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Preface 

Pseudo-differential operators have been developed as a tool for the s tudy of elliptic 

differential equations. Suitably extended versions are also applicable to hypoelliptic 

equations, but  their value is rather  limited in genuinely non-elliptic problems. In  this 

paper we shall therefore discuss some more general classes of operators which are adapted 

to such applications. For these operators we shall develop a calculus which is almost as 

smooth as tha t  of pseudo-differential operators. I t  also seems tha t  one gains some more 

insight into the theory of pseudo-differential operators by considering them from the point 

of view of the wider classes of operators to be discussed here so we shall take the oppor- 

tuni ty  to include a short exposition. 

Pseudo-differential operators as well as our Fourier integral operators are intended 

to make it possible to handle differential operators with variable coefficients roughly as one 

would handle differential operators with constant coefficients using the Fourier trans- 

formation. For example, the inhomogeneous Laplace equation 

is for n > 2 solved by 
Au =/~ C'~(n") 

J 

where = f e -'<x'`v(x) dx 

is the Fourier transform of / .  To be able to solve arbi trary elliptic equations with variable 

coefficients one is led to consider more general operators of the form 

A/(x)  = (2=)-.fe ~ a(x, ~) f(~) d~, (0.1) 
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where a behaves as a sum of homogeneous functions when 4-~ ~ .  These are the (classical) 

pseudo-differential operators. On the other hand, suppose that  we want to solve the 

Cauchy problem 

Au-~u/~t  ~ = 0; u = O, ~u/~t =/EC~C(R ~) when t = 0. 

Then the solution is given by 

u(x~)=(2~)-`fe`~x~+~)(2i~4~)-~(4)d4-(27t)-~ fe.(~x.~-~)(2i~4])~1~(4)d4. (0.2) 

Each of the terms on the right-hand side is similar to (0.1) except for the fact that  the func- 

tion (x, 4) in the exponent has been replaced by (x, 4 ) i t  [4l. This is a homogeneous 

function of 4 with critical points as a function of 4 where x= • thus [xl2=t  ~ 

which is the light cone. The function (x, 4), on the other hand, has no critical point except 

when x = 0. These observations reflect the fact that  the fundamental solution of the wave 

equation is singular on the light cone whereas the fundamental solution of the Laplacean 

is singular only at the origin. 

As a generalization of (0.1), (0.2) it is natural to consider operators of the form 

Al(x ) = f e ~s(x' ~)a(x, 4) I(4) d4. (0.3) 

Lax [21] showed that  for any strictly hyperbolic equation the solution of the Cauchy 

problem is for small values of the time variable a sum of operators of this form where S is 

obtained by solving the characteristic equation with initial data x-~(x, 4). Related global 

results were proved by Ludwig [22]. A more systematic study of operators of the form 

(0.3) was made by Maslov [23] under the hypothesis that  det S ~ :  0, and his results have 

subsequently been extended and applied by E~kin [9], Egorov [7, 8] in connection with 

studies of non-elliptic pscudo-dfferential Operators. 

Introduction of the definition of the Fourier transform in (0.3) gives formally 

A/(x)= f f e'c(x'~.~) a(x, y, 4) /(y) dy d4, (0.4) 

where r y, 4) = S(x, 4) - (Y, 4), and a is independent of y of course. Quite general operators 

of the form (0.4) were discussed by  the author [14] and the term Fourier integral operator 

was introduced for them. The purpose was a study of the asymptotic properties of the 

eigenfunctions of elliptic operators, which is actually a problem involving a related hyper- 

bolic operator. A more systematic development with applications to differential operators 

of principal type with real principal part was given in mimeographed lecture notes from the 
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Nordic Summer School of Mathematics 1969 (see also [15, section 5]). Originally this paper  

was intended as a finished version of those notes but  in fact it has been completely revised 

and very much extended in order to take into account the very important  observation of 

Egorov [7] tha t  if A is an operator of the form (0.3) and P, Q are pseudo-differential opera- 

tors with P A  = A Q ,  then the principal symbols of P and Q are related by  the canonical 

transformation corresponding to the generating function S. Now it turns out tha t  with 

any operator of the form (0.4) where r satisfies a certain regularity condition one can also 

associate a canonical transformation and prove tha t  the class of operators of the form 

(0.4) is determined by the canonical transformation alone. I t  is then possible to develop a 

fairly complete calculus of such operators where the result of Egorov is imbedded in a nat- 

ural way. As a result one can for example give a reinterpretation of the result of Lax  [21] 

mentioned above which is valid globally in the time variable. The results indicated in [15] 

concerning operators of principal type with real principal par t  can also be made global 

under suitable convexity assumptions weaker than  those discussed in [17, Chapter VII I ] .  

These applications are left for the second par t  of the paper which is being written in colla- 

boration with J.  J. Duistcrmaat.  However, we wish to call at tention to the papers of 

Egorov [8] and Nirenberg-Trbves [25] which use operators of the form (0.3) in a very 

essential way in studies concerning existence and regularity theorems for general operators 

of principal type. 

The work of Egorov is actually an application of ideas from Maslov [23] who stated 

at the International Congress in Nice tha t  his book actually contains the ideas at tr ibuted 

here to Egorov [7] and Arnold [1] as well as a more general and precise operator calculus 

than ours. Since the book is highly inaccessible and does not appear to be quite rigorous 

we can only pass this information on to the reader, adding a reference to the explanations 

of Maslov's work given by  Buslaev [5]. In  this context we should also mention tha t  the 

"Maslov index" which plays an essential role in Chapters I I I  and IV was already con- 

sidered quite explicitly by  J.  Keller [18]. I t  expresses the classical observation in geo- 

metrical optics tha t  a phase shift of ~/2 takes place at  a caustic. The purpose of the present 

paper is not to extend the more or less formal methods used in geometrical optics but  to 

extract  from them a precise operator theory which can be applied to the theory of partial 

differential operators. In  fact, we only use the simplest expansions which occur in geo- 

metrical optics, and a wealth of other ideas remain to be investigated. 

The plan of the paper is as follows. Chapter I presents generalities concerning Fourier 

integral operators. Actually this is mainly a more systematic version of the introductory 

chapter of [14]. In  Chapter I I  we review the calculus of pseudo-differential operators from 

this more general point of view and give some applications. The kernels of pseudo-differen- 
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tial operators are certain distributions in a product X x X with singularities only on the 

diagonal. With any manifold X and submanifold Y there is similarly associated in a natural 

way a class of distributions with singularities only on Y which is discussed at the end of 

Chapter II .  Actually, these distributions are connected with the normal bundle of Y 

in the sense that  they have symbols living on that  bundle. In  Chapter I I I  we study more 

general classes of distributions which are associated with any conic Lagrangean submani- 

fold of T*(X). If  X is replaced by a product X x Y one can interpret these as classes of 

operators from functions on Y to functions on X. In particular there is such a class of 

operators associated with any canonical diffeomorphism of T*(Y)~O on T*(X)~O. 
Composition of such operators corresponds to composition of the canonical transformations. 

Pseudo-differential operators are obtained when X = Y and the canonical transformation 

is the identity. This general operator calculus contains the result of Egorov [7] referred to 

above and also leads immediately to estimates for the norm of the operators. I t  is 

developed in Chapter IV. 

A summary of the results of this paper has been given in [16] which can also be read 

as an introduction giving additional background material. 

Finally I would like to thank J. J. Duistermaat for many discussions concerning 

symplectic geometry which have improved the exposition. 

I. Oscillatory integrals 
1.0. Introduction 

In  this chapter we shall give precise definitions of integrals of the form (0.4) and discuss 

some of their most elementary properties. Concerning the amplitude a in (0.4) we shall 

usually make essentially the same hypotheses as in earlier studies of pseudo-differential 

operators (see [13]). The basic facts are collected in section 1.1. In  section 1.2 we can then 

give a precise definition of the corresponding integrals of the form (0.4) by means of essenti- 

ally the same methods as in [14]. However, the hypotheses of sections 1.1 and 1.2 are some- 

what too special for some purposes. In  section 1.3 we shall therefore relax the conditions 

on the amplitude a in (0.4). Basic facts concerning operators of the form (0.4) are then 

given in section 1.4. Under suitable additional assumptions concerning the phase function 

we shall give much more precise results in Chapters I I  and IV. 

For standard notation not explained in the text we refer to H6rmander [17]. 

1.1. Symbols 

The theory of distributions gives a meaning to the Fourier transform 
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when  ](x)= O(]x I a) for some m as x ~  ~ .  The  def ini t ion of (0.4) is somewhat  more  dehca te  

so we have  to  impose  sui table  g rowth  condi t ions  of th is  t y p e  on all de r iva t ives  of the  func- 

t ion  a(x, y, 0). There  is no reason for us a t  th is  t ime  to consider  the  var iab les  x and  y 

separa te ly ,  so in the  following def ini t ion we consider  complex  va lued  funct ions  a def ined 

in X • R ~ where X is an  open subset  of R n (we allow n to be 0). 

Definition 1.1.1. L e t  m, ~, ~ be real  numbers  wi th  0 < ~ < 1 ,  0~<5~<1. Then  we denote  

b y  S~.~ (X • R N) the  set  of all a E C~(X  • R y) such t h a t  for eve ry  compac t  set  K ~  X and  all  

mul t io rders  a, fl t he  e s t ima te  

ID/Do~a(x,O)l < ~ , , ,~ (1  + 101) x~ K, 0E R N, (1.1.1) 

is va l id  for some cons tan t  C~.~.K. The  e lements  of S~.~ are called symbols  of order  m and  

t y p e  ~, 5. I f  ~+ (~=1  we also use the  no t a t i on  S~ n ins t ead  of Se~t, and  when ~ = 1 ,  (~=0  

we somet imes  wr i te  only  S m and  t a l k  abou t  symbols  of order  m. If  (l .1.1) is only  va l id  for  

large IOl, we say  t h a t  a E S~'~ for large 101. F i n a l l y  we set  

T/~ m 

B y  the  conic suppor t  of a, deno ted  cone supp a we denote  the  closure in X • t t  ~ of {(x, tO); 

(x, O) E supp a, t ~> 0}. 

Somewhat  incor rec t ly  we shall  also say  t h a t  a set M c X  x R ~ is conic if (x, O)EM 

impl ies  (x, tO)EM when t > 0 .  The  conic suppor t  of a is thus  the  smal les t  closed conic 

subse t  of X x R N such t h a t  a vanishes  in the  complement .  

Example 1.1.2. I f  a E C ~ and  a is a homogeneous  funct ion  of degree m wi th  respect  to  

0 for large ]0I, t hen  a is a symbol  of order  m (and t y p e  1, 0). 

Example 1.1.3. I f  a is semi-homogeneous  in the  sense t h a t  

a(x, 01t ~,  .... ONt m Jr) = tma(x, 01 . . . .  , ON) 

for some m j > 0  and  m E R ,  and  if aEC ~~ for 0 # 0 ,  t hen  a is for large 0 a symbol  of de- 

gree m a x j  m/mj and  t y p e  mini.  k mj/m,, O. 

Example 1.1.4. If  Z E 5P(Rn), the  Schwar tz  space, t hen  a(x, O) = Z(x[OI ~) is in S ~ ~(R n • R N) 

for large 101. 
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Example 1.1.5. I f  0 < t < 1, the funct ion (x, O) ~ e x p  ic(x) [0] ~-t, where c is a real valued 

function, is in sg.~ for large I Of if and only if ~ < t ,  ($~>l-t ,  or c is constant  and ~ < t ,  

5 arbitrary,  or c = 0  and both  Q and (~ arbitrary.  

P R 0 P 0 S I T I 0 N 1.1.6. S~. o(X • l~ N) is a Fre:chet space with the topology defined by taking 

as seminorms the best constants C~.~,K which can be used in (1.1.1). This space increases when 

(5 and m increase and Q decreases. I f  aCS~,~ it follows that 

a(~) -- (iDo) ~ (iD~)~ a E S~.~ QI ~ I +till (fl) - -  

and i / b  E S~'~ it follows that ab E ~+~" 

The proof is obvious. Note  tha t  to prove (1.1.1) for ab one needs to know only tha t  

(1.1.1) holds for a and for b when the differentiations involved are of order ~<[~ +fl] .  This 

is impor tan t  in some proofs by  induction. 

I t  follows immediate ly  from Definition 1.1.1 tha t  S~,~ is invariant  for diffeomorphisms 

in the x variable, so the definition makes sense also if X is a manifold. I n  order to be able 

to consider more general fiber spaces than  X • R N over X we shall need some fact  con- 

cerning the action on symbols of more general maps. I n  doing so it is useful to work locally 

so we first extend Definition 1.1.1 somewhat.  Thus let F be an open conic set c X • R N. 

I f  K is a compact  subset of P we set K~ tO); (x, O)EK, t~>l}. A function in C~(F) is 

now said to be in S~,~(F) if (1.1.1) is valid when (x, 0 )EK c for any  choice of the compact  set 

K. This agrees with Definition 1.1.1 when F = X  •  ~. Note tha t  if 1 ~ does not  meet  X •  

then  there are no restrictions on the  growth of the derivatives of a(x, O) when 0-~0. 

Le t  F 1 c X •  M, F 2 c  Y •  N be open conic sets disjoint f rom X •  and Y •  and 

let y~: Fx-~F2 be a C ~ map which is positively homogeneous of degree one, t h a t  is, com- 

mutes  with multiplication by  positive scalars in the fibers of X • R M and Y x R N. 

PROPOSITION 1.1.7. Under the preceding hypotheses we have aoyJES~,~(F1) /or all 

a ES~.~(F~) provided that either 

(i) Q + ~ = I ;  or 

(ii) ~ +8  ~> 1 and ~o is fiber preserving, that is the projection o/~v(x, O) on Y depends only 

on x; or 

(iii) ~) and ~ are unrestricted but y) is the direct product o / a  map Y ~ X  and a homo- 

geneous map from a cone in R M to a cone in R N. 

Proof. A par t  of the last s ta tement  was already pointed out  above. I n  the general 

proof we shall use the  nota t ion x, ~ for the variables in X • R M and y, ~ for the variables in 
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Y • R N. Then  y~(x, ~) = (y(x, ~), ~(x, ~)) where y and  ~ are homogeneous of degree 0 and  

1 wi th  respect  to ~. I f  K is a compac t  subset  of 1"~ we h~ve for some posi t ive constants  

C11~1 ~ l~(x, ~)] ~ 2 1 ~ ]  (1.1.2) 

when (x, ~) 6 K  for b y  hypothesis  ~(x, ~) ~=0 then.  Since (1.1.2) is homogeneous  it  is also 

val id when (x, ~ ) 6 K  ~. Writ ing b = a o F ,  b~=(3a/3~)o~, b~= (3a/3y~)o~f, we have  

~b/~  = Z b~y,~/~ + Y. b~vk/~ .  J 
(1.1.3) 

Here  ~yk/3xj, 3~k/Oxj, ~yk/~j, ~ k / ~ j  are homogeneous of degree 0, 1, - 1, 0 with respect  to ~. 

