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§0. Introduction

Let W be the random measure in R%, the positive quadrant of the plane, which assigns
to each Borel set 4 a Gaussian random variable of mean zero and variance m(A4), where m
is Lebesgue measure, and which assigns independent random variables to disjoint sets
(see [6], [14], [15], [19] and [20]). It is natural to construct stochastic integrals with respect
to W (see [1], [4], [7], [10], [13], [15], [18] and [20]) but one can do more. Define a process
W={W, 2z€R%} by W,=W(R,), where R, is the rectangle whose lower left hand corner
is the origin and whose upper right hand corner is z. W is called the two-parameter Wiener
process. It is a continuous process, and if we write z= (s, t) and fix s, —~ W is a Brownian
motion; likewise, s— W, is also a Brownian motion. Since the theory of stochastic integra-
tion with respect to Brownian motion is well-known, this opens the possibility of stochastic
line integrals; we will see that one can integrate along all sufficiently smooth curves in R%.

The question that motivated this study was that of holomorphic processes, and this
question still forms the goal of the present article. A process @ is holomorphic if it has a
derivative ¢, in the sense that ©,=®,+ (5 #0W, where the line integral is taken over any
sufficiently smooth curve connecting 0 and z. These processes turn out to have a structure
which is in some ways remarkably like that of classical holomorphic functions of a complex
variable, even though they are real, not complex, valued. For instance, if @ is holomorphie,
so is its derivative ¢, and there is even an analogue of the power series expansion.

These processes are treated in §9. The earlier chapters are concerned with diverse
questions. One of the foremost preoccupations is simply to develop a stochastic calculus.
Thus, after the various line and surface integrals have been defined, we show in § 6 that
the interplay between line and surface integrals is expressed by an analogue of Green’s
theorem, as in the classical case. An immediate application of this is a proof of the existence

and continuity of the local time for W by means of an appropriate version of Tanaka’s
formula [11].
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No special effort has been made to achieve maximum generality. In particular, we
havenot tried to pass beyond the square integrable case in our integrals. On the other hand,
we have treated integration in greater generality than is needed for our study of holo-
morphic processes, partially in the hope of discovering more about martingales having
R? as a parameter set.

The theory of martingales with a partially ordered parameter set is still in its primitive
state. We should distinguish between two cases: the Brownian case, in which the fields
F, are generated by W, and the general case, in which the F, satisfy only (F1)-(F4) below.
In the Brownian case, Wong and Zakai [18] have proved that any square integrable martin-
gale can be written as a sum of two stochastic integrals. (We give a different proof of this
in § 3.) This allows us to reduce many problems to direct calculation. For instance, we show
in §3 that all martingales bounded in L log L are continuous. (However, an example
shows that there are L'-bounded martingales which are everywhere discontinuous, so that
the question of martingale continuity is evidently more delicate than in the classical case.)
In fact, in the general case, the question of whether L2-bounded, or even bounded, martin-
gales have a version which is right-continuous and has left limits is open.

One final question which deserves mention here is that of the characterization of
square integrable strong martingales. This important class of martingales crops up early
in our story, for certain types of integrals can be defined only for strong martingales. In
the Brownian case we can characterize them completely: they are the class of square inte-
grable martingales which can be written in the form M,={; ¢dW (Theorem 8.1). On the
other hand, strong martingales have path-independent variation (see § 8 for the definition
of this concept, which was introduced by Wong and Zakai [18]). All indications at our
disposal suggest that path-independent variation is another characterization of the strong
martingales, but our results are incomplete in this direction (Theorem 8.2).

The reader will notice that the techniques used throughout the article are rather
closely tied to the cartesian coordinates in the plane, whereas it would seem that one
should be able to integrate in a coordinate-free manner. This is true to a certain extent,
but one usually wants to integrate random, rather than deterministic functions, and this
requires something like the following.

1°, There is a partial ordering < in some subset ' R2 If 4 and B<T, we say 4 <z
if <2 for all €4, and we say z < Bif 2 <y for all y€ B. A < B means 4 <z forallz€B.

2°. There exists a family of o-fields {F,, z€T'} such that

(a) if 2 <2’ then ., F,;

(b) if A4 <z, then W(A) is F,-measurable;

(c) if 2< B, then W(B) is independent of ¥,.
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Notice that 2° is satisfied if we take F,=a{W(4), A <z}. With such a family of fields,
one can hope to imitate Ito’s development of the stochastic integral to define the integral
of JF,-adapted processes with respect to W.

While the partial ordering does not determine a coordinate system, it may suggest one,
and vice-versa. For instance, in polar coordinates, one might use the partial ordering
“r, 0) < (', 0') iff r<¢" and 6<6"". We will not try to give such a general treatment, how-
ever, and ‘we will treat nothing more exotic than Cartesian coordinates in R%. We will

always use ““ <" for the partial order

(s, ) <(s',8) iff s<¢' andi<t.
We also write

(s, )< <(s', ) ifs<s’ andt<t.

There are two other partial orders compatible with cartesian coordinates which we shall
find useful, corresponding to positive cones equal to the right half-plane and the upper
half plane respectively. Accordingly, if F, is a family of o-fields satisfying 2° (a), we define

def
;gtz gsoozvgsv
and

. def
gst = ;oot = ygut

We will usually reserve z, {, %, and £ for points of R%, while s, £, %, v, o0 and 7 usually
refer to real variables. This notation reveals an ambivalent attitude toward R%. When we
integrate over it, it is of course just the positive quadrant of the plane. But when it is
the parameter set of a martingale, it becomes two-dimensional time—definitely a more
mysterious object.

§1. Square integrable martingales
Let (Q, F, P) be a probability space and let {F,, z€R?%} be a family of sub-o-fields of F
satisfying
(F1) if 2 <2’ then F,< F,;
(F2) F, contains all null sets of F;
(F3) for each z, F.= ) serr Fo5}
(F4) for each z, FL and F?2 are conditionally independent given J,.

All except (F4) are seli-explanatory. The following condition is easily seen to be equivalent
8 — 752903 Acta mathematica 134. Imprimé le 4 Aot 1975
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to (F4): for all bounded random variables (r.v.’s) X and all z€R?,
E{X|3.}=E{E{X|F:}| F}().

In particular, if X=1I,, where A€F.n F, then E{I,|F.}=1I, and so A€F, which
implies Fin F2< F,, hence F.N F2=7,, by (F1).

Here are two examples of families of fields which satisfy (F4):

(a) Let {J}, s€R,} and {J%, tE€R,} be two independent families of sub-o-fields of F. If
z=(s, t), put F.=F: v I

(b) Let {X(4): A a rectangle in R%} be a process such that if A4,, ..., 4, are disjoint
rectangles, then X(4,), ..., X(4,) are independent. Put F,=¢{X(4), 4<z}.

In the first six sections, except the third, {F.} will be a fixed family satisfying (F1)-
(F4). If {G,, 2€R%} is a family of o-fields and X ={X,, z€R% } is a stochastic process, we say
X is G,-adapted if X, is G,-measurable for all z. If X is J,-adapted, we shall simply say X is
adapted. X is said to be measurable if (z, w)—~ X (w) is B x F measurable, where B is the class

of Borel sets on RZ.

DEFINITION. 4 process M ={M,, z€R2} is a martingale if
(1) M s adapted;
(2) for each z, M, is integrable;
(3) for each z <2,
E{M,|3}=M..

“Martingale” always means “‘martingale relative to {F,}’. When discussing martingales
relative to other fields, we shall always specify the fields.
Let us introduce a notation for rectangles. Suppose z=(s, t) and 2’ =(s’, ¢'). If 2<<2’,
(2, 2'] will denote the rectangle (s, '] x (¢, t']. We denote the rectangle (0, z] by R,. A martin-
gale is often thought of as having orthogonal increments. In two dimensions, the relevant
increments are the increments over rectangles. The increment of X over the rectangle
A=((s, ), (5", ¢)] is
XA)=X.p— XXy + Xy (1.1)

If X, were a two-dimensional distribution function, (1.1) would give the measure of

A, and it is often more convenient for us to speak in the language of measures. Accordingly,

(*) In the sequel, equations between r.v.’s are to be interpreted a.s., unless the contrary is explicitly
mentioned.
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we say that the process X induces a measure (also denoted by X) on rectangles by the
formula (1.1). (This gives, in fact, a finitely additive measure on the algebra of finite unions

of half-open rectangles.) Similarly, a measure ¢ on rectangles induces a process X by
X.=u{R,), z€RIL. (1.2)

There are several notions of orthogonal increments in two-dimensional time because
there are several relevant families of fields. To take this into account, we introduce the

following definitions.

DrrFiNITION.

Let X ={X,, 2€R2} be a process such that X, is integrable for each z.
(a) X is @ weak martingale if

(1) X is adapted;

(2) BE{X((z,2'])| 3.} =0 for each z<<z'.
(b) X is an i-martingale (i=1, 2) if

(1) X is Fi-adapted;

(2) E{X((2,2'])|Fi}=0 for each z<<z'.
(¢) X 18 & strong martingale if

(1) X ¢s adapted;

(2) X vanishes on the axes;

(3) E{X((z, 2| Fi v F3} =0 for each 2<<z".
Thanks to hypothesis (F4) we have the following proposition:

ProrositioN 1.1. 4 martingale is both a 1- and a 2-martingale.

Proof. Suppose X is a martingale and let A={((s, ), (s', )], where s<s' and ¢<¢'.
Write X(4) =(X;p = Xo) = (X — Xoi)- By (F4),

E{Xs’t’ _Xs’tl ;g't} = E{Xs't' *Xs'tl ys't} =0.
Similarly,
E{Xst' "Xstl ggt} =0.

Since F3,=F%, B{X(A)| F%}=0. By symmetry, E{X(4)] F4}=0. ged

Notice that if {X,,, Fs,, sER,} and {X,;, F5, t€R.} are martingales, the converse is
also true. Indeed, X being both a 1- and a 2-martingale, it is adapted, by (F4); hence if
s <<s’, we have, setting 4 =((s, 0), (', )],

B{X o~ X | Foi} = B{X(A)| Foi} = B{E{X(4)| F3:}| For} =0
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Similarly, if ¢ <¢’,
E{Xst’ ‘Xs'.| :;st} =0,

which shows that X is a martingale.

In the following, the notions of martingale, strong martingale, etc., will be used for
processes of the form {X,, z <z} without further comment.

If we may anticipate, the Wiener process W ={W,} is a strong martingale, the process
J={J} introduced in § 6 is a martingale but not a strong martingale, while the product
JW ={(JW),} is a weak martingale but not a martingale.

Both martingales and strong martingales play major rdles in what follows, while
weak martingales are peripheral, occuring mainly in the decomposition theorem (see
Theorem. 1.5).

The theory of martingales with parameter set R? is underdeveloped territory at the
time of this writing, but enough is known to enable us to follow the usual construction of
the Ito integral, at least superficially. Let us say that a process {X,} is right-continuous if
for ae. w, lim:-»’zX,(w)=Xz(w) for all z€R2, and that it has left limits if, for a.e. w,

lim,.,, X, () exists for all z€(R, —{0})2. We denote the limit by X, . The maximal ine-

2'«r

quality in our case (see [2]) becomes:

TEEOREM 1.2. Let {M,, 2€R2} be a right-continuous martingale. Then for >0,

(a) AP{sup|M,|>2}< -+ — sup B {| M,llog" | M,[};

2p
(b) E{sup|M,|"}< (;7_’—1) supE{|M.[*}, p>1.

One consequence, also proved in [2], is that a martingale {M,} which is bounded in
Llog L must converge a.s. as z—>o0 to a limit M, and M,=E{M | F.}. A second conse-

quence is the following lemma, whose proof is exactly the same as in one dimension.

LEmMA 1.3. Let {M"} be a sequence of right-continuous square integrable martingales.
Suppose sup, BE{M?*'—M7)2} <2-". Then with probability one the sequence M converges
uniformly tn z as n—> oo,

For p>1, let TP be the class of all right-continuous martingales M ={M,, z€R}
such that M,=0 on the axes and E{|M,|?}<oo for all z. Let MZ (resp. M5) denote the
class of continuous (resp. strong) martingales in F1?. For our purposes, it will usually be
sufficient to work with bounded subsets of R%, the extension to all of R% then being routine.

Accordingly, let M?(z,) be the class of right-continuous martingales M ={M,, z <z,} such
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that M =0 on the axes and. E{| M, |} <co. We are mainly interested in the case p=2.
Give M3z, the norm and inner product

M| = (B{M:})} and (M, N)=E{M.N.,}.

Asabove, M3(z,) and 3(z,) will denote the continuous and strong martingales, respectively,

in MP(z,)-

ProPOSITION 1.4. M2(z,) with this norm is a Hilbert space. ME(z,) and Mi(z,) are
both closed subspaces.

Proof. We must check that #M2(z,) is complete and that FM%(z,) and M35(z,) are closed.
Let {M"} be a Cauchy sequence. We may suppose, by taking a subsequence if necessary,
that || 4™+ —M"||2<2-". Then, by Lemma 1.3, M™ converges uniformly in z < z, to a process
M. If A€F, and <7,

f M,.dP=lim M"dP~hm f MZdP= ‘f M,dP,
n~>00 A

where we can go to the limit under the integrals because {M ]} and { M}, being L*-conver-
gent subsequences, are uniformly integrable. Thus M is a right-continuous martingale,
hence MZ2(z,) is complete. The same argument applied to M™(4), where 4 =(z, 7], and a
A€F: v F% shows that M is a strong martingale if the M™ are. Finally, M is continuous
if the M™ are, by uniform convergence. qed

Unhappily, the Meyer submartingale decomposition theorem in two-dimensional time
is true only in a weakened form. We must give two versions, one for martingales and one

for strong martingales.

DEFINITON. A process X ={X,, z€R%} is an increasing process if
(1) X is right-continuous and adapted;

(2) X,=0 on the axes;

(8) X(A) >0 for each rectangle A<RZ.

TurorREM 1.5. Let MEM?(z,). There exists an increasing process A={A,, z <2y}
such that {M%—A,, z<z,} is a weak martingale.

Proof. For simplicity, assume z,=(1, 1) and divide R,, into rectangles whose corners
are at the points z,,=(27"4, 2-"9), =0, ..., 2™, =0, ..., 2" Let A;;=(2,;, 2,44, j41]. Define
AlT by AZ=A]""=0and

AZMA,) = B{MA )] 3.} (1.3)
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By Proposition 1.1, this is positive. Let z=(s, )€ R,, be dyadic (i.e. s and ¢ are dyadic
rationals). We claim that A", which is defined for m and n sufficiently large, converges
weakly when m and then # tend to oo. For w <1, set

2" -1

w= 2 B{M: orgr1y— M% 2-n|F, s-n}

j=0

Since {M?3,, F,,, v<1} is a positive submartingale, we know [16] [L3] that BZ, converges
weakly when n—oc to a limit BY,. On the other hand, if u <u’<1, by (F4),
2m -1

E{BL,— Bl %, =E{ S (E{Mi-. srgeny— M2 o) T gom}

1=0

-~ K {Mi.r"(}u)_ M%.r"jl 3,,_ 2'";}) !yut}

21
= ;zo E{(M? (((u, 27M), (u', 27"(j + 1))]) | Fu.2-m} =0,
(1.4)
Thus {B};, F,,u<1} is a positive submartingale. It follows that {BY, F,, v <1} is also

a positive submartingale, hence, again by [16] [13],

2Mg—1

Zo E {B?’”(H Dt B;&"'i,tl;z'mi, t}
i=
converges weakly when m— oo. But by (1.4)

2ms—1

2 E {B;—”‘(Hl).t - B;—mi,tlgz_"‘i,t} =Ag"

i=0

Since the operation of taking weak limits commutes with the conditional expectation, we
conclude that the iterated weak limit AP =1im . lim, . A" exists for dyadic z <z,.
If D< R, is a rectangle with dyadie vertices, a passage to the limit in (1,3) gives us
A=(D)>0; E{(M2)(D)|3.} = E(A®(D)|3,}. (L.5)
For each z < z,, define
A,=inf{A%,,, 2<<7',2" dyadic}.
This defines an increasing process which satisfies (1.5). qed

The question of uniqueness of the increasing process constructed above is delicate.
Indeed, it is closely related to that of the existence, for a bounded martingale, of a version
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which has left limits and we cannot show, in general, that such a version exists. However,
we conjecture the existence and we can prove it in the Brownian case, where all L log L-
bounded martingales are even continuous. Under this condition, it is easily seen that the
process A of Theorem. 1.5 is unique. As it happens, the question of uniqueness is unimport-
ant for our purposes, so we propose simply to ignore it in this article. We will just agree, if
no other precisions are given, to denote by (M)={<(M>,, zERL} any increasing process
A such that M2—A is a weak martingale. In the same spirit, if M, N € M*(z,), we denote
by (M, Ny>={(M, N, 2€R%} any process B which is the difference of two increasing
processes and such that MN —B is a weak martingale, e.g. (M, N> =}((M +N>—{M)
—{N>). Accordingly, relations such as (M>=A or (M, N> =B will signify that A and B
are possible choices of (M and (M, N) respectively.

We will say that two martingales M and N are orthogonal if M N is a weak martingale.
We write M 1 N.

ProProsiTIiON 1.6. Let M, N € M*(2,). Then
(a) E{MN(D)|3F.}=E{M(D)N(D)|3.} for each rectangle D=(z, 2']< R.,;
(b) M LN iff E{M(D)N(D)|F.,} =0 for each rectangle D=z, 2']< R.,.

