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1. Introduction 

Let G be a locally compact abelian (henceforth abbreviated to "lea") group and let 

Aut(G) denote the full group of automorphisms of G with the g-topology. One asks "For  

which lea groups, G, is Aut(G) locally compact?" To answer this question in general would 

require a much more detailed understanding of the structure theory of lea groups than  is 

presently available. However, in this paper we make an initial a t tack on the problem by 

answering the question for the case in which G contains a lattice non-trivially. We also give 

some partial  results in the case tha t  G contains a lattice trivially. We apply these results 

to the problem of determining those lea groups, G, for which the group, B(G), discussed 

by  Weil in [16], is locally compact. 

More explicitly the contents of this paper  are as follows. In  w 2 we review the duality 

and structure theory of lea groups and establish notations. In  w 3 we review the definition 

and properties of the g-topology including a general Asco]i theorem. In  w 4 the main theorem 

is stated. The sufficiency and necessity of the main theorem are proved in items 5 and 6 

respectively. In  w 7 we give partial  results on the question of the local compactness of 

Aut(G) in the case tha t  G contains a lattice trivially. In  w 8 the above results are applied 

to the question of the local compactness of B(G). Finally, w 9 is a counterexample, showing 

tha t  the lattice hypothesis cannot be dropped. 

The results of this paper  were included in the author 's  doctoral dissertation submitted 

to the Johns Hopkins University in June 1969. The author is pleased to have this oppor- 

tuni ty  to thank  his thesis advisor, Professor J.  I. Igusa, for posing the question t reated 

herein, for his many  helpful suggestions, and his many  excellent lectures. 

(1) This work was partially supported by the National Science Foundation. 
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2. Preliminaries 

We review the Pontryagin duality theory. Let G and G' be lca groups. A function from 

G to G' is called a homomorphism if it is continuous and preserves the group operation. If  

this is the case, we wri te / :  G-~G'. l~ote that  not every homomorphism is an open map. 

By the category of lca groups we mean the category whose objects are lca groups and whose 

morphisms are homomorphisms. 

Let T be the multiplicative group of complex numbers of absolute value one. Let G 

be any ]ca group. A character of G is a homomorphism from G to T. Let G* denote the set 

of all such characters. For two elements, Z and Z', of G let Z + g '  be the character of G de- 

fined by (Z +Z')(x)=Z(x).g'(x) for all x in G. Put  the compact open topology on G*. With 

these definitions G* forms a topological abelian group, called the dual group of G. The 

Pontryagin duality theorem asserts that: (i) G* is locally compact and moreover G is dis- 

crete if and only if G* is compact. 

If/: G-+G', define/*: G'*-~G* by/*(Z) =Z~ each Z in G'*. This makes * into a con- 

travariant functor on the category of lca groups. The Pontryagin duality theorem goes on 

to assert that: (ii) the canonical map of G into its second dual, G**, is an isomorphism of 

topological groups. 

We henceforth consider G as being identified with the dual of G*, which we may do 

because of (ii) above. 

If  H is a closed subgroup of G, define the annihilator o / H  in G* to be the set of all 

characters of G which are trivial on H. I t  is clearly a subgroup of G*. If  there is no chance 

of ambiguity it will be called simply the annihilator o /H and will be denoted, H• 

The Pontryagin theorem says finally that: (iii) H A is a closed subgroup of G*, and 

H•162 =H.  Moreover, H• is isomorphic to (G/H)*. 

Thus "A_" defines a one to one inclusion reversing correspondence between the closed 

subgroups of G and the dosed subgroups of G*. 

A very readable proof of the duality theorem may be found in [12]. 

We proceed to describe the structure of lca groups. A few definitions are needed first. 

De/inition. Let G be an lca group. G is called a topological torsion group if G is equal to 

the union of its compact subgroups and 0 is equal to the intersection of its open subgroups. 

G is called a p-primary group if lima p~x - 0 for every x in G. 

For a list of equivalent definitions of "topological torsion" and "p-primary" refer to 

[13]. I t  turns out that  any p-primary group is necessarily a topological torsion group as 

well. In  the special case that G is discrete these notions of "torsion" and "p-primary" 

reduce to the usual ones. 
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Definition. Suppose tha t  Gi is an lca group which contains a compact open subgroup, 

say Ks, for each i in some index set, I .  For x in [[ ~ Gi, let x~ denote the i-th coordinate of x. 

Define the restricted product o /Gi  with respect to K s over all i in I to be the set of all those 

x in II~G~ for which xi is in K s for almost all i. Then the restricted product with coordinate- 

wise addition is an abelian group which contains II~K i as a subgroup. Put  a topology on 

the restricted product by  taking I I  ~K~ with the product topology to be an open subgroup. 

Denote this product by  II~(G~, Ks). Then, clearly II~(G~, Ks) is a topological abelian group 

which contains II~K~ as a compact open subgroup. 

Definition. An lea group, G, is said to be torsion/ree if the endomorphism of G, x-+nx, 

is injective for each positive integer n. G is called divisible if "x-->nx" is surjective for each 

positive integer n. Let  R and Z denote the additive group of reMs and the additive group 

of integers respectively. 

T~]~OREM. 1 Let G be any lea group. Then 

(i) G=G 2 OR ~ where n is some non-negative integer and where G 2 contains a compact 

open subgroup. 

Let G 1 be the union o] all compact subgroups o] G and let G O be the intersection o] all open 

subgroups o/ G 1.  Then 

(ii) G2~ GI ~ G o regardless o/ the choice o/the subgroup, G2. Moreover G and G o are closed 

in G. 

(iii) G~/G1 is torsion-/ree and discrete and is uniquely determined (up to isomorphism) by 

G independent o~ the choice o/G~. 

(iv) G1/G o is a topological torsion group. 

(v) G o is a compact divisible group. 

(vi) Put G 3 = G1/Go, Then/or  each prime, p, G a contains a unique maximal p-primary 

subgroup, say G'. Moreover,/or any compact open subgroup, K o/ G a one hc~s 

G3 ~ II~(G ~, G ~ N K)  

where the product is talcen over all prime numbers, p. 

Proo]. The well known theorem of Pontryagin asserts tha t  any compactly generated 

lea group is the direct sum of a compact group, finitely many  copies of Z, and finitely 

many  copies of R [12]. (i) above is a fairly easy consequence of Pontryagin 's  theorem. 

(ii), (iii), and (iv) are easy consequences of (i). (v) follows from (iii) and a duality argument.  