The  es t imates  (1.1.1) for (x, ~ ) 6 K  c now follow immedia te ly  when l a + ~ l  ~<1 if we use 

(1.1.2). (Note t h a t  in case (ii) we have  ~yk/~j =0 and in case (iii) also a~]k/3xj =0.)  Assuming 

t h a t  (1.1.1) is p roved  when ]~+f l [  ~<k for any  symbol  a, we conclude t h a t  (1.1.1) is also 

valid when l~ +i l l  =/c + 1 if we use the  r emark  concerning the  mult ipl ieat ive propert ies  

of symbols  made  immedia te ly  af ter  Proposi t ion 1.1.6. 

Remark. I f  one takes  for a one of the  examples  1.1.4 and 1.1.5 it is easy to  see t h a t  the  

hypotheses  on Q and (~ in the  proposi t ion cannot  be improved  (apar t  f rom a case where 

3~k/3xj = 0  and Q + ~  ~< 1 which we have  omi t t ed  as of no interest).  The  hypothes is  on homo- 

genei ty  could be somewhat  relaxed to %0 6S~.0 and  an appropr ia te  subst i tu te  for (1.1.2). 

We can also compose symbols  to  the  left with suitable functions: 

PI~OPOSlTIO~ 1.1.8. Let a I . . . . .  a k be real valued/unctions in S~ •  N) and let / be 

a C OO/unction in a neighborhood in R k o/all  limit points o/(al(x,  0) . . . .  , ak(x, 0)) when 0-+ oo 

while x may vary in X .  Then it/ollows that (x, O)--+/(al(x , O) . . . . .  ak(x, 0)) is in S~.~(X •  ~) 

/or large O. 

Proo/. Choose C so large t h a t  / is C ~ in a neighborhood of the  closure of {(al(x, O) . . . . .  

ak(x, 0)), x 6 X ,  ]0] > C ) .  For  10] > C  it  is then  clear t h a t  /(al, ..., ak) is bounded.  Since 

k 
~/(a I . . . . .  ak)/~(x , ~) = ~ (a//~aj) (~aJ~(x,  ~) ) 

1 

and ~//~aj are bounded  functions,  i t  is clear t h a t  ](a 1 . . . . .  a~) satisfies the  es t imates  (1.1.1) 

when I ~ + ~ ]  ~<1. As in the  proof of Proposi t ion 1.1.7 it follows b y  induct ion t h a t  t hey  are 

valid when I ~ +El  ~<?" for 1" = 1, 2 . . . . .  for we can use the  mul t ip l icat ive  propert ies  of symbols  

in Proposi t ion 1.1.6 and  the  r emark  following t h a t  s ta tement .  
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Propos i t ion  1.1.7 makes  i t  possible to  define S~.~ (V) when ~ § (~ >/1 if V is a cone bundle 

over  a mani fo ld  X in the  sense t h a t  the  following th ree  condi t ions  are fulfilled: 

(i) V, X are  manifolds(1) and  we are  given a Coo pro jec t ion  p:  V ~ X  with  sur jec t ive  

differential .  

(ii) There  is given a Coo ac t ion  of R+ on V which preserves  the  fibers. 

(iii) E v e r y  po in t  in V has  a ne ighborhood  N O inva r i an t  under  t he  ac t ion  of R+ such 

t h a t  there  is a f iber  preserv ing  d i f feomorphism u: No-> F commut ing  wi th  the  group actions,  

where F is an open set in Rn•  (RN~0)  i nva r i an t  under  the  group ac t ion  (t, (x, 0))-~ 

(x, tO); tER+,  x E R  n, 0 E l t  N, and  wi th  t he  p ro jec t ion  (x, O)-+x. Here  n = d i m  X .  

I f  N1 and  N~ are two such ne ighborhoods  wi th  d i f feomorphisms ~i and  ~2, t hen  

u = ~ l o ~  1 is a d i f feomorphism F~l->F12 where F~I and  F12 are  open conic subset  of F z 

and  F1 respect ively ,  and  ~ satisfies the  hypo theses  in  p a r t  (ii) of P ropos i t ion  1.1.7. Composi-  

t ion  wi th  x therefore  maps  2~.~(F12 ) to  S~.t(F~I ) con t inuous ly  if # +(~ >/1. F o r  such ~ and  

we define S~.~(V) as the  set  of funct ions  a on V for which a o u  -1 is in S~.~(F) (and vanishes  

near  R ~ • 0) if ~ is a local t r iv ia l i za t ion  wi th  the  proper t ies  l is ted in (iii). B y  the  preceding  

r emarks  i t  suffices to  make  this  hypothes i s  for a set of such ne ighborhoods  iVj which 

covers V. 

L e t  V~ be a cone bundle  over  Xj ,  ] = 1, 2, and  let  v 2 be a f iber  preserv ing  C ~ m a p  VI-~ V2 

commut ing  wi th  the  ac t ion  of R+. I f  a C S~.o(V~), p +8 />  1, i t  follows f rom p a r t  (ii) of 

P ropos i t ion  1.1.7 t h a t  a o ~ E  S~.s(V1). I f  ~ +(~ = 1, pa r t  (i) of the  same resul t  shows t h a t  the  

same conclusion is va l id  even if y~ is no t  f iber  preserving.  

L e t  V be a cone b u n d l e  over  X and  le t  X be a f iber  space over  ano the r  man i fo ld  Y 

so t h a t  we have  a Coo m a p  Pr :  X-+  Y wi th  sur jec t ive  different ial .  Then  V is also a cone 

bundle  over  Y if we replace  t he  pro jec t ion  p:  V - ~ X  b y  PrP: V--'t Y .  To prove  this  i t  suffices 

to  note  t h a t  if U is an  open set  in t t  n, F an  open cone in R N ~ 0 ,  and  p the  projec t ion .  

V x F ~  (x, O)--->x ' = (x 1 . . . . .  xv) EI~ v, 

Where r ~< n, t hen  U • F is a cone bundle  over  R ~. This  follows f rom the  fact  t h a t  we have  

the  local homogeneous  d i f feomorphism 

(x, O)-+ (x', x"[OI, 0)cR" •  ~§ 

where  x" = (x,+l . . . .  , Xn). W e  denote  th is  cone bundle  b y  Vr. The  m a p  V ~  Vr  (but  no t  the  

m a p  Vr -> V) is t hen  f iber  preserving,  so if Q § ~> 1 we have  the  inclusions 

S~, l_q (V) c S~..~(Vy)c=S~,,~(V).  

(1) By a manifold we shall always mean a paraeompact G ~ manifold. 
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W h e n  Y is a po in t  the  left  inclusion becomes an  equal i ty .  Note  t h a t  in  t h a t  case Vr is V 

wi th  the  pro jec t ion  p fo rgo t ten  ent i re ly .  A cone bundle  over  a po in t  will also be called a 

conic mani/old in th is  paper .  

W i t h  V stil l  denot ing  a cone bundle  over  a mani fo ld  X we assume t h a t  we have  a 

complex  vec tor  bundle  W over V in which there  is g iven an  equ iva r i an t  C ~ ac t ion  of It+. 

(cf. A t i y a h  [2].) Thus  the  pro jec t ion  on V of t he  vec tor  bundle  m a p  t: W ~ W ,  tER+,  is 

assumed to be the  a l r eady  given m a p  t: V ~  V. W e  can now in t roduce  in a n a t u r a l  w a y  a 

class Sq~(V, W) of sect ions of W over  V. F o r  in a conic ne ighborhood  of a n y  po in t  v0E V 

we can f ind  a basis s I . . . . .  ~N of C ~~ sect ions of W which are i nva r i an t  under  It+. I n  fact ,  i t  

suffices to  choose t h e m  on a mani fo ld  t r ansversa l  to  the  orb i t  of It§ a t  v 0 and  ex tend  t h e m  

b y  homogenei ty .  Two such bases differ  b y  mul t ip l i ca t ion  wi th  a N • IV m a t r i x  of funct ions  

homogeneous  of degree 0 in a conic ne ighborhood  of v 0. A sect ion s of W over  V is now said 

to  be in S ~ ( V ,  W) if for the  local r ep resen ta t ion  s = Z a~sj with  such bases  we have  

aj  E S~.~ in  a conic ne ighborhood  of v 0. I t  is clear t h a t  the  def ini t ion does no t  depend  on 

the  choice of bases.  

All  r emarks  m a d e  p rev ious ly  concerning t h e  behav io r  of SQm~ unde r  mapp ings  ca r ry  

over  wi th  obvious  modif ica t ions  to  S~.~(V, W). W e  leave the  s t a t emen t s  for the  reader  in 

order  no t  to  bu rden  the  expos i t ion  fur ther .  I n  t he  following resul ts  we on ly  consider  sym-  

bols  in  X • It~ for s impl ic i ty  in the  s t a t emen t s  b u t  i t  should  be clear t h a t  t h e y  ca r ry  over  

easi ly  to  symbols  in t he  spaces S~.o(V, W). 

Now we recall  an  e l emen ta ry  b u t  i m p o r t a n t  completeness  p r o p e r t y  of the  space of 

symbols ,  p roved  for example  in  [13, Theorem 2.7]. 

PROPOSITION 1.1.9. Let aj~ S~.~(X • Itr~), ~ = 0 ,  1, 2 . . . .  and assume that mj--> - c~ as 

~ oo. Set m'~ =maxj~>kmj. Then one can l ind aE S~.:~(X • R N) such that /or  every k 

a -  a j e  • Its). (1.1.4) 
J<k 

The/unct ion  a is uniquely determined modulo S - ~ ( X  • R N) and has the same property relative 

to any rearrangement o/ the series F~ aj. We write a,,~ ~ a r 

The condi t ion  (1.1.4) involves  bounds  on all de r iva t ives  of the  func t ion  on the  left.  

I n  o rder  to  s impl i fy  a ver i f ica t ion  of (1.1.4) i t  is therefore  useful  to  have  the  following 

resul t ,  which is Theorem 2.9 in [13]. 

PROP O SITION 1.1.10. Let aj E S~,o (X  • Itn), j = 0, 1, 2 . . . .  and assume that mr+ - oo 



88 LARS It6RMANDEI~ 

when ] ~ c~ . Let a6  C~r (X • R N) and assume that /or all multiorders ~, fl and compact sets 

K c X we have/or  some C and # depending on ~, fl and K 

(~) la(~,(~,o)l<C(l +]Ol)., x6K. 

I / t he re  exist numbers/~k + - ~ such that /or  arbitrary K and k 

]a(x,O)--~aj(x ,O)[<~CK.k(I  +[O[) € x 6 K ,  
t<k  

it ]ollows that a 6 S~ n ~ (X • R N) where m = supj ms, and that a ,,, ~ aj. 

Finally we shall make some remarks on the topology of the Fr4chet space S~,~ (X • RN). 

Recall that  a set M c  S~,~ is bounded if (1.1.1) is valid with C~,~.K independent of a when 

a 6M. On a bounded set in S~.~ the topology of pointwise convergence, the topology of 

C ~ (X • R N) and the toplogy of S~,~ (X • RN), m ' >  m, all coincide. This is an immediate 

consequence of Ascoli's theorem. 

P~OPOSITIO~ 1.1.11. Let a 6 S ~ . ~ ( X x R  N) and let g6 5Z(R N) be equal to 1 at O. I]  

a~ (x, O) = )~(eO) a(x, 0), i t /oUows that a~ 6 S~.7 (X  • RN) and that a~ ~ a in S~'~ (X  • R N) when 

~-->0 i / m '  > m .  

Proo/. I t  suffices to note that  the functions (x, O)->X(80 ) form a bounded set in S~ 

when 0 ~<8 ~< 1 (see Example 1.1.4), for the continuity of multiplication of symbols then 

shows that  the functions a~ form a bounded set too. 

In  particular, we can take • with compact support. Then we obtain 

CO~OLZAI~Y 1.1.12. Let L be a linear map ]rom ]unctions in C~176 > R N) vanishing/or  

large [0] to a Frdchet space F such that, /or every m 6 R, the map L is cont inuous/or  the 

topology induced by S~.o(X • RN). Then there is a unique extension o / L  to S~,a(X • R N) 

which is continuous on S~,~ (X  • R N) /or every m. 

1.2. Oscillatory integrals 

We shall now discuss the definition of integrals of the form 

I (au) : f fe'  "O aIx, o) uIx) x o, u (x), (1.2.1) 

where a 6 S ~ ( X  • From now on we assume that  Q>0 and that  ~<1.  For the sake of 

simplicity it will be assumed that  ~ is real valued and positively homogeneous of degree 1 
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with respect to 0, and tha t  r E C ~ for 0 #0.  However, this hypothesis could easily be relaxed 

(see also [14] for a somewhat weaker hypothesis). 

The integral (1.2.1) is absolutely convergent for every a E S ~  (X • R N) provided tha t  

m + N < 0. In  particular, it is well defined if a(x, 0) = 0 for large [ 0 ]. We wish to extend the 

definition of (1.2.1) to arbi trary a E S~.o using Corollary 1.1.12. This is not always possible 

- - fo r  example it cannot be done if r vanishes in an open se t - -bu t  we shall prove tha t  the 

definition of (1.2.1) is always possible if r has no critical point with 0 #0.  The proof depends 

on partial integrations in (1.2.1). In  order to avoid having to split (1.2.1) into a sum of 

terms where integration by parts with respect to a fixed variable will do, it is convenient 

to use the following 

L ] ~ x  1.2.1. I f  r has no critical point (x, 0) with 0 #0,  then one can find a first order 

differential operator 
L = Z aj~/~Oj + Z bj~/~xj + c 

with ar E S~ • R N) and be, c E S-I(X >( R N) 8uch that tLe~r = e ~r if tL is the ad]oint of L. 

Proof. By hypothesis the sum 

I o I ~ y~ (~r ~ + 2 (ar ~ 

is homogeneous of degree 2 with respect to 0 and # 0  for 0 #0.  Let  ~ be the reciprocal 

of this sum which is then homogeneous of degree - 2  and Coo for 0 #0.  With zEC~C(R N) 

chosen so tha t  Z = 1 near 0, we set 

where a~ = - i ( 1  -Z)~0[0128r ES 0, b; = - i ( 1  -X)~f~r -1. 