Proof. Since (b) is an immediate consequence of (a), we prove (a) only. If z=0, there
is nothing to be shown. Suppose then that 0<<2z<<z'. Divide the rectangle (0, z'] into
four disjoint subrectangles 4 =(0, z], D=(z, 2], B and C. A little algebra gives

MN(D)=M(D)N(D)+M(A)N(D)+M(D)N(4)+M(D)N(B) +M(B)N(D)

+M(C)N(D)+ M(D)N(C) +M(C)N(B)+M(B)N(C).

It is then easy to see that the conditional expectations, relative to F,, of all the terms of
the right-hand side, starting from the second, vanish. ged

Theorem 1.5 holds for both ordinary and strong martingales. If we begin with a strong
martingale, we might hope that the increasing process has better properties, e.g. that
M2—(M> is a martingale, rather than just a weak martingale. We will attack this from
a slightly different viewpoint.

Let M € ?(z,). We know that for each fixed ¢, {M,;, Fy, $<8,} is a martingale. Thus
let {A];, s<s,} be the unique one-parameter increasing process which is predictable rela-
tive to the family {F,;, s<s,} and such that {M% —A}, F, s<so} is a martingale. (‘“Pre-
dictable” here has its usual sense: (s, w)—AL(w) is measurable with respect to the o-field
on R, xQ generated by all left-continuous F-adapated processes.) It follows that
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{Al;, s<sp} is the unique one-parameter increasing process which is predictable relative to
the larger fields {J%, s<s,} and such that {M2 —A};, Fi, s<s,} is a martingale. Indeed,
both M,, and AL, are J,,-measurable for all s <8, 50 by (F4), if s <s’ <3,

E{Mgt -Ai'tl gg.t} = E{Mﬁz _Ai't I :;st} =M§t "Aiz-
We will denote {A};, s<s,, 1<y} by AL, The process A? is defined in an analogous manner.

ProrosiTiON 1.7. If M € Mi(2,), then for each rectangle D< R, and each 2 <D,
(a) B{M(DY| T4} =E{(MH(D)| 52} (i=1,2)
(b) AYD)>0 (i=1, 2).

Proof. Let D={((s, t), (s't')] and set A, =M., — M, and Ay,=M..— M. Then

E{(Mz) (D) Ig::z} =E{A§ - A%lglt},
for, by Proposition 1.1,
E{M oMy |Foy=M3e and E{M ., M| Jiz}ﬁlﬂft.

Noting that M(D)=A,~—A,, this equals
E{2A, M(D)+ M(D)| 34},
But since M is a strong martingale,
E{A, M(D)| 3.} = E{A, E{M(D)| F3, v Fu}| Fae} =0

which proves (a) for ¢ =1.

To prove (b), note that (a) implies that {MZ2,.—M%, F};, s<s,} is a submartingale,
while {(M3, — M%) — (A}, —AL), F4, s<s,) is a martingale. But {A}, —A}} is a predict-
able process of bounded variation, and hence must be the increasing process of the de-
composition of the submartingale, which proves (b) for ¢=1. The proofs for i=2 are
similar. qed

The process {A}} is right-continuous and increasing as a function of s for fixed ¢,
but since we defined it separately for each ¢, we cannot expect it to have nice propertiesin ¢
for a fixed s. However, in the case of a strong martingale we can use part (b) above to

replace A! and A2 respectively by their right-continuous versions
inf {A . ..,; £<t',t rational} and inf {A%,; ;s<s', s rational}.

It is easily seen that this amounts to a standard modification, so we can and do assume in

this ease that A! and A? are right-continuous inereasing processes of two parameters.
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Henceforth we will denote A' and A2 by [M]' and [M]? respectively. Furthermore, if
M, N € M¥z,), we define

[M, N =}([M+NT—[M]'~[N}) (=1,2).

We will need the notion of predictability for two parameter processes. Let {(,, €ER%}
be an increasing right-continuous family of ¢-fields. Consider the space R% x Q. We define a
o-field P, of subsets of this space, called the o-field of §,-predictable sets: P is the o-field
generated by sets of the form

(z,2']x A, where 2<<z’ and A€(.,.

A process X ={X,, z€R: } is (,-predictable if (z,w)~ X (w) is D,-measurable. Let us compare
this with the usual definition: if {3, §>0} is a right-continuous family of ¢g-fields, the
o-field Qy of H,-predictable subsets of R, x £ is the o-field generated by sets of the form
(s, 8’1 x A, where A €. Write R% x Q=R x (R, x Q). It is an easy exercise to show that
if G,=F. and H,=F;,, then D;=B x Qy, where B is the Borel field of R.,.

ProrosiTiON 1.8. If MEMi(z,y), then [MY is the unique Fi-predictable increasing

process such that
E{M(D)*| 3.} = E{(M*)(D)| 3:} = E{{M)'(D)| 33}, (1.6)

for each rectangle D=(z, 2']< R, (i=1,2).

Proof. (1.6) follows from Proposition 1.7 and the fact that M2 —[ M’ is an ¢-martingale.
If we fix ¢, we know that [M]., is predictable relative to {F3}, i.e. Qu-measurable. As
t—~[M1;, is right-continuous, it follows that (s, £, w)~[M % (w) is B x Qu = Dy-measurable,
i.e. Fi-predictable. If B is a second Fi-predictable increasing process satisfying (1.6), it
follows that

E {Mgt - M?t I g;t} =K {Bs’t - Bst l 3%:},

ie. {M%—B,, F. s<s,} is a martingale. By uniqueness of the Meyer decomposition,
B=[M]. ged

Note that for a strong martingale M, either [M]' or [M]? can serve as the process
{M> above. We can ask if [M]'=[M12. In general, there is no reason that it should. If, on
the other hand, M is strong, it appears the two are equal. We have not succesded in establish-
ing this equality in general, but the following theorem covers the majority of applications

we have in mind.
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TueorEM 1.9. Let M€ Mi(z,). Either of the following two conditions implies that
(M =[M].

(a) The fields F, are those generated by W.

(b) M is continuous and E{M3} < oo,

Proof. (a) This follows from the uniqueness of (M), but it can also be seen directly.
Let X be a bounded continuous martingale. We claim that if z=(s, t)€R,,,

E{XZ[M]L‘}=EU X;d[M]é‘}, (k=1,2). (1.7)

Suppose z is dyadic and let z;; and A,; be as in the proof of Theorem 1.5. Write the right-

hand side as a limit of sums of the form

4 2if

zsz {XZy[-M]k(Aij)} =izj E {(X - 'XZH_L H—l) [M]k(Asf)} + zZJE {X’"H—L 5+1[M]k(Aff)}‘

(1.8)

The first sum on the right hand side is majorized by E{sup, ;| X, —X,,, . [[M 1%}, and
this tends to zero as m, n—> o by continuity of X. Since X is a martingale and [MT(A,)) is
Feirr, . measurable, B{X, . [MIA;)}=E{X[M](A,)}, so the second sum on the

right-hand side of (1.8) equals E{X,[M]}}, proving (1.7). On the other hand, the left-hand
side of (1.8) equals (thanks to (1.6))

2} E{X, (M*(Ay)},

which is independent of k. Evidently
E{X,[M]:} = E{X [M]}. (1.9)

But if (a) holds, all bounded martingales are continuous (see § 3), hence we can choose
X, to be any bounded J,-measurable r.v. Then (1.9) implies that [M1;=[M].

(b) If z=(s, t) € R,, is dyadie, we know by [16] [13], that [M]* is a weak limit—even an
LA.limit since M is continuous—of

2%s~1

Al= 2 EB{(Mymusry.s— Mo-my )| Fommi o).

-0
By Proposition 1.7, this is equal
2ms_19m—1
S 3 EQUAN 1T ).
=0 j=

Thus, it is enough to prove that
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m 2Ms_1 2% -1 2
E{[Az— Sy E{M(A,,-)zm,.,.}]}

i=0  j=0

Mg -1 9"—1 2
=E{[ S <E{M<A,,>2|s;,f}-E{M(A.-mz,,})]} (L.10)

=0 j=0
converges to zero when m, n— oo, since then the same argument will apply to

n 27 -1

AZ= 20 E{(M.2-ng.1y— M 2-)*) Fs.2-ns},
j=

permitting us to conclude that
n 2Ms-1 2"t —-1 2
E{[Az_ izo 20 E{M(Aij)zlgz" ] }

also converges to zero, hence that Al and A2 have the same limit, implying that
(M) =M
Set

diJ' =E{M(Ai})2 | ;;,-j} - E{M(Aii)zlgz“}.
By (F4), d;; is F,

e sy
. ;+,-Ineasurable, and if j< 7y,

E{d,d;,}=E{d,E{d,,] Foveuy 3=0.
Thus the right-hand side of (1.10} is
S E{d2}+23( 2 E{d,dq}). (1.11)
4,7 i, 7 i>i
We will show that both these terms tend to zero. The first term is majorized by
2,2 B{M(Ay)'}<2E {sup M(A,)* 2 M(Ay)%}
iJ ij .4
< 2{E {sup M(A)*} BE{(Z M(A,)** VA
ij 4
But
E{ sup M(A,)'}<const. E{sup M:}< counst. E{M3:},
i,f,m, n 2'¢e

by Theorem 1.2. Hence, since M is continuous, the first factor above tends to zero as m,
n—oo, The second factor is bounded by const. E{M3}< oo, according to Burkholder’s
inequality extended to the case of two parameters [12]. It follows that the first term of
(1.11) tends to zero.
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Passing to the second, set §;;= (2;.3, j, 2975, j+1]. Then

2( 3 B{dydy})=ZE{d, B{ 2 4|3} }}

2y

= isz{du(E {*M(6i1)2 l 32,-,} —E {M(6i1)2 | Jzﬁ})}

iZ,E {B{M(A)*|FL ) (E{M(8,)*| 32, — B{M(5,)*1 3., }1}.

7 2

Let
H =sup (B {sup M(3)*| 32} + B {sup M(5)*| F.,.}).

2‘]'
Then the last term is dominated in absolute value by

E{H2 M3} < (B {H"} B{( X M(5,)")"}]"* < const. [E {sup M(8,)'} E{( 2 M(8,)")"}1"".
i, i i ] i ]

But, as before,
E{sup M(3;,)*}<const. E{M3}< oo.
i,j,mn

Hence, since M is continuous, the first factor tends to zero as m, n— oo. The second factor
being bounded by const. E{M}} < oo, it follows that the second term of (1.11) tends to zero.

§2. Surface integrals

We are going to define two different types of integrals in this section, the first analog-
ous to the familiar Ito integral and the second a kind of multiple Wiener integral.

If M and N are right-continuous square integrable strong martingales, then [M, N}
is the unique Fi-predictable process which is the difference of two increasing processes and
such that MN —[M, N}t is an i-martingale (i =1, 2). On the other hand if M and N are
martingales, the process (M, N> may not be unique. Recall we defined that to be any
process which is the difference of two increasing processes and for which MN —~(M, N> is
a weak martingale. This lack of uniqueness, while annoying, is not serious. The processes
{M> and (M, N will be used principally for their expectations, and for these, we have the

following result:

ProrosiTion 2.1. Let ¢ be a positive F,-predictable process and let A and B be increasing
processes such that for each rectangle D=(z, 2’ |<R%,

E{A(D)| 3.} = E{B(D)| 3.}.

QIR )

Then
quB} for each z, € RL. (2.1)

20
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Proof. Let K=({,{’] be a rectangle and suppose ¢,=al(z), where « is bounded and
F¢-measurable. Then

E{ f quA} = F{aA(K N R.,)} =E{«E{A(K N R.,)|F:}}

0

~ (B {BK Rz.,nsrg}}=E{ | ¢dB}.

Ry

But (2.1) remains true for sums of such functions and since these generate the F.-predictable
processes, the theorem follows by a monotone class argument. qed

Let M € M2(z,) and let A =(z,, z;]. We define the stochastic integral ¢- M of a function
¢, =al 4(z), where « is bounded and F,measurable, by

¢ M, =aM(ANR,), z<z, (2.2)

Notice that a stochastic integral is a process, not a random variable. It has the following

properties:
- MEM(z,); ¢ M€ M2(z,) if M EME(z,) and ¢+ M € ME(z,) if M EMS(2).  (2.3)

If ¢ and p are of the above form and if M and N are in 7M3(z,), then

G Moy W= | ppdQU N, < 2.4)
Rz

In particular,
lig- M= E{ f ¢2d<M>}.

The property (2.3) follows by inspection. Let us check (2.4). Suppose 4, and 4, are disjoint
rectangles with lower left-hand corners z; and z, respectively. Let a, and «, be bounded and
F.- and J.-measurable, respectively. Let ¢,=a; I, (2), w,=0pI 4,(2). First, ¢-M and
p- N are orthogonal if 4, N 4,=@. Indeed, if B is any rectangle, say B=(z, z'}:

E{$-M(B)y-N(B)| 3.} = E{oy oy M(B N 4;) N(B N 45)| F.}-

Now BN A, and BN A4, are disjoint and it is easy to see that they can be separated by
either a horizontal or a vertical line. Suppose for instance the separating line is horizontal,
BN A, is below and BN A4, is above the line. If 2" is the lower left-hand corner of BN 4,,
then a,, oy and M(B N A,) are FZ.-measurable, hence

E{oaya, M(B N A,) B{N(BN 4;)| F2.}| 7.} =0.
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By Propositon 1.6, ¢-M and y-N are orthogonal. Thus, (2.4) follows since ¢y =0. Next,
suppose 4; =A,=A and calculate E{¢-M(B)y-N(B)|F.}. We have, by Proposition 1.6,

E{¢-M(B)y-N(B)|F.}=E{($-M)(p-N)(B)|F.}
=, E{M(BN A)NB N 4)|F,} =, 0, E{MN(B n A)|F.}

= %daEU «M, N>I32}=E{f ¢wd<M,N>I32}-
BnA B

This proves (2.4) in case 4; and A4, are identical. The general case follows by dividing 4,
and 4, into sub-rectangles which are either disjoint or identical.

We say ¢ is a simple function if there exists a finite number of rectangles 4,=(z,, zi]
and bounded r.v.’s «;, such that «; is J,-measurable and

¢.= % &; IA‘(Z)-
If ¢ is simple, we define
¢-M,=2a,M(4;NR,).

It is immediate that if ¢ and y are simple, they satisfy (2.3) and (2.4), and that
- M ={$- M.} is a linear function of ¢. Notice that a simple function is F,-predictable.

Let C34(z,) be the class of all F,-predictable (of all adapted measurable—if M = W)
processes ¢ ={¢,, 2<z,} such that E{f R, $PAM >}< oo and L% be that of F,-predictable
(adapted measurable—if M =W) processes ¢={4,, 2zER%L} for which E{f, $?d(Mp}<co
for all z€R2. By Proposition 2.1, the definition of £3(z,) and £3 do not depend on the
particular choice of (M>.

With the obvious identifications, L%(z,) is a Hilbert space under the norm
(E{S R, $*A (MDY It is not hard to see that the simple functions form a dense subset of
L34(2p)- The map ¢—>¢- M of simple functions into IM2(z,) is linear and (by (2.4)) preserves
the norm. Thus it can be extended by continuity into a linear norm-preserving map of
L34(z) into M2(z,). We will often denote the random variable ¢- M, by Ja,dM. We
will also write {,¢dM and M(A) instead of (¢1,): M, and I, M,, respectively (4 Borel

subset of R, ). To summarize:

THEOREM 2.2. Let M € M2(z,) and let ¢ € L34(2o). Then

(8) ¢+ MeMP(z,) and (by Proposition 1.4) ¢+ M € M2(zy) (resp. Mi(zo)) 1f M € M3(z,)
(resp. ME(2));

(b) & M is linear in ¢;

(¢) if ¢ and p are in Liy(zy) and L (z,), respectively, then

R,
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l¢-M.|*=E {L ¢2d<M>} (2.6)

Remark. One can extend the integral to M € M2 and $€L3% by choosing a sequence
z,— > and defining ¢+ M =lim ¢, M, where ¢, =¢- I . We will use this extension without
further comment.

Note. Henceforth we will adopt the following convention: each time the word “pre-
dictable” is used in expressing conditions of integrability (for the types of stochastic inte-
gral introduced above and hereafter), it is to be replaced by “adapted measurable” if M =W.

It will be useful to be able to integrate ¢ adapted to larger fields than F,. We say ¢
is weakly predictable if it is either J;- or F2-predictable. We can integrate weakly predictable
#, but we pay a price, losing some of the nice properties of the integrals of F,-predictable
processes.

Let M € Mi(z,). We will extend the integral so that we can integrate JFi-predictable
processes. We proceed as before: if 4 =(z, 2] and « is bounded and F} -measurable, set
¢, = ol 4(z) and define ¢+ M by (2.2). By inspection, we have

(¢ M), is right-continuous in s and is continuous if M is; (2.7
¢+ M is a 1-martingale. (2.8)

Suppose ,=pI5(2), where B=(z,2;] and f# is bounded and JF,-measurable. If
N € Mi(z,) we have

43, 4N = [ gpdt, WY (29)

(The first member has been defined only for martingales. This is the only place where we
use it for 1-martingales. The definition is the same, except that F, is replaced by F..)
In particular,

l$- .|| =E{qu52d[M]‘}. (2.10)

The proof of (2.9) is the same as that of (2.4), except that J, and F: are replaced by
- 3 and JL v J? respectively.

