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In a by now classical theorem G. Borg [1] proved the following:

TaEoREM A. Consider the two Sturm—Liouville problems

Y +{A—q@)]y=0 1)
y(0) cos a+y'(0) sin =0, y(m) cos B+ () sin §=0, (2)
y(0) cos o+’ (0) sin =0, y{x) cos y+y () sin y =0, (3)

where q(x) is real and integrable on (0, n] and sin (y —B)+0. Then the two spectra cor-

responding to the boundary conditions (2) and (3) uniguely determine q(x), almost every-
where.

More recently Li [3] proved the following theorem.
TrROREM B. Consider the boundary value problem
Y+ —q@)]y=0 (4)
¥(0)=0, ay (m)+Ay(x) =0, (5)

where a=4=0 is real and q(x) is integrable on [0,n]. The spectrum of the problem (4), (5)
uniquely determines q(x), almost everywhere.

At first glance it seems paradoxical that the determination of ¢(z) depends on two

spectra in Theorem A and only one spectrum in Theorem B. It is our purpose to

() The author gratefully acknowledges the support of the National Science Foundation under
grant GP-7435.
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discuss the relationship between these two theorems, to generalize Theorem B, and to
investigate the expansion theorems associated with the operator in Theorem B.

Borg’s proof of Theorem A is quite long and a much simpler proof has since
been given by N. Levinson [2]. Li’s proof of Theorem B is different from either of these
and is related to techniques develoi;ed in the quantum theory of scattering. Furthermore,
in a key step he refers to a result that has appea;r.evd‘ohly.in the Chinese literature.

Although Borg’s method is quite involved one can provide a rather simple heu-
ristic argument based on it. For the sake of simplicity let «a=f=0, and y~z/2 in
(2) and (3). Then the asymptotic forms of the solutions of (1), (2) are y, ~ sin na and
those of (1), (3) are y,~sin (n+%)x. Suppose that

w” +[A—p(x)]Ju=0 (a)

has the same spectra as (1) corresponding to the boundary conditions (2) and (3)
respectively. Then, using (1) and (a) one finds

fo P—q) Yy, u,dz=0

for all eigenfunctions. Using their asymptotic form one finds that

f (p—¢) sin® nxdx=0, n=1,2, ..
0

and J‘ (p—q) sin® (m+1)zxdx=0, n=1,2,...
0

from which if follows that
f (p—q) cos nxdr=0, n=0,1,2,...
0

so that p—¢q=0, almost everywhere.

The eigenvalues of (4), (5) have the asymptotic form

1 1
Ap=m—— tan'la—I—O(—),
n n

where n=0, +1, +2,.... Note that the spectrum, in this case, stretches from — oo
to -+ co, whereas the Sturm-Liouville operators are semibounded. The eigenfunctions

have the asymptotic form y,=sin (n—(1/#) tan"'a). Again using (7) we have
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J (p—q) sin® (n _;z tan™? a) dz=0

0

from which one can show that
7T 2 1
(p—q) cos 2%—7—Z tan"'a) dx=0,n=0, £1, £2,....
0
The above leads to

f: (p—q) cos (2n-_|-7% tan~! a,) dz=0,2=0,1,2, ...
from which we have again p—¢=0 almost everywhere.

The proofs in the literature do not indicate how Theorems A and B are related
and their relationship will be discussed in the sequel. A simpler proof of Theorem B
.Wﬂl be given, using the method of [2], and also a number of generalizations will be
proved. In a second part of this paper the expansion theorems associated with (4),
(8) will be discussed fully.