The decomposition in (vi) was known at least as early as [2]; it also appears in [14] where 

a proof may  be found. We remark tha t  C~ may  be found by  G ~ =(xeG311imhphx=O). We 

regard Theorem 1 as proved. 

In  the light of Theorem 1 we make the following 
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De/inition. Gs/G1, (G1/Go)= G3, Go, and G" are called respectively the torsion /tee 

discrete, topological torsion, compact divisible, and T-primary parts of G. 

In  the special case tha t  G is discrete, G=Gs and G0=0. So tha t  the topological tor- 

sion par t  of G, G3 = G1, is just the usual maximal  torsion subgroup of a discrete group and 

Gp/G 1= G/G 1 the usual torsion free par t  thereof. 

THEORE~ 2. Let G be any lca group. Let all other notations be as in Theorem 1. Then 

(i) G* = (G~)* (~R n where (Gp)* contains a compact open subgroup. 

(ii) Consider G 1 and G O as subgroups o] G 2. The annihilators o/G1 and G O in (Gp)* are 

(G*)0 and (G*)I respectively. 

(iii) The dual o/the torsion/tee discrete part o] G is the compact divisible part o] G*. 

(iv) The dual o] the topological torsion part o/G is the topological torsion part o/G*. 

(v) The dual o/the p-primary part o/G is the p-primary part o] G*. 

Proo/. I t  follows easily from the Duality theorem tha t  a subgroup, K, of G is compact 

if and only if K• is open in G*. (i) and (ii) follow easily from this fact. The proof of (iii) 

and (iv) from (ii) is an easy exercise in the use of the Pontryagin duality theorem. (v) fol- 

lows from (iv), theorem 1 (vi) and the fact tha t  for any restricted product the dual of 

z~(G,, Ki) is ~,(G~, K,• where Ki• is the annihilator of Ki in G~. 

Let  Q be the field of rationals. For each rational prime, p, let Q~ be the additive group 

of the field of p-adic numbers (i.e. the completion Q with respect to its p-adic valuation). 

Let Z~ denote the additive group of p-adic integers (i.e. the closure of Z in Q~). I t  is easily 

seen tha t  Z~ is a compact open subgroup of Q~ and tha t  Q~, Z~, and Q~/Z~ are p -pr imary  

lea groups. 

Definition. Let G be a p-pr imary  lca group. G is said to have p-rank 1 if it is isomor- 

phic to a finite cyclic group of order a power of p, to Q~, to Z~, or to Q~/Z~. G is said to have 

p-rank n if it is the direct sum of n groups each of which has p-rank 1. Finally G is said to 

have p-rank at most n if G has p- rank  m for some m ~<n or if G=0.  G is said to have finite 

p-rank if G has p-rank n for some positive integer n or if G = 0. 

The dual of a p-group of p- rank n is again a p-group of p-rank n. Indeed, it is well 

known [15] tha t  for any  prime p, there is an ismorphism of Q~ onto Q~ which carries Z~ 

onto Zp• Consequently, the duals of Qp and Zp are Qp and Q~/Z~ respectively. Also any  

finite abelian group is isomorphic to its own dual. I t  follows tha t  the dual of a p- rank n 

group again has p-rank n. 

We will later have need of the following lemma. 
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LEM~A 1. Suppose that A is a closed subgroup o/the lea group, G, and that A T and 

(G/A) ~ each have finite p-rank. Then G ~ has finite p-rank. 

Lemma 1 is proved in a more general context in [11, Theorem 9]. Also in [11] Theo- 

rems 1 and 2 are proved in more detail and in a more general context. 

We will have need of still another concept of rank. 

Definition. We define the rank o / a  torsion/ree discrete group, L, to be the Q-dimen- 

sion of L |  Q. The rank of L is also the cardinality of a maximal linearly independent 

subset of L. We define the rank o /a  compact divisible group, A to be the rank of A*. (A* 

is of course torsion free discrete by  Theorem 2 (iii).) 

3. Topology for Aut(G) 

In  this section we recall the definition of the g-topology and give an Ascoli criterion 

for local compactness in this topology. Then we describe a "nice" neighborhood system of 

the identi ty in Aut(G). I t  is convenient to begin the discussion in a more general context. 

Definition. Let X and Y be any two topological spaces. Let  (d(X, Y) be the set of all 

continuous functions from X to Y. For each compact subset, C, of X and each, open sub- 

set, U, of Y let (C, U) denote the set of all continuous functions,/ ,  from X to Y for which 

/(C) c U and call (C, U) a compact open pair. The topology on ~f(X, Y) with subbase con- 

sisting of all eompact open pairs is called the compact open topology or more simply the 

C-O topology. This topology has also been known as " the topology of uniform convergence 

on compacta."  

Now we suppose tha t  X is a locally compact topological space and we let Aut0(X ) be 

the group of all homeomorphisms of X to itself. If  Aut0(X ) is given the C-O topology, 

the composition, Aut0(X ) • is continuous, but  inversion, a ~ a  -1, is 

not in general continuous; cf. [1]. For this reason, one makes the following definition. 

Definition. The g-topology on Aut0(X ) is the topology with subbase consisting of all 

sets ~ such tha t  either ~/K or ~r is a compact open pair (where ~/K-1 = {a-l: a E ~ } ) .  

With the g-topology Aut0(X) forms a topological group and the obvious map, Aut0(X) 

• X-~ X, is continuous. Moreover, any other topology satisfying these two properties is 

strictly stronger (i.e. more open sets) than  the g-topology. These results were proved by  

Fox [5] and also Arens [1]. They justify our use of the g-topology. 

We are interested in the question of the local compactness of subgroups of Aut0(X). 
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We will first quote the well known Ascoli theorem for the compact open topology and then 

use it to obtain an Ascoli theorem for the g-topology. 

De/inition. Let X be a topological space, let Y be a uniform space, and let r  be a 

set of functions from X to Y. r is said to be equicontinuous if for each x in X and each 

U in the uniformity of Y, there exists a neighborhood, V, of x such tha t  (a(x), a(v))E U 

for all v in V and all a in ~/~. We recall tha t  for x in X, the orbit o / x  under ~/( is the set, 

"# / .x-{a(x) :  aEr  ~ is said to operate with bounded orbits if for each x in X, V( .x  is 

bounded in the uniformity of Y. In  the case tha t  Y is locally compact "bounded" becomes 

equivalent to "relatively compact ."  