If ¢ is a Fl-adapted simple function, we define ¢-M in the obvious way and ¢+ M
again satisfies (2.7)—(2.10). It remains to pass to the limit.

It is here that our previous approach breaks down, for while {(¢- M)} is a martingale
in s for fixed ¢, it may not be a martingale in ¢ for fixed s. (If ¢, =l ,(2), {(¢- M)} will be a
martingale in ¢, relative to its natural fields. However this is no longer true for simple

functions.) Consequently the maximal theorem which allowed us to pass to the limit uni-
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formly is no longer valid. However, we do have the following:
2P {supl (- M)al > 7 < B 253 < B [ ganary),
<80 R,

It follows that if {¢,} is a sequence of simple functions such that E{| R, (a1 — )2 d[M <

2-" we have:

for each ¢, (¢, M),, converges uniformly in s with probability one
(the exceptional set may depend on t). (2.11)

Now, if ¢ is F;-predictable and E{f ¢*d[M]'} <oo, we can find a sequence of simple func-
tions {¢,} such that E{f g, (¢ —$a)2d[M]'} <27". We then define

lim,,0¢, - M, if the limit exists,

¢ .= {0 otherwise.
It is now easy to check that the properties (2.7)-(2.10) remain true under a passage to the

limit, giving us:

THEOREM 2.3. Suppose M and N are in Mi(z,) and suppose ¢ and yp are F;-predictable
processes such that E{j};z‘)(ﬁzd[M]l} and E{j‘Rzﬂqﬂd[N]l} are finite. Then (2.7)~(2.10) hold.

Remark. We have only defined the integrals of J;-predictable ¢, but of course the

J2-predictable processes are handled in exactly the same way.

We want to consider yet another stochastic integral, which was introduced by Wong
and Zakai [18] for W. This is not an integral over R%, but over R% x R%.

Let us introduce another order relation in R%, complementary to “ <. If z=(s, t)
and 2’ =(s', '), we say 2 Az’ if s<s’ and t>t’, and that z kz' if s<s"and ¢>¢'. (“A” is the

relation ““ <" turned clockwise 90°.)

ProrosiTioN 2.4. Suppose M € M2(z,) and let A =z, z1] and B = (z,, 23] be rectangles
such that if z€ A and 2’ € B, then z A2'. Define the process X by

X, =aM(ANR)M(BNR), z2<z,

where « i3 bounded and F,,\ ,,-measurable. Then:
(a) X 15 a right-continuous martingale, which is continuous if M is.

Suppose X is square integrable and M is a strong martingale. Then:
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(b) M and X are orthogonal and
@.=2f]  one g, (2.12)

Proof. Suppose 2= (s,8)<<z"=(s',t') and let D= (z,2"]. Notice that X(D)=aM(4") M(B’),
where A'=AN(R,,—R,,) and B'=BN(R,,.— R,,). Suppose z” is the lower left-hand
corner of A’. Then both « and M(B’) are F>.-measurable, so

E{X(D)|F2} = E{E{X(D)| 3%} F2} = E{aM(B') E{M(4")| F>-}|F2} =0.

A similar argument shows E{X(D)|J:} =0, hence X is a martingale.
Let us calculate

B{X(D)M(D)|3,} = E{aM(4’) M(B') M(D)| %.}. (2.13)

Write M(D)=M(A’ 0 D)+M(B' 0 D)+M(D—A4'—B'). Notice that « M(4’n D) and
M(A4’) are F: -measurable, hence,

E{aM(A"YM(B)M(A’' N D)| F.} = E{aM(A") M(A’ ( D) E{M(B')| F:,}| %.} =0.
Using the fact that M is a strong martingale, similar arguments show
E{aM(A"\M(B')M(B' nD)|3.}=E{aM(A'YM(B')M(D—A'~B')| 3.} =0.

Thus (2.13) vanishes, and Proposition 1.6 implies XM is a weak martingale, proving the
first part of (b).
Let us also calculate B{X(D)?|3,}=E{o2M(A')2:M(B')?|F.}. If 2" is the lower left-

1y

hand corner of B’ and if z,=2" v 2'”’, this equals

E{c?E{M(A'RM(B'?| F.,}| F.}
But J., and FZ, are conditionally independent given F.,, so

E{M(A'VM(B)|F..} =E{MA|F..} BE{M(B)| 3.}

=E{ f d[M]zm.}E{ f d[MJllzz.}=E{ f AL f d[M]ll:v'zS}.
A’ B’ 4’ B’

Thus, noting that F,= F,,,
E{X(Dy|3.} =E{oc2 f f d[MPdMY 192}. (2.14)

Checking with the definition of A’ and B’, we see that if we define A, to be equal to the
9 — 752903 Acta mathematica 134. Imprimé le 4 Aoiit 1975
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right-hand side of (2.12), the right-hand side of (2.14) can be written
E{A(D)|3.},
where A is the process {4,}. Thus X2— A is a weak martingale. qed

Let M € Mi(z,), so that in particular E{M3,} < oco. This is simply to assure ourselves
that products such as M(A)M(B) are square integrable. To simplify notation, assume
2o=(1, 1). We want to define the integral - MM for a suitably large class of processes.

Fix an integer » and divide R, into rectangles A;;=(z;;, 2,4, j;1], Where z,;=(27"1,
27"). If ¢, §, k and ! are positive integers with ¢ <k < and I <j<n, define

Yinall, &) = ala () I, (8), (2.15)

where « is bounded and Jzki-measura,ble. Define
Yiga- MM, =oaM(A;N R)M(Ay 0 R,), 2€R,,.
By Proposition 2.4, p; ;- MM ={yp,;,- MM} is a martingale and

P MM, = ffﬂ - "P?}kl(c, &) d[M]? d[M]}f- (2.16)

Furthermore, if m <g<n and r<p<n, let y,,,.(C, &) =1 JN(SF) Ag'(é), where £ is bounded

and sz-measura,ble. Then

<1/)1'7kl ’ MM’ wmmzr * -MM>2 = ffR £ Wijkl(z’ E) mear(c’ 5) d[M]g d[M]é (2‘17)

In particular v, MM and y,,,..- MM are orthogonal if (3, §, k, l) % (m, p, ¢, r). The proof of
(2.17) is immediate from (2.16) and the definition of (-, +>.

We say v is a simple function if it is a finite sum of funtions of the form v, for some
7. For simple functions ¢ we define p- MM to be the sum of the corresponding ;- MM.
One easily checks that this definition is independent of the particular representation of

as a sum. From Propositions 2.4 and (2.17)

w* MM € M2(z,) and is continuous if M is; (2.18)
<w-MM,X'MM>z=jL . W&, &) 1(E, &AM B AIM ;. (2.19)

Let D be the o-field on R% xR? x Q2 generated by the simple functions. We call P
the field of predictable sets—there will be no confusion with the class of F,-predictable sets
we have defined before, since the latter are subsets of R% x Q. We say that a process
p={p((, &): L, EERZ} is predictable if it is D-measurable as a function of (£, &, w). We say
that  is adapted if p(, &) is F;ve-measurable for each {, & In the following, these notions
will be used for processes of the form = {y({, &): £, £ <z} without further comment.
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Let £2.(z,) be the class of all processes y={w(, £): {, & < 2,} satisfying
0 YW o0

(1) y is predictable;
(2) v (&, €)=0 unless { } &
3) B{fSr, n, v £)AIMEA[M]E} < oo;

and let L%y be the class of all processes y on R% x R? satisfying (1), (2) and (3) for all z,€R?.
We give L3 1(z,) the scalar product

.0)=E {f f W d[M]%d[MJ;}.

Then, with the obvious identifications, L% (z,) is a Hilbert space and the simple functions
form a dense subset. The map y—>y- MM of simple functions into JM%(z,) preserves the
norm by (2.19), hence it can be extended by continuity to a linear map from £%/(z,) into

M2(z,). To summarize:

THEOREM 2.5. Let M be a right-continuous strong martingale for which E{M} } < co.
Then the mapping -y MM defined above is a norm-preserving linear map of L u(z,) tnto
M2(z,) which satisfies (2.18) and (2.19). Furthermore, w- MM 1is orthogonal to M.

Remarks. 1°. The fact that - MM is continuous, if M is, follows from Proposition 1.4.
Moreover, - MM 1. M is a consequence of Proposition 2.4 (b).

2°. In general, p- M M is not a strong martingale.

3°. We will often denote ¢ - MM, by §§r,«p, vdMdM. We will also write | § s« sypd Md M
and [§ 4. pypyd[MPd[M] instead of (Wl 4.5)- MM,, and [f..sp(C, &) x(C, & A MEA M)
respectively (4, B Borel subsets of R,).

4°. Cne can extend the integral to M €M% and y€ L34 and we will use this extension
without further comment.

We can get some insight into the integral ¢- MM by considering it as an iterated
integral of the form

‘/"MMzzf ( f Wz, f)dMs) da..
R, \JE,

Here, - MM, is the integral, first of an JFi-adapted process, then of an FZ-adapted pro-
cess. To make this rigorous, we must prove a type of stochastic Fubini’s theorem. We will
confine ourselves to the case of a martingale M € M¥(z,) such that [M]' and [M?] are
deterministic, i.e. independent of . (Incidentally, this is another case where we can prove
that [M1'={M12.) Then we have the following theorem:
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TuroREM 2.6. If € Ciyu(zo), then (S, ) is Fh-predictable and E{fp *((.£)d[M]E} < oo
for d{IM1? —a.e. £ <z, Furthermore, we can define a process {I(C), (€ R,,} such that

(a) I() is F-predictable;

(b) E{fn, 10 dIME}=E{[fn, ~n,v"( E)AMEA ML},

(€) I(0) = f, 9(C, £)dMs  for AMP — a.e. &

(d) fn,nI(C)dM:=w MM,

Remark. If we interchange 1 and 2 above, (d) becomes the ‘“‘stochastic Fubini’s theo-

2

rem :

L (L (¢, E)dMg)dM;= f (L 'P(C,E)dM;)dMEr-zp-MMz«. (2.20)

0. 0 RU

Proof. Let us suppose yp is of the form (2.15). If we adopt the notation of (2.15), we can
let
I(0) = a5 (8) M(As)- (2.21)

One sees by inspection that I({) is J3-predictable and that its integral is given by

I'Meu=0(M(A”)M(Ak,)=lp'MMzo. (2.22)
Furthermore,

E {f I*{) d[Mﬁ} = E{[MP(Ay) M(Du)*}-

Both « and [M]*(A;) are F} -measurable, while E{M(A,)*(F},} = E{{MT(A)[F},}, s0

1

z,» the above becomes

if we condition first by J

=E{(MTA) [MT(A)} =E Ufn . Y&, &) dIMBEdM ]E}-

Thus (a)-(d) hold for y of the form (2.15) and, by an easy extension, for simple p.
In general, if p€ L}/ u(z,), there exist simple g, such that

By taking a subsequence, if necessary, we can suppose that, for d[M}*—a.e. ¢,

E{L (Wa(C, &) — (S, E))gd[M]§}< 277, (2.28)
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for all large enough %. Let I,(J) =w,(L, - )+ M, and define

lim, o l, if the limit exists,

0 otherwise.

Then (c) holds and since each I, is Fi-predictable, so is I and (a) is satisfied. Moreover,

from (b), which holds for simple y, we have

E{L (lm(C)—In(C))2d[M}?}=EUfR . (m(Cs &) = pall, 5))2d[M]?d[M]§}-

Since {y,} is a Cauchy sequence in L£3/y(2,), {,} is also a Cauchy sequence and its limit

must be I. Thus we can pass to the limit to get (b). Furthermore, by Theorem 2.3,

20

I-M.,=1limI,-M
n—>00

where the limit takes place in L?. At the same time we have
In'MZo =Yn 'MMzo
and w-MM, = limy, - MM,,
n—>0

where the limit again is in L?, which implies that I- M, =y - MM,,.

§3. The representation of square integrable martingales

It is well-known that every square-integrable martingale relative to the natural fields
of Brownian motion can be written as a constant plus a stochastic integral. This is an
immediate consequence of Ito’s orthogonal decomposition of a square integrable functional
of a normal random measure into multiple Wiener integrals [8] and the remark of Ito (see
[8], Theorem 5.1) that in the particular case of Brownian motion, these integrals become
iterated stochastic integrals. Such a decomposition is no longer possible in the case of the
two-parameter Wiener process, at least if by stochastic integral one means the stochastic
integral of an adapted function. However, it is possible if one allows stochastic integrals of
functions which are J}- or JF2-adapted. More precisely, we have the following theorem,
which was recently proved by Wong and Zakai. For this section, the fields F, are those
generated by W: F,=o{W,, £<z}.

TreorEM 3.1. (Wong and Zakai) If M ={M,, J,, 2€R%} is a square integrable martin-
gale, then for each z€RZ,
M,=M,+¢-W,+p-WW,, 3.1)
where ¢ € L and € Ly



134 R. CATROLI AND J. B. WALSH

This was proved in [18]. Because we will need it in what follows, we thought it worth-
while to give an elementary proof here, based on Green’s formula (6.8) and the completeness
of the Hermite polynomials.

We begin with a simple lemma, which is a special case of a result (not given here) on
products of stochastic integrals.

If A is a rectangle, J, (resp. J,,) is the class of functions ¢ € % (resp. € Cw) such
that for each £€A4 (resp. £, £€A)P(£) is Gs-measurable (resp. p(, &) is G:vs-measurable),
where G;=c{W(4 N R:), & <&}

LEmMmA 3.2. Let A, and A, be two disjoint rectangles contained in R, such that A, U 4,
is a reclangle A. If $,€J 4, and 9, € J 4,4, (=1, 2), there exist $€J, and w€J 4 such that

(o [],. mawam) ([ swaws [[, mawan)
=L¢dW+HM¢deW.

Proof. We must verify that each of the four terms of the product on the left-hand side
can be written in the form of the right-hand side. We will only consider the fourth term. The

verification in the other three cases is similar, and in fact simpler. We have

Jj v, dWdW Jj Y dWdW = Jf pdWdWw, (3.2)
Ay % 4y Agx Ay Ax 4

where p =y’ +y", with ¢’ and ¢” defined by the following formulas in the case where A4,
is to the left of A,

, w2, 6) U p AWdW it ¢ €A,
(&)= (4inQ* (410 @y

0 otherwise,
(3.3)

W'(C, &) L w(& AW, L o o, E)AW s if (€A, and £€A,,
b = 1 2N :
0 otherwise,

where @, is the strip bounded by the axes and by the horizontal line which passes through (.

To prove this for simple functions it is enough to consider y, and y, of the form

vill, &) =°‘iIB;xB;(C, &),

where B,, B; are rectangles contained in 4, such that B; A Bi(1) and having lower left-

() B; A B iff {EB; and EEB; implies { A&
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hand corners at z; and zj, respectively, and where «; is a bounded gziw;-mea,sura,ble r.v.
{z=1, 2). In this case,

f f dedW=a1a2W(Bs)W(Bé>U W(B, N Q,)dW,+ f W(Ban»sz]
Ax A By Ba

= oy W(BL) W(B3) W(B,) W(B2)=JL ) WleWHA _ pedWaw.

For the general case, we consider two sequences of simple functions {y{'} and {y'}
converging to y, and y, in J,, 4, and Jy, 4, respectively. If we define y" by (3.3), starting
with ¢ and 7', we have by the foregoing that

ff wdedef wgﬂdeW=” P dWdW.
A x Ay Agx Ay Ax A

Each term on the left-hand side converges in L? to the corresponding term on the left-

hand side of (3.2). On the right-hand side, an easy calculation shows that
sl[[ w-vrcoaa <o [ol[[  w-vireona]
* Rz° X Rzo

eol[[ wmwrcoaa),

which implies that the right-hand side also converges to the right-hand side of (3.2). qed

Proof of Theorem 3.1. Notice that the representation is unique (up to negligible sets),
since if M =¢- W +yp - WW =4+ W+y'- WW, then

0=E{[(¢—¢')- W, +(p—y¢')- WW. %)
ZEU @-prows [ w-yrcs d:df}.

It is enough to prove that if z,€R% and if X € L% is an F,,-measurable r. v., then there
exist ¢ € L%(z,) and € L% w(z,) such that

X=E’{X}+f ¢dW+” pdWdW. (3.4)
Rzo Ezoxnzo

Indeed, if M is a square integrable martingale, let 2, =(n, n). Then there exist ¢, and p,
such that (3.4) holds with z, X, ¢ and y replaced by z,, M., ¢, and y, respectively.

Taking conditional expectations, if z <z,

M,=E{M,|F}=E{M,}+¢, W, +ty, WW.,.
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By uniqueness, with probability one, ¢, =¢, ,andy, =y, ; a.e.on B, and B, xR, |
respectively, so that (3.1) holds with ¢(&) =¢,(é), if §€ R, , and 9({, &) =y.((,§), f {,EER, .

Letz,€R? and divide B, into mn congruent subrectangles A, = (2,2, ;1] (1 =1, ...,m,
j=1, ..., n). Fix ¢ and § for the moment and set

W,=W((zy;, 2+ 2]).

