the class of 

holomorphic processes. We will see later tha t  both notions are the same and imply the 

existence of a continuous derivative ~b, so tha t  to say r is holomorphie will be equivalent 

to saying that  there exists r satisfying (9.1) for an increasing path  and such t h a t  

frC e w = 0 ,  

for any closed piecewise-pure curve F c R~. 

PROPOSITION 9.1. Suppose ~P is weakly holomorphic. Then ~P is a square integrable 
martingale. 

Proo/. Note first that  

E {q)~t} = ~P~ + E qP~M ___ @2_+ s E {~s~,} dv, 
st 

which is finite. Further,  let z = (s, t) and z' = (s', t'). If  z < z', 

and the conditional expectations, given :~, of both stochastic line integrals vanish, so 

q) is a martingale, qed 
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Thanks to Corollary 3.4, the preceeding proposition implies tha t  a weakly holomorphie 

process always has a continuous version. We will thus assume tha t  all weakly holomorphic 

processes are continuous. 

The class of holomorphie processes is clearly a vector space over the rea's. I t  contains 

constants and it contains W itself, which has t he  derivative 1. There are m a n y  more holo- 

morphie processes. Here, for instance, is a description of a large class of them. 

Consider a real-valued function fix; 8, t) on R • R+ • R+ which has continuous partial  

derivatives of the second order in x and of the first order in 8 and t and which vanishes if 

x =0. Let  us look a t  the process 

X~t=/(W~t; s, t), (s, t)ER~+. 

Write I to ' s  formula along the lines t =const.  and s = const.: 

x~,= ['ef (W~,;u,t)duW=,+ ~ t  u,;u,t)+~(W,~;u,O du; (9.3a) 
3o ex 

In order tha t  X be a martingale, both terms in square brackets must  vanish: 

2 ~ x ~ •  and ~ x x , +  =0 .  (9.4) 

Consequently, s(~]/~8)= t(~]/~t), which implies tha t  ] depends on s and t only through 

their product. I f  9(x, 8t)dL--f/(x; s, t), we find from (9.4} tha t  ff satisfies 

1 ~ g  + eg  = 0 (9.5)  
2 ~ x  ~ ~t ' 

which is the backward heat equation. Conversely, if g(x, t) has continuous partial derivatives 

of the second order in x and of the first order in t and satisfies the backward heat  equation, 

then (9.3a) and (9.3b) imply 

g(w,,, 80 =g(0, 0)+ "-|'~ (w~,, ~)d~ W= 
Jo tTx 

~ g  
= g(O, O) + [ - -  ( ~  ~o, sv) d= W~~ 

Jo ~z 

Thus if E{(~g/~x(W~t, st)) ~} is bounded for (s, t) in bounded sets, (g(W~t, st)} is holo- 

morphic with derivative {~g/~x(W~t, st)}. 
There is a special class of solutions of the backward heat equation which will be 

particularly interesting. These are the Hermite polynomials. Denote by Ha(x, t) the n TM 

12 - 752903 Acta mathematica 134. I m p r i m ~  le 4 Aof i t  1975 
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Hermite  polynomial. Hn is a polynomial in both x and t. I t  can be defined by the formula 

H . ( x ,  t )  = - t n ~ n  
~.~  )-- e *'/~t - -  (9.6) e -  X,/2t ~xn 

One can see tha t  the first few Hn are given by  Ho(x, t) :- 1, H,(x, t) =x, H~(x, t) = �89 ~ - �89 

I f  we fix t>0 ,  then {Hn(- , t)}~_o is a complete orthogonal set relative to the weight 

function (2:~)-�89 -xv2t, so tha t  for s, t > 0  we have 

l 0 if m:~n,  

E(Hm(W~'st)Hn(W~t'st)}= (sOn if m = n .  (9.7) 

[ n! 