T~wo~wM 3. (Ascoli). Let X be a regular locally compact topological space, let Y be a 

locally compact uni/orm space, and let ~(X,  Y) be given the C-O topology. Then a subset, ~4/', 

o/cd(X, Y) is compact i] and only i/ (i) :/Y is equieontinuous, (ii) "/4/" operates with bounded 

orbits and (iii) ~ is closed in cd(X, Y). 

A proof of this theorem may  be found in [10]. 

T ~ o ~ ] ~  4. (Ascoli). Let X be a locally compact uni/orm space, and let Auto(X ) be 

the group o] homeomorphisms o/ X with the g-topology. Then, a subgroup, d ,  o] Auto(X) is 

locally compact i /and only i / ( i )  there is a neighborhood o/1 in d which is equicontinuous on 

X,  (ii) there is a neighborhood o /1  in 3/ which operates with bounded orbits on X,  and (iii) 

d is closed in Auto(X ). 

Proo/. Suppose tha t  d is locally compact. Then, there is a neighborhood, sayYr of 

1 in d which is compact in the g-topology. Then Of" is certainly compact in the coarser 

C-O topology, and hence by  Theorem 3 satisfies (i) and (ii) above, d satisfies (iii) since a 

locally compact group is closed in any topological group which contains it. 

Conversely, suppose tha t  d satisfies (i), (ii), and (iii) above. Then we may  choose a 

neighborhood, say ~/~, of 1 in ~r such tha t  ~/~ is symmetric (i.e. ~ / ~ = ~ - x ) ,  equicontinu- 

ous, operates with bounded orbits on X, and is closed in Aut0(X ). We will show tha t  

is compact in the g-topology. 

Our proof makes use of the uniformity, say s//, on cd(X, X) which is known as the 

uniformity of uniform convergence on compact subsets. Recall tha t  an arbi t rary element 

of ~ m a y  be taken to be of the form (C I U) where C is a compact subset of X, U is an ele- 

ment  of the uniformity on X, and (C[U) consists of all pairs (/, g) of continuous functions 

on X for which (/(x), g(x)) E U for all x in C. 
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The map, (~_+a-1, of ~/C to itself is uniformly continuous with respect to the unifor- 

mi ty  ~'. Indeed, let C be an arbi trary compact subset of X and let U be an arbi trary ele- 

ment  of the uniformity on X. Then there is a compact subset, say C', of X such tha t  

a(C) ~ C' for all a in $4r; this is readily verified using the fact tha t  ~ is equicontinuous and 

operates with bounded orbits. Similarly, there is a C" such tha t  a ( C ' ) c  C" for all ~ in~/~. 

Also there is an element, V, of the uniformity on X such tha t  for all ~E~fr, (~(y), T(z)) E U 

whenever (y, z)E V and y E C and z E C"; this follows from the uniform equicontinuity of 

~gF on the compact set C U C". I f  (a, T) is in (C'{V), then ((~-1, ~-1) is in (C I U); in fact sup- 

pose (a(x), T(x)) E V for all x in C'; then (y, Ta-l(y)) E V for all y in C, because g-l(C) c C'; 

then (T-l(y), ~-l(y)) E U for all y in C by  our choice of V; hence (~-1, T-l) is in (C I U) as as- 

serted. We have shown tha t  a ~ a  -1 is uniformly continuous on ~#F. 

~#f is closed in ~g(X, X).  Indeed, suppose ga-+~ with each a~ in 1/~ and T in (g(X, X). 

Then, (a~ -1} is a Cauchy net with respect to U since a->a -1 is uniformly continuous. Then 

a~ 1 converges to some ~' in <d(X, X) since cg(X, X) is well known to be complete with 

respect to ~ .  Clearly, T' is the inverse of ~. Hence ~ is in Aut0(X ). Then ~ is in ~ since 

~/~ is assumed closed in Aut0(X ). This shows tha t  r r is closed in ~d(X, X). 

Therefore, by  Theorem 3, ~/z is compact in the C-O topology. But  the g-topology and 

the C-O topology coincide on ~g/', because by  what we already showed, a ~ a  -1 is continuous 

with respect to the C-O topology on "~. Therefore ~ is compact in the g-topology. Lemma 

2 is proved. 

We remark that  Dieudonn4 has a result similar to Theorem 4; cf. [4, Theorem 5]. 

Remark. For 5g to satisfy just conditions (i) and (ii) of Theorem 4 is equivalent to 

~ '  being locally bounded in its two-sided group uniformity. This is easily proved from 

Theorem 4 and the fact, proved in [1], tha t  Aut0(X ) is complete in its two-sided group 

uniformity. 

Now we specialize to the case tha t  interests us. 

Definition. Let G be an lea group. A homomorphism, o, of G to itself is called an auto- 

morphism if there exists in inverse homomorphism, ~, of G to itself such tha t  a ~ = ~ a =  1. 

Let  Aut (G) denote the group of all automorphisms of G with the g-topology. 

COROLLARY. (Ascoli). A group, d ,  o/ automorphisms o/ the Ica group, G, is locally 

compact i/ and only i/ (i) there is a neighborhood o/1  in d which is equicontinuous, (ii) there 

is a neighborhood o/1 in d which operates with bounded orbits, and (iii) d is closed in Aut  (G). 

Proo/. This follows immediately from Theorem 4 and the fact tha t  Aut (G) is closed 

in Aut o (G). 

1 8 - -  712907 Acta mathematica. 127. I m p r l m 6  le 11 Oc~obre 1971. 
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Remark. The map, Aut (G)-+Aut (G*), defined by a->a* is an anti-isomorphism of 

abstract  groups by  the Pontryagin duality theorem. Elementary considerations show tha t  

this map is bicontinuous; cf. [7 p. 429]. Hence, Aut (G) is anti-isomorphic as a topological 

group to Aut (G*). This fact will be used continually without further reference. 

We proceed now to exhibit a very convenient neighborhood system of 1 in Aut (G). 

An lca group is called elementary if i t  is isomorphic to 

n .  Q z  r |  ~ o F  

where n, r, and s are finite and F is a finite abelian group. 

Let  G be any lca group. (H, K) is called an elementary pair in G to mean tha t  H is 

an open subgroup of G, K is a compact subgroup of H, and H / K  is an elementary group. 

In  any lca group, G, there exist elementary pairs; for instance, if G=G 2 GR ~ where 

G 2 contains a compact open subgroup, say K, as in Theorem 1, then ( K + R  ~, K) is an 

elementary pair in G. 