Then {Wz, 2€R%} is a two-parameter Wiener process and if H(z, ¢) is the p'™ Hermite

polynomial, an application of Green’s formula (Theorem 6.1) gives, for p>1,

Hy(W,, |A,,|)=f H,_y(We, |Re])dWe + f H, \(We, |Rs])dJ,
Ry, Ry

where w=z,,; ;;,—%; and |A]| is the area of 4. The left-hand side is just H,(W(4,),
| 4;]) and the first term on the right-hand side is

| #osdyn R4 0 RDaW
Ay
The second term on the right-hand side can be written

_U; Lans (8 ) Hy a(W(Ay N Byye), 1Ay 0 Byyil) AW dWe.
{jx'4‘i
Thus, for each ¢, j and p>1, we have

H,(W(4,), 1A,,|)=f AW + J f Y AW dW, (3.5)
Ay Ay x Ay

where ¢7€J,, and $”€J,, 4. Since the Hermite polynomials form a complete orthogonal
system in L3R, exp ( —«%/2t)dx), if fis in that space for t = | 4,,], it follows that f(W(4,;))can
be written in the form of a constant (which comes from the term H,=1) plus a term of

the type given in (3.5). Consequently, if for each 1, §, f,;€L*(R, exp ( —a*/2| 4] )dx), we have

[T 1w d)=TITI (c,-,—l—f 7AW + f f w”deW).
i=1j=1 i=1j4=1 Ay Ayx Ay

Now this is a sum of a constant plus terms of the form

const,. H(f 7AW + ff v dWw dW) s
A". A”x A‘,

where the product is over some subset of {(,): 1<i<m, 1<j<n}. But each of these

products can be represented in the form (3.4). This can be seen, using Lemma 3.2, by induc-
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tion first on the rectangles belonging to a single column of the subdivision of R, and
then on these columns. Hence (3.4) is true for the X in L? of the particular form
Py f,(W(A4,,)). The passage to the X in L2 of the form f(W(4,,), ..., W(4,,)) and,

afterwards, to the general F,-measurable r.v.’s X in L? ig then routine. ged

One result which can be deduced either from Theorem 3.1 or directly (see [14]) is the

zero-one law.
COROLLARY 3.3 The field Mo« F2 v F2 is trivial.

Here is another immediate consequence of Theorem 3.1. Recall that, in this section,
the fields F, are those generated by W.

CorOLLARY 3.4. If M is a martingale such E{|M,|log" | M,|}< o for all zERZ, then

M has a continuous version.

Proof. This holds for square integrable M since the stochastic integrals in (3.1) are con-
tinuous (Theorems 2.2 and 2.5). The extension to the M for which E{| M, |log*| M|} <<

is immediate thanks to the maximal inequality (Theorem 1.2). qed

Note. We can not extend Corollary 3.4 to L!-bounded martingales. In fact, such martin-
gales can have oscillatory discontinuities and do not necessarily have a right continuous
version, as the following example shows. This is based on known examples and the observa-
tion that one can construct independent two-(space) dimensional Brownian motions { B}
and {ét} such that {(B,, Bt)} is F,,-adapted. To do this, define

B, = V2 (Wsap=Wiyes Wi —We o= Wi+ Wiapg), s=1,
B,= V2 (Wit = Wys , Wo o= Wap o — Wi 1+ Wip ), t21

Then {(B,, B,)} is F -adapted. Let f be defined on the product of the unit circle with itself,
and let
o=inf {s>1: | B;| =1}, v=inf {{>1: | B,| =1}.

If f is integrable, then
Mst=E{f(Bm Br)lg:st}: (11 1) <(8, t)’

is a martingale and if % is the biharmonic function on the product of the unit dise with

itself which has boundary values f, then
M, =h(B,, l?t) for 1<s<o¢ and 1<t<7.
We know we can choose f such that

limsup A(B;, B))=cc and liminfh(B,, B)= — .
sta, tdtT sto, thr
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This shows that limgy,, 4, M, doesn’t exist. (See [17], [9] and [2], which also gives some
further references.)

Now we can use this to construct worse examples in various ways. For instance, let us
notice that we can define countable families of independent two-dimensional Brownian
motions {B;,n=1,2, ..,s>1} and {f?t", n=1,2,..,t>1} by essentially the same trick
as above and in such a way that the processes {(B/, B, s, t> 1}%-, are independent and
F -adapted. Let

o,=inf{s>1:|B?|=1} and 7,=inf{t>1:|Br|=1}.

Then {(5,, 7,), =1, 2, ...} are i.i.d. and thus it is easy to see that, with probability one, the
family (c,, 7,,) is dense in {(s, £): s=1, ¢ >1}. Define

Mst= 212an{ﬂB: B':l)l:;at}

Then {M,,, s, t>1} is an L'-bounded martingale with lim sup=cc and lim inf= —occ at

each (o, 7,). These being dense, it follows that at each point (s, #)> (1, 1),

limsup M,,=limsup M, = o

(u, NGt (u, »s )
and liminf M,,=liminf M, = — oc.
(u, v)4(s. t) (u, (s, 1)

§4. Line integrals
Let T be a curve in R% given by the parametric representation:
{z:2=y(0), 0<0 <1}, (4.1)

where y: [0, 1]-R? is a continuous function. Let M € M? and suppose I' is an increasing

path, i.e. y(6) <y(¢’) if 6 <o'. We can define line integrals along I' with respect to M: just

notice that ch——e—f M., 0<o0<1, is a classical square integrable martingale and that

therefore one can define [ #oM = [i$(y(c))dN, as an Ito integral. But this works only for
increasing paths and wouldn’t allow us, for instance, to integrate around a circle. We will
take another tack which will allow us to define line integrals for all reasonably smooth
paths, including all increasing paths. We do this by first defining two integrals, denoted by
S0, M and {$8, M. One might think of these as the integrals of the stochastic differential
forms ¢8, M and ¢d, M. (We will use the notation [¢oM for line integrals to avoid confusion
with the surface integral ¢dM.)
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Let I" be an oriented curve with the parametric representation (4.1). There is a curve

I of the opposite orientation, which has the representation
{z:2=P(0)=y(1 —0), 0<o<1}.

DerinitioN. I' is of type 1 if it is an increasing path; of type Il if o<o' implies
(o) Ay(o’); and of type I’ (resp. I11') if I is of type I (resp. type 1I). We say I is of pure type
if it is of type I, 11, I' or 1I'.

Remarks. A type 1 curve is linearly ordered by ©“ <, a type 1l curve by ““ A ’. Horizontal
(resp. vertical) lines are simultaneously of type I and II (resp. I and II') but this will cause
no confusion. If I' is of types I or II, the fields F}, increase with o; if I" is of type I or IT’,
F2, increases with g.

Given a curve I' of pure type, we will define two processes on I', M} and ML, which
may be thought of as coming from the horizontal and vertical increments, respectively, of
M. A suggestive notation for this would be dM] =8, M and dM§ =0,M.

The easiest way to describe these processes is to introduce them first for stepped
paths. A polygonal curve I is said to be a stepped path if its segments are either horizontal
or vertical. Let I" be an increasing stepped path with successive horizontal segments
hy=lay, by}, ..., b, =[a,, b,] and vertical segments v, =[c;, d;], ..., vp=[cn d,], and with
initial and final points z, and z, respectively. Suppose, for the moment, that M is continuous
and define

My (z)=

n
j=

1

(M, = My) and ME@)= 3 (M= M) (42)

One could proceed to define M1 and M} for arbitrary type I curves by approximating them
by stepped paths—and we shall do this later—but there is a more direct way. If zER?,
let H, (resp. V,) bo the horizontal (resp. vertical) line segment connecting z and the f-axis
(resp. s-axis). If z€T", denote by D. (resp. D?) the closed area bounded by V., V, (resp.
H,., H,), I and the axis, and let D}=D!—V, (resp. D:=D%—H,,). Then, according to
(4.2), we have

Miz)=M(D}) and ME(y)=M(D3).

Thus, suppose I' is a curve of pure type with initial and final points z; and z, respectively,
and define D! and D? as above.

DEriNiTION. Let MEME If I is of type I or 11 and i=1 (resp. of type I or 11' and
i=2) put
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MT(z) = M(D%),
MT(2)=E{M(D)|3.}, =z€l. (4.3)

Note that D! =D+ (Diz/—Di) and, if i=1, for instance, that this last term is the
union of (D; —D;)NV, and (D}, —D})—V,. M being a martingale, E{M((D; —D3)
=V.)| F:}=0. Thus, if M((D} —D;) N V,)=0 (resp. M((D?,—D3)n H,)=0),

Mi(z)=M(D;) (resp. Mi(z)=M(D3)). (4.4)

This is the case if M does not charge vertical (resp. horizontal) lines, which happens for
example if M is continuous, or if I' contains no vertical (resp. horizontal) segments, or if M

simply does not charge I.

Prorosition 4.1. If T is of type I or II (vesp. I or II'), then {M1 (2), F},z€T'} (resp.
{M T, P, z€T'}) is a one-parameter square integrable right-continuous martingale, which is
continuous if M is.

This is immediate, except for the continuity. Before tackling that, we give some

simple approximation properties.

ProPosSITION 4.2, Let " and T be curves of type I or II (resp. I or I1') both having
initial point z, and final point z,. Suppose T lies above (resp. on the right of) . If A is the
open area enclosed by I' U T,

E{M ()~ M)} =E{KM>(A-T)} (i=1,2). (4.5)
This is immediate since M(4 —I')=MT (z;) — M}(z,). Two direct consequences are:

CoROLLARY 4.3. Let I" and I be curves of pure type with the same initial point z,
and final point z;. If M does not charge T U TV and if A is the area enclosed by ' ULV,

E{(MI"(z)— MT(z))"} = E{<M> (4)} (i=1,2). (4.6)

COoROLLARY 4.4. Let T’ be a curve of type I or II (resp. I or I1I') with initial point z,
and final point z;. Let {",} be a sequence of curves such that ', lies above (resp. on the right of)
T. If T',, converges to T, then M n(z,) converges to M{ (z,) in L? for i=1 (resp. i =2).

Note that a curve of pure type can be approximated from either above or below by a
stepped path. For instance, if I is of type I, choose points z,<2; < ... <2z,=2; onI".Then
let I'+ and I'- be the upper and lower parts of the boundary of U J-¢'[2;,2,,4]. The distance
from any point of I't or I'~ to T is less than sup,|z;,, —z,|. By taking finer and finer parti-
tions of I, we obtain sequences {I'%,} (resp. {I'; }) of stepped paths decreasing (resp.increas-
ing) to T".
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Now suppose I is of pure type—say type I—and let {I',} be a sequence of stepped
paths decreasing to ' as per Corollary 4.4. We may suppose, by taking a subsequence if
necessary, that E{(MI~(z;) — M7 (2,))2} <2-". If 2y =(sy, {,) and 2, =(s;, ¢,), define for s, <s <s;,

N (8)=E{M{(z) [ Fo}.
N(s) = B {MT(e)| Fo}. (4.7)

By the maximal inequality, N ,(s) converges uniformly to N(s). By (4.4)—see also (4.2)—
if M is continuous, so is N,(s) and it follows that N(s) is too. But if (s, #)€L, then
MY (s, t)=DN(s), hence M (z) is continuous and we have proved Proposition 4.1.

Note that it is only for type I curves that we have simultaneously defined M T and MT.
Denote the restriction of M to I’ by MT: ML ={2,, 2€T'}. Then we have:

ProrosiTioN 4.5. Let T' be an increasing path with initial point z,. Let M, N € N*
and suppose M does not charge I'. Then

(a) ML LNY, ie. {MY(z) NL(2), F.,2€T'} is a martingale;
(b) MY~ ML =Mi(z)+M5();
(6) (MO, =<Mi),+ <M,

Proof. Let z<7 and set A=D. —D. B=D?—D? where D is defined as before.
Notice that since I' is increasing, M} and NI are adapted. Thus

E{M}(2) N(B)|F.} = E{M{(z) E{N(B)|F2}| F.} =0,

since N is a martingale. Similarly E{M(4)NY(z)|F.}=0. It follows that, since M7 (z') =
MY (z)+M(A4) and N5 (z')=NE(z) + N(B),

E{MIE) NI 3.} = Mi(2) Ni(z) + E{M(A) N(B)|F.}.
We must show the last term vanishes. If R< 4 is a rectangle with upper left-hand corner &,
E{M(R)N(B)|3,}=E{M(R)N(B0 R;)| 3.} + E{M(R)N(B— Ry)| %.}.
The first term vanishes, since BN R;< R, and E{M(R)| Fi} =0, while the last term vanishes

because E{N(B— R;)|J3}=0. As M does not charge I, we can write M (4) =lim ,_,c M(A4,),

where 4, is a union of rectangles, so that

E{M(4)N(B)| 3.} =lim B{M(4,)N(B)| 3.}=0.

To see part (b), just note that if we take z=z, above,
M, —M,=M(AU B)=M(4)+M(B)=ML(z)+ ML),
for M(A N B)=0, since AN B<T'. Finally, (c) follows from (a) and (b). ged
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If T is of type L or IT and i=1, or of type I or II' and i =2, then MT ={M[(z), F.,
2€l'} is a one-parameter square integrable martingale. Let (M!) be the F:.-predictable
increasing process associated with MT. If " is of type 1 or IT and if ¢ = {¢,, z€I'} is F}-pre-
dictable and such that [¢$2d(M}><co a.s., then one can define the Ito integral with
respect to MY in the usual way:

é-MY(z), z€T.

Since there is some danger of mistaking this for the integral ¢-M, we will denote it, in
general, by

f ¢oy M, z€T, (4.8)
rz

or just (rdd, M for the integral over all of I'. Similarly, if I’ is of type I or II' and
¢={¢.,2€I'} is F2-predictable and such that fr$2d{ML> <oo as., we can define ¢- M7 as

an Ito integral, which we denote by

f $o, M, z€T. (4.9)
r,
If I is of type I' or II' (resp. I’ or II), we define

LMM: —fqualM (resp. frqsazM: —ffd@M), (4.10)

where T is defined in (4.2). Finally, if I" is of pure type, we let

f qsaM:J' ¢a]M+f $e M. (4.11)
r r T

Let us remark that the definition of {-$8; M can be immediately extended to compact
curves which can be broken into a finite or countable number of curves of pure type. We
will say that a curve is piecewise-pure if it consists of a finite number of curves of pure
type.

If ' is an increasing path, one can define {¢éM directly, as discussed at the beginning
of this section. If M does not charge I', the two definitions agree thanks to Proposition
4.5.

We close this section with a theorem which tells us when lim,_ o, fr,$,6, M = 0, M.

Let I"'and T',, n=0, 1, 2, ..., be curves of the same type, either I or II, all having the
same initial point z,=(s,, t,) and final point 2z, = (s,, ¢;) and such that I" and T', lie entirely

below T'y. Denote the area enclosed by I'UT, by 4,. For s=0 and any curve A, let v,(s)
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be the point (s,7), where tT=inf {t: (s,t) €A}. If M€ M?, define martingales (relative to
{F%}) N and N, by (4.7). Then

N(sy=Mi(vr(s)), sy<s<sy,
N(s)=MT*wpr (s)), n=0,1,2,...,8<8<s,.

ProPOSITION 4.6. Let M € M and suppose that {$(2)} and {$,(2)}, n=1, 2, ..., are F:-
predictable processes defined for z in I' and T°, respectively. Define functions w and v, respec-
tively by y(s) = (vr(s)) and ,(8) =da(vr, ($)), 89 <8 <. Suppose that

(8) lim,,eE{M*4,)}=0;

(b) E{J‘ wn(s d<N0>s}< b E{fsow (s) d<N0>s}< bt

(¢} limp,ekE {jSo 1/’71 (8)— 1/)(5))2 d<N0>s} =0.

Then
lim an@]M:J- $o, M in L2
r

n—>00

Proof. Suppose for the moment that I'y and I' are stepped paths. Using the fact that
I’y lies above I'" and that M is a strong martingale, we see that N and N, — N are orthogonal.
This remains true in the general case, sinee then one can approximate I'y and I' by stepped
paths and use Corollary 4.4 to pass to the limit. Similarly, N, and Ny — N, are orthogonal.
Thus

Ny ={ND (N = N> =(N,> +{ Ny = Nop.

It follows that d{N><d{(N,> and d{N,><d{(Ny>. Since (N —N,><2{N>+2(N,>, we
have d{N — N> <4d{(N,>. Now

qualM—f ¢81M=flde~flqp,,dNn
r r, Sa S

=fx(w—wn)dNJrfl(wn—tp)d(N—N,,Hf 1tpd(N—Nn).

So

Each of these integrals tends to zero in L? as n—> co. Indeed,

E{(f‘(w wn)dN)} {f (v— w)d<N>}<E{f'(w*wn>2d<No>},

which tends to zero by hypothesis. Similarly

E{(f l'(%*w)d(N*Nn)) }:E{f l(wn—w)2d<N—Nn>}<.4E{f l(wn—w)2d<N0>},
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which also tends to zero. Finally,

E{(flwd(N—N,‘))z}=E{f:lwzd<N—Nn>}.

Write 9* =2l (jp1<my + 92 Lgip1>my <M + 92 (141> my- Then the above expectation is

<m’E {Js‘ d{N — Nn>} +4E {J‘Sl W21<1w1 >m} d<N0>}

= ng {M2(An)} + 4E {f l 1/}21(|W|> my d<N0>} .

Let first » and then m tend to infinity. The first term goes to zero by hypothesis (a) and

the second by the dominated convergence theorem. ged

Our main applications will be to the case where M = W. In this case, d{N,> =tds, so

the conditions become simpler.

COoROLLARY 4.7. Suppose ¢ ={4,, z€RL} is an Fi-adapted measurable process such
that

(a) E{¢Z} is bounded for z in compact sets;
(b) for all s,t,lim;; B {(ds — )’} =0.