We will not  need many  of the detailed properties of the Hermite polynomials, but  the 

following well-known facts will be useful. The generating function expansion is given 

by  

e ~u-�89 ~. Hn(x,t)y ~, x, yER,  tER+. (9.8) 
n ~ O  

Differentiating with respect to x and t and equating the coefficients leads to the equations: 

H,~= H,~-I; ~t n= ~ ~-~, (9.9) 

from which it follows tha t  H~ satisfies the backward heat equation. 

By our remarks above, we have 

PROPOSITION 9.2. {H~( Ws~, st), (s, t)ER2+} is a holomorphic l~roc~s. Its derivative is 

{H~_~(W~, st), (s, t)eR~}. 

I t  follows tha t  finite sums of Hermite  polynomials arc holomorphie. More generally: 

a PROPOSITION 9.3. Suppose ( n}~-o is a sequence o/ real numbers such that 

~ a~(tn/n!) < ~ /or all t >0.  Then the process (I) de/ined by 

oo 

~P~t = ~ a~Hn(W~t, st) (9.10) 
n=O 

is holomorphic with derivative ~ given by 

~o 

~ t :  ~ a~Hn_l(W~,st), (9.11) 
n = l  

the convergence taking place in L 2. 

Proo/. By (9.7), 

E anHn(Wst ,st) = a~ n! 
0 



This is bounded by  

S T O C H A S T I C  INTEGI~A.LS I~T T H E  I~LA~TE 171 

~ (~t) = 
0 aT~-~.~ < oo. 

I t  follows t h a t  the  series in (9,10) converges in L 2 and  the  same is t rue  for  the  series in 

(9.11). Consider now 

m 

l (  m)__ ~ an Hn- i( Wst, St), W s t  - "  
1 

and let 

f V  rn O(~T)=a0 + r + ~ a,H,(Wst, st). 
st 1 

Then  l i m m . ~ O ~  ~)= O~t in L 2. To finish the  proof,  we need only  check t h a t  

limf.,C'm'eW=fv lira r 
m--~oo t 8t tn--~o 

:By (9.7), 

so t h a t  

Thus,  

E { ( r  r ~} = ~ ,  a~ ( ~ -  ~i~' 

t | (svX~-~ ~ (st)~ 

1,, 

linl f y r = ~ r qed 
m..->~D st rst 

PnOPOSITXO~ 9.4. Suppose that/(x, t) has continuous partial derivatives o/ the second 

order in x and o] the/irst order in t and that {/( Wst, st)} is a holomorphic process. Then,/or 

each (s, t )e  R2+, 

/(Wst, st)= ~ anHn(Wst , st), (9.12) 
n = O  

where the convergence takes place in L ~ and where,/or s, t > O, 

n! 
a n = ~ E {/(Wet, st) H,~( Wst , St)}. 

( s t )  
(9.13) 
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This is a special case of Theorem 9.15 below, so we won' t  give a detailed proof now, 

but  we just indicate how to get the coefficients. I f  we fix s, t > 0, we can use the fact tha t  

the H~ form a complete orthogonal set to see tha t  

where 

OlD 

/(x, st)= ~ anHn(x, et), 
0 

an (st) ~ W~st /(x, st) exp - 2st dx. 

(This is just another way of writing (9.13).) We leave it to the reader to show tha t  the 

definition is independent of s and t. 

This gives some picture of holomorphie processes of the form (I)~t =/(Wst; s, t), but  it is 

very restrictive to suppose tha t  ~ is of this form. A priori we know only tha t  (I)st is :~st" 

measurable, but  not tha t  it is a function of Wst itself. We want  to investigate the general 

c a s e .  

First, if �9 is weakly holomorphic with a weak derivative ~b, we can apply Green's 

formula to the rectangle Rz. Since SeazO~IW=[~O~W, we have 

Similarly, 

f v o o W = f R z O d W + f R C d J .  (9.15) 

THEOREM 9.5. Let �9 be weakly holomorphic and de/ine ~i p by taking a continuous version 

o/ I'F z =S n O~W. Then ~ is holomorphie. 

Proo/. By (9.14) and (9.15) 

~ F ~ = f . ~ w = f v o ~ W .  