Part 1

Let A=0+i7, and define two solutions of (4) by the initial conditions

%:(0)=

%1(0)=0 }
(6)
¥2(0)

L
0, 7(0)=1

It is well known that y, (=, A} and y,{(m, 1) are entire functions of order 1, in terms
of A. As a matter of fact, they are entire functions of order } in terms of 2. This
follows from expansions of the type (55). Detailed proofs may be found in the trea-
tise by Titchmarsh [4]. We denote the eigenvalues corresponding to the boundary

conditions
y(0)=0, y(x)=0

by {{,}, and those corresponding to

y(0)=0, ¢ (m)=0

by {{n}. Then yalm, ) =y T1 (1 —Z—) (7)

n=0 Cn

%mb=hﬁ0—£) ®)

n=1 Cn
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It is also well known that for large n
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Com? 9

Lnm (nt3)% (10)

Now we let w(A) = ak, 103[ (1 - gi) + Aky ﬁ (1 —2—2) (11)
n=1 n n=90 n

The zeros of w(A) represent the eigenvalues of problem (4), (5). w(4) is an entire
function of A4 of order 1. No general theorem will guarantee the existence of zeros.
But if we recall that, according to standard oscillation theorems, the sets {Cn} and
{¢,} interlace we observe from (11) that for large n w(A) has precisely one zero be-
tween V¢, and VZ,,;. A more precise analysis carried out in part II shows that all

zeros of (1) are real, simple and asymptotically

1 [7 1
1n=n—1 tan“la,+——f qu-l—o(—),
4 2n Jo n

where =0, +1, +2,.... Note that the zeros accumulate both at -+ oo as well ag — oo.

(12)

The following asymptotic estimates are well-known [2], [3], [4].

e|r|z‘
(%)

, e|‘r|1'
Y2 = COS ).x+0( i )

_sin Az
Y= A

L (13)

Izlz

)

¥1(r) = — A sin Az + O(17).

¥, (%) =cos Az +0 (

Consider a second problem of type (4), (5).

w” +[A2—px)]u=0 (14)

#(0)=0, au' (7)+ Au(m)=0, (15)

and we suppose that the eigenvalues of (14), (15) coincide with those of (4), (5). We
now define a third solution of (4) using the initial conditions

Ys(m)=—a, ys(w)=2. (16)

Similarly we define u;, u,, u; as in (6) and (16). Then
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Yo s — Y2 Y3 = (4) (17)
and also U Us — Us Ug = W(A). (18)

That the Wronskians (17) and (18) coincide is a consequence of the fact that both
have the same zeros and the same asymptotic form. Being functions of order 1 and
having the same zeros implies that they differ by at most an exponential factor. Both

are real for real 1 and have the asymptotic form

w(A)~ a cos Az +sin Ax + O (}1)

so that such an exponential factor has to reduce to unity. By evaluating the Wron-

skian at =0 and x=x we have

o(2) = —y5(0) = ayz (7) + Ay, (7). (19)
Similarly we have w(A) = —ug(0) = aus (1) + Auy (7). (20)
When A=1,, at some eigenvalue, y, and y, are linearly dependent so that

Y2=Cry,
and also Uy =D, u,.

We shall show that necessarily C,=D,. At x=xn we have

0,2 _talm) ) _wam) ()

Y(m) —a’ w(@) —a

Recall that y,(7), uy(n), y2(7), uz(7) are even functions of A. Then by comparing the
odd parts of (19) and (20) we find that

Uy (7) = ¥, (7).

It follows from the above expressions for C, and D, that now C,=D,. It is in this
step that we use the fact that (4), (5) and (14), (15) have the same spectrum,

Now we define the two functions

4

ys (@) f ya0) 1(0) e+ 3 (®) f () ) d
®= w(A)

(1)
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Uy () fo Yo (£) f(2) dt + uy (x)J Y3 (t) f(t) dt
- w(2)

and ¥ s (22)

where f(t) is an arbitrary square integrable function on [0, x].