If T'and T',, n=1, 2, ..., are curves of type I or 11, having the same initial and final
points and such that the area enclosed by " and T, tends to zero as n— oo, then we have

lim f ¢81W=f ¢, M in L2
n—=0 J T, r

Of course the symmetric versions of Proposition 4.6 and its corollary hold for integrals
with respect to &, M and 9, W. In particular, if ¢ is F.-adapted and measurable, we can
apply Corollary 4.7 to both 8, W and &, W to get the following result:

COROLLARY 4.8. Suppose ¢ ={¢,,2€R%} is an adapted measurable process which is
continuous in the L2mean. If T', and I are curves of the same pure type, having the same
wnatial and final points and such that the area bounded by I' U T, goes to zero, then

limf ¢a,.W=f 6o, W in L* (i=1,2).
r, T

-0
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§5. A mixed integral

Let M € M*(z,). Let H,, be 'the horizontal line segment connecting (s, t) with the ¢-axis
and consider the integral

I,,= $o, M. (6.1)
Hgy g
Under suitable conditions, which we shall make precise shortly, we can integrate I, . with
respect to ¢ to get an iterated integral

to [*So def ty
[ [“sota™ [t
JO JO [

Note that it would make no sense to integrate over ¢ first, then with respect to 8, M, for
0, M depends on ¢.

Recall that the process [ M ]! is the unique process which is increasing and F,,-predictable
in the first parameter and such that M2 —[M]' is a 1-martingale. Suppose we have chosen
[M];; measurably in the pairs (s, £), which we can certainly do if, for instance, M is a strong

martingale, for [M]! is then right-continuous. If ¢ is a positive measurable process, then
to So
f (f ‘Isst as[M]it) dt
0 0

ProprosiTioN 5.1. Let M€ M%(z,) and suppose that ¢ is Fi-predictable and satisfies
B{[& §& 6% d [ M dt} < oo. Then there exists a measurable process {I,, z <z,} such that
(a) for a.e. (Lebesgue) fixed t <1,

makes sense,

P{Ist-—-f b0, M, for each s<so}=1,
Hst

and consequently {1, Fs, s<s,} is a one-parameter right-continuous martingale, continuous
if M is;

(b) E{sups<s, I%} is a.e. finite and is integrable in ¢;

(©) B[S Lo dt} <t, B {G §§ $5 d [ M . dit}.

Proof. Once we know {I,} is a mesurable process satisfying (a), (¢) follows from the
Schwarz inequality and the fact that, for a.e. £<t,,

E{I?.,t} =E{fs. ¢§t ds[M]ét}-
0

The proof of (a) is straightforward. If ¢ is a simple function, writing down the integrals
10— 752903 Acta mathematica 134, Imprimé le 4 Aot 1975
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explicitly makes it clear that it holds. If ¢ is F.-predictable, we can, by now-familiar argu-
ments, find a sequence {¢,} of F;-adapted simple functions such that

E {J"- fs‘ ($n— $)d (M1, dt}—* 0.
o Jo

By taking a subsequence, if necessary, we can suppose that for a.e. ¢.
Se
EU (bn~ ¢)2ds[M]§:}< 277
1]
for large enough =. It follows that for a.e. ¢, L," ¢.6: M converges a.s. uniformly in s to
Ju, 2 M. Thus, define
lim .0, M if the limit exists,
Iét= n—>00 J Hy,
0 otherwise.

Then (a) clearly holds. Furthermore, by the Doob inequality, for a.e. ¢,

E{supI%}<4E{I%,}=4E {J‘S' b5 ds[M]st}a
0

$K 8o

which is -integrable by hypothesis. ged

Se [t te
f f $0, Mdt = f 1,.dt,
0 0 0

where I is as in Proposition 5.1.

Define

Remarks. By symmetry, one can also define {3 [t ¢ 8, Mds for F2-predictable ¢. One can
think of 8, Mdt and &, Mds as stochastic measures on R%. Accordingly, we will often use
notation such as ||, 43, Mdt, where A<R?.

COROLLARY 5.2. With probability one, the process || g 0, Mdt is right-continuous in

z and is conbinuous if M is.

def
Proof. We have |I,,;| <sup,c,|I,| ==, Using (b) and Fubini, we see that S,(w)
is integrable—even square integrable—for a.e. w. Choose w such that 8,(w) is integrable
and I (w) right-continuous in s for a.e. {. By dominated convergence, if s’ | s and ',

then
¢ t
f Is,v(w)dv»f I (w)dv.
0 0

If M is continuous, so is s— I, for a.e. t, and the same conclusion holds as (s, t')—> (s, t).
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§6. The measure J,, and Green’s formula

If M={M, 2€R2} is a martingale, it induces a measure on R% which is not, except
in trivial cases, a product measure. Thus, in general, dM =9, M0, M. But there is a measure
which does correspond to &; Mo, M and which we will call J,. Let

1 if ¢ ﬁ &,
0 otherwise.

p(s §)={

Suppose M € M§(z,) is continuous. Then [M'=[M ]2 by Theorem 1.9. Denote the common
value by {M>; this is permissible by the remark following Proposition 1.8. Define

JuR)=yp- MM, 2z<z,

It is not obvious from this formula that J,, induces &, Mo, M. Let us look at it from a
slightly different point of view. Divide R, into squares with corners at the lattice points
2, =(27"48y, 27"58,), 1, =0, 1, ..., 2". Let A;;=(2y;, 2,1, ;4] and put

015=(20j» 21,3411 a0d ;= (249, 2144, 4]

Define
ij(2) =M(0; N R,) M(e; N R,)
and
%1
JIu(z)= ZOJZ?(Z)
i j=

This is an approximation to y- MM, and in fact J3—J,. Furthermore, it is clear that

J"M(Aﬁ) = M(ey) M(3,),
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which gives the connection between J,; and & M8, M, for M(g;.) is the increment of M
OVer zyz;.1,; and M(d;;) the increment of M over z;2; ;1.
Let us calculate | &, M dM. Approximate M by M" defined by M7 =M, , ifz€A;, and

M?”=0 on the axes. Let us write:

2n_1 2"-1
f .MndM= zoMaij'M(Aii)z ZoMz‘j(M(Ei'j+1) “M(&U))
R, i,j= i,)=

om_1 2n_1
= jZo (M, oy M1 501) — M, M(ey)) + 1 Zo (M, — M, ,.,) Mei ;1)
i,j= s1=

The first sum on the right telescopes in j, while in the second, M o~ M. ~ M(6;).

Writing M (g, j41) = M(ey) + M(Ay), the right-hand side becomes:

Hitl

2"_1 2"-1 2r-1

> M, o Mg, ) — 2 M(6,) Mey)— Z M(6,,) M(Ay).
-0 1.5=0 1,7=0

We can identify all three of these sums. Indeed, if H, is the horizontal line segment

joining z; to the t-axis and if we define

Sty T

—_ Mynig, oo if SE(277i50. 2772 + 1) 5],
0 if s=0,

M((SH) if ZGAU,
0%(z) = .
0 on the axis,

the above can be written in the form

f Mo, M — J3y(z) — f o"dM.
H,

29 Rzo

Thus,
") = | Mme, M- f M"dM—f o"dM. (6.1)
Ry, R,

H,,

Now,
sup (M?— M,)*<2 sup (M7)*+ 2sup M:< 4sup M3,

n, 2< 2o n,2<2o 2¢2g Z<2g
hence, by Theorem 1.2,

E{ sup (M} — M,)*} < const. E{M3}< oo.

n, 2<2y

In view of the continuity of M, sup,.|M?— M, -0, as., so the above implies that
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E {sup,.. (M} — M,)*}~0. Furthermore

E { f r— M>2d<M>} < B {sup (M7 — MY,

o

< (B {sup (M7 — M)} B{(CM.)%)"™ (6.2

But as (M) =[M)', {{M), 2€H,} is the increasing process associated with the ordinary
martingale {M ., z€ H, }; hence by Burkholder’s inequality (see [5], p. 276), E{({M),,)*} <
const, B {M?3}, so the right-hand side of (6.2) tends to zero. Similarly

v {f P )261<M>} < (B {sup (A2 — DL} E{(MD.))"™,

2eH,

which tends to zero. Turning to the last term of (6.1) and using the strength of M, we get

2
B { ( f o a ) } < B {sup M(6,*M>..} < (B {sup M(3,)'} B {(CM>, )",
Rz 1,7 1,7

which tends to zero because of the continuity of M and the fact that

E{sup M(8,)"} < const. E {sup M3} < const. E {M3 } < .
n,i,j

We conclude from this that the right-hand side of (6.1) converges in L?. The left-hand

side converges in L* to J,(z,), giving us

Trl2o) = MalM—f MdM. (6.3)
R,

Hyy

But now since M is continuous and (M) =[M7], the line integral in (6.3) is just
Y M3, — {M>,). Therefore,

Tulzo) =3 M2, — f MM~ KM, (6.4)
R,

Remarks.
1°. Tf M =W, we will write J instead of J,.

2°. Jy is orthogonal to M in the sense that the product M.J,, is a weak martin-

gale. In general, .J;, is a martingale.

3°. For each z<z,= (s, ,), according to Theorem 2.5,

<JM>z=ffR . Liprgy A M d{ M.
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In what follows, we will denote the element of measure d{Jy >, by d (M, d, (M),
so that if ¢ € L7, (zo), we have

E {(¢ * JM)E,} = E {f ¢§t d5<M>st dt<M>st} . (6.5)

Note that
ds<M>stdt<M>st < d:<M>st¢ X dt<M>s, L (66)

The classical version of Green’s theorem requires the existence of partial derivatives.
In our context, if ® ={®,,} is a process, the analogue of the existence of a partial derivative
relative to ¢ is the validity of the following equation:

(I)s,=(Dso+f ¢62M+f pdv, (6.7)
Va

Vll

where V, is the vertical line segment connecting the point (s, t) with the s-axis, and where

¢ and ¢ are F,-predictable processes such that

£ t
f $2,d{M>,< o a.s. and f [ ldv< oo as.
[} [\]

If (6.7) holds for a fixed s and each t<t, we say that ® has stochastic partial derivatives
(or, more simply, stochastic partials) ¢ and y with respect to (M, t) along the line Vg, If (6.7)
holds for each s<s, and t<t,, we say that ® has stochastic partials with respect to (M, t)
tn the region R,. The stochastic partials relative to (M, s) are similarly defined.

If f(x; s,t) is twice continuously differentiable in x and continuously differentiable
in s and ¢, then, by Ito’s formula, the process {f(Wy; s, t), s, >0} has stochastic partials
with respect to both (W, s) and (W, t) everywhere.

One special case that deserves note is when @ is a martingale. In that case, one can
see that the function g in (6.7) vanishes and we say then that ® has a stochastic partial ¢.

We will make one further restriction: we suppose for the remainder of the section that
the increasing process (M) is deterministic, i.e. independent of w. This is true for M =W,
for instance, but is in general extremely restrictive and will be in force for this section

only.

THEOREM 6.1. (Green’s formula for rectangles) Let z,=(Sy, t,) and suppose that the
processes ¢ and yp are F-predictable and satisfy

Se [te
E {fo J;) ¢§t ds<M>st., dt<M>Sn t} < o
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8o f*to
EU f witds<M>s,odt}< .
0 0

Suppose in addition that the @ is an F.-predictable process, having stochastic partials ¢ and p
with respect to (M, t) along V., for d{M) ;. — a.e. s < 8y, and such that B { [ OXd (Mg } < co.
Then if A< R,, is a rectangle

and

@61M=f®dM+f ¢dJM+J‘f wo, M dt, (6.8)
24 4 4 4
where the line integral is taken in the clockwise direction.

Proof. Let A =(z,, z,], where z; =(s;, £,) <<z, =(8y, {3). We can assume that ® =0 on
the lower edge of 4. Indeed, if we write ®;, =D, + (D, — D)), (s, t) €A, then since Dy, is
independent of ¢,

f (Dstn dMst = f (Dstl ds(MSts - Mst;)’
A §1

which is just

[ uan
94

Hence (6.8) holds iff it holds for {®,,—®,}.

We first suppose ¢ and y are bounded simple functions. We can write 4 as a union of
subrectangles 4,; on which ¢ and y are constant. Notice that

O, M=2 Qo M,

24 i Joa;

since the line integrals over the interior portions of the boundaries of the 4; cancel out.
Since the right side of (6.8) is the sum of the integrals over the 4,, it suffices to prove (6.8)
for A =4,, or equivalently, for the case where ¢ and y are constant on 4. If these constant
values are ¢, and yp, respectively, we can write

Oy =¢(M;—Mg)+y(t—1t), (s t)EA. (6.9)

Note that Jy(A) =Jy(Bs,1,) — T Bs,1,) —J s Bs,e,) + I By,,), s0 that, by (6.3),

f $dd = f ¢1M31M—f b MdM = f ¢1(Mst—Mstl)alM—-J $o(My— My )dM,,.
A 0A A 04 A
(6.10)

If {N,} is a continuous martingale with a one-dimensjonal parameter set, Ito’s formula
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gives
d((t—t,)N)=N,dt+(t—t,)dN,.

Applying this to N,=M,,,— M, , below, we get
ta
fA'I)L(t —4)dM = wlft (t—t)d(M,, — M)

ta
= V)l(tz —t) (Ms.t, - ‘Msltu) - wlﬁ (Msgt - AMs,t) dt

ty s
=f it —t) alM—J (f WldsMst) dt. (6.11)
a4 ty $1

In view of (6.9), we need only add (6.10) and (6.11) and rearrange the terms to get (6.8).
This proves the theorem for simple functions. Before completing the proof, we need a

lemma.

LeMma 6.2. Suppose that ¢ and y satisfy the conditions of the theorem and that X and
Y are F,-predictable processes such that, for d(M>.,,—a.e. $<s,,

X“=f $0, M and Ys,=f pdv,
Vll

Vet

for all ¢ <t,. Then we have

E{( f XdM)2}<E{( f XalM)2}< f ) JtnE{¢§t}ds<M>stad,<M>m; (6.12)
R, H, 0 Jo

Sp to
E{(f YdM)z} < tof f E {3} d My, dt; (6.13)
R, 0 0

E{( f Y8, M>2} <ty j N f " B {ph)d, Moy, dt. (6.14)
H,, o Jo
Proof. We have
B{X%) =E{( f $s M)z} - E{f &, dv<M>W} < f "B {82} oM,
Ve [ 0

where we have used the fact that (M) is deterministic. Similarly, by the Schwarz ine-

quality,

Brty=B{( [ vaao) | <u [ Bluian
0 I}
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Then (6.12)-(6.14) follow from this and the fact that
2
E{(f XdM) }=f E{X*}d{M>
Rzn Rz,,

E{(L X, M) } - f " B{XLY A, qed

and

0

It is now easy to finish the proof of Theorem 6.1. If ¢ and y satisfy the conditions of

the theorem, we can find sequences {¢,} and {y,} of bounded simple functions such that

So *lo
J; ‘fo E{(¢n(sa t) - ¢(87 t))z} ds<M>sto dt<M>Sut-—) 0

So to
. 7], B tnte - v oy acanaao.

0

Then (6.8) holds for

def
D, (s, t)=f ¢n62M+f podv.
Vat

Vst

But by Lemma 6.2 and (6.6), we can pass to the limit, as n— oo, to see that (6.8) holds for ®.
ged

THEOREM 6.3. Let D= R,, be a region whose boundary 8D is piecewise-pure. Suppose
that M does not charge 6D and that ©, ¢ and yp satisfy the conditions of Theorem 6.1.
Then

f cbalej chM+j ¢dJM+H wo, M, (6.15)
en D D D

where the line integral is taken in the clockwise direction.

Proof. Let us break 0D into a finite number of curves I';, : =1, ..., p, each of which is
of one of the types I, II, I’ or II'. Approximate each I'; by stepped paths I'7, of the same
type as I'; and having the same initial and final points as I';, We can do this in such a way
that I'? and I'} intersect at most at their end points. Let D" be the region bounded by

U;T'7. We can write D" as a finite union of disjoint rectangles 4; and apply Theorem 6.1
to each of the 4; separately. But notice that

f Oo, M =2 Qo M.
aD"

1 Joa,

Thus, if we add over the 4,, we get (6.15) with D replaced by D".
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Now, for each 4, let the open region B,, enclosed by I'; U '} satisfy lim sup ., B;, =@.
By Proposition 4.6,

lim f o, M = ®o, M in L
T-—>00 I‘? r;
hence

lim | ®o,M-— f ®o, M in I2.
¢D

n-»0 J § D"

But now the surface integrals over D" on the right-hand side of (6.15) clearly converge, so

we can pass to the limit, as n > oo, and the proof is complete. qed

The symmetric equation to (6.15) is
—f ®62M=J (I)dM+f $dJM+ff $0, M ds, (6.16)
oD D D D

where here we suppose that @ is F,-predictable, has stochastic partials 4: and ¢ with respect
to (M, s) and that the hypotheses analogous to those of Theorem 6.1 are satisfied. Sub-
tracting (6.16) from (6.15) gives

f cDaM=f (¢—4§)dJM+ff walMdt—ff $0, M ds. (6.17)
2 D D D

If @ is known to be a martingale, then both ¢ and ¢ must vanish and (6.17) simplifies

considerably to

f oM = f (¢ — $ydd,,. (6.18)
oD D

If M =W, then ¢ and ¢ must be equal by Theorem 9.12. This may be true in general.