Hence ~F is weakly holomorphic. Since �9 is continuous in L 2, it follows tha t  iF is holo- 

morphic, qed 

To go further we must  find out what it means for a process to have stochastic partial  

derivatives. Classically, the existence of partials is a smoothness condition, but  here the 

derivatives are with respect to the "measure"  W (see (6.7)) which whatever else it may  

he- - i s  not a product measure, so the interpretation is more complicated. 
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L E M ~ A  9.6. Let z0:(s0,  t0)ER2+ and let ~b=(r zEHz, } be adapted, measurable and 
satis/ying 

f~ OE(r ~ .  

Then/or any z-< z0, 

E{fH:or W [ ~ I =  fH ~fOI W, (9.16) 

where yJ(u, v) is any measurable version o/the conditional expectation E{r [ ~v} ,  (u, v) ~ z o. 

Proo/. Suppose first tha t  z = (so, t) for some t < t o and tha t  ~ of the form 

r176 = ~I( ..... j(u), 

where s 1 < s 2 ~< s o and ~ is bounded and :~, t~ Then if u > s 1, @4) tells us t ha t  

Call this r andom variable/~. I t  follows that ,  for each u ~> O, 

E (Cut, I~ut} = flI(~l, s,~(u). (9.17) 

:Now, the left-hand side of (9.16) equals 

:But W is a strong martingale;  hence 

- ~.)1:~,~ v : ~ , ~ } = 0 ,  

so the above equals 

which, upon  comparison with (9.17), is seen to be equal 

E ~r I :t~} ~ W~. 

Thus (9.16) holds for simple r in the ease z = (so, t). We then approximate  ~ by  simple 

functions ~ in such a way  tha t  

f~ 'E{(r to) r to) )2) du ~ O. 

Let  yJ~(u, t) = E { ~ ( u ,  to) l:~ut } and ~f(u, t) = E {~(u, to)[~ut }. Since E {(~f~ - ~p)~} ~ E { ( ~  -- ~)2}, 

f~ 'E  - ~)~} du 0. { (~ 
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Thus  

o. 01 W ~ fs~ ~ 1  W in L 2. 

Since (9.16) holds for  each ~b. and  since 

it  follows t h a t  

f z  ~nOl W ~  fH~ g~l IV in L 2, 
o o 

This proves  (9.16) for  the  case z = (so, t). But  now, if z = (s, t), s< So, by condit ioning bo th  

sides of (9.16) on ~st~ we see t h a t  

qed 

To say t h a t  a mar t ingale  M has a stochastic par t ia l  with respect  to (W, s) along a given 

line Hzo is a s t ronger  condit ion t han  it  migh t  appear ,  for it implies t h a t  M has a stochastic 

par t ia l  with respect  to (W, s) in all of R~0. Indeed ,  

P R OPO S1 TIO ~ 9.7. Let M E ~ and /e t  z 0 = (So, to)E R~+. Suppose that M has a stochastic 

partial derivative ~ with respect to (W, s) along H~o. Then M has a stochastic partial deriva- 

tive ~p with respect to (W, 8) in R~,, where ~ is the adapted 2-martingale given by 

%t  = E{+:to [ :T:t}. 

Proo/. I f  z < z0, L e m m a  9.6, imphes  t ha t  

Recall  t h a t  if M E  ~ 2 ,  by  the  Wong-Zaka i  theorem (Theorem 3.1) there exist  ~E l~2w 

and y~ E IZ~ w such t h a t  

M ~ .  W +~. WW. (9.18) 

vie say a real-valued funct ion /(t) is essentially constant if there is a real n u m b e r  ar 

such t h a t / ( t )  = a  for a.e. (Lebesgue) t. 
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THEORFM 9.8. Let M E ~ 2. I f  ~ and ~ are the /unctions in the representatio'a (9.18), 

then a necessary and su//icient condition that M have a stochastic partial derivative with 

respect to (W, s) along the line segment Hs~ is that/or (s, v) and (8, ~') outside o /a  negligible 

set F and such that s <~ s o and v< z" <~ t o, 

~s, - Cs," = ( [~(z; s, ~') - ~(z; s, 1:)] dWz. (9.19) 
o0to 

In  this case, /or a.e. z=(u ,  v)ERsot o and a.e. s <<.So, y~(z; s, ~:) is a.s. an essentially constant 