The coefficients are chosen so tha t  M e  ir = e ~, so L = tM has the required properties since 

! ! ! ! 1 a j = - - a j ,  b j = - b r  c = z - ~ a r  

The lemma is proved. 

I f  a vanishes for large 

by  tLdr This gives 

10], we can integrate by parts  in (1.2.1) after replacing e ~r 

I~(au)=ffe~*(x'~ 
or after i teration 

Ir162176 k = 0 , 1 , 2  . . . . .  (1.2.2) 

Now L is a continuous map of S~m~ into S~m~ t if t=min(Q,  1 - ~ ) .  Hence L k maps Sem.~ 
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continuously into S~.~ kt. I f  m - k t <  - N ,  the integral (1.2.2) is thus  defined and con- 

t inuous on all of S~,~(X • RN). I n  view of Corollary 1.1.12 we have therefore proved 

P R 0 P 0 S I T I 0 N 1.2.2. I[ ~ has no critical points and Q > 0, ~ < 1, then the de/inition o/the 
integral (1.2.1) can be extended in one and only one way to all a E S~.~ (X x R N) and u E Cff (X) 

so that I~(au) is a continuous /unction o/ aES~.~ /or every fixed m. The linear /orm A: 
u~Ir is a distribution o/ order <~ k i/aES~,~ and m - k ~ <  - N ,  m - k ( 1 - ( ~ ) < - h  r. 

For  the extended form I r  we have the representat ion (1.2.2) if k is sufficiently large. 

According to Proposit ion 1.1.11 we also have 

I~ (au) = lim~_~0 f f e~r ~ a(x' O) z(eO) u(x) dxdO (1.2.3) 

if Z ESP and Z(0) = 1. We shall keep the nota t ion (1.2.1) for the continuous extension of the 

form I r  which we have just  defined and refer to the generalized integral as an  oscillatory 
integral. 

I f  r and a are continuous functions of a parameter  t with values in C~(X • (RN~{0)))  

and S~.~ (X • R N) respectively, then  an inspection of the proof of L e m m a  1.2.1 and Propo- 

sition 1.2.2 shows tha t  Ir is a continuous funct ion of t. Note  tha t  if a is a continuous 

funct ion of t with values in C~(X • R N) whose range is a bounded subset of S~.o (X • RN), 

then  a is a continuous funct ion of t with values in S~.~ (X • R N) when m'  > m. These remarks  

allow us to pass to the limit in the oscillatory integral (1.2.2) if there is continuous 

dependence on a parameter .  I n  part icular  we can differentiate with respect to parameters  

under  the integral sign. 

Now let r be a C ~176 funct ion in X x Y • (RN~(0) )  where X and Y are open subsets 

of some Euclidean spaces, and assume t h a t  r has no critical point  even when considered 

as a funct ion in X • (RN~{0}) depending on the parameter  yE Y. If  aES~,~(X • Y • RN), 

~ > 0 ,  ~<1 ,  and uEC~176 • Y), we can then  prove a Fubini  theorem 

f f f eir176 u(x,y)dxdydO= f d y ( f  f e~(x.~.~ dxdO). (1.2.4) 

Indeed,  this follows if we introduce a factor  Z(e0) as in (1.2.3) in bo th  sides and then  let 

e ~ 0 .  

After  these remarks  we re turn  to the oscillatory integral (1.2.1). Let  X~ be the open 

set of all xEX such tha t  the funct ion O-~r O) has no critical point  0 #0 .  I f  uEC~176162 
we can regard x as a parameter  and rewrite (1.2.1) in the form 
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I r  = f A(.)u(x)dx, ueC  

where A (x) = f ~ O) dO, x E Xr (1.2.5) 

By our preceding remarks on oscillatory integrals, A is a continuous function of x EXr 

and since we can differentiate under the sign of (oscillatory) integration as often as we like, 

we conclude that  A E COO(Xr I f  we recall tha t  the singular support (written sing supp) 

of a distribution is the completment of the largest open set where it is a C ~ function, we 

have proved 

PROPOSITION 1.2.3. tZor the distribution A:  u~Ir  de]ined by (1.2.1) we have 

sing supp A c  {xeX;  r 0) = 0 /o r  some 0 ~=0}. (1.2.6) 

The formula (1.2.5) also makes sense for all x E X provided that  r has no critical point 

as a function of 0 in cone supp a, for this is clearly all that is required in the proof of Propo- 

sition 1.2.3. Thus we have the following simple result which shows tha t  the singularities of 

the distribution A are uniquely determined by  the behavior of the symbol a in a conical 

neighborhood of the set of points where r is critical with respect to the 0 variables. 

PROPOSITION 1.2.4. I] aESo.$(X •  N) and a vanishes in some conic neighborhood 

o/the set 
C = {(x, 0); xE X, 0 E R ~ { 0 } ,  r 0) --0}, (1.2.7) 

then the distribution u~Ir  de/ined by (1.2.1) is a C ~ /unction. 

If  one looks more carefully into the proof of Proposition 1.2.2 one finds easily tha t  the 

conclusion of Proposition 1.2.4 remains valid if we assume only tha t  for some C and e 

with e < m i n  (@, 1/2) we have a(x, 0)=0  when [r 0)[ [0[~<C. The proof is left to the 

reader, but  we shall prove a stronger result under some hypotheses on r which guarantee 

tha t  C is a smooth manifold. 

Let  F be an open conic set in X • R N and let r be a positively homogeneous function 

of degree 1 with respect to 0 which is in C ~ and has no critical point in F ~ ( X  • {0~). 

Such a function will be called a phase/unction from now on. I t  is clear tha t  the definition 

of (1.2.1) given above is still valid for such a function r provided tha t  we require tha t  

cone supp a c  F (J (X • (0}). 

We shall say tha t  r is non-degenerate if at  any point in the set C defined by  (1.2.7) 

the differentials d(~r ] = 1, ..., N,  are linearly independent. This implies of course tha t  
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C is a manifold of dimension dim X. For  such phase functions we can improve Proposi t ion 

1.2.4. 

PROPOSITION 1.2.5. Let r be a non-degenerate phase /unction in F c  X •  N and let 

a E S~.~ (X • RN), cone supp a C  F U (X • 0). We assume that ~ > (i and that either r is a linear 

/unction o/ 0 or that p + ( ~ = l .  Then the distribution u--->Ir defined by (1.2.1) is a C ~ 

/unction i /  a vanishes o / in f in i t e  order on 

c={(x,o)er; r =0}. 

I / a  just vanishes on C we can f ind b e S~. ~ - 0 ( X  x I t  N) with cone supp b ~ F U ( X • O) such that 

Ir (au) = Ir (bu), u e C~ (X).  

For  the proof we need a lemma. 

L E M ~ A  1.2.6. Let (~1 . . . . .  Ck be real valued C ~ in F ~  ( X • {0)) which are homo- 

geneous o/degree 0, and assume that the di//erentials de j, ] = 1, ..., k are linearly independent in 

C = {(x, 0)EF,  0 # 0 ,  Cj(x, 0) = 0 ,  ] = 1, ..., k). 

Let a E S~.~ (X • R N) where we assume that ~ + (~ = 1 unless r . . . .  , Ck are/unct ions  o / x  only. 

I / a  =0 in a neighborhood o/ X • {0} and a vanishes (o/ inf ini te  order) on C, cone supp a c  

F U (X • {0}), one can f ind a jeS~+~(X • RN), ] = 1, ..., Ic, with cone supp a j c  F U (X • (0}) 

such that (aj vanishes o/ infinite order on C and) 

k 
a = ~ aj Cj. (1.2.8) 

1 

Proo/ tha t  the lemma implies the proposition. I f  we apply  the lemma with r162 s, 

which are functions independent  of 0 precisely when r is a linear funct ion of 0, an integra- 

t ion by  parts  gives 

Ir (au) = eiCCx'~ ~ iOaj(x,O)/OOju(x) dxdO. 
1 

Here the new ampli tude funct ion is of order m + (~ - 0  and in case a vanishes of infinite order 

on C it will also vanish of infinite order there. I f  the a rgument  is repeated k times we 

find t h a t  a can be replaced by  a symbol  of order m + k ( ( ~ - O ) - > -  0% k-> oo, so the dis- 

t r ibut ion u-+Ir is a Coo function. 

P r o o / o / t h e  lemma. I t  is sufficient to find a local solution of (1.2.8) and then apply  

a par t i t ion of un i ty  on the sphere bundle in F c X • R N, extended to a system of homo- 
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geneous functions of degree 0, to  obtain a global solution. I f  (x0,00)eF, 0o#0, the 

existence of a solution in a conic neighborhood is obvious unless (x0, 00)EC as we shall 

now assume. The functions r ..., r are then independent  functions on the uni t  sphere 

bundle at  (Xo, 0o/]00[ ) so we can find additional homogeneous functions 6k+1, ..-, r of 

degree 0, / = d i m  X + N - 1 ,  all vanishing at  (x0, 00) so tha t  Cx, ..., r is a local coordinate 

system at (x0, 00/100 I) on the sphere bundle. Bu t  then the map 

(x, 0)+ (r . . . ,  101) • 

is a homogeneous diffeomorphism of a conic neighborhood of (x0, 00) on U • It+ where U 

is an open ball in R z with center at  0. By  par t  (i) of Proposi t ion 1.1.7 symbols of type  ~, (~ 

are preserved by  such maps  if ~ +~ = 1 so when this is assumed we have reduced the proof 

to the case when Cx .. . .  , Ck are equal to the first coordinates x 1 . . . .  , xk in X and X is a ball 

with center at  0. I f  r . . . .  , Ck are independent  of 0 the same result  is achieved by  a substitu- 

t ion which only affects the x variables and thus  preserves symbols of type  Q, (~ for arbi t rary  

Q, 6. The lemma now follows f rom Taylor ' s  formula which gives, since a vanishes when 

Z 1 = . . .  = X k = 0  

~ f 0  
a(x, O) = ~ xj a(j)(txl . . . .  , txk, xk+l . . . . .  O) dr, 

where a<j)= ~a/Oxj E oo.c~m+'~ . The proof is complete. 

Summing up, when r is non-degenerate the singularities of the distr ibution u ~  Ir 
only depend on the Taylor  expansion of a on the set C defined by  (1.2.7), provided tha t  

suitable assumptions are made concerning Q and d. I n  Chapters I I  and I I I  we shall s tudy  

the consequences of this more closely and also discuss how essential the choice of the phase 

funct ion ~b really is. 

1.3. Singular symbols and oscillatory integrals 

The definition of the oscillatory integral (1.2.1) given in the preceding section did not  

fully use the hypothesis  t ha t  a is a symbol  in the sense of section 1.1. Indeed,  we only used 

the fact  t ha t  for some first order differential operator  L with the properties s tated in L e m m a  

1.2.1 we can conclude tha t  Lk(au) is an integrable funct ion for sufficiently large values of k. 

This we shall exploit in what  follows. 

I n  some constructions of fundamenta l  solutions one needs to be able to define inte- 

grals of the form 

f f e~r176 a(x, O)/q(x, O) dx dO , (1.3.1) 

where q is homogeneous with respect to  0 of degree m, say, and m a y  have simple real zeros. 
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These form an obvious difficulty in defining the integral. To bypass this singularity we 

would like to integrate over a suitable cycle in the complex domain instead of over R n. 

Assume for simplicity tha t  r q and a are analytic with respect to 0 in a neighborhood of 

the real domain and that  there is a vector ~ such tha t  <grad 6 q(x, 0), U) # 0  when q(x, O) =0 

and 0 eRN~0 ,  x e X .  (It  will in fact be necessary to let the direction of ~ vary  and in ease 

the data a, q, r are not analytic make suitable "almost  analytic" continuations of them. 

These questions will be discussed elsewhere, but  here we only wish to motivate  what  

follows.) Our hypotheses imply tha t  

Iq( , o+i )l = 101ml q(x, 0/101 +i /101)l i>  101 m-1 

for large ]0], so if we replace 0 by O+i~ in (1.3.1) we shall for large 0 no longer have 

any infinities in the integrand. We shall now examine to what extent the function 

(x, O)-+a(x, O+iu)/q(x, O+iu) has the properties of a symbol. We have for example  

~q-l(x, 0 + i~)/~xj = - q-2~q/~xr 

and we can only be certain tha t  this can be bounded by ]0] m-2(m-1)= IO] 2-m. Pursuing this 

argument  one will find tha t  1/q(x, 0 +iu)ES~7~ which does not suffice for application of 

Proposition 1.2.2. However, we can say more about the action on q-1 of some operators 

L = 2 aj(x, O) ~/~Oj + 2 bj(x, O) ~/~xj + c (1.3.2) 

with ajES ~ and bj, c6S  -1. Indeed, if Z aj~q/~Oj+Zbj~q/~xj=O when q=O we obtain 

[L~ <~C]q] [01 -~ if L ~ is the principal part  of L, and this leads easily to a proof tha t  

L(1/q(x, 0 +i~))6S~.'~. More generally, application of k operators of this type will always 

give an element in r  *90,1 

We have made the preceding discussion rather  brief for it has to be reexamined 

after a precise definition of "almost  analyt ic" continuation has been introduced. How- 

ever, the preceding arguments should suffice to motivate  the interest of the following 

developments. 

Let  Lf be the set of all first order differential operators of the form (1.3.2) with 

a j 6 S ~ 2 1 5  N) and bj, c6S- I (X•  This is a module over the ring S~ If  

a E S ~ ( X •  N) and L6.Lf we have La6S '~-e (X•  N) in view of Proposition 1.1.6. By  

iteration it follows tha t  L 1 ... LkafiS~-~e(X • R N) if L 1 . . . . .  L ~ 6 ~ .  Conversely, if we just 

know tha t  ~5~ ... L~aE S~-~e(X • R N) for all L1 . . . . .  L~6~f, taking these operators to be 

differentiations with respect to xr and 0, variables we conclude tha t  a r  • RN). This 

connects our earlier definitions with the following one. 

De/inition 1.3.1. I f  F is a subset of .Lf we denote by  FS'~(X • R N) the set of all 
a6 S~(X x R ~) such tha t  for arbi trary L1 . . . . .  L~6F, k = 1, 2 . . . .  we have 
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L 1 ... Lea6 S~-~~ • R~). (1.3.3) 

I t  is clear by  the definition tha t  La 6 ~S~ -~ if L 6 F and a 6 ~S~. If  we set . ~  = S m ~  

we also have .~m ~S~' c ~S~ n + ~'. For  let L E .~q~m, a 6 ~S~ n'. Then we have a 6 S~" so La 6 S~ + m,. 