One application of this theorem is to get a “‘two time-dimensional version” of Ito’s
formula. We consider only the simplest case. Suppose f is four times continuously differenti-
able on R and f"(W), (W)€ L%. By Ito’s formula along the line ¢ =constant,

(W)= f(0) + fs F(W)d, W+ f‘) fo (W) du. (6.19)
0 r

Applying Green’s formula (6.15) to the stochastic integral, the right-hand side of (6.19)
becomes:

¢

[ f 2P W, Wuv] dv+L f F1(W o) du.
02 2 Jo

{6.20)

(]

f(0)+f f’(W)dW+f f”(W)dJ+f
Ry Ry
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Now, by Ito’s formula, we can write

L _st”' fslv | N
3 W= [ W d Wt [t Wogaus ] [ p e 621

U

If we solve this for the integral involving f” and substitute the resulting expression for

the term in brackets in (6.20), we get

AW ) = 1O+ f FORYaw + f POny

_1 f [f”(W)+ﬂ’fW(W)] dudo—L f (W) (udv — vda), (6.22)
2 Jg,, 2 2 Jor,

which is the formula we advertised. We consider that it is less useful than Green’s formula

and Ito’s formula used separately, but it has some applications. Here is one.

THEOREM 6.4. There exists a process {$(x, s, 1): z€ER, (s, t)ERL} which is a.s. jointly

continuous in x, s and £ and such that, for a.e. w,

st
j f uvf(Wu,,(w))dudv=f é(z, s, t; w) f(x) dx, (6.23)
oJo R
for each bounded Borel function f on R and each (s, t)ER%.

Proof. Let g,,€C*R) be of compact support and such that gy (-)~3e 2L, . 2vg(-)-
Then g, satisfies the conditions which allow to apply (6.22). Solve this equation for the
integral of gLy:

gL W) AW + 4 f Gy AT

Ryt

f w0 e W) dudv = 4¢,,(0) — 49, (W) + 4J
Bst

RS!

- 2f Goa W) (udv — vdu) — 2f
Ry

ger( W) dudv. (6.24)
Ry
It is easily seen that we can actually let guy(y) =3e'I,_, 14(y) without affecting the
validity of (6.24). Now let >0 and note that lim,_ 4 g..(y) =[(y —2)*13, lim,0 gre(y) =
1y —=)*)? and lim, o g.(y) =(y —2)*. It can be verified without difficulty that each of
the integrals on the right-hand side of (6.24) converges and that the limit and the integral

can be interchanged. It follows, that the left-hand side converges as well and we have
def

.1
oz, s, ) =lim — f w o< wuv<1+s}dudv
e—)028 Ry

=§[( —x)+]3—§{(WS,—x)+]3+2f [(W—x)+]2dW+4f (W —2)"dJ
Ry

RH

——Zf (W——x)*(udv—vdu)—-2f (W — )" dudy. (6.25)
ORy; Ry
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Now ¢(x, s, t) is clearly continuous in (s, t), by Theorem 2.2. In fact it is continous in the
triple (z, s, t). This is clear for all terms except possibly the two stochastic integrals. If
x, y €[ —x,, 2] and z,€RZ, then, since [(W —z)* —(W —y)*| <|z—y|,

E{jgp (W =) P W= [(W—y) - Wy <IBE{([(W —2) - W, — (W —9)" ] W.)*}
= 16f E{((W —2); P — (W —y): )*} dz < const. (x—y)*,
R‘u

where the constant depends on 2, and z,. By a theorem of Kolmogorov, for each z, x—~
[(W —x)*]2- W, has a continuous version, and in fact this version will be equicontinuous
as z varies in a bounded set. Thus since we already know that z—[(W —z)*]2- W, is con-
tinuous, it follows that (z, z)~>[(W —z)*]?- W, is continuous. Exactly the same reasoning
holds for (W —x)*-J_, which establishes the continuity.

Now let us verify (6.23). Let k,, be in C*(R), of compact support and such that ALY (y) =
Ye 2[5 1, . raly)de’. Replace g., by ke, in (6.24), let ¢—~0 and note that ki (y) converges
to I, »(y), while k., k., and h; converge to their limits denoted by A,, k; and k;, respectively.
Since the limits and the integrals can be interchanged, (6.24) becomes

f wlq (W) dudvo =4k, 0) — 4h (W) + 4 f hy(W)dW
Ry

Ry

+ 4f Ky (W)dJ — 2f B(W) (udv — vdu) — 2 f RAW)dudv.  (6.26)
Rg aRl‘

Rat

But h,(y) = §§ 9.{y)dx’, where g (y)=1[(y —2)" %, and it is easily seen that we can change
the order of integration of each of the integrals on the right of (6.26), e.g.

J ho(W)AW = f (ng;.(W) dz') dWw = JI(J g (W) dW) dx’.
nsl Rat Y 0 Rs(

Do this to each term and compare with (6.25) to see that
f wol, o W) dudv = JRI o oY) ¢y, s, 1) dy. (6.27)
Ry

This verifies (6.23) in case f(y) = Lo, .)(y)- It follows that, for a.e. w, (6.23) is true simultane-
ously for all f of the form I, ,,,, where x, and «, are rationals. Since both sides are linear in
{, a monotone class argument shows that (6.23) holds simultaneously for all bounded Borel

measurable funetions. qed
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Now ¢ differs from the local time by the factor uv appearing on the left-hand side of
(6.23). This may or may not seem awkward. However, we can define the local time at x

up till time (s, ¢) by
1
L(x, s, t)= f E}du.vq&(x, u, V).

R

Remark. The existence of a local time can also be proved starting with the local time

Ly(x, s) at z for the Brownian motion {W,, s€R,} and setting
1
L(x,s,t)= f L(z, s)dv.
0

One can show that L(z, s, t) so defined is jointly continuous in #, s and £.

§ 7. Increasing processes associated with line integrals

In this section and for the remainder of the paper, we suppose that F,=c(W, & <2).
Let X={X, z€RZ} be a square integrable martingale which vanishes on the axes. It
has a continuous version and we know, by the Wong-Zakai theorem (Theorem 3.1), that
there exist ¢ € L3 and ¢ € £y, such that

X=¢-W+y WW. (7.1)

As we have seen, the increasing process (X associated with X is given by
(XD, = f S (&) dE+ ff YA(L, &) dLdE. (7.2)
R, R,xR,

(X is absolutely continuous, so X does not charge sets of Lebesgue measure zero in RZ.
In particular, it does not charge rectifiable curves. Hence, the theory of line integrals
developed in § 4 is valid for X.

1f I is a curve of type I or II (resp. I' or IT') the process {X} (z), F3,2€I'} {resp. {X3(2),
F2, 2€T'}) defined in § 4 will be a continuous square integrable martingale with a one dimen-
sional parameter set. Thus, there is a unique continuous increasing process, which we will
denote by (X} > (resp. (X%>) such that

{(X{(2))* = (XD, F2,2€T'} (vesp. {(XF(2))* ~ (XD, F2,2€T})
is a martingale. As usual, one defines the covariation of X! and YT by
G YD =X+ 1D XD - (YD} (=1,2).

We will calculate these increasing processes explicitly. We begin with the case where I'
is a horizontal or vertical line segment. By (7.1) it is enough to calculate {(¢- W),
- WW)> and (¢ W)T, (p W)
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The case of ¢+ W is easily handled: it is a strong martingale and the increasing process
along a horizontal or vertical line segment is the same as the two-parameter increasing

process (Theorem 1.9).

ProrosITION 7.1. Let ¢, € L2, and put M=¢- W and M =¢- W. If H is a horizonial

line,

(ME,= <M>z=f idr, z€H; (7.3)
RZ
(MY, Jfl{’>z=f $:d:dl, 2€H. (7.4)
R,
Similarly, if V is a vertical line,
<M2v>z=<M>z=f $tds, z2€V; (1.6)
RZ
<M%’,ﬁz">a=f ¢:d:dL, 2EV. (7.6)
R,
Finally,
(MP>,=<M{>,=0. (7.7)

The case of the martingale ¢- WW is not so simple. The one-parameter increasing
process is no longer the same as the two-parameter increasing process.

We need to say a few words about measurability of functions defined by integrals.
If f(z, 2’, w) is jointly measurabie in 2, 2z’ and w, and if for each z’, f({, 2/, * ) is Fi-adapted and
E{fp AL, 2')dl} < oo, then [y f(,2')dW; makes sense for each 2. Using an argument of
C. Doleans-Dade [3], one can define this integral simultaneously for each 2’ and jointly
measurably in 2’ and w. Under our hypotheses we can only define it for a.e. ', for
EB{f (£, 2')d(} is only finite for a.e. 2. However, this suffices for our purposes and a

simpler argument of the type given in § 5 provides the joint measurability.

ProrosiTioN 7.2. Let $€ L% and let y, € Cyw. Define M=¢- W, N=y-WW and
N=¢-WW. Let H be a horizontal line and let A be the area under H. Then

2
= [ ([ wepaw) e, sen, (78)
R,\J 4 /
(N, NS, — j ( f w@,f)dm) ( f ¢<:',s>dW:')d5, 2€H. (1.9)
R\J 4 4

If V is a vertical line and B is the area to the left of V,

(VY= f

R,

;

2
(f (g, é‘)dWs) ¢, z€V; (7.10)
B
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(NY, N, = L (Lw(c, E)dwg) (Ly‘;(:, 5’)dW5,) dc, z€V. (7.11)

Finally, (N>, =<(NE>,=0; (7.12)
(ME, N, = L $(6) ( Lw(c, E)dWc) di, z€H; (7.13)

a0~ [ 40 ([ weaam)a, ev. (7.14)

Proof. (7.9) and (7.11) are direct consequences of (7.8) and (7.10), while the pairs of
equations (7.8) and (7.10), (7.13) and (7.14) are symmetric. Since (7.12) is clear, it is enough
to prove only (7.8) and (7.13).

Let us first remark that if z€ H and & <z, then pI4({, ) =0 unless { is also dominated
by 2, since y(C, £) =0 unless { 4 & Thus the stochastic integrals over 4 in (7.8) and (7.13)
are really integrals over R,.

Let us consider (7.8) in the case where y is a simple function. Let z <2'€H,z=+2', and
partition R, into a finite number of half-open rectangles A, such that (¢, £) is constant on
A; x A;. We can assume that every A, lies either entirely in R, or in R, — R,. Let 8,; be the

value of p on A; X A; and write

N, —N,= 3 g, W) W(A)).

A CE ~R
Then
E{N%—-NAF}=E{(N, - N)}|F}= Z E{ﬁuﬁm W(A) W(A) WA T
A A,CR —R

If j 41 the conditional expectation vanishes, so this equals

Z E{ﬂi,ﬂk, (A) W(A) WA(A)|F2} = E{ZWz(A,)Zﬂ,,ﬂkj (A) WA T} (7.15)

A CR —R AfCR ~R,

We can identify the sum over ¢ and k, for
z_ﬂii W(A]) = f ,‘/)(é" zj+ )dWC’
i R,

where z; is the lower left-hand corner of A; and y((, 2, + ) = limg,.;9(C, £). Thus the right-
z].«é
hand side of (7.15) is equal to

E{ 3 WZ(A»(J w(i,zﬁ)dWc)zIJi}. (7.16)

it
AjCR,—R,
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Now 9({,2;,+) vanishes if (€4 ~R,., so we can replace B, by 4 in fn,.'/)(C’ z+)dW,

without changing its value. Since
2 2
B ([ vieraw) 13- By ([ ez eram) 1),
A A

where m is Lebesgue measure, (7.16) equals

2
E{f (f w(g, E)dW;) dEIJi}. (7.17)
Ry.-R,\J 4
2 2
R,\J 4 R,\JR,

Then A ={A,} is F,-adapated and continuous, hence F,-predictable. We have just seen that
{NZ—~A,, z€H} is a martingale relative to {F}}, bence, by uniqueness, A =(N{').
This proves (7.8) for simple functions. In the general case, if w€ LYy, there exists a

Set

sequence {y,}< L%y of simple functions such that for all z,

Since (y,* WW,)2—(p- WW_)? in I1, the theorem will be proved if we can show that

2 2
j (f Yals, E)dW;) d§ »I (f (¢, E)dW;) d¢ in L.
R, A R, A

Applying the Schwarz inequality:

E{'Lz((fﬂn(c, E)dWc)z— (Lw(c, &)dwg)2) dfl}
) oo
“( L dW{)jd‘f)m(LE ([ owrprame) fae) ™

12 12
< ( L . E{(y,—v)'}dC dE) (JL . E{(p.+y)}dL d&) ,

which goes to zero as n— oo, since the second term is bounded, while the first term goes to
Zero.
The proof of (7.13) is similar, so we will give fewer details. Keeping the same nota-

tion,
E{Mz‘Nz‘ _Mzzvzl 32} = E{(Mz —Mz)(Nz' —Nz)i 32}
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If ¢ and y are bounded and simple and if «; is the value of ¢ on A, the right-hand side
becomes equal

B{ 3 apuWA)WA)WAITY.

ApALCR,—R,
The conditional expectation vanishes unless ¢ =k, so the last term equals

E{ 2 % W(Ai)z?ﬁji W(A)IF:}

1:
A;CR,—R,

f

E{z Bz +) W(A,)zf w(, %+ )de]J;}
i Ry

'z

E{J.R,,_Rz (&) (L y(&, E)dW:)dglg;}.

B~ f (&) ( Lw(c, s)dW;) at,

If

Thus, if

we have seen that
E{M,.N,~M,N,3}=E{B,—-B,|F:}

Since B={B,} is adapted, of bounded variation and continuous, this identifies B with

(M{, N{y. The passage to general ¢ and v being similar to the previous calculation, we
leave it to the reader. qed

The next two theorems extend Propositions 7.1 and 7.2 to more general curves.

Let I' be a curve of type I or II (resp. I or I11’). We denote by Dyt (resp. D) the region
bounded by I, the s-axis (resp. f-axis) and the lines parallel to the f-axis (resp. s-axis)
which pass through the initial and final points of I'. If I" has the parametric representation
{z: 2=y(0), 0<0<1} and if z=y(7) €T, I', will denote the curve {z: z=y(0), 0 <o <7}.

THEOREM 7.3. Let $€ L% Then if M=¢-W,

<M{‘>z=f _ $td, z€T' (of type I or II); (7.18)
DI"z

(MY, = . $EdL, 2€T" (of type I or II'). (7.19)
Dl"z

Proof. i T' is a stepped path, (M1 > will be constant on the vertical segments, while
on the horizontal segments we can use (7.3) to compute d{M7{)>. The result is (7.18). In

general, if I' is of type I (resp. I1), let z < 2" €T (resp. z A2’ €T") and let {I',} be a sequence of
11—752903 Acta mathematica 134. Imprimé le4 Aoit 1975
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stepped paths decreasing to I' and such that I' 0 I, includes z and 2’ as well as the initial
and final points z, and z,, respectively, of I'. By Corollary 4.4, Mi*(z;) converges in L to
MY (z). Now, for £€T, M (&)= E{MY(z,)| Fi} and the equation also holds with I" replaced
by T, Since z and 2’ are in I' N T',,, it follows that

B M)~ M6 13Y > B (IR - MEGF I3,

the convergence being in L'. On the other hand, Dy, decreasesto Dr,, hence {p 5 , $7d¢

decreases to j'Dl:z $3dL. It follows that, if we let A,= L’f‘, de,
E{MI(2'Y - MIP13:3=E{A, — A1 T}

Since A={A,} is adapted, continuous and increasing, we can conclude, by the uniqueness

of the increasing process, that A =(M7T>. This proves (7.18) and, by symmetry, (7.19). qed

We need some notation. Let I" be a curve and let z=(s, t). We denote by 4(I") the
region {(u, v): v<inf {r: (5, 7)€l'}}, and by B,I') the region {(u, v):u <inf {o:(0, t)€T'}},
where inf@=0.

THEOREM 7.4. Let $€ Ly, wE Loy and set M ~¢+ W and N=yp-WW. Then, if I is of
type I or 11,

2
(NTS, = f ) U tp(C,&)dW;) dE, =€T; (7.20)
o, \J 4D
<M¥,Nf>z=f‘ $(&) ( j W(C,E)dWc) dE, €T (.21)
DPz Ae(r)
If T is of type I or 11,
2
(NT, = f . (f Ve, S)dWe) dz, €T (1.22)
of \J By
(ME, NDY, = f 80 ( f 'P(C,E)dWe)dC) «€T. (1.23)
Df, By

The proof of Theorem 7.4 is entirely similar to that of Theorem 7.3, so we leave it.
Notice that in Theorems 7.3 and 7.4, if I is increasing, the increasing processes are adapted
and are thus the processes associated with the martingales considered relative to the fields
F. as well as Fi.

The formulas in Theorems 7.3 and 7.4 can be given more simply if we write them in
terms of differentials: if M =¢-W and N=y-WW, we have
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{3

oMy =d (MY = (f 3(s,v) dv) ds,
0

2 M> = d{ME> H%(u, ¢ du) dt,

-l
(o] e
2y N> =d(NT> = (f (f ut&)dw)z)

M, N>=d{M¥ , N> = f dvd(s, v)f w(C;s, v)dWC) ds,

o<y =d{NT>

I

8o M, N> =d{M},N5> = ( f sduzﬁ(u, t) f p(u, t; E)de) dt.
0 Ry

By Proposition 4.5, if X is a square integrable martingale and I" an increasing path,
(X" =(XT)+(XD).
This gives us a way to compute the increasing process associated to X along any increasing
path. In terms of differentials, we can write
KX =0,(X>+0,(X>.
One particular case is X=W:

oWy =tds, 0, W)=sdt,
and
oW =tds+sdt.