Let {R,} denote a sequence of squares with vertices at

1 1
(i[n—kl—}—tan"la , i n+——Atan’1u:|).
2 =z 2 =

These are uniformly bounded away from the zeros of w(4) by virtue of (12) for large n.
We shall show that

lim | (®@—¥)di=0. (23)

Nn-—>0Q
n

A typical term in the integrand of (23) is

(Y3 —u3) J;) Yo (t) f(2) di
w(4)

Using estimates of the type (13) we see that the above has the asymptotic form

e|-r| (t—1x) z
0 (—2) f sin At f(t)dt
A 0

a cos Am + sin An

Ln(o—% d/1=0(71b)

from which (23) follows. Now use residue integration and the fact that all zeros of

Using the latter we see that

o(A) are simple and also that at A,

Ya=Cr¥ys Uus=Cru,.

o Calya(® ) — gl A0)] f Calt 2 1)

Then from (23) 2 @' (A,)

—0. (24)

In part II it is shown that the eigenfunctions y,(f, A,) are independent. Note that

we do not require their completeness here. We can, therefore, select f(¢) so that
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0
=1 n=k
and from (24) it follows that

Ya (x’ zn) = Uy (x> }-n)

The latter implies that y, and wu, satisfy the same differential equation. This con-
cludes our proof of Theorem B.

Theorem B can be generalized in the following direction.

TraeorREM 1. Consider
Yy + 2 —qx)]y=0 (25)

y(0) cos + ' (0) sin =0, ¥(x) cos B+y (=) sin B+ f(A) [y () cos y + ¢ (m) siny] =0, (26)

where f(A) is an odd real entire function of A of order less than 1 and sin(f—y)=0.
The eigenvalues of (25) and (26) uniquely determine q(x).

Let y satisfy the initial conditions
y(0)= —sin a, . y'(0)=cos «
and w(A)=8(2) +{(A) T(4),
where S(1) = y() cos B+ (a) sin B
T(A) =y(z) cos y + 4/ () sin y.

The zeros and asymptotic form of w(Ad) uniquely determine w(1). The even part of
w(A) is S(A) and its odd part is f(A) T(A), since clearly S(i) and T(A) are even fune-
tions of A. Then knowing w(l) we know the zeros of S(1) and 7'(1). But these de-
termine the eigenvalues of (1), (2) and (1), (3). By Theorem A these uniquely deter-
mine ¢(z).

Theorem 1 with f(A)=al, a+0 can be proved directly by the same technique as
Theorem B in the preceding. Except for some details there is no difference. This

leads us to the following theorem.

TuEOREM 2. Theorems A and 1 are fully equivalent.

In the proof of Theorem 1 it was shown that Theorem A implies Theorem 1.

To prove the converse we assume Theorem 1 to be true. Suppose 8,;(A), T (4), Sa(4),
12672909 Acta mathematica 119. Imprimé le 7 février 1968,
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T,,(A) correspond to two different boundary value problems of type (1), (2) and (1),
(8), where S(1) and T'(A) are defined as in the preceding proof. Then we form

01(2)=8,(2) +aiT,(A)
wy(A) =8, (2) +adT;(4).

I S,(A)=8,(A) and T,(i)=7T,(4), then w,(1)=w,(4). By Theorem 1 the latter fact
shows that both differential equations are the same, thereby establishing Theorem A.

Part 11

We now turn our attention to the problem
Y+ +p—g@)]y=0 (27)
y(0)=0, ay'(m)+Ay(z) =0, (28)

where g¢{(x) is real and integrable on [0,7] and x and a=+0 are real parameters. To
study the problem (27), (28) we shall relate it to a different problem. We introduce
the function M(x) defined by
M +{u—q@)]M=0
[~ q(@)] } (29)

M(r)=1, M'(=)=0,

and now restrict y so that M >0 on [0,n]. The operator corresponding to the eigen-

value problem
M +[p—q@)] M =0

and the boundary conditions
M©0)=0, M'(n)=0 (30)

is lower semibounded. If we denote the smallest eigenvalue of the above problem by
Mo then for all u< py, the solution M of (29) remain positive. This is an immediate
consequence of Sturm’s oscillation theorem.