I f  (H, K) is an elementary pair in G, then let Aut (G: H, K) be the set of all automor- 

phisms, (r, of G for which ~ ( H ) = H  and a ( K ) = K .  This is clearly a subgroup of Aut (G). 

Moreover, we have a homomorphism, 

~H. K: Ant (G: H, K)-§ (H/K) 

where for each ~ in Aut (G: H, K), SH, ~(~) is the automorphism, ~, first restricted to H 

and then projected to an automorphism of H/K. 

LEMMA 2. Let (H, K) be an elementary pair in the lea group G. Then 

(i) Aut (G: H, K) is an open subgroup o/ Aut  (G). 

(ii) 7ell. K is a homomorphism o/topological groups. In  particular, i/"//" is an open subset 

o] Aut (H/K), then its inverse image under ~H. K is open in Aut (G). 

(iii) Moreover, one obtains in this way a neighborhood system o /1  in Aut (G). Speei/ic- 

ally, given any neighborhood, ~f~, o] the identity in Aut (G), there exists an elementary pair, 

(H, K), in G and neighborhood, ~/', o/ the identity in Aut (H/K) such that the inverse image 

o] ~ under 7~H. ~: is contained in ~//'. 

Proo]. (i) The set, 5P, of all ~ in Aut (G) for which ~(H) = H  is open in Aut (G). Indeed, 

from the fact tha t  (H, K) is an elementary pair it is readily seen tha t  H is generated by  

some compact set, say C. Then, 5P is just the set of all ~ in Aut (G) for which g(C) and 

~-1(C) are both contained in L, which is open in Aut (G) by  the definition of the g-topology. 

From the fact tha t  (H, K) is an elementary pair in G it can be shown tha t  (K• H• 
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is an elementary pair in G*. Moreover, a(K) = K  if and only if a*(KL ) =.K~. Hence, the same 

argument applied to (K• H• along with the bicontinuity of * shows tha t  the set, 9O', 

of all g in Aut (G) for which a(K) = K  is open in Aut (G). Therefore, Aut (G: H, K) = 9  ~ N 9O' 

is open in Aut(G). This proves (i). 

For each compact subset, C, of G and each neighborhood, U, of 0 in G, let (C; U) be 

the set of all a in Aut (G) for which (~(x) - x )  E U and (a-l(x) - x )  E U for all x in C; and call 

(C; U) a modified compact open pair. Elementary considerations show tha t  the modified 

compact open pairs form a neighborhood system of 1 in Aut(G). 

(ii) is proved easily using modified compact open pairs. We omit the details. 

To prove (iii), let ~ = (C; U) be an arbi trary modified compact open pair in Aut (G). 

By  making (C; U) smaller, if necessary, we m a y  assume tha t  U has compact closure in 

G. I f  H is any compactly generated lea group and V is any neighborhood of 0 in H, then 

there is a compact subgroup, K, of H such tha t  K ~ V and H/K is elementary; this follows 

for any compact H by  a duality argument and then for any compactly generated H by  

theorem 1 (i). So, let H be the subgroup of G generated by C and U, let V be a neighborhood 

of 0 in G such tha t  V + V c U, and let K be a compact subgroup of H such tha t  K c V 

and H/K is elementary. Then (H, K) is an elementary pair in G. Let  C' and V' be the pro- 

jections of C and V respectively t o  H/K. Then ~f~ = (C'; V') is a modified compact open 

pair in Aut (H/K). Moreover, ~r (C; U) contains the inverse image of "V'=(C'; V') by 

HH. K; in fact, suppose that  HH. K(g) is in (C'; V'); then (~(x) --xE V + K  and a-i(x) - x E  V + K  

for all x in C; but  V + K c  V+ V+ U; hence, a is in (C; U). This proves (iii). 

4. Statement of the main theorem 

De/inition. Let G be an lca group. A subgroup, L, of G is called a lattice in G if L is 

discrete and G/L is compact. I f  there exists such a subgroup in G, then G is said to contain 

a lattice. 

Not  every lea group contains a lattice. 

A group which is the direct sum of a discrete group and a compact group is said to 

contain a lattice trivially. A group which contains a lattice but  which cannot be so decom- 

posed is said to contain a lattice non-trivially. 

Impor tan t  examples of groups which contain a lattice non-trivially are the real vec- 

tor group, R n, which contains Z ~ as a lattice, and the ring of adeles, Ak, of the number  

field k which contains 7c as a lattice. 

I f  G contains a lattice, say L, then G* also contains a lattice, namely L• this follows 

easily from the Pontryagin duality theorem. 

18 r  712907 Acta mathematica 127. Impr i ra~  le 11 Octobre 1971 
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For groups which contain a lattice non-trivially the main theorem answers the ques- 

tion of when Aut (G) is locally compact. 

T}IEORV,~ 5. (Main theorem.) Let G be a group which contains a lattice non-trivially. 

Then Aut  ( G) is locally compact i/ and only i/ the /ollowing three conditions are satisfied. 

(i) G ~ has finite p-rank/or every prime number p. 

(ii) G2/G 1 has finite rank. 

(iii) G o has finite rank. 

We remark that  not every group satisfying (i), (ii), and (iii) contains a lattice. A cha- 

racterization of the groups with lattice may be found in [11]. 

5. Proof of sufficiency of the main theorem 

Notation. If  G is a group and ~ is a subset of Aut (G), let 3r denote the correspond- 

ing subset {a*: aECf} of Aut (G*). 

L E M ~  3. Let G be a group and let ~/4/ be a subset o /Au t  (G) which contains 1. Then there 

is a neighborhood o /1  in ~ which operates with bounded orbits on G i /and  only i/ there is a 

neighborhood o /1  in ~//* which is equicontinuous on G*. 

Proo/. Suppose that  ~ '  is a neighborhood of 1 in r  operates with bounded 

orbits on G. Let U be an open neighborhood of 0 in G whose closure, U ~ is compact. 

Let U1 be an open set which contains U ~ and whose closure, U~, is compact. By making r 

smaller, if necessary, we may and do assume that  o(U c) c U 1 for all ~ in :/( ' .  

For any compact subset, C, of G, the set ~/FC={~(x): a 6 ~ '  x6C} is contained in 

some compact subset, C', of G. Indeed, by the compactness of C, there is a finite set, 

{x 1 ..... x=}, of elements of G such that  [J ~ (x~ + U) covers C. Then ~//'C is contained in 

U~(~g/'x~§ U~). So, take C' to be the closure of this latter set. C' is compact since ~ f '  

operates with bounded orbits. 