/unction o /v , /or  v <~ v, and the partial derivative ~ satis/ies, /or a.e. s <~ So, 

~t~ = r + fR ~(z; s, v) d W~, 
~to 

where R~to is the area under the horizontal line t = t o. 

/or a.e. ~ < to, (9.20) 

Proo/. Suppose that  M has a stochastic partial g with respect to (W, s) along the line 

Hs, to. Then noting that  M vanishes on the axes, we have 

Thus, if we write H =  Hsot~ 

so that  

Thus 

f 
M~to = | #21W, s < s o . 

J Hsto 

fo (M~', W~},t, = to a~,.du, 

1 
~- (M~,  " < so. = -  W1 )st., for a.e. s O~st~ to G8 

s )2 
( M ~ o  = f ~--- (M1 H, W~)ut, du. (9.21) 

to .)o \ ~u 

We have calculated both <M H) and <M~, W~> in terms of ~ and ~ in w 7. From (7.4) 

and (7.13) we see that  

r,f . f " <M~, W~)s t~  (~u,+ o~~ dudv. 

Thus, for a.e. s ~< So, we have that  

~s <M~, W~)st.= f [  (r fR~t~ (9.22) 
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Similarly, f rom (7.3), (7.8) and (7.13), 

(M~8,, ~u,+ ~, ~(z;u,v)dWz dudv. 

Pu t t i ng  (9.22) and  (9.23) into (9.21), we get  

(9.23) 

(9.24) 

This  holds with probabi l i ty  one for  all s ~ s o, so we mus t  have  for a.e. s ~< s o t h a t  

;( 1' (f0( to ~sv+ O~o~P(z;s,v)dWz dr= r oo,.~(z;s,v)dWz dv . (9.25) 

B u t  the  integral  equat ion 

t ;  /2(v)dv= ( ;  /(v)dv) 2 

has  the  unique solution / =  constant ,  since by  the  Schwarz inequal i ty  

wi th  equal i ty  iff 1 and  / are l inearly dependent ,  i.e. iff / is equal  a.e. to a constant .  

Applying  this to  (9.25) we get  t h a t  for  a.e. s < s  0, there  exists, a r .v.  e(s) such t h a t  

~8.+ f ~(z;s,v)dW~=q(s), fo ra .e ,  v<~t o. (9.26) 
J Ro~t~ 

get (9.19), we have  only to  set  v =~  and then  v =T'  and  subtract .  (Notice t h a t  we can To 

choose ~(s) measurably:  indeed,  we could take  

+ s, v)dWz) d,.) 

~qow let us show t h a t  ~p(z; s, T) mus t  be an essentially cons tant  funct ion of v. F ix  an 

s < s  o for which (9.19) holds outside of a negligible set  of (v, T'). Notice t h a t  the  lef t -hand 

side of (9.19) is :~ . -measu rab le  while the  r igh t -hand  side can be wr i t ten  

The  first  t e rm  is :~ , -measu rab le  while the  second is or thogonal  to  :T~,,,. The  only w a y  the 
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sum can be :~ , -measurab le  is t h a t  the  second t e rm  vanishes.  This can happen  only if 

~(z; s, T')=yJ(z; s, ~), for  a.e. zERoot~ 

Apply  this to all pairs v < ~ '  < t  o and  use Fubini .  We see there mus t  exist  a funct ion Z(z, s) 

such tha t ,  for a.e. z=(u,  v), ~(z; s,T)=Z(Z, s) for a.e. ~ < v ,  which proves  the  penul t imate  

s t a t ement  of the theorem. 