We now transform (27), (28) by introducing new dependent and independent var-
iables 7, £ by means of

¢ de
y=an, &= | 55 @)
This results in the new boudary value problem
" +22M*p=0 (32)

7(0)=0, an'(0) + Anle) =0, (33)
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where o= [71/M?dx. To study the problem (32), (33) we introduce the new functions

m= } (34)

’

2 =7

These satisfy the differential equaitions

X= — sz (35)
Tog = }.M4x1 :
and the boundary conditions
2,(0)=0, ax,(p)—2,(p)=0. (36)
(35) can be rewritten in the form
Ly X=X, (37)
1 d
T dg 451
where Ly= ) X= ( .
— i 0 Ty
d

The effect of all these substitutions is to linearize problem (27), (28) in terms of

the parameter A. L, can be inverted by means of an integral operator. Then we

3
r,= = ).J;) z, dE
A

0 e
Tp=— oxzdf—l L Mz, d&.

obtain

(38)

We shall denote the integral operator defined in (38) by G, so that (38) can be re-

written as

X=1G,X.

We now introduce the Hilbert space H consisting of all vectors

(4
X= (xl) for which f o P+ |21 dE < oo
0

Lo

As a suitable inner product we introduce

(X, 7) = f (Mg, + zy7) d (39)
[1]
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Q
and the norm Xl = ‘/J; (M2 |2 2+ |, 2] dE. (40)

In view of the fact that M is a continuous and positive function on [0,x], || X| as

e
Vfo [l [* + || dE.

(Lo X, Y)=(X, Ly Y) (41)

defined in (40) is equivalent to

A simple exercise shows that

if X and Y are absolutely continuous and it follows also that
(go X,Y)=(X, GOY)> (42)

for general X,Y in H. From (38) and (42) it follows that G, is a compact, selfad-
joint operator defined on H. From (38) it is also evident that the nullspace of G, is
empty. In other words, the only solution of Gy X =0 is X=0.

Using the standard theory of compact, selfadjoint operators we can conclude that
G, has real eigenvalues, its eigenfunctions form a complete orthonormal set in H.
Since H is infinite dimensional ¢, must have an infinity of eigenvalues. One can also
show that all eigenvalues are simple. If we had two eigenfunctibns corresponding to
(36) and (37) we could form a linear combination satisfying (37) and the boundary

conditions
2,(0)=0, z,(0)=0.

Using (38) we can then show that z;, satisfies
2+ B Mz, =0
2;(0) =21(0)=0.

It follows that x; =0 and also z,=0. Hence the two eigenfunctions are identical.
Let F be any function in H and let X, denote the normalized eigenfunctions
and 4, the eigenvalues of L,. Then

F=3>u0X, (43)

= (F,X,)= f: [M*f, 2" + f,a5] dE. (44)

If, in particular, we select f,=0 we obtain from (43)
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o0
fl = Z “nx(ln)
n=1
o0
0= a,at™.
n=1

If in the first of these we return to our original variables as defined in (27), (28),

we obtain
) _}-n n
.f1= Z “n(TI)y'm “n=f fl(_ln)Myndx (45)
n=1 0

We shall summarize these results in the following theorems.

TrEOREM 3. The operator L, defined by (36), (37), or equivalently G,, defined by
(38), acting on the space H has an infinity of simple, real eigenvalues. The eigenfunc-
tions form a complete orthonormal set with respect to the inner product (39).

TaroREM 4. The operator defined by (27), (28) has an infinity of simple real
etgenvalues. The associated eigenfunctions are complete and functions that are square in-
tegrable on [0, ] can be expanded in series of the type (45). It is assumed that p < u,,
which is defined by (29), (30).

Note that the eigenfunctions associated with (27), (28) are not orthonormal.
We now turn to the problem
Y+ —q@)]y=0 (46)
y(0)=0, ay'(m)+Ay(w)=0. (47)
If the value p;>0 we can set w=0 in (27), (28) and then the problem fits directly
into the framework of Theorem 3, 4. If u,<O0 the preceding results no longer apply.