Furthermore ,  if L~ E F, 

k 

L~ . . .L~La=LL~. . .Lea  + ~ L~...L~-I[L~,L]L~+~...Lea. 
1=1 

We shall prove by  induct ion over /c t ha t  this is in S~ +'n'-kr This is clear for the 

first te rm since L1. . .LeaE S~ '-~.  Since Lj+I...LkaEFS~'-(e-J)Q and the commuta to r  

[Lj, L]E.~e m-l, the inductive hypothesi  s shows tha t  the terms in the sum are in 

S m-l+~'-(k-s)~-(j-1)Q c S~ n+m'-k~, which proves the assertion. I f  b 6 S m it  follows similarly 

tha t  ba E FS~'+ m, for wi th  the same nota t ion we have 

k 

L1...  Leba = bL1... Lea + ~ LI . . .  Lj_ 1 [Lj, b]Lj+l... L~a, (1.3.4) 
1 

and [Lj, b] 6 S m-l, so the same proof by  induct ion can be applied. I t  follows in part icular  

t ha t  if F '  is the S o module generated by  F and S -1, then  F'Sg ~FSg.  We can therefore 

always assume wi thout  restriction tha t  F is a module containing S -1. If  Lj6 F it follows 

then t h a t  the principal par t  L ~ 6 F ,  hence [Lj, b] = LOb 6 vSg -~ if b E FSg. An  induct ion 

proof based again on (1.3.4) therefore gives tha t  ba E Fsg+m" if b E Fs~n and a 6 FS~ n'. Summing 

up, we have proved 

PROPOSIT IO~  1.3.2. I /  F' is the S o submodule o/ C generated by F and S -1 (consid- 

ered as a set o/ di//erential operators o~ order 0), then FSy = F'S~. I /  a 6 FS~, b E FS~', we have 

abE FS~ +'n', and i / L E  .if we have La6 ~S~. 

Note  t h a t  the proposit ion shows tha t  LI... L e a  6 S m-le if L 1 . . . . .  L k 6 C and ?" of these 

operators belong to  F .  This could also have been taken as a definition and  saved much 

of the proof of Proposi t ion 1.3.2. 

I f  r is a real valued function 6S1(X • R g) (possibly only for large ]0[) and if for some 

L 6 F we have tLe~r = e ~r we can define the oscillatory integral (1.2.1) for all a E~S~(X • R~). 

I t  is a distr ibution of order ~< k if m - k  9 < - N .  Indeed  the proof of Proposi t ion 1.2.2 

does not  require any  change. 

Example 1.3.3. Let  Z be a closed conic C ~ submanifold of X • ( R ~ { 0 } )  and let F be 

the set of all L E ~ whose principal par t  defines a vector  field tangential  to  F, at  every point  
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in F=. (Equivalently,  if L 0 is the principal pa r t  of an operator  in F ,  then L~ vanishes on E 

if a does. Thus  we are considering a generalization of the si tuat ion discussed at  the 

beginning of the section.) Then  there exists an operator  L E F with the required properties 

if and only if neither r nor the restriction o /~  to Z has a critical point. Indeed,  as in the 

proof of L e m m a  1.2.1 we have L E F  if and only if M = t L E F ,  and if we write M =  

Z aj~/~Oj + Z bj~/~xj + c the problem is to  choose the vector  field (a, b) tangential  to  Z on $; 

and such tha t  
i(Z aj~r + E bj~r + c = 1. (1.3.5) 

Since aj E S O and b~, c E S -1 this requires t h a t  r has no critical point  and tha t  the  restriction 

to  E has no critical point. Conversely, when this is t rue we can find a solution of (1.3.5) 

in a conic neighborhood of any  point, such tha t  c = 0 and a j, bj are homogeneous of degree 

0 and - 1  respectively, by  just  choosing a vector  field tangential  to  E which does no t  

annihilate r at  the point  in question. Applicat ion of a par t i t ion of unity,  introducing the 

solution e = 1, a ~ = b j = 0  near 0, then gives the assertion. 

A special case is obtained when r 0 ) = ( x ,  0} and for a splitting of the 0 variables 

in 0' - (01 .. . .  , 0 N _ k )  , 0 "  = ( 0 N _ k +  1 . . . . .  ON) we have F. = {(x, 0', 0"); (0',0") =~0 and 0' = 0  or 0" =0}. 

This occurs in the s tudy  of the multiplicative properties of the index of elliptic pseudo- 

differential operators (cf. PalMs [26], pp. 206-209). 
F m We shall use the nota t ion  zS~ instead of S e when F is defined by  E as in Example  

1.3.3. This should cause no ambiguity.  

When  a EXS~, the singularities of the distr ibution defined by  (1.2.1) m a y  be caused 

either by  points with r  0 or by  points in X with r ~= 0. We shall investigate the lat ter  

contributions. I n  doing so we assume tha t  the manifold X is t ransversal  to  the fibers 

x = constant  so tha t  the sets Ex = {0; (x, 0)E E} are manifolds of the same codimension as 

E at  every point. Let  (x0, 0o)EX , r 0o)40,  and let /c be the codimension of E there. 

Choose a labelling of the 0 coordinates so tha t  with 0' ~ (01 .. . . .  ON-k) and 0" = (0N-k+1 .. . .  ,0N) 

the plane dx =dO' = 0  is transversal  to E. Then we have 0~ 40 ,  for E~, being a cone, the vector  

(0, 00) would otherwise lie in the tangent  plane of Ex~ at 00. I n  a neighborhood of 

(%, 0o) the manifold E is therefore of the form O"=y~(x, 0') where yJ is homogeneous of 

degree 1 with respect to 0' and defined in a conical neighborhood of 0~. I n  the integral 

(.A, u} = f f O,a(x O) u(x) dx dO 

we assume tha t  the support  of a belongs to such a small conic neighborhood of (x0, 00) 
t ha t  we can introduce 0"-yJ(x,  0') as a new variable instead of 0" there. This t ransforms X 

to  the manifold E0: 0" =0 .  The new ampli tude al(x , O) =a(x, 0', 0" +~v(x, 0')) will belong to  
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z 'S~ and vanish when [ 0 " ] >  10'l , say. Let  F ~ be the corresponding subspace of S~ de- 

fined in Example  1.3.3. The operators in F ~ are then  those which when 0" = 0  do no t  

involve differentiation with respect to the O" var iab les . - -The  new phase funct ion r 0) = 

r 0', 0" +V(x, 0')) will be defined in a conic neighborhood of cone supp al, we have 

r 0~, O) # 0 and 

I f  r 0, 0~, 0 ) #  0 and the  support  of a is so small t ha t  this inequali ty remains 

valid in cone supp al, we can prove tha t  A EC ~ by  using the  proof of Prop.  1.2~3. I n  fact, 

the derivatives of a 1 with respect to the 0' variables are as well behaved as if al were in 

. . . .  0o, O) # 0  we S~. If, on the other  hand,  r o, 0o, O) = 0  we have instead r o, ' and m a y  

assume tha t  this is t rue in a neighborhood of cone supp a r Now we can write 

(A,  u) = f f e*r176176 0') u(x) dxdO', 

where b(x, 0') = f a l (x, 0',0") dO" 

Here we m a y  assume tha t  a 1 = 0 when [ 0' ] < 1, for modification of a 1 on a compact  set only 

changes A by  a C ~ term. We wish to prove tha t  b e S  em+k. Since ]0' [ ~< ]0] < 2 [ 0 ' [  in cone 

supp a 1 and ]al(x , 0)] ~< C(1 + [0]) m, it is clear t h a t  I b(x, 0')] ~< C(1 + ]0'])  ~+k. To estimate 

the derivatives we note t ha t  
N 

~(r162 Y, aj,~(x,O) O,Or ]Ljr 
N - k + 1  

where LjC F ~ A similar result wi thout  the factor  [0' I is vahd  for the derivative with 

respect to 0 s when ] <~N-k.  Now we obtain after an integrat ion by  par ts  

~b(x, O')/~xr f e~(r162176162176176 [ (tLj + [O'l-~/~xj)a~(x,O)dO" 

and a similar formula for 3b(x, O')~Oj when ~ ~ < N - k .  Here tL j+  ]0' [-l~/~x s belongs to  F ~ 

(after suitable modification when [ 0 ' l <  1). Applicat ion of ~/~Oj, ] = 1, ..., N - k ,  or ~/~xj 

to  b is thus  equivalent  to operat ion on % by  an operator  in F ~ followed by  mult ipl ication 

by  10'l in the case of ~/~xj. This gives immediately  tha t  m+k b C S e . Summing up, we have 

proved 

T~EOREM 1.3.4. Let aC~S~ vanish in a conic neighborhood o] the set where r  

assume that in a neighborhood of cone supp a the restriction o/r  to E has no critical point and 

that the mani]old E can be expressed in the /orm 0" =yJ(x, 0') where 0'= (01, ..., ON-k) and 

0"=  (0N-k+x .. . . .  0~,). Then the distribution A defined by 

7 -- 712906 Acta mathematica 127. I m p r i m 6  le 2 J u i n  1971 
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(A,  u) = J Je i*(x' ~ O) u(x) dx dO, u E C~ r (X) 

can also be de/ined by means o/the phase/unction r 0', ~f(x, 0')) and an amplitude bESe'~+k. 

F r o m  the  preceding resul t  one should no t  conclude t h a t  there  is no need  to  consider  

s ingular  symbols .  The  new fea tures  are caused b y  poin ts  in the  set Z where r = 0. W e  

leave for the  reader  to cons t ruc t  an  example  of th is  for example  b y  means  of the  special  

case of E x a m p l e  1.3.3 men t ioned  a t  the  end of it .  W e  shall  also encounter  na tu r a l  examples  

in p a r t  I I .  

As in sect ion 1.2 i t  is easy to  ex tend  the  preceding discussion to opera tors  depending  

on parameters .  Indeed ,  le t  r be a cont inuous  funct ion  of a p a r a m e t e r  t C T wi th  values  in 

Coo(X x (RN~(0}))  and  le t  Zt  be a conic submani fo ld  of Z x (RN~(0})  which also depends  

cont inuous ly  on t. This means  t h a t  local ly  in T • X x (RN~(0})  we can define Z~ b y  equa-  

t ions  q~(x, O) . . . . .  q~(x, 0 ) = 0  where qJ is a cont inuous  funct ion  of t whose values  are  

C OO funct ions  of (x, 0) wi th  the  different ials  of ql . . . .  , qk l inear ly  independent .  W e  assume 

t h a t  ne i ther  Zt nor  the  res t r i c t ion  of 4~ to  Zt has a n y  cri t ical  point .  Le t  F be the  set of all 

cont inuous  maps  L: T-+oL~ a such t h a t  the  corresponding vec tor  field is t angen t i a l  to  Zt for 

eve ry  t. I t  is easy  to  see t h a t  one can choose L E F so t h a t  L t exp i4~ = exp i f t  for eve ry  t. 

Def ining zS~ in the  obvious w a y  using the  opera tors  in F ,  we conclude t h a t  

(x,O) u(x) dO, u ~ dx C 

is a cont inuous  func t ion  of t. Aga in  this  allows passage to  the  l imi t  unde r  the  in tegra l  sign, 

d i f fe rent ia t ion  wi th  respect  to  pa rame te r s  and  so on. 

1.4. Definition of Fourier integral operators 

L e t  X,  Y be open sets in R "~ and  R ~r and  let  r be a real  va lued  funct ion  of (x, y, O) E 

X • Y • R N which is pos i t ive ly  homogeneous  of degree 1 wi th  respect  to 0 and  inf in i te ly  

d i f ferent iable  for 0:4: 0. W i t h  a symbol  a E S~.~ (X • Y • RN), ~ > 0, 5 < 1, we wish to consider  

the  opera to r  defined b y  the  in tegra l  

Au(x) = I r e  ~r ~ y, O) u(y) dydO, u E C~ (Y), x E X,  (1.4.1) 

or  a weak form of (1.3.1) 

(Au, v)=fffe~(x.~.~ ueC~(r),veC~(X). (1.4.2) 
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To give a meaning to these integrals we apply the results on oscillatory integrals (depending 

on parameters in the case (1.4.1)) proved in section 1.2. The conclusions are as follows: 

T~EO~EM 1.4.1. (i) I f  ~ has no critical point as a/unction o] (x, y, O) with 0:~0 

then the oscillatory integral (1.4.2) exists and is a continuous bilinear form/or the C~ topo- 

logies on u, v if 

m - k ~  < - iV ,  m - k ( 1 - 5 )  < -1V. (1.4.3) 

When (1.4.3) is valid we thus obtain a continuous linear map A ]rom C~( Y) to ~'k(X) which 

has a distribution kernel KA C~'k(X x Y) given by the oscillatory integral 

KA(u)=fffe' ( ' '~ uCC (Xx y). (1.4.4) 

(if) I / / o r  each fixed x the function r has no critical point (y, 0) with 0 40, then (1.4.1) 

is defined as an oscillatory integral. When (1.4.3) is valid we obtain a continuous map 

A: C~( Y) ---> C(X). By  differentiation under the integral sign it follows that A is also a continuous 

map from C~(Y) to CJ(X) i] 

m + N + ] < k ~ ,  m + N + j  </c(1-5).  (1.4.5) 

( i i i ) / / /or  each fixed y the/unction r has no critical point (x, O) with 0 40,  then the ad]oint 

of A has the properties listed in (if) so A is a continuous map o] g'J(Y) into ~'k(X) when 

(1.4.5) is ]ul/iUed. In  particular, A defines a continuous map ]tom N'(Y) to ~ ' (X) .  

(iv) Let Re be the open set o/al l  (x, y) EX • Y such that r y, O) has no critical point 

0 =~0 as a function of O. Then the oscillatory integral 

K~(x,y)= fe~(x'"~ (x,y)ER~, (1.4.6) 

defines a/unction in C~176162 which is equal to the distribution (1.4.4) in Re. I f  Re = X  • Y, 

it [ollows that A is an integral operator with a Coo kernel, so A is a continuous map of ~' ( Y) 

into C~176 

The proof is an immediate consequence of Proposition 1.2.2 and the remarks fol- 

lowing it. 

Example 1.4.2. Pseudo-differential operators correspond to the function r y, 0) 

( x - y ,  O } ( n x = n r - N  ). Then (i), (if), (iii) are fulfilled and Re is the complement of the 

diagonal if we take X -  Y. We shall study this case extensively in Chapter II. 
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Example 1.4.3. In  the introduction we saw tha t  the s tudy of the Cauchy problem 

for the wave equation leads to the function 

r t; y, o) = ( x - y ,  o ~ + t l o  I. 