Finally,  let us show tha t  (9.19) is sufficient. Wri te  

J Ra~ ~(~'  ~) dW~dW~, 

and app ly  the "stochast ic  Fubin i ' s  t heo rem"  (Theorem 2.6) to the second integral.  I f  

= (u, v), we have  

I f  (9.19) holds, so does (9.26), hence 

M~Lo = fR,,, Q(u)d Wuv. 

Since the in tegrand is independent  of v, this  last  is equal to 

~,~ ~i W, 

i.e. {Msto) has a stochastic par t ia l  o with respect  to (W, s) and  (9.20) is satisfied, qed 

TtIEOREM 9.9. Let ~P be a weakly holomorphic process. Then ~P is holomorphic a~wl 

admits a derivative (I)' (necessarily unique) which is itsel] a holomorphic process. 

Proo/. Let  (I) be weakly  holomorphic.  Then there exist  q~ E l:2w and ~0 E I:2w w such 

t h a t  

(P=r + r W +~p. WW. 

Being weakly  holomorphic,  (I) has stochastic par t ia ls  with respect  to bo th  (W, 8) and  (W, t). 

Applying Theorem 9.8 we see t h a t  there is a negligible set G~R~+ such t h a t  if (s, t)(~G, 

z->y)(a, t; s, T) is a.s. essentially cons tant  in [0, t] for a.e. ~, 

a-~yJ(a, t; s, ~) is a.s. essentially cons tant  in [0, s] for  a .e .v .  
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B y  replacing ~fl if necessary by  

~(e,  t; s, ~) = ~ ~0(~', t; s, "d) da'dl: '  if (s, t) r G and a ~< s, 1: ~< t, 

0 otherwise,  

we can suppose t h a t  for each (s, t), ~(a, t; s, ~) is a.s. cons tant  in a~<s and  ~< t .  (Note t h a t  

~3(z, z')=~0(z, z') for a.e. pai r  (z, z'), so t ha t  ~3. WW =v  2. WW.) Let  Z be defined by  Z(s, t ) =  

~(0, t; s, 0), and  note  t ha t  

so t h a t  

z z 

Let  us app ly  Theorem 9.8 again. I f  (s, t) and  (s, t') are not  in some negligible set and  if 

t < t', then  

~,:, - ~,t = f [~(z; s, 0 - ~ ( z ;  s, t ')] d W ,  
d R  cot' 

But  ~p(u, v; s, t ) = 0  if v < t or s < u, and equals Z(s, v) if v >~ t and s ~> u, so t h a t  this integral  

becomes 

/a,._n W(u,v;s,t)dWu,=/v,,.Z~2W- fv, z~2W" 

B y  the symmet r i c  a rgument ,  we conclude t h a t  if (s, t), (s, t') and (s', t) are not  in some 

negligible set  F and  s<~s', t <t', then  

,,,= fH, w_ fn. .. (9.27) 

Let  B be the set of (s, t) such t h a t  (s, t) ~F,  and for a.e. s'  and t', (s', t) r F and  (s, t') ~F.  

Since F is negligible, R~+- B is negligible. Moreover,  it follows f rom (9.27) t ha t  {$z, :~., 

z E B} is a square integrable  mart ingale .  Thus,  let CP' be a cont inuous version of the  square 

integrable  mar t ingale  defined, for each zeRO,  by  

' E q)z= {r z'eB, z<z'. 

Then  d): =6z  for a.e. z, so t h a t  (I)'. W = 4 "  W. F u r t h e r m o r e  (I)' has stochast ic  par t ia l  Z with 
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Similarly, 

respect to both (W, s) and (W, t), for a.e. line H~ and V~. By Proposition 9.7, we can con- 

clude three things: first that  r  has stochastic partials Z 1 and Z ~, in R~+, with respect to 

(W, s) and (W, t), respectively; secondly tha t  Z 1 (resp. Z 2) is an adapted square integrable 

2-martingale (resp. 1-martingale); and finally that,  if z is not in some negligible set, 

1 2 

Now let D be the set associated to this negligible set in the manner  in which B was associ- 

ated to 2' above. Then it is easily seen that  {Z~, :~,, z fi D} is a square integrable martingale. 