Nevertheless we define M as in (29) and introduce the change of variables (31). This

leads to the equation
7"+ [ —pl M*y=0 (48)
with the boundary conditions

7(0)=0, an' (o) + An(p)=0. 49)
To linearize the problem in terms of 1 we now let
X = —An

' ¢ ot (50)
Xy=17 +‘u,f0M ndg.
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These satisfy the system

L,X=1X } 1)
2,(0)=0, ay(0) —,(0)=0 |’
T3
M*
where L,X= .
- 2 —,uf Mz, dE
&
Note that L,=Ly+ pLy,

where L, was defined in (37) and

0
L1X=(—ng4x1d§) 52
¢

is compact. The adjoint of L, is given by

&
L‘{‘X=(_ fo xzd&)

0
so that L}=L,+uLi,

with the same boundary conditions as in (51), since L, is selfadjoint.

We shall now assume that A=0 is not an eigenvalue of (51). In that case (50)
can be rewritten as an integral equation. The case where A=0 leads to no funda-
mental complication, except that one does not work in the whole space H, but in the
subspace orthogonal to the eigenfunction corresponding to A=0. Functions % and v

are now defined as solutions of
' —uM*z=0

satisfying the initial conditions
#(0)=0, u'(0)=1

v(0)=1, ¢'(0)=0.
For a suitable choice of u u'(p)+0. Then we obtain the integral equation

e 4 e &
2= —Zuf v'mzdf—l-}'m,) (Q)J‘ u'xzdrf—/lvf w @y dE
£ w(o) Jo 0

B R N T
”rau'(e)ﬁ”” L 7t

(63)
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(63) replaces (51) and for =0 it reduces to (38). We shall denote the operator de-

fined in (53) by
X=1G.X. (54)

Note that G, is a compact operator on H, but in general it will not be selfadjoint.
LeMma 1. The eigenvalues of L, are real.

Suppose L,X;=21,X;, where A, is not real and is an eigenvalue of L,. Since the
operator is real, if A; is an eigenvalue so is ;. Then there exists F; such that L, F,=
2,F, and since J; is an eigenvalue of L,, 7, will be an eigenvalue of L% Let G; be
such that LG =1,G,. It also follows from '

Z(Fi: Gi) = (Lth Gi) = (Fi’L: Gi) = (Fb Gi)
that (F;,G;)=0. In that case, according to the Fredholm alternative the equation
L,Z,—2%2,=F,

must have a solution. Using the fact that L,F;=21,F, the latter can be reduced to

the following scalar second order equation.
A+ (7 —p) Mz = — (A, + 1) M4,
21(0)=0, az1(0) + A2, (0) =0,

where z, and f, are the first components of Z; and F, respectively. Now consider f,

which satisfies )
flll'i' (liz_,u) M4f1=0

fl(O)ZO’ afi(@)+l;fl(g)=0.

By multiplying the equation for z; by f, and the one for f, by z,, subtracting and
integrating we are led to

e
(1¢+l)f ME|f |2 de=0.
(1]

We conclude, therefore, that _
lg + 2,,- = 0

so that A; is pure imaginary. But in that case we have
"+ [ —u] Miz=0
x(0)=0, ax' (o) +Az()=0
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and also ax’' (g) — A;x(e) =0
so that z' (o) =z(p)=0.

The latter implies that x=0, which is certainly not true. It follows that all eigen-

values are real.

LEMMA 2. The eigenspace associgted with any eigenvalue is one dimensional.

To prove this we note first that to every eigenvalue there corresponds precisely
one eigenfunction. If there were two we could form a linear combination such that
2(0)=«'(0)=0, which implies that x=0. Now if the subspace were more than one

dimensional and if
L# F‘ = Zj Fi

then the equation L.X,—MX,=F,

would have to have a solution. But as in the proof of Lemma I we can show that

the above has no solution.