§8. Strong martingales and path-independent variation
We begin this section with a characterization of the strong martingales. Again, the
fields F, will be those generated by W.
TrEOREM 8.1. X € M2 is a strong martingale iff there exists € L3, such that X =¢-W.

Proof. Suppose that X = W, where ¢ € L. Then X is a strong martingale, by Theorem
2.2 (a). Conversely, suppose that X €M? is a strong martingale. By the Wong-Zakai
theorem (Theorem 3.1), there exist ¢ € L}, and y€ Ly such that

X=¢-W+yp WW.
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Since ¢- W is a strong martingale, it follows that y- WW is also a strong martingale. We
will prove that - WW =0. For that purpose, consider a rectangle 4=(z,2'],2<<z’, and
divide the rectangle (0, 2] into four disjoint subrectangles (0, z], 4, B and C (B to the left
of 4). We have

w-WW(A)=ff dedW+J.f dedW+ff dedW+ff pdWdW.
BxC Bx A AxC Ax A

Now, the conditional expectation of the last three terms on the right-hand side, given
Fi v F2, is zero, while that of the first term equals '

f f E{p&, &I v I}dW dW,.
BxC

(This can be easily seen by considering first simple functions and then passing to the limit.)

Hence

By WWay sy~ [[ B oz anawan, 1)
BxC
and since y- WW is a strong martingale, both sides of (8.1) vanish. Thus
[[. mweaimyayaa-o

which implies that E{y({, £)|F: v F5} =0, and hence that E{y((, §)| F.} =0, for a.e. pair
(£, £)€ B x C. This being true for each z, 2/, for a.e. pair ({, &), we have

E{p(¢, &) F.} =0, (8.2)

for a.e. z€ R,y ., by Fubini’s theorem. Take such a pair ({, &) and choose a sequence z, € B; v ¢
such that (8.2) holds and z, /7 VE&. Since Fpye=lim, .o F. , it follows that

v(C, §)=E{y(l, §)| Frve} =lim Efy(, £)| F5}=0.
Nn-»c0 qed

Let X € M2. We say that the variation of X is path-independent if for any two increasing
paths I and A with initial point 0 and the same final point 2,

(XTI, =X,

The idea of path-independent variation was introduced by Wong and Zakai [18] and
turns out to be connected with the concept of strong martingale. Indeed, a strong martingale
has path-independent variation, for, if X € M3 and if H, and V, denote respectively the

horizontal and vertical line segments connecting the point z with the axes, then (X"z), =
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{XVsy,=(X>,, by Theorem 1.9, and consequently, if I" is an increasing path, z, 2’ €T,

z=<2', and z" denotes the intersection of H, with the vertical line through 2z, we have
E{(XZ)— (X013}
=B{X} - X3} + B{X: - X}|F;}
=E{(X"), =X p |F 3+ E{LX V) — <X, | T}
=E{{X>, —<{X>,|F.}.

We have not succeeded in proving that, in general, the converse is also true, i.e. that
each martingale with path-independent variation is a strong martingale. However,
several indications let us believe that path-independence is a second characterization of the

strong martingales.
We will prove here the converse for a particular class of martingales.
THEOREM 8.2. Suppose that X € M? has the representation
X=¢-W+x-J,
where ¢ € Ly and y €L3. If the variation of X is path-independent, then X-J =0.
Proof. By hypothesis,
<XH'“>st = <X V‘">st-

If we vary t, keeping s fixed, t—>(X "«), increases. Thus {->(X "}, also increases. (This
is the only place we use the fact that the variation is path-independent.) Let us calculate
(X", By Propositions 7.1 and 7.2, setting

zlo,7) if s<oandi<T,
0 otherwise,

Y(s,7; 0,1) ={

in (7.8) and (7.13), we have

(XM= f #4(0,7) dodr + QL $(0.7) ( f

t

1o, v)d, Wa,,) dodr

T

2
+ f (ft x(o, v)d, W,,,,) dodr. (8.3)
Ry T

If {M,} is a continuous square integrable one-parameter martingale such that M, =0, then,
by Ito’s formula,

H
M2=2 fo M, dM,+ (M,
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If we apply this (for a.e. o) to the martingale (relative to {5}

TVE
M‘Z=J~ x(a,v)d, W,,, 120,

T

we get

TV VO Tvi
( g)2 = 2J (f Z(O', i,l)dv' Wov’) dMg + O'J lz(o', 'U) de.

r T T

Putting the above in (8.3) yields

XMy = f %o, T)dodr + f 1o, Tyordodr
th

Ry

t t v
+ 2J. (0, 1) (f 2o, v)d, W,,,,) dodt + 2f [f (f 2o, v)d, Wav‘) dMg] dodr.
ES‘ T E" T T

The first two terms on the right-hand side increase in ¢, as does (X s> ;. It follows that the
sum 3, of the Jast two terms is of bounded variation in . On the other hand, the first of the
last two terms is clearly a continuous martingale, while the second, being of the form
§r,(Jo M3dMS)dodr, is a continuous local martingale. We conclude that {S,} is a conti-
nuous local martingale of bounded variation. Hence 8,=0, and so (8>,=0, where (8},

is the associated increasing process. Now, {8, is easily caleunlated:

<S>c=4f

Rgy

v 2
[f x(o,v) (¢(U, )+ f 1o, v)d, WW) do‘dr] dudv.
Bgy— Ruv

T

It follows that, for a.e. (u, v)E R,

f 2o, v) (¢(G, 7)+ fv zio,v')d, WW) dodr=0.
Ry Ry

T

But (s, ?) is arbitrary, hence, for a.e. (s, v),

x(s, D)J:: (¢(s, 1)+ Jw x(s,v)d, Ws,,.) dv=0. (8.4)
We can eliminate the exceptional set of measure zero for which (8.4) fails by modifying x
slightly: simply set y(s, v; @) =0, whenever (8.3) does not hold, and leave it unchanged
otherwise. This changes y only on a (s, v; )-set of measure zero, so that y-J remains un-
changed, and likewise, the stochastic integral in (8.4) is unchanged exeept for a set of
s of measure zero. With this modification, we have that (8.4) holds, for a.e. s, identically

in v.
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Let t>0. Fix an s for which [§[¢(s, 7)|dv <0 a.s., [§E{x(s, T)}dr < and (8.4) holds
for all v<t. Notice that
def (v v
M,= (J x(s, v’)dv.Ws,,‘) dz, v<it,
0 T
is a continuous square integrable martingale (relative to {J3,}). We know that, with pro-
bability one, v— M, is constant on an interval iff v—{ M, is constant on the same interval

({M> is the associated increasing process). Now, it is easy to see that

M>,= 8f x¥s, ) dy, v<t.
0

It follows that, with probability one, v—M, is constant on an interval iff y(s, v)=0 a.e.
on the same interval; hence, with probability one, the total variations of »—> M, over [0, {]
and over the closure of {v: (s, ») =0} coincide. But from (8.4), for each v in the closure of
this set, we have

M,=— fv é(s, T)dz.
0

It follows that, with probability one, v, is of bounded variation over [0, £], hence
constant on this interval, which implies that y(s, v) =0 for a.e. v€[0, t]. We conclude that
%(s, t)=0 for a.e. (s, t) and hence that y-J=0.

§ 9. Holomorphic processes

We say that a process ® = {®,, z €R3 } is holomorphic in R%, or, more simply, holomorphic
if there exists an adapated measurable process ¢ ={4,, z€R2} such that E{¢4Z} is bounded
for z in compact sets and such that for all z€R% and any increasing path 'R} with
initial point 0 and final point z,

cpz=c1>0+f $oW, 9.1)
r

where @, is a constant. We call ¢ a derivative of ®. In terms of stochastic differentials, (9.1)
is

oD =4oW.

In spite of the fact that we are working with purely real-valued processes, we think
there is some justification for the adjective holomorphic. Several of the classical theorems
about holomorphic functions have their analogues here, notably the theorems that a
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holomorphic process has a holomorphic derivative, that the integral of a holomorphic
process is holomorphic, and the theorem of the existence of power series expansions.

Let us begin with some remarks. If ® is holomorphic, we can write, for all z,

Q=D+ | W =0y+ fv doW. 9.2)
Hy 2

We will say that a process ® ={®,, z€R? } is weakly holomorphic if there exists an adapted
measurable process ¢ ={¢,, zER2} such that, for each z, [y E{¢?}ds and |, E{$?}dt are
finite and (9.2) holds for a constant ®,. In this case, we will call ¢ a weak derivative of ®.

We have just seen that a holomorphic process is weakly holomorphic. Conversely, if
(9.2) holds for all z, it is easily seen that (9.1) holds for stepped paths I'. If ¢ were continuous
in the mean, we could approximate a given piecewise-pure curve by stepped paths and
use Corollary 4.4 to pass to the limit. In this case, weakly holomorphic would imply the
validity of (9.1) for any piecewise-pure curve I’ R% with initial point 0 and final point z,
hence, in particular, it would imply holomorphic. Since we are making no such assumption
on ¢, the class of weakly holomorphic processes is—apparently—larger than the class of
holomorphic processes. We will see later that both notions are the same and imply the
existence of a continuous derivative ¢, so that to say ® is holomorphic will be equivalent

to saying that there exists ¢ satisfying (9.1) for an increasing path and such that
f $oW =0,
r

for any closed piecewise-pure curve 'c R2%.

ProrositioN 9.1. Suppose @ is weakly holomorphic. Then @ is a square integrable

martingale.

Proof. Note first that

E{cbz,}=q>g+E{(f

1%

“ @aM)2}= D5 f "B{gt)an,

0
which is finite. Further, let z=(s, ¢) and 2’ = (', t'). If 2 <2/,

s t'
q)z' = q)z + f ¢ut dy Wut + f ‘ﬁs’vdv Wi,
s ¢

and the conditional expectations, given F,, of both stochastic line integrals vanish, so

® is a martingale. qed
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Thanks to Corollary 3.4, the preceeding proposition implies that a weakly holomorphie
process always has a continuous version. We will thus assume that all weakly holomorphic
processes are continuous.

The class of holomorphic processes is cléarly a vector space over the rea's. It contains
constants and it contains W itself, which has the derivative 1. There are many more holo-
morphie processes. Here, for instance, is a description of a large class of them.

Consider a real-valued function f(z; s, {) on R x R, xR, which has continuous partial
derivatives of the second order in x and of the first order in s and ¢ and which vanishes if
z=0. Let us look at the process

Xy=f(Wes 8,8, (s, t)ERL.
Write Ito’s formula along the lines # =const. and s =const.:

(U W a, s [ L W)+ 2 (W) du
Xy= o (W u, t)d, Wut+J; [2 P (W u, )+ 2 (W u, t)] du; (9.3a)

tof ‘fs & o Lo
= | L w,,; 4 2L (W 8,v)+— (W, ) 3b
Xst f() 8.17( sv:ss/v)dv s,v+f0 [2 axz(uswsﬁv) 3 ( W,S,'U) d’U (93 )

In order that X be a martingale, both terms in square brackets must vanish:
s 0°f of

t Pf  of
-S4 = —— 4+ ==0, 9.4
5o a0 ™ g2t ©-4)

Consequently, s(0f/és)=1(of/ot), which implies that f depends on s and ¢ only through
their product. If ¢(x, st)dg f(z; s,t), we find from (9.4) that g satisfies

1% &g

il IS 9.5

sa o (0.8)
which is the backward heat equation. Conversely, if g(z, ¢) has continuous partial derivatives
of the second order in x and of the first order in £ and satisfies the backward heat equation,
then (9.3a) and (9.3b) imply

o7
g( Wst’ St) = g(Oy O) + fo a_g: (Wut, ut) du Wut

¢
= g(O’ O) + f a—g' (nrsm S’U) dtl st'

oa’b

Thus if E{(dg/ox(W,, st))?} is bounded for (s,f) in bounded sets, {g(W,, st)} is holo-
morphic with derivative {og/ox(W, st)}.

There is a special class of solutions of the backward heat equation which will be
particularly interesting. These are the Hermite polynomials. Denote by H.,(x,t) the n*
12—752903 Acta mathematica 134. Imprimé le 4 Aolt 1975
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Hermite polynomial. H, is a polynomial in both x and ¢. It can be defined by the formula

H,(z,t)= (—;—f)— ™R g—n e TR, (9.6)
One can see that the first few H, are given by Hy(x,t) =1, H,(x,t) =, Hy(x, t) = 32 — 4t
If we fix >0, then {H,(-,)}5-0 is a complete orthogonal set relative to the weight
function (27t)~te =%, so that for s, £>0 we have
0 if m=Fn,

E{H(Wg,st) H (W, st)} =1(st)" . 9.7)
o if m=n.

We will not need many of the detailed properties of the Hermite polynomials, but the
following well-known facts will be useful. The generating function expansion is given
by

oo
ezy—&tﬂ’.___ Z Hn(xy t)ynx x, yER’ tER‘ (98)
n=0

Differentiating with respect to « and t and equating the coefficients leads to the equations:

a-EI"= —%Hn_g, (99)

0
a—an_Hn»ly ot

from which it follows that H,, satisfies the backward heat equation.

By our remarks above, we have

ProrosiTioN 9.2. {H (W, st), (s, t) ER%} is a holomorphic process. Its derivative is
{H, (W, st), (s,t)ER%}.

It follows that finite sums of Hermite polynomials are holomorphic. More generally:

ProrosiTioN 9.3. Suppose {a,}%-0 s a sequence of real numbers such that
2Qa3(t"n)) < oo for all t>0. Then the process O defined by

a
(I)st = E aan( Wst) St) (910)

n=0

is holomorphic with derivative ¢ given by
0
(ﬁst: z aan~1(Wst’ St)) (911)
n=1

the convergence taking place in L.

Proof. By (9.7),
(St)”

E{(%aan(Ws,, st)) } Zaz
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This is bounded by
n
2 (8t) < oo

an Y
n!

o118

It follows that the series in (9.10) converges in L* and the same is true for the series in
(9.11). Consider now

¢gi’;)= z a, Hﬂ—I(Wsty St),
1
and let

DY =a, %~f S OW = ay+ 2 a, Hy (W, st).
Vet 1
Then Hm .00 @ = @, in L2 To finish the proof, we need only check that

limf $™oW = f lim ¢“™oW.
Vi Vs 7

By (9.7),
o] (St)n—l
(m = 5 p2 ‘
Bl gV = 2 6 iy
so that
: < {sv)" ! < (st)
([, w-smew) o[ 3 a i - 5 0
Thus,
lim f F™W = f oW qed
m—>0 " Ve

ProPosSITION 9.4. Suppose that f(x, t) has continuous partial derivatives of the second
order in x and of the first order in ¢ and that {f(Wy, st)} is a holomorphic process. Then, for
each (s, t)ER?,

f sts St\ Z an Wst: St) (912)
where the convergence takes place in L? and where, for s,t >0,

an =

Tk t) E{f(Wst, styH, (W, 8)}. (9.13)



172 R. CATROLI AND J. B. WALSH

This is a special case of Theorem 9.15 below, so we won’t give a detailed proof now,
but we just indicate how to get the coefficients. If we fix s, >0, we can use the fact that
the H, form a complete orthogonal set to see that

flw, st) =2 a, H,(, st),
0

where .
a,= (st)" V2nstj f(x, st) exp ( ) dx.

(This is just another way of writing (9.13).) We leave it to the reader to show that the
definition is independent of s and ¢.

This gives some picture of holomorphic processes of the form ®,,=f(W; s, t), but it is
very restrictive to suppose that ® is of this form. A priori we know only that @, is F;-
measurable, but not that it is a function of W, itself. We want to investigate the general
case.

First, if @ is weakly holomorphic with a weak derivative ¢, we can apply Green’s
formula to the rectangle R,. Since [,z ®8, W =[x ®oW, we have

f (I)6W=f (I)dW—'r( ddJ. (9.14)
H, R, Ja,
Similarly,
f (I)6W=f (DdW-%—f ddJ. (9.15)
v, R, R,

THEOREM 9.5. Let @ be weakly holomorphic and define ¥ by taking a continuous version
of ¥, = [y ®oW. Then ¥ is holomorphic.