Now, we show that  r is equicontinuous at 0 in G*. Let V be an arbitrary neighbor- 

hood of 0 in G*. Recalling that  G* is the set of characters of G with the compact open topo- 

logy, we see that  we may take V = (C, N) in the notation of w 3 where C is a compact sub- 

set of G and N is a neighborhood of 1 in T. For this C, let C' be as in the above paragraph. 

Then V ' =  (C', N) is a neighborhood of 0 in G*, and it is easily checked that  a*(V' )c  V 

for all a 6 r This shows that  ~/('* is equicontinuous at 0 in G* as asserted. From this and 

the fact that  the elements of Of"'* are homomorphisms it follows that  ~/~'* is equicontinu- 

ous at every point of G*. But r is a neighborhood of 1 in ~/~*'. The first half of the 

1emma is proved. 
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For the second half of the proof it is convenient to interchange G and G*. Thus, we 

assume tha t  yir, is a neighborhood of 1 in ~g/which is equicontinuous on G and we show 

tha t  there is a neighborhood, namely qr of 1 in i t  z* which operates with bounded orbits 

on G*. Indeed, if Z is any character of G, then its orbit under ~ ' *  is just Yr = {Z ~ 

(r E ~ ' } .  But  this is a set of equicontinuous characters of G by  the equieontinuity of ~ '  

and the continuity of Z- Hence, by  the Ascoli theorem, theorem 3, ~g/'*Z has compact 

closure in G* (recall tha t  T is compact). This shows tha t  ~ ' *  operates with bounded orbits 

on G*. The proof of the lemma is complete. 

PROPOSITION 1. Let G be group such that 

(i) G ~ has finite p-rank/or each prime p. 

(if) G2/G1 has finite rank. 

(iii) G O has finite rank. 

Then Aut (G) is locally compact. 

We remark tha t  Proposition 1 establishes the sufficiency of the conditions given by  

the main theorem. Notice tha t  no assumptions about lattices are needed to prove Propo- 

sition 1. They are needed only for the proof of necessity. 

Proo/ o/ Proposition 1. I f  G satisifies the above hypotheses, then so does G*, because 

of Theorem 2. Hence, by  the Ascoli corollary and Lemma 3 we need only show tha t  there 

is a neighborhood of 1 in Aut (G) which operates with bounded orbits on G. 

Put  G = G 2 |  n as in Theorem 1. Let  S = {s 1 ..... sk} be a finite subset of G2 which is 

maximal linearly independent modulo G1; the existence of S is guaranteed by hypothesis 

(if). Let  K he a compact open subgroup of G~. Let  U be the open unit ball in R ~, 

U = {x E Rn: Ix] < 1}. For each positive real, r, let r U be the open ball of radius r in R ~. Let  

V be the closure of (�89 U. Let  C = S  O K U V. Then, with notation as in the proof of Lemma 

2, ~ = (C; K + U) is a neighborhood of 1 in Aut (G). We will show tha t  ~gr operates with 

bounded orbits on G. 

~//r operates with bounded orbits on t t  n, since any element of R n can be writ ten as kv 

with k E Z and v E V, and ~g/(kv) is contained in kv + (K + k U) which is relatively compact. 

So it is sufficient to show tha t  ~r operates with bounded orbits on G 2. Let  x be an 

arbi t rary element of G~. Then for some integer m, mx=x'+E~=l a,s i where x' is in G1, 

and the a, are integers by  our choice of S. Moreover, by  multiplying the above equation 

through by  the order x' modulo K, if necessary, we may  assume tha t  x' is in K. (G1/K is a 

discrete torsion group.) Then, by  our choice of ~gr, m ( a ( x ) - x ) E ( K + r U )  for all a in $r 
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n a {yEG2: m y E K }  = C  1 is compact because each p-primary where r=E~-l [  ~l" But the set 

part of G2 has finite p-rank, and the set {zERn: mzErU} =C2 is clearly compact. Thus, 

~ x  is contained in the compact set, x + C  1 + C2. We have shown that  ~ operates with 

bounded orbits on G. The proposition is proved. 

6. Proof of necessity 

Proving necessity is somewhat more difficult than proving sufficiency. One must 

show that  G satisfies conditions (i), (ii), and (iii) of the main theorem by arguing that  

otherwise there would be "too many"  automorphisms of G for Ant(G) to be locally com- 

pact. Thus, one must construct automorphisms of G, and this is where the difficulty lies. 

L ~  4. Let G be a group which contains a lattice. Then G contains a lattice non- 

trivially i / a n d  only i / G  contains a closed subgroup isomorphic to R. 

Proo/. G could not split into the direct sum of a discrete group and compact group 

if it contained R, since R has no compact open subgroup. This proves the "if" part. 

Conversely, suppose that  G does not contain R (or equivalently by Theorem 1 that  

G contains a compact open subgroup). Suppose also that  G contains a lattice. We wish to 

show that  G contains a lattice trivially. 

If  G/G o contains a lattice trivially, then so does G. Indeed, suppose G/G o = K  |  

with K compact and L discrete. Let K '  and H be the inverse images of K and L respecti- 

vely by the canonical map, G-*G/G o. Then, H=Go|  for some subgroup L'  by  the di- 

visibility of G o and the decomposition is topological since G O is open in H. Then G = K '  |  

with K'  compact and L' discrete. We have shown that  if G/G o contains a lattice trivially 

then so does G. 

Moreover, if G contains a lattice, say L, then the image of L by the map, G->G/Go, is 

a lattice in G/G o. Therefore, we may assume that  G o =0. By a duality argument, one sees 

tha t  we may also assume that  the torsion free discrete part of G is 0. Since G has no sub- 

group isomorphic to R, this amounts to saying that  G is a topological torsion group. 

Thus we assume that  G is a topological torsion group with lattice, say L, and compact 

open subgroup, say K. We wish to show that  G is the direct sum of a compact group and a 

discrete group. Indeed, K + L  has finite index in G since G/K is discrete and G/L is com- 

pact. But G is the union of its compact subgroups. So, we may, by making K largerif neces- 

sary, assume that  K + L = G .  Moreover, K N L, being both compact and discrete, is finite. 

An exercise in duality and in the theory of discrete groups shows that  a finite subgroup 
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of a compact, topological torsion group is contained in a finite direct summand thereof. 