Here n x - l = n r = N  and the variable in X is denoted by (x, t). Then (i), (ii), (iii) are 

fulfilled and ~Rr consists of all (x, t; y) with ]x-y]~=t 2. This means tha t  (x, t) lies on the 

light cone with vertex at (y, 0). 

Definition 1.4.4. A real valued function r of (x, y, 0) EX • Y • R N which is a C ~ func- 

t ion for 0 =~ 0 and positively homogeneous of degree 1 with respect to 0 will be called an 

operator phase function if for each fixed x (or y) it has no critical point (y, 0) (or (x, 0)) 

with 0 4 0 .  

When r is an operator phase function the hypotheses of parts  (i), (ii), (iii) of Theorem 

1.4.1 are thus fulfilled. Let  Cr denote the complement of Re in X • Y, tha t  is, the projection 

on X •  Y of the conic set 

= {(x, y, 0) EX • Y • (RN\{0}),  r y, 0) = 0}. (1.4.7) 

From (iv) in Theorem 1.4.1 it follows then tha t  

sing supp Au c Cr supp u, uE#'(Y) (1.4.8) 

where the right-hand side is defined by  considering 0r as a relation between points in Y 

and in X, thus 
Cr K = {x; (x, y)E Cr for some y E K}. 

In  fact, if K = s u p p  u and K '  is a compact  subset of X which does not intersect CcK, we 

have K' x K c R r  so we can find neighborhoods s  ~ K  such tha t  ~ '  •163162  

Hence AuECm(~ ') which proves (1.4.8). Using (fi) in Theorem 1.4.1 we can improve 

(1.4.8) further. .For if s is any neighborhood of sing supp u, we can make a decomposition 

u = v + w  where supp vcs  and wEC% Since AwEC ~ we obtain 

sing supp Au = sing supp A v ~  Cr supp v, 
so we have proved 

THEOREM 1.4.5. I/  uES' (Y) ,  then 

sing supp Au c Cr sing supp u. (1.4.9) 

Example 1.4.6. For pseudo-differential operators (see Example 1.4.2) this means tha t  

sing supp Au c sing supp u, 

which is usually called the pseudo-local property.  
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Note that  Propositions 1.2.4 and 1.2.5 can be applied to show that  modulo operators 

with C ~ kernel the operator A is determined by the behavior of the symbol a at the set C 

defined by (1.4.7). 

If we replace the results of section 1.2 by those of section 1.3 we obtain an analogue 

of Theorem 1.4.1 for operators with singular symbols. Let  E be a C ~ conic submanifold of 

X • Y • (RN~{O}), and let ae~S~(X  • Y xRN). 

T~EORV, M 1.4.7. (i) I] neither r nor its restriction to F, has a critical point (x, y, O) 

with 0 =4=0 then the oscillatory integral (1.4.2) exists and is a continuous bilinear ]orm /or the 

C~ topologies on u, v i/ 
m - k ~  < - N .  (1.4.10) 

When (1.4.10) is valid we thus obtain a continuous linear map A / r o m  Cko( Y) to ~'k(X) which 

has a distribution kernel K A E ~ ' ( X  • Y) given by the oscillatory integral (1.4.4). 

(ii) Assume that the fibers x = constant intersect E transversally so that the corresponding 

intersection Ex is a mani]old o/the same codimension as E at every point. 1 / /or  each fixed x 

the /unction r as well as its restriction to Zx has no critical point (y, 0) with 0 #=0, then (1.4.1) 

is defined as an oscillatory integral. When (1.4.10) is valid we obtain a continuous map 

A: C~(Y)--> C(X). By  di//erentiation under the integral sign it /ollows that A is also a 

continuous m a p / t o m  C~(Y) to Ci(X) i/ 

m + N + j  < k e. (1.4.11) 

(iii) Assume that the fibers y = constant intersect E transversally so that the corresponding 

intersection E~ is a mani/old o/the same codimension as E at every point. 1 / /or  each fixed 

y the/unction r as well as its restriction to ~ has no critical point (x, O) with 0 #=0, then the 

adjoint o] A has the properties listed in (ii) so A is a continuous map / tom #'J(Y) to ~'k(X) 

when (1.4.11) is/ulfilled. In  particular, A defines a continuous map ]rom e ' (Y )  to ~ ' (X) .  

(iv) Let Re be the open set o] all (x, y ) E X  • Y such that E intersects the fiber over (x, y) 

transversally in ~Cx.y and neither d~ nor its restriction to •z.y has a critical point 0#=0. Then 

the oscillatory integral (1.4.6) defines a ]unction in C ~~ (Re) which is equal to the distribution 

(1.4.4) in Re. 

If  we let Cr be the complement of Re it follows again, when r satisfies the hypotheses 

in (ii) and (iii), that  (1.4.9) is valid. 

Exam21e 1.4.8. Let q E C~(X • Y • (RN~{0}) be homogeneous with respect to the last 

variable, grad q#=0 when q=0,  and let E be the zeros of q. Then the conditions in 

Theorem 1.4.7 reduce to 

grad r #= 0 and the covectors grad r grad q are linearly independent when q = 0. 
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Here gradients are to be taken with respect to (x, y, O) in condition (i), (y, 0) in condition 

(ii), (x, 0) in condition (iii) and 0 in the definition of Re in (iv). In particular, let r y, 0) = 

<x-y, O> and assume that  g rad0q#0  when q=O. The conditions (i), (ii), (iii) are then 

fulfilled over a neighborhood of the diagonal. 

H. Pseudo-differential operators and related classes of distributions 

2.0. Introduction 

In  this chapter we shall review the calculus of pseudo-differential operators using the 

techniques developed in Chapter I. This leads to several simplifications. In  particular, in 

this framework it is easy to prove the invariance of pseudo-differential operators using an 

idea of Kuranishi (see also Friedrichs [10] and Nirenberg [24]). The simplicity of this proof 

also allows one to give a direct global definition of pseudo-differential operators on a mani- 

fold which is particularly useful when one has to discuss operators depending on parameters. 

A related definition has been discussed by Bokobza [4]. 

The kernel of a pseudo-differential operator in X has its singular support in the diago- 

nal of X • X. In  section 2.4 we shall see that  oscillatory integrals with a linear phase func- 

tion lead one to attach to every submanifold Y of a manifold X a class of distributions 

with singular support in Y. With these we can associate a "principal symbol". The 

discussion of these distributions and indeed the whole chapter is to a large extent a prepa- 

ration for Chapters I I I  and IV where the corresponding questions for general non-degene- 

rate phase functions will be studied. 

M. Sato [27] has introduced for his hyperfunctions on a manifold X a closed subset 

of the cosphere bundle which describes not only the location of the singularities but also 

some of their harmonic analysis. His definition involves a considerable amount of 

cohomological machinery but for a distribution one can use pseudo-differential operators 

to give a very simple definition of a set with similar properties. We call it the wave front 

set of the distribution. Section 2.5 is devoted to this concept which clarifies much of 

the contents of this paper and will be indispensable in part II .  

2.1. The calculus of pseudo-differentlal operators 

If  X is an open set in R n we shall write L~.~(X) for the class of Fourier integral 

operators (1.4.1) with the phase function r y, O)=<x-y, 0> in X • X • R n and a symbol 

a E S~.~ (X • X • R~). As we shall see in a moment, this agrees with the definitions given in 

[13] at least when 8 <Q, so we shall call these operators pseudo-differential of type ~, 8. 



FOUI~IER I N T E G R A L  OPERATORS.  I 103 

A pseudo-differential operator 

Au(x) = ~ f e i(x-y" ~ a(x, y, O) u(y)dydO 
d d  

(2.1.1) 

is called properly supported if both projections supp K A ~ X  arc proper, that  is, if 

{(x, y) Esupp K~; x E K  or y E K }  

is compact for every compact set K c  X. (Recall that  KA is the distribution kernel of A 

given by (1.4.4).) I t  is clear that  Au can then be defined without restrictions on the support 

of u. Thus A maps C~176 into Coo(X) and ~ ' (X)  into ~ ' (X) .  Furthermore, A maps C~(X) 

into C~r and d~'(X) into #'(X). If  Z is a function in Coo(X x X) which is equal to 1 in a 

neighborhood of supp K A and the projections supp z -+X are also proper, it is evident that  

the operator A is also defined by the symbol ai(x , y, O)=g(x, y)a(x, y, 0). Note that  

{(x, y); x or y E K  and (x, y, 0)Esupp a 1 for some 0} 

i s then relatively compact in X x X for every compact set K c X. We shall say that  a 

symbol with this property is proper. Every pseudo-differential operator is the sum of one 

with a Coo kernel and one which is properly supported. This follows immediately if we 

choose g E COO(X x X) so that % = 1 in a neighborhood of the diagonal and Z is properly 

supported. In  fact, the symbol ( 1 - z ) a  defines an operator with Coo kernel according to 

Proposition 1.2.4, and za is a proper symbol. 

When (~ <@ we shall now derive an expression for a properly supported pseudo-diffe- 

rential operator A which will connect the definition used here with that  given in [13]. 

Thus let A be defined by (2.1.1) where a is proper. We may then consider A as an operator 

from Coo(R ~) to C~176 of course strictly speaking is the composition of the restric- 

tion map to X and A. Applying A to the exponential function en(y ) = exp i<y, ~>, we ob- 

tain A en(x ) =(~(x, ~) %(x) where 

~A(x,v)=ffa(x,y,O)e~<X-Y'~176 
The oscillatory integral here may be interpreted as a repeated integral taken first with 

respect to y and then with respect to 0. We set 

b(x, y, ~) = a(x, x § ~) 

and introduce the Fourier transform 
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= fb(x, y, v) e ~ 

Since aE S~.~ and a is proper ,  we obta in  for every  compac t  set K c  X 

]D~O~D~$(x,O,v)i < C(1 § ivl)m+~(l~l+l~l)-Ql~l, xeg,  (2.1.2) 

hence for any  posi t ive integer  

IDx~D~$(x, O, ~)l< C(1 § (1 § 10])-~. (2.1.3) 

we have  aA (x, ~/) = fb(x, O, ~ + O) Now dO. 

Since (~ < 1, i t  follows f rom (2.1.3) t h a t  ~A and any  one of its der ivat ives  can be bounded  

b y  some power  of (1 § ]~1 )" To obta in  the  a sympto t i c  behavior  of aA when ~ / -+~  we 

form the  Taylor  expansion of b(x, 0, ~/+0). I n  view of (2.1.3) we have  

+0)  - Z < vl01"sup (1 10l)-'. i~[<N 0<t<l 

Here  v m a y  be chosen as any  posit ive integer  or 0. Wi th  v = N  we obta in  the  bound 

C(1 § I~i) m+(~-e)N if ] 0 [ <  1~[/2, and  if we choose v large we get  a bound b y  any  power  

of (1 + ] 0 [)-1 if ]~ ] < 2 ]0 ]. Hence  Four ier ' s  inversion formula  gives 

]aA (x, ~) - (2~) ~ 5 (iD,7)~D~b(x,Y,~l)/o~! ]u=0[ ~< C(1 + ]~/[ )m+n+(O-e)N. 
I~]<N 

I n  view of Proposi t ion 1.1.10 it  follows t h a t  a~ E S~.o (X • t t  ~) and  t h a t  

~A (x, ~) ~ (2~) ~ Z (iV,~)~D~ a(x, y, ~)/~ ! [ ~ .  (2.1.4) 

I f  uGS~(R ~) we have  Fourier ' s  inversion formula  

Since A is cont inuous f rom C~176 ~) to C~176 we can app ly  A under  the  sign of in tegra t ion 

and  obta in  

A u ( x )  : (2 yg)-nfei(x' "> (TA(X , T]) q~(T]) dT], U ~-. ff(Rn), x ~ X. (2.1.5) 

I n  the  lef t -hand side we should in terpre t  u as the  restr ict ion of u to X. Obviously  (2.1.5) 

determines  aa uniquely.  Summing  up, we have  proved  
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TtIEOR~M 2.1.1. I / A  is a properly supported operator EL~.~(X), (~<~, then A can be 

written in one and only one way in the ]orm (2.1.5). Here (~,l ES~.o(X • R n) is asymptotically 

given by (2.1.4) and is called the symbol o / A .  

Incidentally we note that  for the phase function r y, O ) = ( x - y ,  O) we have now 

given another proof of Proposition 1.2.5. 

Conversely, every operator of the form (2.1.5) with (~A E S~. ~ is in L~. ~ (X) by our present 

definition, for (2.1.5) is equivalent to 

Au(x)= (2=)-nffe"X-~">(~(x,v)u(y)dydv, ueCFR'~). (2.1.5)' 

Hence the definitions used here are equivalent to those used in [13] when ~ <Q, which we 

assume from now on. If we note that  aAES -~  if and only if KAEC% the preceding 

theorem shows that  the map A-~aA defined there together with the map aA~A given by 

(2.1.5) leads to an isomorphism 
._._>. In - - ~  LggLo:V &  lao 

We shall call a (x, 0)E S~.~ (X • R n) a symbol of A EL~.~ (X) when their equivalence classes 

correspond in this isomorphism. 

The formula for the symbol of the transpose of A given for example in [13] is an 

immediate consequence of Theorem 2.1.1. Indeed, if A is properly supported and we define 

the transpose of A by (Au,  v} =(u,  tAr), then we obtain from (2.1.5)' 

<2=)-:ffe-,<=-. ,> (y, 17) v(y) dy di 7 ~Av(x) 

Since tA is properly supported it follows from Theorem 2.1.1 that  the symbol is given by 

~t~ (x, U) ~" ~: (iD,7) ~ D~aa (x, - U)/~ !. (2.1.6) 

The formula extends immediately to the symbols for arbitrary A e L~. ~. 

Using the adjoint operator we can also get another useful representation for a properly 

supported pseudo-differential operator, already used by Kohn and Nirenberg [19]. In  

fact, if 

tAv(y) 

then v> : (y, ~ ) ~( ~)u(y) d~ dy , J J  
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which means tha t  Au  is the Fourier  t ransform of 

-~ (2 ~)-'~ f e '<y" ~> a' (y, ~) u(y) dy. 