Thus, let ~ be a continuous version of the square integrable martingale defined, for each 

z E R~+, by 

.~ 1 A - -  2 Then %~ =Z:  (resp. Z : -  Z~-), except perhaps for a negligible set of z of the form N • R+ 

(resp. It+ • N). Hence ~ is a stochastic partial of dp' with respect to both (W, s) and ( W, t) 

in R 2. But  now we are almost done. Indeed, we have shown tha t  qb' is weakly holomorphic 

with weak derivative ~ and thus holomorphic, since ~ is continuous. Furthermore,  Z:=Zz 
for a.e. z, so tha t  ~.J=z.J and, by  the Green's formula, 

v~ r W = dp~ - dp 0. 

We conclude tha t  dp' is a weak derivative of @, and since qP' is continuous, tha t  dp is holo- 

morphic with derivative dp'. qed 

Remarks. 1 ~ In  the sequel, by derivative of a holomorphie process we will always mean 

the holomorphic derivative. 
2 ~ I f  @ is holomorphic, it has derivatives of all orders. Denoting by  dp' and dp" respec- 

t ively the first and second derivatives of @, we have, by Green's formula, 

r fR r fn r (9.28) 

Thc:e is a slight variation of Theorem 9.9 which is of interest, not so much for itself 

as for its curious similarity to the elementary but basic theorem in the theory of functions 

of several complex variables which states that  a function of n >~ 2 complex variables which 

is holomorphie in some neighborhood of the boundary of a bounded domain D c C n can 

be extended to be holomorphic in all of D. Our result could be phrased: a process which is 
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holomorphic on the boundary of a rectangle Rz can be extended to be holomorphic in all of 

Rz. 

T~EOR~M 9.10. Let z0ER ~ and ~={~b~, zEHz. U Vz,} be an adapted measurable process 

such that ~H~oE{r and ~v, oE{r are/inite. Suppose that 

and let �9 be a continuous version o/{O~, z E H,o [.J V~~ defined by 

O z = ~ r  i] zEH,~ and o~= fv  q~  W 
$ 

if zE V~o. 

Then there exists a process ~P which is holomorphic in the closure o/R~, and which equals 

on Hz~ U Vz,. 

Proo/. Define O by taking a continuous version of (D~ = E{Oz, I :~}, z ERz,. Then 

= (I) on H~o (J Vz~ Thus O has stochastic partials with respect to (W, s) and (W, t) along 

H~, and Vz, respectively. By Proposition 9.7, (i) has stochastic partials in all of Rzo. But 

this is all we really used in the proof of Theorem 9.9, so it follows as above that  O is 

holomorphic in the closure of R~,. (ted 

Now we will turn our attention to a different aspect of our subject: series expansions. 

If q) is holomorphic, it has a derivative which we denote by q)'. Likewise O' has a 

derivative (I)" and so on. We denote the n th  derivative of (I) by (I) ('). Now suppose (I) and ~F 

are holomorphic processes. Fix a t >0. By Ito's formula (or by direct calculation), 

§ f.,. ,,,,:v § f,,. + t f., r 
so that  

f. E{r162247 E{(1)~t~F'~t}du. (9.29) 

If we use (9.29) to expand E{(b'ut~F'ut} and substitute this in the last term of (9.29) we 

see that  

E {(1)st IFst} = (I)~ ~'~ ' '' : 0 ; '  

By induction we have 

PROPOSITION 9.11. Suppose ~F and ~ are holomorphi~. Then 
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n J s s Sl 

E(O~t~,t}= \4 O(j)~(j)(st)'§ 1 ? ( ~ ? vsm(n+l)~(n+l,~.t~0.1o ds �9 (9.30) 
20  0 o j~ JoJo " J o  ~ - ~  ' ~  . . . .  ~ '  

8 Sn 81 

E{Os2t} = ~ (O(o'))'(~t)'+tn+lf f . . . f  E " O  (n+l)''~ . . . . . .  (9.31) 
t=0 ~ .  JOJO JO t~ ut ) .(t~'~as1...a8n. 