Thus K = F |  where F is finite and contains K N L .  Then, clearly, G = K ' |  

where K '  is compact and F + L  is discrete. Lemma 4 is proved. 

LEM~A 5. Suppose that Aut (G) is locally compact. Suppose ]urther that G contains a 

divisible subgroup, D, whose closure in G is not compact. Then, the torsion/tee discrete part 

o[ G has finite rank. 

Proo[. By the Ascoli corollary, there exists a neighborhood, say ~/tz, of 1 in Aut (G) 

which operates with bounded orbits on G. Suppose that  G~/G 1 has infinite rank. We will 

derive a contradiction by  constructing automorphisms of G which are in ~/~ and which 

fail to operate with bounded orbits. 

There exists a compact open pair, (H, K), in G such tha t  r (~f~) for some 

neighborhood, ~/P, of 1 in Ant (H/K); this follows from Lemma 2. 

By choosing a slightly smaller unbounded divisible subgroup, if necessary, we may  

assume tha t  the image of D under the canonical map, G~G/(GI| ~) has finite rank. 

Then G' =G/(G 1 + R ~ + D §  has infinite torsion free rank, since G/(G 1 OR n) =Ge/G 1 has 

infinite torsion free rank, since H is compactly generated, and by  our choice of D. There- 

fore, there is an element, z, of G' which has infinite order. Let  Z be the infinite cyclic sub- 

group of G' generated by  z. Then for each t in D, there is a homomorphism, ~vt: Z--->D, 

such tha t  ~vt(z)=t. Now we use the crucial fact tha t  D is divisible. I t  is well known [6] 

tha t  if A is a discrete abelian group with subgroup B, then a homomorphism of B into a 

divisible group can always be extended to a homomorphism of A into tha t  group. In  par- 

ticular, ~vt, can be extended to a homomorphism, ~v~: G'~D,  such that  F~(z)=t. Moreover 

~v~ is continuous, since its domain is discrete. Let /z  be the endomorphism of G defined by  

#t =r o ~  or , where r is the canonical projection, r + It~ + D §  = G', and 

r is the canonical injection, r D--->G. Then 1 +/~t is an antomorphism of G; in fact, it 

has an inverse, namely 1 -f i t ,  s ince/zto#t=0.  Moreover, 1 +fit is in C/z, since it restricts 

to the identity on H. Now, let x be an element of G which projects to z modulo (G 1 + 

R = + D + H ) .  Then the orbit of x under ~ contains {(1 +/zt)(x ) =x+t  I tED}, which does 

not have compact closure in G, since D does not have compact closure in G. This contra- 

dicts the fact tha t  ~ operates with bounded orbits. 

P~oPOSlTIO~ 2. I /  G contains a lattice nontrivially and Aut (G) is locally compact, 

then the torsion/ree discrete and compact divisible parts o] G each have ]inite rank. 

Proo/. The torsion free discrete par t  of G has finite rank by  Lemmas 4 and 5 and by  



272 MARTIN D. LEVI~ 

the fact tha t  R is divisible and not compact. The same argument applied to G* shows tha t  

the torsion free discrete par t  of G* has finite rank. Then the compact divisible par t  of G 

has finite rank by  Theorem 2 (iii). This proves Proposition 2. 

We have established the necessity of conditions (ii) and (iii) of the main theorem. 

We proceed now to establish the necessity of (i). 

.Notation. I f  G is a group and p is a prime number, let G~ = (x E G: px  = 0}. 

L]~M~A 6. Suppose that G is an lca group and that Aut  (G) is locally compact. Let p be 

a prime. Then either G~ is compact or else p G + H = G / o r  some compactly generated open sub- 

group, H, o] G. 

Proo]. By the Ascoli corollary, there is a neighborhood, r of 1 in Aut (G) which 

operates within bounded orbits on G. Then, there exists an elementary pair, (H, K), in 

G such tha t  ~ g r ~ l  ~(~//~) for some neighborhood, SF, of 1 in Aut (H/K}; this follows by 

Lemma 2. Then H is a compactly generated open subgroup of G. We will assume tha t  

pG + H 4= G and prove from this tha t  Gp is compact. 

G/(pG +H) is a discrete vector space over the field of p-elements. I f  p G + H  #G, then 

there exists a homomorphism of G/(pG+H) onto the cyclic group, Z/pZ, of p-elements 

(just factor out by  a subspace of codimension 1). Composing this homomorphism with the 

canonical projection from G, one obtains a surjection, r G~Z/pZ ,  whose kernel, say N, 

contains H. Let  z be a generator of Z/pZ. Then for each t in N n G_,, there exists a unique 

homomorphism, ~Pt: (Z/pZ)-+G, such that  ~ft(z)~t. Moreover, Y't is continuous since its 

domain is discrete. Put  tit =~ftor Then for each t in N fl G~, (1 +ttt) is an automorphism 

of G; in fact, (1 +fit) has an inverse, namely 1 -f i t ,  since/xto/d t =0. Moreover, (1 +fit) is 

in ~ since it restricts to the identity on H. Now, let x be an element of G which projects 

to z modulo N. Then {(l +fit) (x) = x + t i t  E N ~ Gp} has compact closure, since it is contained 

in the orbit of x under Y~. I t  follows tha t  N n G~ is compact, since it is closed and its trans- 

late by  x has compact closure. Then Gp is compact, since 1V has finite index in G. This 

proves Lemma 6. 

LE~MA 7. Suppose that Aut (G) is locally compact. Suppose ]urther that D is a discrete 

subgroup o] G which is a divisible p-group. Then D has/inite p-rank. 

Proo[. I t  is well known tha t  a discrete divisible p-group is isomorphic to (Q~/Z~) ~ 

for some cardinal ~ [6]. We must  show tha t  zr is finite. 
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By the Ascoli theorem, there is a neighborhood, ~ ,  of 1 in Aut (G) which operates 

with bounded orbits on G. Then there is an elementary pair, (H, K), in G such tha t  ~K 

contains (ZH. K) -1 ($/') for some neighborhood, ~ ,  of 1 in Aut (H/K). 