Writ ing 5A (y, ~) = a '  (y, -- ~), we have then  with the nota t ion of oscillatory integrals 

Au(x)= 

or equivalent ly  (Au) (~) = e ~<Y ~>~A(Y, ~) u(y) dy. (2.1.7) 

If  A is of the form (2.1.1), then  

5 A (Y, ~) ~ (2z) n Z ( - iD~)~'D~a(x, y, ~)/~![~=~. (2.1.8) 

Now we shall compose A with another  properly supported pseudo-differential operator  

B. Using (2.1.5) for B and (2.1.7) for A, we obtain 

BAu(x) = ( 2 = ) ~ f f + = - ~ " > a , < x , ~ ) 5 ~ ( y , ~ ) u ( y )  dyd~, xE X,  uE C~ (X) 

which proves tha t  BA is a pseudo-differential operator.  For  the symbol  we have by  (2.1.4) 

(~BA(X, 7)'~ ~ (iD~)~D~ (~B( x, ~)S A (Y, ~)/~! Iv=::" 

I n  view of (2.1.8) we can introduce here 

~ ~ (y, ~)HE (-iD,~)~D~ aA(Y, 7)/fl !, 
which gives 

= Z (iD,7)~(rs(x, ~)(-iDn)~D~+~(rA(x, ~)/~!~!. 

The r ight -hand side can be simplified by  means of the binomial theorem 

Z 7 =0~/~ ! ~ ! = (7 + 0)~/~ ! 

if we note as in the proof of Leibniz '  formula tha t  a factor  iD,j to  the left of a product  is 

equivalent  to  the  sum of a factor  iD,7 acting only on the first factor  and one act ing only 

on the second factor. This gives the familiar result 

(rBA(X, ~) ~ E ((iDn)~' aB(x, ~)) DV~ aA(x, ~)]~!. (2.1.9) 

Obviously this remains t rue if only one of the operators A, B is properly supported.  

We shall now consider the effect of a change of variables. Let  
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~: X-+ X 1 

be a diffeomorphism between open sets in R n with inverse zl, let AEL~.o(X ) and set 

Alu=(A(uo~))o~l ,  ueC~(X1). 

This means, if A is of the form (2.1.1), that  

AlU(X ) = f f e '(~l(x)-u' ~ 1 (x), y, O)u(u(y)) dydO 

or after a change of variables 

Alu(x ) = f f e (x), (y), O) [D~r 1 (y)/Dy] u(y) dy dO, 

where r y, 0)=(~l(x)-~I(Y),  0) and D~l(y)/Dy=det ~(y).  This is again a Fourier inte. 

gral operator but  the phase function has been changed. That  A1EL~(X1) follows for 

suitable Q and 5 from 

THEOREm 2.1.2. Let r be a phase/unction in X • X • R n such that r y, O) is a linear 

]unction o/0 and r y, 0 )=0  is equivalent to x =y. Every operator o] the ]orm (1.4.1) with 

a C S~. ~ (X • X • R n) is then in L~. ~ (X) i/ 1 - e <~ (~ < ~. 

As mentioned in the introduction we shall give a simple proof suggested by Kura- 

nishi. The main point is the following 

PROPOSITION 2.1.3. Let r be a phase [unction satis]ying the hypotheses o/ Theorem 

2.1.2. For some neighborhood ~ o/ the diagonal in X • X one can then [ind a C ~ map 

~p: ~I-+GL (n, It) such that 

r y, ~(x, y)O) = ( x - y ,  0), (x, y)Eg2. (2.1.10) 

We have det ~(x, x) det r y, O)ly=x = 1. 

Proo/. The hypothesis means that  

r y, 0) = Z Cj(x, y)Oj, 

where Cj(x, x)=0,  but, since r is a phase function, 

Z 0j~r y)/~x k ~: 0 

for some/c if x = y  and 0 ~:0. Thus det (~r y)/~xk) ~:0 when x =y.  By Taylor's formula 

we have 
~bj(x, y) = Z ~j(x,  y)(xk -Yk), 
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where CkjEC ~~ near the diagonal. When x = y  we have Cki(x,y)=ar k thus 

det (r x)) = d e t  (~r y)/~xk) 4=0 then. Now we have 

r y, O) = Z Ckj(x, y)Oj(xk--yk) = (x--y ,  ~P(x, y)O). 

I f  ~v(x, y) is the inverse of (I)(x, y), which is well defined in a neighborhood of the diagonal, 

it follows tha t  r y, ~v(x, y ) O ) = ( x - y ,  O) and the proposition is proved. 

The lemma means tha t  apar t  from vector bundle maps there is only one function 

r satisfying the hypotheses of Theorem 2.1.2 near the diagonal. This will be the starting 

point for our definition of pseudo-differential operators on manifolds in section 2.3. 

Proo/o/ Theorem 2.1.2. In  view of Proposition 1.2.4 it is no restriction to consider 

only operators A of the form (1.4.1) where a(x, y, O) ES~.~(X • X • R n) is properly supported 

and vanishes outside a closed subset of X • X contained in the set ~ of Proposition 2.1.3. 

Now a change of variables gives 

Au(x) = f f e ~<z-y' ~ a(x, y, ~v(x, y) O) I det ~v(x, Y) I u(y) dydO. 

In  view of Proposition 1.1.7, par t  (ii), the amplitude function here belongs to S~,o (X • X • 

R ~) which proves the theorem. 

We shall now return to the phase function 

r y, 0) = (~l(x)-~I(Y), 0} 

which occurred in the change of variables, for we wish to determine the transformation 

law for the symbol. With the notations used above we obtain 

Alu(x  ) = f f e  i(x-y' ~ 1 (x), ul (Y), y~(x, y) O) D (x, y) u(y) dy dO, 

where D(x, y) = I det ~l'(X) I I det ~v(x, Y) I, 

thus D(x, x) = 1. (That D(x, x) = 1 means precisely tha t  dyd~ is an invariant measure on 

the cotangent space of X which is of course very well known.) I f  we take a(x, y, ~7)= 
(27~)-naA(x, ~), it follows tha t  

(~A, (x, 7) "~ ~ (iD,y'D~ (~A (~1 (x), ~p(x, y) 7) D(x, y)l~! I,=y. (2.1.11) 

With the usual notation a~ ) (x, 7) = (iDn) ~aA (X, 7), 

the general te rm in (2.1.11) will be a linear combination of terms of the form 



F O U R I E R  I N T E G R A L  OPERATORS,  I 109 

c(x, y) ~f'(r~ ) (~1 (x), ~p(x, y) ~) 

with lTI + I~1 < I~1 < 2 I~1, (2.1.12) 

The second inequality is obvious. To prove the first we note tha t  application of Dy to a 

function of this type does not change I 1-171 while application of D n increases this 

difference by  1. From (2.1.12) it follows tha t  

171 -< lZl -I=1 < -I 1/2 = 1 1/2 (2.1.13) 

Adding the terms in (2,1.11) in a different order we therefore obtain in view of (2.1.13) 

~A, (~(x), 7) ~ 2 ~ ) (x ,  ~'(x) 7) r (x, ~)/~! (2.1.14) 

where r is a polynomial in ~ of degree <~[fll/2, 

r x, V) = 1. (2.1.15) 

Since r does not depend on A, we can determine r by  choosing A as a differential operator. 

Then we have 

(~m (Y, ~1)1 u=~(~) = e-~<u" n> A~ e ~<y'~ ]~ =~(x) = e -~<~)' '~> aa (z, D)  e ~<~(z)'n> ]~=~. 

Here we introduce the Taylor expansion 

~(z) = ~(x) +~ ' (x ) (~ -x )  +~;(z), 

where x~(z) vanishes to the second order when z = x .  We have 

<~(z), ~> = <~(x), V> - <x, ~x'(x)~> + <z, t~'(x)z]> + <~;(z), ~>, 

so in view of Leibniz' formula we obtain (2.1.14) with 

CZ (x, 7) = Dz~ e~<~(z)' n> Iz=~ (2.1.16) 

and with no other polynomials r Note in particular the first few polynomials: 

Cz(x ,~)=0 ,  [ f l [= l ;  r  l f l ]=2"  (2.1.17) 

These formulas are also given in [13] where the proof is different and leads directly to 

(2.1.16). 

The calculus we have given here is exact modulo operators in L -~176 and symbols in 

S-% However, it is complicated by  the presence of infinite sums in (2.1.6), (2.1.9), (2.1.14). 

Now the terms with zr in these sums are of order ~<m+(5-~) ,  m + m ' + ( ( } - @ )  and 

m + 1-2@ respectively if m ( m ' )  is the order of A (resp. B). In  the case of (2.1.14) we have 

assumed that  ~ +(3 ~> 1 so 1 - 2 ~  ~<~ - ~ .  We can therefore obtain a simpler but  cruder calculus 
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if from the isomorphism "~ -~  m ~ - ~  Lo.s(X)/L~.s (X)-+SQ.o(X •  )/Sq.s (X •  ~) we deduce the iso- 

morphism m m+(s ~) m R n ~ / ~ m + ( O - q )  l v" LQ.~(X)/Le.o (X)--->Sq.~(X x Jl'e.~ t,~ x R"). If A EL~.~ and aES~,~ we 

shall call a a principal symbol of A if the residue classes of A and a correspond to each 

other in this isomorphism. If a(x, ~) is a principal symbol of A, then a(x, -~)  is a principal 

symbol of tA, if b(x, ~) is a principal symbol of A then b(x, $)a(x, ~) is a principal symbol of 

BA, and if A 1 is obtained from A by a change of variables as discussed above, then a 

principal symbol of A 1 is given by a(~-l(x), tx'(x)~). In  the generalizations of pseudo- 

differential operators which we shall discuss later on we shall only develop an analogue 

of this simple calculus. 

2.2. The continuity of pseudo-differential operators 

The estimates for operators in L~.~ (X) which we shall prove here have been given before 

in [13], and a variant of the proofs there has been published by Kumano-go [20]. Our 

purpose here is to show that they also follow quite easily from the calculus which we have 

established in section 2.1. We shall restrict ourselves to the L ~ continuity of operators of 

order 0 and refer to [13, section 5] for the continuity of operators A EL~.s from H(~ I to 

H(s_m) which is an easy consequence. 

We shall write 

(u, v) = ju dx 

for the scalar product in L2(X) and denote the corresponding adjoint of the operator 

A EL~ by A*. Thus (Au, v)=(u,  A'v)  if u, vCC~(X),  and we have 

llAull = (Au, Au) = (A*Au, u). 

T ~ s o n s ~  2.2.1. Assume that A EL~ s(X) is properly supported, ~ <~, and that/or every 

compact set K c X 
lim sup Iqa(x,~/)l< M. (2.2.1 

~1-->oo xeK 

Then there exist8 a serf adjoint integral operator R with properly supported kernel 6 C~176 • X) 

such that 
(Au, Au) ~ M2(u, u) + (Ru, u), uE C~(X). (2.2.2) 

Proof. We shall prove that there exists a properly supported operator B = L ~  

such that  

A*A + B*B - M S ~ R 
has a C * kernel. Since 
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(Au, Au) + (Bu, Bu) = M~(u, u) + (Ru, u) 

this will prove the theorem. Now a principal symbol  of M ~ - A * A  is equal to M ~ - I ~ ( x , ~ )  ]~, 

so the theorem follows from 

]~162 2.2.2. Let CEL~ be properly supported, C*= C, and assume that 

/or every compact set K ~ X 
lira inf Re ere(x, ~) >0 .  (2.2.3) 

Then one can lind B CL~ ~ (X) so that B is properly supported and B * B -  C = R has a C ~ 

kernel. 

Pro@ By Proposi t ion 1.1.8 we can find a real valued symbol b o e S~ (X) such tha t  

I bo(x, v) l ~ -  Re ~(~,  V) = 0 

for large [~[ when x belongs to a compact  set. (Note tha t  the symbol of C - C *  is 2i I m  ac 

modulo S ~-eq.~, so I m  aceS~,~ ~ since C =C*.) Le t  B 0 be a properly supported operator  with 

the symbol  b 0. Then the symbol of B*B is equal to [ bo(x , ~) [ ~ modulo S~-eQ,0, so we obtain 

c - B~ Bo e L~5o (x) .  

We claim t h a t  it is possible to  find successively properly supported operators 

Bj eL~% -~)(X) such tha t  for ] = 1, 2 .. . .  

Rj = C - (B 0 + + Bj_~)* (B 0 + + B~_I) E r)(~-~)/X~ . . . . . .  JL,,e, ~ ~ 1- 

We know tha t  this is possible for ]" = 1. I f  B o . . . . .  Bj_ I have already been chosen and if 

Bj E rJ(~-e) -e.0 (X), then 

C - (B 0 + . . .  + Bj)* (B 0 + . . .  + Bj) = Rj - / 3 *  B 0 - B~ Bj modulo L~{~ 1)(~-e). 

~(J+l)(0-0) If  we choose Bj so t h a t  for large I~[ Since Rj is self adjoint  we have I m  aRj E-e,  ~ 

2 ~Bj(x, V) (~Bo(X, ~]) =r 

which is possible since (am(x, ~))-1 E SO, ~ for large I~] by  Proposi t ion 1.1.8, we obtain an 

operator  Bj with the desired properties. I f  we now take B so tha t  the symbol  of B is the 

asympto t ic  sum in the  sense of Proposi t ion 1.1.9 of the  symbols of Bj, ~ =0 ,  1, 2 ..... we have 

proved the proposit ion and so Theorem 2.2.1. 

Theorem 2.2.1 has an  impor tan t  and well-known corollary. 

COROT~T~XRu 2.2.3. Let A CL~ ~(Rn), 5 <p,  and assume that the kernel o / A  has compact 

support in Rn• R ~, and that 
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lira sup  l a A (x ,~ ) l<  M.  
~-->oo x 

Then one can l ind another such operator A 1 such that A - A 1 E L  -~176 and 

tlAlul[ ~<M Ilull, 

Proo/. Le t  zEC~(Rn) ,  ~ Z ( x ) d x = l ,  and  0 ~ i ~ < l ,  and  set Z~(x)=e-nZ(x/e). Then  we 

ob t a in  using (2.2.2) if A ,  u = A u  - A (Z~ ~e u) 

IIJ ull + u), u-x  u)  </ llull  + II R utl Ilull, 

where  R~ is an  in tegra l  ope ra to r  wi th  kerne l  

R~ (x, y) = R(x,  y) - f R(x,  y - ez) g(z) dz. 

This is a rb i t r a r i ly  small  wi th  e and  has  suppor t  in a f ixed  compac t  set, so if M 1 > M we 

conclude t h a t  [[A~ui[ ~ ~M~ilui] ~ for small  e. Thus  A~ has  the  requi red  p roper t i e s  then .  