Proof. By (9.14) and (9.15)

Y,=| OoW= f Dew.
H, v,
Hence W' is weakly holomorphic. Since @ is continuous in L2, it follows that ¥ is holo-

morphic. qed

To go further we must find out what it means for a process to have stochastic partial
derivatives. Classically, the existence of partials is a smoothness condition, but here the
derivatives are with respect to the “measure” W (see (6.7)) which—whatever else it may

be—is not a product measure, so the interpretation is more complicated.
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LeMMA 9.6. Let zy=(3y, {,) ER% and let ¢$={4,,2€H.,,} be adapted, measurable and
satisfying

f E{¢2}du< .
0

Then for any z<z,,

E{f,¢aIW|32}=f o, W, (9.16)
H, H,

where y(u, v) 1s any measurable version of the conditional expectation E{d,s,| F.}, (%, v) <7
Proof. Suppose first that z=(s,, t) for some ¢ <¢, and that ¢ of the form

¢uﬁn = “I(Sx. Sz](u)’

where ;< 8, < 8, and « is bounded and F, ;,-measurable. Then if u >s,, (F4) tells us that
B {a|Fuy =B {x|F.}-

Call this random variable 8. It follows that, for each u >0,

E{¢uto|3ut} =ﬂI(31.52](u)‘ (9'17)
Now, the left-hand side of (9.16) equals

E{a(WSzto - WS| to)IJSot} =E{aE{W82tn - WSttnlygxt \% gglt}lgsut}'

But W is a strong martingale; hence

E{(WSztn— WSxtu)— (Wsn‘__ Ws;l)lgi‘lt V;§15}=O’

so the above equals

E{(xlgs(yt} (Wys,;t’— Ws;t)zﬂ(Wszt—— I/Vs;t)5

which, upon comparison with (9.17), is seen to be equal
So
J;) E {¢‘uto|g'ut} du Wut'

Thus (9.16) holds for simple ¢ in the case z=(sy, ). We then approximate ¢ by simple
functions ¢, in such a way that

fo E{(¢n(u7 to) - ¢(u’ to))z} du—0.
Let %(u, t) = E {¢n(u7 t()) Igut} and w(uz t) =K {qﬂ(u,to) I 3ut}' SinceE{(wn - 1/’)2} < E{(¢n - ¢)2}=

fODE{(w—w)z}du»O-
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Thus
f 1/),,31 W 1/)31 W in L2.
H, H,
Since (9.16) holds for each ¢, and since

f oy W~ | ¢, W in L2
Hzo

H,,

it follows that
f 1,031W=E{ ¢61W|32}.
Hy qu

This proves (9.16) for the case z = (s, t). But now. if z=(s,¢), s< 85, by conditioning both
sides of (9.16) on F,,, we see that

fwaIW=E{f waIW|3m}=E{E{f ¢61W|33..,}|:;S¢.,}=E{J ¢81W|sst}-
Hy H:ol Hto to Hyyty

qed

To say that a martingale M has a stochastic partial with respect to (W, s) along a given
line H,, is a stronger condition than it might appear, for it implies that M has a stochastic
partial with respect to (W, s) in all of B,,. Indeed,

PrOPOSITION 9.7. Let M € M2 and let 24 = (s, tp) ER? . Suppose that M has a stochastic
partial derivative ¢ with respect to (W, s) along H, . Then M has a stochastic partial deriva-
trve y with respect to (W, s) in R,,, where v is the adapted 2-martingale given by

Yt = E{‘f’sto l Jst}-

Proof. If z< 7y, Lemma 9.6, implies that

>

-5 0113)~B{[ semiz- | yam ged.
Hz, H,

Recall that if M€ M2, by the Wong-Zakai theorem (Theorem 3.1) there exist ¢ € L%
and y€ L}, such that
M=¢-W+y WW. (9.18)

We say a real-valued function f(t) is essentially constant if there is a real number «
such that f(f) =« for a.e. (Lebesgue) .
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TurorrM 9.8. Let M e M2 If ¢ and y are the functions in the representation (9.18),
then a necessary and sufficient condition that M have a stochastic partial derivative with
respect to (W, s} along the line segment H,,, is that for (s, ) and (s, T’) outside of a negligible
set F and such that s <s, and 7 <1’ <t,,

Gor = ov = f [0 5, 7) — w5, D)W, (9.19)
‘Ot g

In this case, for a.e. z=(u, V)€ R, and a.e. $<sy, Y(z; 8, T) 18 a.5. an essentially constant

function of T, for T <v, and the partial derivative g satisfies, for a.e. < s,

Osto = Psr + f vz 8, 7)AW,, for a.e. 1<y, (9.20)

Reoto

where R, is the area under the horizontal line t =t,.

Proof. Suppose that M has a stochastic partial  with respect to (W, s) along the line
H, ;. Then noting that M vanishes on the axes, we have

My, = f ao, W, s<s,.
Hslo

Thus, if we write H=H,,,

8

<M{i: W{i>sto = tOJ‘ Ot du,

]

so that
1 ¢ H T H
oy, == — {ME, Wi>,, forae. s<s,.
ty 08
Thus
1 (& 2
{MEDYy,=~ f ("— M, W1H>uta) du. (9.21)
toJo \ou

We have calculated both (M> and (M{, W{) in terms of ¢ and y in §7. From (7.4)
and (7.13) we see that

s lo
<M, Wf>stg=ff (G + [ (z; u, v)dW,)dudv.
0Jo v RL‘Dta

Thus, for a.e. s<s,, we have that

ty

9 LarH wE .
88<M1,W1 >St°_f0 (¢sv l-fR

00tq

P(z; 8, v)sz) dv. (9.22)
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Similarly, from (7.3), (7.8) and (7.13),

(MBS, = f ' f t°(¢u,,+ f Yz, v)sz)zdudv. (9.23)
0J0

Reor,

Putting (9.22) and (9.23) into (9.21), we get

s iy s to 2
f f (¢uu+ f ¥(z; u, v)sz)zdvdu=1 f (f (¢u,, + f y(z;u, v)sz) dv) du.
0J0 Reeyt, to Jo \Jo Rooty

(9.24)

This holds with probability one for all s<s,, so we must have for a.e. s<s, that

tof:(%ﬁ-f}! P(z; 8, v)sz)zdv= (f:(q&s,,waR p(z; 8, v)sz) dv)z. (9.25)
t ¢ 2
[ porao= ([ forav)
0 0

has the unique solution f= constant, since by the Schwarz inequality

(J: L-f() dv)2 < (ﬂ lzdv) (J: ) dv) =t£ f(v)dv,

with equality iff 1 and f are linearly dependent, i.e. iff f is equal a.e. to a constant.

But the integral equation

Applying this to (9.25) we get that for a.e. s <s,, there exists, a r.v. g(s) such that
b+ f P(z;8,0)dW,=p(s), fora.e. v<t,. (9.26)
) Rooty

To get (9.19), we have only to set v =7 and then ¢=1" and subtract. (Notice that we can

choose g(s) measurably: indeed, we could take

to
o(s)= tlo fo (qss,, -+ fn P(z; 8, 'v)sz) dv.)

Now let us show that y(z; s, v) must be an essentially constant function of 7. Fix an
5 <38, for which (9.19) holds outside of a negligible set of (z,7’). Notice that the left-hand
side of (9.19) is F%,-measurable while the right-hand side can be written

f (p(z8,7") —p(z8,1)dW, + f (w(z 8,7y —p(z: 8, 7)) AW .
Rogyr

Reoty— Rooy?

The first term is J2,-measurable while the second is orthogonal to 5. The only way the
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sum can be J..-measurable is that the second term vanishes. This can happen only if
p(z; 8,7)=p(z; 8,7), for a.e. 2€ Ry, — Regye.

Apply this to all pairs T <1’ <{, and use Fubini. We see there must exist a function %(z, s)
such that, for a.e. z=(u, v), y(z; s, 7) =yx(z, 5) for a.e. T<v, which proves the penultimate
statement of the theorem.

Finally, let us show that (9.19) is sufficient. Write

Mm:f ¢(§)dWE+ff (¢, E)aW dWs,
By, By, < R‘lo

and apply the “stochastic Fubini’s theorem” (Theorem 2.6) to the second integral. If

&=(u, v), we have

"Msﬁo = J\ (d’uv + f 1/)(2, U, /l)) sz) quv.
s, Ry,

By

If (9.19) holds, so does (9.26), hence

MsLo = f g(u) quv.
R,

sty

Since the integrand is independent of », this last is equal to

e W,

Hyge
ie. {M,} has a stochastic partial o with respect to (W, s) and (9.20) is satisfied. qed

THEOREM 9.9. Let @ be a weakly holomorphic process. Then ® is holomorphic and

admits a derivative O (necessarily unique) which is itself a holomorphic process.

Proof. Let ® be weakly holomorphic. Then there exist ¢ € L3 and y€ L%y such
that

O=Dy+¢-W+yp- WW.

Being weakly holomorphic, ® has stochastic partials with respect to both (W, s) and (W, #).
Applying Theorem 9.8 we see that there is a negligible set G=RZ such that if (s, t)¢ G,

T>y(0, I; s, 7) is a.s. essentially constant in [0, ¢] for a.e. o,

o—>ylo, t; 8,7) 1s a.8. essentially constant in [0, s] for a.e. 7.
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By replacing v if necessary by

I rar s
p(o,t; 5, T) Eifjfl’(ﬂ’,t;s,r')dodr if (5,1)¢G and 0<s,7<1,
Plo,t;8,T)= oJo

0 otherwise,

we can suppose that for each (s, £), p(o, t; 5, 7) is a.s. constant in ¢ <s and 7 <¢. (Note that
Pz, 2') =ylz, 2') for a.e. pair (z,2'), so that - WW =y- WW.) Let y be defined by y(s,t)=
(0, t; s, 0), and note that

Jf (G, S)dchWff xdJ,
R, xR, R,

z

so that

<1>z=<1>0+f paw | zas.

R, R,

Let us apply Theorem 9.8 again. If (s, ) and (s, ') are not in some negligible set and if
t<t', then

b — g = L T(z; 8, 8) —piz; 8, 1) dW..

But p(u, v; s, £) =0 if v <t or s<u, and equals y(s, v) if v>¢ and s> u, so that this integral
becomes

f pu,v;8,8)dW = f Xy W — f Xo. W.
Rop— R st Vo Vit

By the symmetric argument, we conclude that if (s, t), (s,¢') and (s, ¢} are not in some
negligible set ¥ and s<{s’, t<¢’, then

ot — s = f Xog W — f X0, W,
Vst Var

¢s’t - ¢st = f Zal W — J X&I Ww. (927)
Hgy Hy

Let B be the set of (s, t) such that (s, )¢ F, and for a.e. s’ and ¢, (s',t)¢ F and (s, t')¢F.
Since F is negligible, R% — B is negligible. Moreover, it follows from (9.27) that {¢., F..
2€ B} is a square integrable martingale. Thus, let ®’ be a continuous version of the square
integrable martingale defined, for each 2€RZ, by

O, =E{¢.|F.}, 2€B,z<z.

Then ®;=4¢, for a.e. z, so that @'« W =¢- W. Furthermore @’ has stochastic partial y with
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respect to both (W, s) and (W, ¢), for a.e. line H, and V.. By Proposition 9.7, we can con-
clude three things: first that @’ has stochastic partials 4! and y2, in R%, with respect to
(W, s) and (W, 1), respectively; secondly that y! (resp. x?) is an adapted square integrable

2-martingale (resp. 1-martingale); and finally that, if 2 is not in some negligible set,
x; = l? ==

Now let D be the set associated to this negligible set in the manner in which B was associ-
ated to F above. Then it is easily seen that {y,, F,, 2€ D} is a square integrable martingale.
Thus, let # be a continuous version of the square integrable martingale defined, for each
z€RE, by

1.=B{y. 3.}, 2€D,z<z.

Then §,=y: (resp. 7.=y2), except perhaps for a negligible set of z of the form N xR,
(resp. R x N). Hence ¥ is a stochastic partial of @’ with respect to both (W, s) and (W, ¢)
in R%. But now we are almost done. Indeed, we have shown that @’ is weakly holomorphic
with weak derivative # and thus holomorphie, since 7 is continuous. Furthermore, 7,= x,

for a.e. z, so that 5-J=y-J and, by the Green’s formula,

q)'aIW=f <I>’dW+f ,ng=[ ¢dW+f 2dJ =D, — D,
H, R, R, R, R,

Similarly,
f (D'@z W = q)z - (I)o.
VZ

We conclude that @' is a weak derivative of @, and since @’ is continuous, that @ is holo-

morphic with derivative @', ged

Remarks. 1°. In the sequel, by derivative of a holomorphic process we will always mean
the holomorphic derivative.

2°. If @ is holomorphic, it has derivatives of all orders. Denoting by @’ and ®” respec-
tively the first and second derivatives of ®, we have, by Green’s formula,

<I>z=<D0+f (D'dW+J- ®"dJ. (9.28)
EZ RZ

There is a slight variation of Theorem 9.9 which is of interest, not so much for itself
as for its curious similarity to the elementary but basic theorem in the theory of functions
of several complex variables which states that a funetion of n>2 complex variables which
is holomorphic in some neighborhood of the boundary of a bounded domain D<C" can

be extended to be holomorphic in all of D. Our result could be phrased: a process which is
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holomorphic on the boundary of a rectangle R, can be extended to be holomorphic in all of
E..

TEEOREM 9.10. Let 2, €R% and ¢={¢,,2€H,,UV,} be an adapted measurable process
such that | u, E{$*}du and jV%E{&} dv are finite. Suppose that

H,, Ve

and let ® be a continuous version of {®,, 2z€H, UV.,} defined by

(I)z:f ¢el W 1f ZEqu: and (Dz“_' [\ ¢62 W lf ZGVZa'
H, vV,

Then there exists a process O which is holomorphic in the closure of R, and which equals ©
on H, UV,,

Proof. Define ) by taking a continuous version of (i)z =E{®,|}.}, 2€R.,. Then
®=0 on H 2 U Ve, Thus ® has stochastic partials with respect to (W, s) and (W, ¢) along
H, and V., respectively. By Proposition 9.7, ® has stochastic partials in all of R, . But
this is all we really used in the proof of Theorem 9.9, so it follows as above that ® is
holomorphie in the closure of R.,. qed

Now we will turn our attention to a different aspect of our subject: series expansions.

If @ is holomorphic, it has a derivative which we denote by ®'. Likewise ®' has a
derivative ®” and so on. We denote the n*" derivative of ® by ®. Now suppose ® and V'
are holomorphic processes. Fix a ¢>0. By Ito’s formula (or by direct calculation),

D, V, =D, ¥, + bV + f Yed +t¢ f V' du,
Hu

Hyt Hu

s0 that
B{D, W}~ 0¥, +t f E{®L, ¥} du. (9.29)
1]

If we use (9.29) to expand E {®;,¥,,} and substitute this in the last term of (9.29) we
see that

E{®, W} =, W, + stdy W+ 2 f f B0, W) duds,
0Jo

By induction we have

ProrosiTioN 9.11. Suppose V' and @ are holomorphic. Then
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n i s s, 8
E@ﬂM=ZWW¢%+W%J.:fMMWW%Wwﬁmm;mw
j=0 . 0J0 0

E{®%}= %cb‘”) St)+t"“ f f f E{(®3 )} duds,...ds,. (9.31)

Note that since @™V is a martingale, E{(®{;*")?} increases in u, so the last term in
(9.31) is bounded above by

_(_8_t)ﬂ+l

(n+1)!

{ (n+l))2}

LeMmA 9.12. Let ® be holomorphic. Then, for each (s, t)ERZ,

Him (St) E{ (I)(n))2} =Q.

Proof. Define g(s, t) = E{®%} and ¢,(s, t) = E{(®{P)?}. By (9.29),
s
g(s, 1) = D5+ tf g1 (u, t) du.
o
From this and the symmetric equation with s and ¢ interchanged, we see that

&g og
g 9 _ 9.32
ot and  —r=sp, (9.32)

which implies that s(8g/ds) =(8g/et). Since g has continuous partial derivatives, we conclude
from this that g depends on s and ¢ only through their product. The same being true for
d., we define f(z} and f,(x) by

fst)=g(s, 1), fu(st)=gal(s; ?).
From (9.32), f =f,. Similarly, f,=f,,,. Thus
fal®) =" (). (9.33)
Both f and f, are positive and infinitely differentiable, so we can apply Taylor’s theorem:

(g [ xo) wn(g (z—2e)"™
But if x >z, this is

>3 ey T2

nl
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for all the coefficients are positive. Thus the last series converges. Take x =2x, to see that
i (n) x_(;l =1 :E_g =
lim [(z0) 31 = lim f(zo) 7 =0 qed
From (9.31) and the Lemma 9.12, we have
CoROLLARY 9.13. If ® is holomorphic,
s )
E{®%}= Z (I)("’)2 (9.34)

Let us now apply (9.30) with {¥',,}={H (W, st)}=H,. Since H,=H,_, (Proposition
9.2), it follows that H® =H,=1 and H}*? =0. Furthermore, H,(0,0)=0if n > 1. Thus the

only non-zero term in (9.30) is the »'®, so:

E{QyH (W, st)}= )<D‘"’ (9.35)

CorROLLARY 9.14. If ® is holomorphic and there is some s>0, t>0 for which
E{®, H, (W, st)} =0 for all n, then ®=0.

Proof. By (9.35),if E{®,, H (W, st)} =0, ®; must vanish. By Corollary 9.13, E{®%} =0
for all s=0, t>0; hence ®=0. ged

This brings us to the main theorem.

TueoREM 9.15. If ® is holomorphic, then, for each (s,t)ERZ,

e o)
= 2 OH (W, st), (9.36)

n=0
where the convergence is taken in L.
Proof. Define ¥ by W, =22 Oy H, (W, st). Since 25(D§™)*((st)"/n!)< oo by Corol-

lary 9.13, the series converges in L? and ¥ is holomorphic (by Proposition 9.3).

Since the H, form an orthogonal set
st)"
E{¥ H (W, st)} = E{QGH(W, st)} = BE” % :
But by (9.35)
E {(I)stH st st)} = St) (I)(n)

Thus E{(®,,—Y)H, (W, st)} =0 for all n. By Corollary 9.14, ®—-¥=0. qed
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For a quick application of the preceeding:
ProrosiTIiON 9.16. Suppose @ is holomorphic and that there exists s>0 and t>0

such that P{®,=0}=1. Then ®=0.

Proof. By (9.34), 0=E{®%} = 2&(D§)%((st)"/n!). Thus ®§™ =0 for all n. By Theorem

9.15, ®=0. ged

CoROLLARY 9.17. If ® and ¥ are holomorphic processes such that for some s>0 and

t>0, 0, =Y, then =Y.
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