Lemma 3. The eigenfunctions of L, and L, form a biorthogonal set. It follows that
both consist of linearly independent elements.
Let L,X,=1,X, and L}Y,=17Y,. Clearly

(X Y))=(LX,, ¥))=(X,, LY )= 1,(X;, Y))
so that (X, Y;)=0 for i4j.
If (X;,Y,)=0 for some 4, the equation
L. Z—1Z,=X;

would have a solution. But as in the proof of Lemma 1, this cannot be so that
(X, Y)=+0. ' '

We shall now turn to a consideration of the asymptotic structure of the eigen-
values of L,. We shall seek a solution of (27) in the form

Y=2Yn
n=0
Yo =s8in Az (55)
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By induction we note that
1 z
S —ul|™dt
so that (55) converges uniformly for real 2. We see that

y=sinlm+j —Sin—lﬁ(fc—_“(q—y) sin A#dt+o (%)
Jo

x

y' = A cos Ax+f

0

cos A(x—t) (¢g—u) sin Atdt+o (%)
so that
ay (7) + Ay(m) = Ala cos A +sin An)

+ Jw [a@ cos A —t) +sin A(zw —¢)] (¢ — u) sin A dt+o G)
Jo

— @ cos Ag +sin dm)+ 2O ’1”2' cos An f (q— p) dt+o(1).
0
From the above we note that
Av=n+4 +i " Ydt+o 1 (56)
n="N 0 27)1 o (q lu’ n 3
where tanlyz= —a and |}ym|<n/2. Note that n=0, +1, +2,..., so that the

operator is not semibounded as is the case with Sturm-Liouville operators. We also
observe that the u dependence enters into the terms vanishing like 1/n.

We now wish to show that the eigenfunctions associated with the operator L,,
defined in (51), are complete. It will turn out to be more advantageous to work
with L7, rather than L,. Note that formally

”

(21
- F + nxy
LiX = "N (57)
To,
- (W) + uzs— uvs(e)
and the boundary conditions associated with L2 are
2,(0)=0, ;(0)=0,
azy(0) — 1 (0) =0, axi(g) +22(0)=0. (58)

The eigenvalues of LY are given by A%, and the eigenfunctions are the same as those
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of L,. By the preceding results all eigenvalues of L} are real and simple. Note that
we can write

L:X =(Lg+u) X —uNX, (59)
(a0
where NX= . (60)
75 (0)

Theorem 3 tells us that L§+pu is a selfadjoint operator and that its eigenfunctions
form a complete orthonormal set. The operator N, given by (60) is not selfadjoint
and also unbounded.

We now consider the equation
(A-L))X=F, (61)
with boundary conditions (58). The solution of (61) ‘will formally be denoted by
X=gG,F.

From the preceding results we know that the operator (, can be expressed as an in-
tegral operator where the kernel is a meromorphic function of 1. For all regular values
of 2 G, is compact. Similarly we associate with the differential operator A-Li—pu
the integral operator (j;. The solution of

A—L3—u) Y=F (62)
with boundary conditions (58) is given by

Y=G,F.
If we express F in the form

F= > o, X,
n=—00

where the X, are the eigenfunctions of L, then

had o, X
- I i 63
We then can write
1 o0
— | = =F, 64
o [aFa- 5wz, (64)

where the integral is taken over a sufficiently large contour in the 4 plane. We can
also use (63) to determine ||G,|. Then
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F ]/ |°"‘
16:71-Y § el
§ l"‘n|2
- 16.71_ |/ ZIi=%—uP
F
17 3 leaf?
From the above we note that
_ NG F _ 1
“91” }S,‘i% 7] -sgpll_ﬁ_ﬂl, (65)

(64) is a consequence of the completeness of the eigenfunctions of L, If we
succeed in establishing

%ﬁ fngdl=F (66)

we will have proved that the eigenfunctions of L and correspondingly those of L,
are complete. Note the residue of §,F at A=A, represents the projection of F into

the n’th eigenspace. The left side of (66) then yields the expansion of F in terms of
the eigenfunctions of L,.