~e"~("+lh=~ increases in u, so the last term in Note that  since (I) ("+z) is a martingale, ~ u , ~ t  ~ j 

(9.31) is bounded above by 

(8t~ n + l  
~J E f I~(n+lh2"t 

LEMMA 9A2. Let d9 be holomorphic. Then,/or each (s, t)ER~+, 

(st)" 
lira - ~ -  E{(r ~} =0. 
r, -->~) n .  

Proo/. Define g(s, t)= E(dP2,~} and gn(s, t)= E{(dP(,'~))~}. By (9.29), 

fo g ( s , t ) = r  g~(u,t)du. 

From this and the symmetric equation with s and t interchanged, we see that  

~s=tg~ and ~g -~ = sg~, (9.32) 

which implies that  s(~g/~s) = t(~g/~t). Since g has continuous partial derivatives, we conclude 

from this that  g depends on s and t only through their product. The same being true for 

gn, we define/(x) and/n(X) by 

l(st) =g(s, t), s  t). 

From (9.32),/ '  =/1. Similarly,/ 'n=/n+l . Thus 

/~(x) =/(~)(x). (9.33) 

Both / and/~ are positive and infinitely differentiable, so we can apply Taylor's theorem: 

l(x) = l(xo) + ~ l(n)(Xo) ( z -  Zo) n ~ t~+l)~O ~ 
(x XO) N+I 

o n! - "  " ( - - ~  " 

But if x > x o, this is 

N 1~ X /n 
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for all the coefficients are positive. Thus the last series converges. Take x = 2x o to see tha t  

X n n 

lim/(~)(xo) ~ = " Xo hm [~(Xo) n.V = 0. qed 
n---~oo n .  n.--~o . 

From (9.31) and the L e m m a  9.12, we have 

COROLLARY 9.13. I] r is holomorphic, 

E{r = ~ '~<""~ 
( s t )  n 

~=o~ o j - ~ .  �9 ( 9 . 3 4 )  

Let  us now apply (9.30) with {~F~,} = {H,(W~t, st)} = H, .  Since H "  = H,_~ (Proposition 

9.2), it follows tha t  H~ "~ = H o-= 1 and H~ "+1) -= 0. Furthermore,  Hn(0, 0) = 0 if n >~ 1. Thus  the 

only non-zero term in (9.30) is the n th, so: 

COROLLARY 9.14. I /  eb is holomorphic and there 

E(dPstHn(Wst, st)} = 0  /or all n, then ~P =--O. 

(st) ~ 
E (r Hn( W,,, st)} = ~ (I)~ ~). (9.35) 

is some s > 0 ,  t > 0  /or which 

Proo/. B y  (9.35), if E{r  st)} = 0, (1)~) ~) must  vanish. By  Corollary 9.13, E{(I)~t} = 0 

for all s>~0, t>~0; hence ( I ) -  0. qed 

This brings us to the main  theorem. 

THEOREM 9.15. I /  ~ is holomorphic, then, /or each (s, t )ER~, 

where the convergence is taken in L 2. 

• ~P(o")H,( W~t, st), (9.36) 
n = 0  

Proo/. Define ~ by W~t-- ~oV~m(~)~--o , , ,~W,t,  st). Since ~((I)(o'))2((st)~/n!)< ~ by  Corol- 

lary 9.13, the series converges in L 2 and ~F is holomorphic (by Proposi t ion 9.3). 

Since the H~ form an or thogonal  set 

E ( ~ ,  H~( W~t, st)} = E {O~)H~( IV,,, st)} = (1)(o ~) (st)" 
n! 