From the fact tha t  H is compactly generated and D is a discrete divisible p-group, 

it can be shown tha t  D = D'  |  where D'  has trivial intersection with H and where D" 

has finite p-rank. Let  M be a subgroup of G, maximal  with respect to the properties of 

containing H and having trivial intersection with D'.  Then G = D '  |  this can be shown 

from the divisibility of D'  and the maximali ty  of M. Moreover, the direct sum decomposi- 

tion is topological, since M, by  virtue of containing H, is an open subgroup of G. D ' =  

(QJZp)Z for some cardinal/?. The automorphisms of G which restrict to the identi ty on 

M and which permute the various direct summands of D'  are clearly in ~K. I f  fl were in- 

finite, then these automorphisms would fail to operate with bounded orbits. Hence, fl is 

finite. This shows tha t  D'  has finite p-rank. Hence, D=D' | has finite p-rank (or 

equivalently, ~ is finite). The lemma is proved. 

PROPOSITIOn 3. Suppose that G is a group which contains a lattice and that Aut (G) 

is locally compact. Then G ~ has finite p-rank ]or each prime number, p. 

Proof. Let p be an arbi trary prime. Let  L be a lattice in G. By Lemma 1 it is suffi- 

cient to show tha t  the p-pr imary  parts  of L and G/L each have finite p-rank.  However, i 

we can show tha t  the p-pr imary  par t  of L has finite p-rank,  then the same argument ap- 

plied to G* will show tha t  the p-pr imary  par t  of L• = (G/L)* has finite p-rank, and then by  

Theorem 2 (v), (G/L) p would have finite p- rank and we would be done. Thus it is sufficient 

to show tha t  the p -pr imary  par t  of L has finite p-rank.  

I f  Gp is compact, then Lp, being both compact and discrete, is finite. From this, the 

discreteness of L, and elementary group theory it can be shown tha t  L v has finite p-rank. 

Therefore we may  assume tha t  G; is not compact. Then by  Lemma 6, pG+H=G 

for some compactly generated open subgroup, H, of G. Then LP/p(L p) is finite. Indeed, 

L §  has finite index in G, since G/L is compact and G/H is discrete. Hence p L §  has 

finite index in pG§ Hence, G/pL is compactly generated. But  a discrete torsion 

subgroup of a compactly generated lea group must  be finite; this follows from Pontryagin 's  

decomposition of compactly generated groups, mentioned in the proof of Theorem 1. 

Hence, L/pL is finite. Since the p-pr imary  part,  L p, of L is a pure subgroup thereof, it fol- 

lows tha t  LV/p(L p) is also finite which is what  we wanted to show. 

Now, any discrete p-group, and L" in particular, decomposes into the direct sum of 

a divisible p-group and a reduced p-group (a group is called "reduced" if it contains no 
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non-trivial divisible subgroups) cf. [6]. An easy exercise in group theory shows tha t  if L '  

is a reduced discrete p-group for which L'/pL' is finite, then L '  is finite. Therefore, in par- 

ticular the reduced component of L ~ is finite. But  the divisible component of L v has finite 

p- rank by  Lemma 7. Hence, L ~ has finite p- rank which is what  we wanted to prove. Pro- 

position 3 is proved. The necessity of the main theorem is now established. 

7. The case of  trivial lattice 

Suppose tha t  G contains a lattice trivially, say G = K |  with K compact and L 

discrete. Then Aut (G) is locally compact if and only if Aut (K) and Aut (L) are both lo- 

cally compact. Indeed, the automorphisms, a, of G for which a(K) = K  form an open sub- 

group of Aut (G), call it ~r Any a in d may  be written as a two by  two matr ix  with en- 

tries, ~,/~, 0, and ~ where ~EAut  (K), 5EAut (L),/5: L ~ K ,  and 0 is the trivial map from 

K to L. The fl's operate equicontinuously and with bounded orbits since L is discrete and 

K is compact. Therefore, ~r and hence also Aut (G) is locally compact if and only if Aut (L) 

and Aut (K) are locally compact which is what we wanted to prove. 

Since Aut (K) is anti-isomorphic to Aut (K*) where K* is discrete, this reduces the 

problem of the local compactness of Aut (G) in the case tha t  G contains a lattice trivially 

to the case tha t  G is discrete. For this case we have the following partial  results. 

T ~ I n O R ~  6. Let G be a discrete group. 1 / A u t  (G) is locally compact, then either 

(a) G/G 1 has finite rank and/or each prime, p, G p has finite rank, or else 

(b) G/G 1 has infinite rank and/or each prime, p, C~ is finite. 

Moreover, case (a) is conclusive; i / G  satisfies (a) then Aut (G) is locally compact. How- 

ever, case (b) is inconclusive; /or some groups satis/ying (b) Aut (G) is locally compact and 

]or some it is not. 

Proo/. I f  Aut (G) is locally compact and G is discrete but  does not satisfy (a), then G 

must  satisfy (b); this follows from Proposition 3, Lemma 5, and the fact tha t  a discrete 

p-group of finite p- rank  is the direct sum of a finite group and finitely many  copies of the 

infinite divisible group, Q~/Z~. Conversely, if G satisfies (a), then Aut (G) is locally compact 

by  Proposition 1. I t  remains to show that  case (b) is inconclusive. I t  is easy to find examples 

for which G satisfies (b) and Aut (G) is not locally compact; for instance let G be the di- 

rect sum of infinitely many  copies of Z. Finding examples for which Aut (G) is locally com- 

pact  is more difficult. However, Fuchs has obtained the following startling result. Define 

a rigid system to be a collection, (Gl}, of torsion free discrete abelian groups such tha t  any  

homomorphism of G~ into Gj is trivial in the case tha t  i :~j and is multiplication by  a ra- 
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tional in the case tha t  i =y. Then, Fuchs [7] has shown tha t  to every infinite cardinal, ~, 

there exists a rigid system consisting of 2 ~ torsion free groups each of power ~. Clearly, 

if ~ is uncountable, then for any of the Gi, G~ satisfies (b) and Aut (G~) is locally compact, 

in fact discrete. This proves Theorem 6. 

We remark tha t  a t tempting to determine which groups, G, satisfying (b), have Ant (G) 

locally compact, seems hopelessly difficult. For examples of how pathological can be the 

structure of torsion free discrete groups even in the case of finite rank, we refer the reader 

to [3]. 

8. Application to B(G) 

Let G be any locally compact abelian group. Let  U be the group of uni tary operators 

on L~(G). Let A(G) be the subgroup of U generated by  the regular representation of G 

and the Fourier transform of the regular representation of G*. I t  turns out tha t  A(G) is 

a two step nitpotent locally compact group. Let  B(G) be the normalizer of A(G) in U. 

I t  is of some interest to know when B(G) is locally compact. For instance, Igusa has shown 

[9] tha t  if C is a compact subset of B(G) and 5P(G) is the space of Schwartz-Bruhat functions 

on G, then the map, C x 5P(G)-)-,9~(G) is continuous. 