COROLLARY 2.2.4. Let A EL~ a(R~), (~ <@, and assume that the kernel o/ A has compact 

support in R n •  ~ and that ~A(x, ~])-~0 when ~-->~, uni/ormly with respect to x. Then the 

operator A is compact in L2(R~). 

F o r  a converse of these  corollaries we refer to  [13]. 

2.3.  Pseudo-di f ferent ia l  operators  o n  a m a n i f o l d  

Le t  X be a C ~ p a r a c o m p a c t  mani fo ld  of d imension  n. Using Theorem 2.1.2 we can 

define the  space L~.s(X) when 1 -@ ~(~ <@ as follows: a cont inuous  l inear  opera to r  A from 

C ~ ( X )  to  C~(X)  belongs to  L~.~(X) if and  only  if for each d i f feomorphism s of a 

coordina te  p a t c h  X~ in X to  an  open set ~ X ~ c R  n we have  A~EL~.~(~X~)i f  ( A ~ u ) o ~ =  

A(uo~) ,  u E C~ (~X~). B y  Theorem 2.1.2 this  def ini t ion agrees wi th  t he  one used  in  sect ion 

2.1 if X c  Rn; moreover ,  i t  is a lways  sufficient to  require  t h a t  th is  condi t ion  is ver i f ied for a 

set of coordinate  sys tems such t h a t  the  corresponding coordina te  pa tches  cover X if in addi-  

t ion  we require  t h a t  the  kerne l  of A is C ~ off the  diagonal .  The  def ini t ion can also be 

expressed as follows: I f  x 1 . . . .  , Xn are local coordintes  in an  open coordina te  p a t c h  X 1 of X 

and  if v EC~~ then  

e-~ (~' ~> A (re ~(~" "~>) E S~. ~ (X1). 

Here  ~ER ~ and  (x ,  ~ =X1~1 ~-... ~-Xn~ n, 

U or I f  E Co (z l (X~ N X~))  then  
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(A~lu) O~'~ 1 = A ( n O ~ l )  = Az,(uo~lo~ 1) o~2 

s o  i f  ~12 i s  t h e  diffeomorphism g l O  Z 2 1 : ~ 5 2  ( X ~ I  n Xu~) - - > g l ( X x l  n Xx2) ,  i t  f o l l o w s  t h a t  

(A~lu)o~l~=A~(uoTr For  the symbols we therefore have 

aA~1(~12(x), ~) -~A~ (x, ~'~(x) ~)~ -~.~+(~-~)'~ ~2 (X~ n X~)). 

I f  we regard xjX~j • R ~ as the cotangent  space of ~jX~j, then  ~12 maps  (x2, ~2) to  (xl, ~1) 
! t ! where x 1 = ~12 (x2) and (z12 (x2) t, ~1) = (t, ~2) for all t E R ~, thus ~2 = zl~ (x2) ~1. I f  we keep 

Proposi t ion 1.1.7 in mind, it follows t h a t  if using the map  ~j we pull aA,j to  a funct ion 

a~ on the cotangent  space of X,~, then a~ - a ~  E c~+{~-e} /m* / v  ,~.~ ~ ~ . . . .  I] X~) ) .Us ing  apa r t i t i on  

of un i ty  we can therefore piece together  an element a E S~.~(T* (X)) such tha t  

G --  0 1 m+(~-Q) , ESQ.~ (T (X~,)) 

for any  coordinate system ~r We call ~ a principal  symbol  of A. (For more details see 

also At iyah  and Bo t t  [3, appendix].) 

The preceding definition by  localization often makes verifications of quite simple 

facts ra ther  heavy  notationally.  A more convenient  approach can be based on 

Theorem 2.1.2. We wish to define operators in L~.~(X) directly as Fourier  integral opera- 

tors with phase funct ion r and symbol  a defined on a real vector  bundle E with fiber 

dimension n over a neighborhood ~ of the diagonal in X • X. We wish r to be linear in 

the fibers and require t ha t  the restriction of r to  a fiber is critical at  e E E if and only if 

the projection ~e of e on X • X belongs to  the diagonal. The differential of r at  such a point  

can be regarded as a cotangent  vector  of X • X at  ze : (x, x)which vanishes on the tangents  

of the diagonal so it is of the form (~, - ~ )  where ~ is a cotangent  vector  of X at x. The map  

E~,~ ~ e ~ E T2  is linear and injective, hence bijective since the dimensions are equal. Thus  

r defines over the diagonal an  isomorphism ol E and the cotangent space T* (X) lifted to 

X • X by the projection (x, y )~y ,  and this isomorphism can be extended to a neighborhood 

of the diagonal. 

On the other  hand, if E is defined in this way  then we can choose r so tha t  r vanishes 

over the diagonal and d r  at (x, x, ~), where ~ET*.  Indeed,  this is possible 

locally and so globally by  means of a par t i t ion of unity.  I n  a neighborhood of She diagonal 

we cannot  have any  critical points along the fibers then so r has the required properties. 

I f  r and r are two such functions, then r 1 6 2  vanishes to the second order over the  

diagonal and we conclude as in the proof of Proposi t ion 2.1.3 tha t  

r y, ~) = r y, y~(x, y)~) 

8--  712906 Acta mathematica 127. Impr im~  le 2 J u i n  1971 
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over  a ne ighborhood  of the  d iagonal  where ~ is a homomorph i sm  E-+ E which is the  i d e n t i t y  

over  the  diagonal .  Thus  the  requ i rements  on E and  r de te rmine  E and  r essent ia l ly  uniquely .  

Now we can define L~.s(X), 1 - @  ~< ~ <@, as the  opera tors  which can be wr i t t en  as a 

sum of an  opera to r  wi th  C ~176 kernel  and  one of the  form 

Au(x) = (2~)-n f f e'r u(y) dyd U, uE C3~ 

H 

where  dydu is the  i nva r i an t  e lement  of in teg ra t ion  in T*(X) and  a E S~,o(X •  •  n) 

vanishes  when (x, y) is outs ide  a su i t ab ly  small  ne ighborhood  of the  diagonal .  A pr inc ipa l  

symbol  of A is given b y  a(x, x, U). The equivalence wi th  the  f i rs t  def ini t ion is an  

i m m e d i a t e  consequence of Theorem 2.1.2. 

2.4. Oscillatory integrals with linear phase function 
Theorem 2.1.2 shows t h a t  the  d i s t r ibu t ion  kernels  of pseudo-di f ferent ia l  opera tors  

are  precisely the  d i s t r ibu t ions  which can be represen ted  as osc i l la tory  in tegra ls  wi th  a 

l inear  phase  func t ion  (with respect  to  0) which is cr i t ical  only  over  the  diagonal .  W e  shall  

now general ize b y  considering osc i l la tory  in tegra ls  based  on a r b i t r a r y  l inear  phase  func- 

t ions.  This  is in p r epa ra t i on  for the  non- l inear  case which will be s tud ied  in Chap te r  I I I .  

Thus  let  X be an  open set in R ~ and  le t  r be a phase  funct ion  in X • R g which is l inear  

wi th  respect  to  the  0 var iables ,  t h a t  is, 

r 0) = (r  0} 
! 

where  �9 is a m a p  X~+R N. Tha t  r is a phase  funct ion  means  t h a t  (Oxj, 0} 4=0 for some 7" 

when r = (I) = 0. Thus  N ~< n (if the re  are  such poin ts  which we assume in order  to  exclude 

a t r iv ia l  case), and  (I)~ is of r ank  N when (I)(x) = 0. This equa t ion  therefore  defines a sub- 

mani fo ld  Y of codimension N.  

I f  O 1 is ano the r  m a p  X - + R  N such t h a t  0~i (0)  = Y and  O~x is of rank~N on Y, we can 

choose a ne ighborhood  U of Y and  a C ~ m a p  ~v: U - + G L  (N, R) such t h a t  

01(x) = ~(x) O(x), 

thus r 0) =<(I)l(X), 0> =<O(x), t~)(x)O> =r t~(x)O), xE U. In order to construct ~p w e  

f irst  note  t h a t  we mus t  have  (P~(x)=~v(x)(P~(x) when x E Y. Since the  mat r ices  (I)~x and  

@~ have  r ank  N and  the  same kernel  when x E Y this  condi t ion  de te rmines  ~o un ique ly  as 

a C ~~ funct ion  of x E Y, which we ex tend  to  a C ~ funct ion  in a ne ighborhood  of Y. Then  we 

have  t h a t  
O~(x) -W(x) O(x) 

vanishes  to  the  second order  on Y. Wr i t i ng  (I)(x)=(O1(x) . . . .  , ON(x)) we ob t a in  f rom 

Tay lo r ' s  fo rmula  
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r  (x) = Z ~,j~(x) r + Z R~(x) (I)k(x), 

where Rjk(x)=0 on Y. The matr ix  ~p+R therefore has the required properties. Thus we 

have proved the following extension of Proposi t ion 2.1.3: 

PR O]~ O SITION 2.4.1. / ]  r is a linear phase /unction in X x R N, then {(x, 0); r 0) = 0} = 

Y x R y where Y is a submani/otd o/eodimension N. I/r is another linear phase/unction with 

the same critical points, we can/ind a neighborhood U o/ Y and a C oo map yJ: U-~GL (N, R) 

such that r O) =r  ~f(x)O), xE U. 

Conversely, let Y be a submanifold of X. Local ly we can choose coordinates in X so 

tha t  Y is defined by  x 1 . . . . .  X k = 0  , say. Then the function r 0 ) = ~  xjOj is linear wi th  

respect to 0, and the  equat ion r = 0 is equivalent  to x E Y. This construct ion can also be  

made globally over a neighborhood of Y even if X and Y are manifolds, with r defined in 

the normal  bundle N(Y)  of Y in T*(X), lifted to a bundle E over a neighborhood U of Y 

by  means of a Coo ret ract ion U ~  Y. We define r so tha t  if ~ is the projection E ~  U, t hen  

r = 0 and de(p) =7~*p if p E E and 7ep E Y. Here p in the r ight -hand side is considered as 

eoveetor on X. This is a s t raightforward extension of the discussion in section 2.3 which 

corresponds to the diagonal in X • X. 

Returning to the locM ease where Y c X ~ R  ~ and r is a phase funct ion in X • R ~ we 

consider a distr ibution of the form 

(A, u> = (2z)-(~+2~)/4ffe~r ~ O) u(x) dxdO, uEC~ (X), (2.4.1) 

where aE k~m+(n-gN)]4lXQ.a ~ x R =~j, 1 - 9  ~< 8<  ~. The strange normalizat ions made here have 

been chosen so tha t  we have agreement  with the representat ion for the kernel of a pseudo- 

differential operator  on a manifold of dimension k derived from (2.1.5)'. Indeed,  in t ha t  

case we have n = 2 k  (the dimension of the product  of the manifold by  itself) and 2V=k 

so we get  a factor  (2n) -k and a ES~.~. A complete justification will follow from invariance 

properties discussed in section 3.2 and multiplicative properties proved in section 4.2. 

The set of all distributions in X which modulo C ~ (X) can be represented in the form 

(2.4.1) with aE S~.~ (n-2N)/~ will be denoted by  I~.a(X, Y). Note  tha t  in the case where a is 

a homogeneous funct ion of 0 the corresponding distribution is essentially a homogeneous 

funct ion of the distance from X to Y depending smoothly  on the nearest point  in Y. By  

Proposit ions 2.4.1 and 1.2.4 the definition of Iem~ is independent  of the choice of 4; more- 

over, it suffices to have r defined over a neighborhood of Y if one takes a vanishing out-  

side a smaller neighborhood. 
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Now we wish to  assign a pr inc ipa l  symbol  to the  d i s t r ibu t ions  in I y,~ (X, Y). To do so 

we f i rs t  recal l  t h a t  b y  Propos i t ion  1.2.5 the  d i s t r ibu t ion  A is de t e rmined  modulo  

Im+(~-q)~X~.~. ~ , Y) b y  the  res t r ic t ion  of a to  Y • R ~. Thus  we have  a sur jec t ive  m a p  

s,n+(n-2N)/4 ~ v" ~n~/~,n+(,~-eN)/~+(~-e) ( y • Rn) ~ I~.~ (X, Y~/I  '~+(~-~) (X Y). (2.4.2) 

This  is rea l ly  an  i somorphism.  To p rove  th i s  we mus t  show t h a t  if A = 0  t hen  the  re- 

s t r ic t ion  of a to  Y • R n is in S~.~ (~-2N)/4+~'~-~) ( Y • R~). Since ZA is def ined b y  the  symbol  

Xa if z e C ~ ( X ) ,  i t  is no res t r i c t ion  to assume t h a t  a vanishes for x outs ide  such a smal l  

se~ t h a t  af ter  a chang~ of var iables  Y is def ined b y  the  equat ions  x '  = (:c 1 . . . . .  x~) =O and  

t h a t  r 0 ) = E ~  xjOj=(x' ,  0>. Taking  u as the  p roduc t  of a func t ion  of x '  = ( x  1 . . . . .  x~) 

and  one of x " =  (xN+l, ..., x~) we f ind t h a t  

f e ~<::'' ~ x", O) u(x ')dx'  dO = 0, u E C ~ (RN). 

L e t  u = 1 near  the  origin. W i t h  ~ ER N we replace  u(x') b y  u(x') e -~<x''~> and  conclude t h a t  for  

all  ~ E R N 

f e~<~ ". o> u(~c') dx' dO = O. a ( x ' ,  x ,  ~ , o) 

W h e n  ~-~ ~ a Tay lo r  expans ion  gives in view of the  Four ie r  invers ion fo rmula  (cf. the  proof  

of Theorem 2.1.1) t h a t  the  in tegra l  is a s y m p t o t i c a l l y  equal  to  

re,< o> (iD~)~a(x ', x", ~) O~u(x ') dx' dO/~!= (2~)  n E( -D: : . )  ~' (iD$)~a(x ', x", 8)[~:.=o/~!, 

, ~ m + ( n - Z N ) / 4 + ( ~ - ~ )  [ "V ~z ,t where  all  t e rms  except  the  f irst  are in ,~. ~ ~ ~ .. Rn). Hence  a(0, x , ~) belongs 

to  S~.~ (~-2N)/4+~-~) ( Y • R ~) which proves  t h a t  (2.4.2) is an i somorphism.  