Using (59) we can rewrite (61) in the form
(A-Li—u)X=F—uNX
and, using (62), we obtain
X=G;[F—uN X]
or equivalently G F=G,F—uG,NG,F. (67)

An immediate solution of (67) is given by

GoF =Gy 3 [~ uN G F (68)

assuming that the series in (68) converges. To prove the convergence of (68) we shall
estimate [|NG,|.

By means of (63) we see that

0
NG = Zl 12 (xé"’(e))

so that ||NQ1F||<V \Z;"xiz —‘\ <‘/an[“n = ()2 m
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Using (13) one can deduce for the orthonormalized eigenfunctions the asymptotic
formulas

sin A, 2(£)
MV= 1
=l s a e | 7O (Z)
Va
2(€
where &= () dx

Combining the latter with (12) we find
- 1 (_1)n+1 1
2 (o) = — 2 ta +0(—)=—~——__+0 =).
= e Vr n)  Va(l +ad) ”

Then INGFI<EIPIY S =

<kIPNG IV ==

if we use the explicit estimate (65) for ||G,|. If follows that

||N91|I<KIIQIII*I/Z 7=7 12 ul (69)

We now consider a sequence of squares {R,} with vertices at

(k2+,u+fo th)(jlii),

and estimate the sum under the radical in (69) for 4 on R,. From (56) we have

=(n+lo)2+fnth+o(1). (70)
0

We decompose the sum into three terms

[}kl (k1 [
-5+ S+ S

n=[3k}+1 n=[%kl+1

uMs

hat ”’z” 1 o(1
so that, e = '
n=0|l_lﬁ_l‘| )
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[3K] 1 ‘ 1
sup

<k = 0(1
n=[}k}+1 I}»‘“Ai _Ml [3E1+H1<n<(§k] M_lﬁ _,ul M

® 1 ® 1 1
S N ————=0(—).
n:[%cm [A—22 —ul n:[gﬂﬂ (n+ A9)2 + o(1) k

Finally we have for all 2 on R,, with sufficiently large k
1¥G. || <K ||G. | (1)

A more delicate analysis allows us to show that for the constant K; in (71) we ac-
tually have
K,=0 (% In k)

but this is not necessary for our subsequent results. Now

1 K
1G.| =sup o <7 (72)

It folloWs, therefore, that the series in (68) converges on R, for sufficiently large k.
Note that this also establishes the existence of G,F, knowing only the structure of
G, and N.

Finally we consider the integral

1
5 Lkgzzrda.

To estimate the above we consider the general term in (68),

1 S
o |GG Fa
Using (71) we see that

1
" gl(Ngl)S“ <K, " gl||%S+1=K1 S‘:P w__‘ups—ﬂ:

and at first we restrict our attention to A="Fk*+ u + 7 qdt+ iy, where |y| <k +pu+ [Fqdt,
so that
1 K
S . R
AU VaR R+

for a suitable constant K. Then

K,

S
“ gl(Ngl) " <[4]‘:22'(2)_{__yZ]}S-Pi-
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Kt [T aat s Wt [T aat dy
“27” J—k”—u—jga G, (NGy) Fd?lu <K, “.Fuf —-‘————[4}22;%-!_9!2]*34_5

in
cosﬁ“s‘1 0do <

Applying similar, and even simpler estimates, to the other three sides of R;, we see
that

1
27 f G, (N G,)’Fdi= (k%s)
Returning to (68) we have

1 1 1
5o Lkgzpda—»z—ﬁ Lkglmuo (E)

80 that l}—?:o ﬁ f G, Fdi= (73)

We can now state the following theorem.

TueorREM 5. The operator L,, defined by (51), acling on the Hilbert space H, has
an infinity of real, simple eigenvalues. The eigenfunctions associated with it form o
complete set. The eigenfunctions associated with its adjoint operator L are also complete
and biorthogonal to those of L,.

In analogy to Theorem 4, we obtain expansion theorems associated with the eigen-
functions of (46), (47). We restate this result as follows:

THEOREM 6. Theorem 4 applies to the problem (27), (28) without any restrictions
placed on the parameter .
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