By theorems of Segal and Igusa (cf. [9], [16]) it turns out tha t  B(G)/A(G) is isomorphic 

as a topological group to Sp (G) which is a certain subgroup of Aut (G x G*). This makes 

it possible for us to apply our earlier results to the problem of the local compactness of 

B(G). 
We still have to tell the reader what Sp (G) is. We follow the notation of [16]. Write 

the elements, w, of G • G* as pairs, w = (x, x*), and write the automorphisms, (7, of G • G* 

as two by  two matrices 

which operate by  matr ix  multiplication on the right, so tha t  a ( w ) = w ,  a = (xa + x 'y ,  x~ + 

x*3). I f  ~ is an automorphism of G x G*, then a* is an automorphism of G* x G. Let  ~ be the 

isomorphism of G x G* onto G* x G, defined by  (x, x*)-->(-x*, x). For each automorphism, 

a, of G* x G, define a z =~*~-1. Then a x is also an automorphism of G x G*, and it is easily 

checked that  if (7 is given by  @, then 

o ~= _~, ,  e* 

Define Sp (G) to be the subgroup of Ant (G • G*) consisting all o" in Aut(G x G*) for 

which (7~z = 1. Then, Sp (G) is clearly a closed subgroup of Aut (G • G*). 
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TI~EOR~M 7. Let G be a group which contains a lattice non-trivially. Then B(G) is lo- 

cally compact i] and only i] the/ollowing three conditions are satisfied. 

(i) G p has finite p-rank/or each rational prime, p. 

(ii) G2/G 1 has finite rank. 

(iii) G o has finite rank. 

Proo/. B(G) is locally compact if and only if Sp (G) is locally compact, because of the 

above mentioned isomorphism. (For a proof that  a locally compact extension of a locally 

compact group is locally compact, we refer to [8, p. 39].) 

If Sp (G) is locally compact, then so is Aut (G), since the map 

Io 0 

is an isomorphism of Aut (G) to a closed subgroup of Sp (G). Therefore, by Theorem 5, 

G must satisfy the above conditions whenever Sp (G) is locally compact. 

Conversely, suppose that  G satisfies the above conditions. Then, clearly, so does 

G • G*. Hence, Ant (G • G*) is locally compact by Theorem 5. I t  follows that  Sp (G), being 

a closed subgroup of Aut (G • G*), is also locally compact. This proves Theorem 7. 

The following proposition reduces the problem of the local compactness of B(G) in 

the case that  G contains a lattice trivially to the problem of the local compactness of 

Aut (G) in the case that  G is discrete. For this latter problem, partial results were givenby 

Theorem 6. 

PROPOSITION 4. Suppose that G contains a lattice trivially, say G = K  | with K com- 

pact and L discrete. Then, B(G) is locally compact i/ and only i / A u t  (L | is locally com- 

pact. 

Proo]. Because of the above mentioned isomorphism of B(G)/A(G) to Sp (G) we may 

replace B(G) by Sp (G) in the statement of the proposition. 

Suppose that  Aut (L OK*) is locally compact. Then Ant (L* | is also locally com- 

pact. Then, by the remarks at the beginning of w 7, Ant (L* |  | | is also locally 

compact. But this last group is just Ant (G| of which Sp (G) is a closed subgroup. 

Hence Sp (G) is locally compact. 

Conversely, if Sp (G) is locally compact then so is Ant (L OK*). Indeed, write the auto- 

morphisms of L | as two by two matrices which operate on L • K*, written as ordered 

pairs, by  matrix multiplication on the right. Also write the elements of G • G* as four tu- 
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ples in L | | | and write the automorphisms of G x G* as four by  four matrices 

which operate on (G • G*)= (L | | QK*) by matr ix  multiplication on the right. I f  q 

is an automorphism of L | with 

o=l; 
then it is easily checked tha t  

6 ~ = 

~ o  o 
o 8*  fi'* 0 
0 ~'* d *  0 

0 0 

is an 

cally onto a closed subgroup of Sp (G). 

Aut (L | This proves Proposition 4, 

element of Sp (G). Then, the correspondence a-+d ' ,  maps Aut (L | isomorphi- 

Therefore, if Sp (G) is locally compact, so is 

9. A counterexample 

We show tha t  tile hypothesis tha t  G contain a lattice cannot be dropped from Propo- 

sition 3. Let  p be a fixed rational prime. For each positive integer, h, let Mh be the cyclic 

group of order p 2h and let 2gh be its unique cyclic subgroup of order p a. Let  G = II~=l(Mh, Ark). 

Then G is u p-pr imary  group which does not have finite p-rank.  We will show tha t  

Aut (G) is nevertheless locally compact. Indeed, let K = IIhNh. Then K is a compact open 

subgroup of G. Then by  Lemma 2, d = (a E Aut (G) [ a(K) = K} is an open subgroup of Aut (G). 

~r operates with bounded orbits on G; in fact, d leaves invariant  each of the compact 

sets, Gh+K, where Gh={xEGIpex=O}; but  U L I ( G ~ + K ) i s  all of G, since G2h+K= 
h Em=l Mn+K; hence s ]  operates with bounded orbits on G as asserted. ~r also operates 

equieontinuously on G; in fact, d leaves invariant  each of the sets, (phG) (1 K, h = I, 2, 3 ..... 

and these sets form a neighborhood system of 0 in G, since (p2hG fi K) c II~=h N~; it follows 

tha t  d operates equicontinuously on G as asserted. Therefore, by  the corollary of 

Theorem 4, Ant (G) is loeaUy compact which is what we wanted to show. This shows 

tha t  the hypothesis tha t  G eontain a lattice cannot be dropped from Proposition 3. 

Remark. Let us carry the above example a bit further, Suppose tha t  G = IIh(Mh, Na) 

where each Mh is a p -pr imary  group of p-rank 1 with compact open subgroup, Nh, and tha t  

h ranges over some index set. Then, it can be shown without much difficulty tha t  Aut (G) 

is locally compact if and only if there are only finitely many  Nh of any  given order (be 
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i t  f ini te  or infinite) ,  and  the re  on ly  f in i te ly  m a n y  Mh/Nh of a n y  given order.  Vi lenkin [14] 

has  given condi t ions  under  which a p - p r i m a r y  group will decompose  into  the  res t r i c t ed  

p roduc t  of groups  of /~-rank 1. 
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