But  by  (9.35) 

E ((Psi Hn(W,~, st)} = {_.st) ~ ~p(on) 

Thus E{((I),t-~'st)H~(Wst, st)} =0 for all n. By  Corollary 9.14, ( I ) -~F- -0 .  qed 
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F o r  a quick app l ica t ion  of the  preceeding:  

P R O P O S I T I O ~  9.16. Suppose (I) is holomorphic and that there exists s > 0  and t > 0  

Such that P{qb~t=0 } = 1. Then � 9  O. 

Pro@ B y  (9.34), 0 = E (r = 5g~(r Thus qb~ n) = 0 for all  n. B y  Theorem 

9.15, (I) ~ 0. qed 

COROLLARY 9.17. I /  (~ and q f  are holomorphic processes such tha t /or  some s > 0  and 

t>O,  O st = u2"st, then �9 ~ ~1 ~. 

References 

[1]. CAI~OL~, R., Martingales ~ deux param~tres de carr~ int~grable. C. R. Acad. Sc. Paris 
Sdr A - B ,  272 (1971), 1731-I734. 

[2]. - - - -  Une in6galitd pour martingales k indices multiples et  ses applications. Sdminaire de 
probabilitds I V ,  Universitd de Strasbourg, Springer, Berlin, 1970, 1-27. 

[3]. ])OL~ANS, C., Intdgrales stochastiques ddpendant d 'un  parambtre.  Publ. Inst. Statist. 
Univ. Paris, 16 (1967), 23-34. 

[4]. DooB, J. L., Stochastic processes. New York, 1953. 
[5]. GETOOR, 1~. K. & SHARPE, M. J.,  Conformal martingales. Invent. l~lath., 6 (1972), 271- 

308. 
[6]. HUDSON, W. N., Continuity of sample functions of biaddit ive processes. Pacific J .  Math., 

42 (1972), 343-358. 
[7]. ITO, K., Lectures on stochastic processes. Tata  Ins t i tu te  of Fundamenta l  Research, Bombay,  

1961. 
[8]. - -  Multiple Wiener integral. J.  Math. Soc. Japan, 3 (1951), 157-169. 
[9]. JESSEN, B., MA~CI~KIEWICZ, J. & ZYGMV~I), A., Note on the differentiabili ty of multiple 

integrals. Fund. Math., 25 (1935), 217-234. 
[10]. KUNITA, H. & WA~A~ABE, S., On square integrable martingales. Nagoya Math. J. ,  30 

(1967), 209-245. 
[11]. McKEA~, H.  P. Stochastic integrals. Academic Press, New York, 1969. 
[12]. ME~AUX, C., Les indgalitds de Burkholder dans le cas de martingales ~ deux parambtres. 

In  preparation.  
[13]. MEYER, P. A., Intdgrales stochastiques I .  Sdminaire de probabilitds I ,  Universitd de Stras- 

bourg, Springer, Berlin, 1967, 72-94. 
[14]. O~nY, S. & P I ~ T T ,  W., Samplo functions of the _~-parameter Wiener process. Ann.  

_Probability, 1 (1973), 138-163. 
[15]. P ~ K ,  W. J.,  A multiparame~er Gaussian process. Ann.  ,~lath. Stat., 41 (1970), 1582-1595. 
[16]. RAO, K.  M., On decomposition theorems of Meyer. Math. Scand., 24 (1969), 66-78. 
[17]. SAKS, S., l~emark on the differentiabil i ty of the Lebesgue indefinite integral. Fund. ~rath., 

22 (1934), 257-261. 
[18]. WONG, E. & ZAKAr, M., Martingales and stochastic integrals for processes with a multi-  

dimensional parameter.  Z. Wahrscheinliehkeitstheorie und Verw. Gebiete, 29 (1974), 
109-122. 

[19]. YEH, J.,  Wiener measure in a space of functions of two variables. Trans. Amer. Math. 
Soc., 95 (1960), 443-450. 

[20]. ZIM.~E~A~, G. J.,  Some sample function properties of the two-parameter  Gaussian pro- 
cess. Ann.  Math. Stat., 43 (1972), 1235-1246. 

Received March 18, 1974 