W e  shall  now examine  to  wha t  ex ten t  (2.4.2) depends  on the  choice of the  phase  

func t ion  q~ and  the  local  coordinates  in X.  To begin  wi th  we keep the  local coordinates  in 

X b u t  replace  the  phase  func t ion  r b y  ano the r  r According  to  P ropos i t ion  2.4.1 we 

m a y  assume t h a t  r 0) = r  F(x)O), xE U, where  U is a ne ighborhood  of Y and  ~ a C ~ 

m a p  U - ~ G L  (N, R). A subs t i tu t ion  of var iables  now gives 

f f e  ir O) u(x) = J J e  ~'(~' at(x, u(x) dxdO, 
F[" 

~ dxdO ~) O) 

where  al(x, O) = a(~:, ~(x)~) Ide t  y)(x) t. (2.4.3) 
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To p u t  this  t r ans fo rma t ion  law in a more  na tu r a l  form we first  no te  t h a t  the  m a p  

Y • R ~  (x, 0) -~ (x, r 0)) 

is a b i jec t ion  to  the  no rma l  bundle  N(Y)  of Y in T*(X), which is l inear  along the  fibers.  

We  can therefore  regard  a as a funct ion  on fV(Y), and  s imi la r ly  for ap  I f  x E Y and  

(x,r 0 ) )=(x ,  ~), (x , r  01))=(x,  ~) we mus t  have  y~(x)Oi=O so t h a t  al(x , 01) = 

a(x, ~(x)0~)Idet  y~(x) l = a(x, 0) ]de t  yJ(x) l. R e g a r d e d  as funct ions  on N(Y)  the  funct ions  

a and  a 1 therefore  differ only  b y  the  fac tor  I de t  yJ(x) [. To t ake  care of th is  fac tor  we shall  

consider the  measures  defined in Y and  in N(Y)  b y  the  choice of r 

Wr i t i ng  r 0 ) =  (r 0} we know t h a t  the  m a p  x~qg(x) is of r a n k  N when (I)(x)=0. 

The composi t ion  (~(~) where 3 is the  Dirac  measure  in R N is t hen  a well def ined measure  

wi th  suppor t  in Y. I f  Yl, ..., Yn-N are  local coordinates  on Y and  we ex tend  t h e m  to C ~ 

funct ions  in a ne ighborhood  of Y, then  the  measure  is equal  to  

I D(y, (I))/Dx [-~dy~ ... dye_ N. 

Thus  the  measure  is a dens i ty  on Y, for a dens i ty  in a mani fo ld  Y is a measure  which 

in a local coord ina te  p a t c h  wi th  local coordinates  Yl . . . . .  y~ (k = d im Y) can be wr i t t en  in 

the  form 
a(y) dyl ... dy k. 

If  we have  an over lapp ing  coordina te  p a t c h  wi th  local coordinates  771, ..., Yk the  measure  

can also be expressed in the  form 5~(?~)d771 ... d~k, so we have  the  t r ans fo rma t ion  law 

5(~)=a(y ) ]Dy/D~ I 

in the  over lap .  More general ly,  a dens i ty  of order  a on Y is def ined if for each choice of 

local coordinates  we have  a func t ion  a(y) of the  local coordina tes  which obeys  the  t rans-  

fo rma t ion  law 
5(~) = a(y) l Dy/ D?~ I~'. 

Densi t ies  of order  ~ can of course be r ega rded  as sect ions of a l ine bundle  ~ on Y, def ined 

b y  the  t r ans i t ion  funct ions  IDy/D?~I ~, and  we have  f 2 ~ |  A more  int r ins ic  

def ini t ion can be given as follows. The t r ans fo rma t ion  law means  t h a t  a(y) I de t  (ti, dyj) 1 ~ 

where tl, ..., tk are  t angen t  vec tors  is i ndependen t  of the  choice of local  coordinates ;  

th is  q u a n t i t y  becomes a(y) if we choose a dua l  basis  in the  t a nge n t  space to  the  basis  in 

the  co tangen t  space given b y  the  different ials  of the  coordinates .  Thus  the  f iber  of 

~ a t  y is the  space of all  maps  a f rom A k T ~ ( Y ) ~ 0  ( k = d i m  Y) to  @ such t h a t  

a(st)= Isl~a(t) if s E R ~ 0  and  tEAkTy~O.  The not ions  of real  or posi t ive  densi t ies  are  
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therefore well defined, and every positive densi ty has a unique positive square root  in 

s189 By  the invariance of the definition, if Z ~  Y is a diffeomorphism into, then  any  

densi ty  of order ~ on Y can be pulled back to a densi ty of order a on Z. I f  u, v are densities 

of order a and 1 - a  and the tensor product  uv has compact  support ,  then uv is a measure 

with compact  support  so ~ uv is well defined. Thus we can define the space of distributions 

with values in ~2~ as the dual space of C~ r ( Y, ~ l -~) . - -C~ the terminology we note 

t ha t  At iyah  and Bot t  [3] have called ~1 the volume bundle of Y. 

:Now let V be a cone bundle over a manifold Y, with fiber dimension N. If  t E It+ the 

group operat ion t: V-~ V defines a linear map (~l~)tv ~ ( ~ ) ~  so we have an equivar iant  

act ion of R+ on s If  now ~: V-+F where F is an open conic set in R ~ • ( t tN~0) is a dif- 

feomorphism commuting  with the R+ action and preserving the fibers (see the definition 

of cone bundles in section 1.1) then an element aES~.o(V, ~ )  is t ransformed to one in 

S" ~ (F, ~l~). Wi th  coordinates (y, 0) in F; y C R ~, 0 E RN; this element is defined by  a funct ion Q, 

a,,(y, 0), (y, 0)EF.  The funct ion ]0]-N~ corresponds to a densi ty of order a which is in- 

var iant  under  the group action. By  the definitions in section 1.1 we therefore have 

aES~.~(V, ~ )  precisely when a,,(y, O)]O]N~'ES~.~(F), t ha t  is, a~,ES~hN~'(F). 

Using the Lebesgue measure in R N we have on Y • I t  N a densi ty given by  de = 

5(~P)dO1 ... dON, or in terms of local coordinates Yl, ..., Yn-N on Y 

[ D(y, r I -~dyl'" dy~_N dO~.., dON. (2.4.4) 

This we shall map  to a densi ty on the normal  bundle N(Y) using the inverse of the map  

~:  Y • ItNB(y,O)--->(y,~P~O). We wish to compare de with the densi ty  de, constructed 

f rom the phase funct ion r t h a t  is, f rom qb 1 = tFq~. I n  local coordinates dr is given by  

! D(y, @l)/Dx I -~ dyl.., dyn_NdO~.., dON = ]det YJ[ -1[ D(y, r  [ - ldy l . . .  dy~_NdO~.., dON, 
(2.4.5) 

and de, should be mapped  to a densi ty on N(Y) using the inverse of the map  ~r 
t P Y • RN9 (y, 0)-~ (y, qby~0). Now ~ = n;~ oxr is the map (y, 0) -+ (y, ~-10) so u*dr = [ det  ~ [ -2dr 

I f  we recall (2.4.3), which with our present notat ions Ican be wri t ten n*a~= [det ~ la ,  

we conclude t h a t  u*a~]/dc~=aY-~r Thus a ~ r  and a,  dV~r define the same element in 

q.~ ~ ~ ~, ~1�89 Tha t  the order here becomes independent  of ~ is another  part ial  

justification for the normalizations tha t  have been made. 

We can now improve (2.4.2) by  stat ing t h a t  for 1 - ~  <~ <~ there is an isomorphism 

~.~ (N(Y), I~.~(X, Y'~Im+(~-~)~X Y) 

which is independent  of the choice of phase funct ion r However,  we have still assumed tha t  
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X c  R n so it  remains  to consider the  effect of a change of variables  before we have  a t ru ly  

invar ian t  formalism. 

Thus  let X - > X  be a di f feomorphism between open sets in RL Wri t ing  x = x ( 2 )  we 

t rans form (2.4.1) to 

CA, u)  = a(2, 0)  (2)d2d0 = (2.4.6) 

Here  ~ (~ )=  IDx/D2l~J2u(x), t h a t  is, we regard u as a densi ty  of order 1/2 which means  

t h a t  A is also t r ans formed  to ~ as a densi ty  of order 1/2. Fu r the rmore  

r 0) = r 0), a(~, 0) = a(x(2), 0) l Dx/D2J ~j~. 

Le t  Yl . . . . .  Y,~-N be local coordinates on Y =  {x; r 0 )=0} ,  considered as funct ions in X, 

and  let  Yl . . . . .  Yn-N be the corresponding functions in 2~ which are thus  local co- 

ordintes on Y = {2; ~' ~ "~ Co(X, O)=0}. Clearly (x, 0) and (2, 0) define points  in N ( Y )  and N ( Y )  

which correspond under  the  i somorphism between T*(X) and T*(X). Now we claim t h a t  

a(x, 0) 1D(y, O)/Dx 1-1/e = 5(2, 0) I D(ff, (~)/D2 [ -1/e (2.4.7) 

if the  two sides are eva lua ted  a t  points  corresponding under  the i somorphism X ~ ) ~ .  

I n  fact ,  this follows f rom the fact  t h a t  

D(y, O)/Dx = ( D(~, ~)/D2)( D2/Dx). 

Thus our construct ion is also invar ian t  under  changes of variables in X. 

There  is no difficulty now in proving the  preceding results globally on a manifold.  

I n  order not  to repea t  a rguments  a l ready given in section 2.3 we just  s ta te  the  result: 

THEOR]~M 2.4.2. Let X be a manifold and Y a closed submanifold. Let Iq~.o(X, Y) 

where 1 - p ~ O < p  be the set of all distribution densities of order 1/2 on X which are in 

C ~ ( X ~ . Y )  and in a neighborhood of any point in Y can be expressed in the form (2.4.1) 
where ~ c .~m+(n-~N)/4 ,.,q.~ and q~ is a linear phase function which is critical along the fibers over Y 

and only there. Then the restriction of a to these points gives rise to an isomorphism 

Sin+ n 14/N I y \  ~'~1 ~ l srn+ nl4+(~-O) [ N  I y~ vx/ rm+c~-e)  { y  o.~ ~ ~ J, .JJ e.~ ~ ~ j ,~ �89  ~jl~e.  ~ ,--, Y). (2.4.8) 

We shall say that a is a principal symbol of the distribution A E ~ ' ( X ,  ~�89 i f  their residue 

classes correspond under this isomorphism. 

2.5.  The  w a v e  front  set o f  a distribution 

We shall now introduce a ref inement  of the  not ion of singular suppor t  of a 

distr ibution.  To do so we let X be a manifold,  u E ~ ' ( X ) ,  and note  t h a t  
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sing supp u = fl {x; r = 0) (2.5.1) 

the intersection being taken over all r E C~176 with f u  E C~(X). We shall replace r by a 

properly supported pseudodiffcrential operator A EL~ The characteristic set of A is 

defined by 
7(A) =f ix ,  ~) E T * ( X ) \ 0 ;  lim [a(x,t~)] =0} 

t -~oo 

if a E S~ is a principal symbol for A. Clearly the choice of principal symbol is irrelevant, 

and since the functions (x, ~)~a(x,  t~) are equicontinuous the complement of the charac- 

teristic set is open so the characteristics are closed. Now set, in analogy to (2.5.1), 

WF(u)= N 7(A), (2.5.2) 
A u e C  ~162 

where A runs over properly supported operators in L~ I t  is clear that  WF(u) is a closed 

cone in T*(X)~0,  and since A may be chosen as a function in C~ we have 

~rWF(u) c sing supp u 

if z:  T * ( X ) ~ X  is the projection. In  fact there is equality. For if x ~ W F ( u )  it follows from 

the Borel-Lebesgue lemma that  there are finitely many A 1 ..... AkEL~ such that  

xr Let A = Z  A*Aj ,  the adj0ints being taken with respect to some positive 

C ~ density in X. Then A u E C  ~176 and ~: [aj[ ~ is a principal symbol for A so ~7(A) does not 

meet a neighborhood of x. We shall now appeal to the standard regularity theorem for 

solutions of elliptic equations. 

PROPOSITION 2.5.1. Let BEL~ be properly supported and elliptic in the sense that 

7( B) = ~). Then one can construct a properly supported E ELo(X) such that E B  - I and B E  - I 

have C ~176 kernels. Since u = ( I - E B ) u +  E B u  it/ollows that 

sing supp u c sing supp Bu, u E ~ ' ( X ) .  

Proo]. The principal symbol of E B  is eb. So choose E 0 with principal symbol 1/b which 

is in S o by Proposition 1.1.8. Then 

EoB = I + R1, 

where R1 EL -1. Since R~EL -k it follows immediately from Proposition 1.1.9 that  there is 

a properly supported operator FIEL  ~ such that  for each k > 0  

F 1 - I + R 1 - . . .  - ( - R1) k-1 EL -k. 
This implies that  

F1 E0 B - ( I  - R1 + . . .  + ( - R1) k-1 ) (1 + R~) e L  -k, 
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so t h a t  F 1E 0 B - I EL -k for all  k. I f  E 1 = F 1 E 0 we therefore  have  E 1B - I EL -~ .  S imi la r ly  

we cons t ruc t  E 2 wi th  B E ~ - I E L  -~176 and  conclude t h a t  

E 2 - El  = (I  - E 1 B) E~ - E~(I - BE2) e L  -~,  

hence t h a t  E 1 or E~ has  the  requi red  proper t ies .  

Re tu rn ing  now to the  discussion of s ingular  suppor ts ,  we t ake  a funct ion  r >~ 0 which 

is 0 near  x bu t  1 outs ide  such a small  ne ighborhood  t h a t  B = r  is elliptic.  W e  have  

Bu = r  + A u E C  ~176 near  x and  i t  follows t h a t  u EC ~ near  x. 

W e  sum up the  preceding discussion as follows: 

Definition 2.5.2. I f  u E 2 ' ( X )  the  wave  f ron t  set WF(u) of u is t he  closed c o n e ~  

T * ( X ) ~ O  def ined  b y  (2.5.2). 

T H E O ~ n M  2.5.3. The projection o] WF(u) in X is equal to sing s u p p u .  

The  preceding def ini t ion has  been chosen because i t  is invar ian t .  However ,  one can 

make  equiva len t  and  somet imes  more  useful  def ini t ions which do no t  involve  pseudo- 

d i f ferent ia l  opera tors ,  and  th is  we shall  do now. 

PROPOSITION 2.5.4. I /  Y is an open set in X ,  then WF(u] r ) =  (WF(u))IY, u E ~ ' ( X ) ,  

where u] y is the restriction o/ u to Y and (WF(u)) I y=(WF(u)) f lTr- lY .  

Proo/. I f  (x, ~) r W.F(u), we can choose A EL ~ wi th  A u E C  ~, (x, ~) r Le t  U be a n y  

ne ighborhood  of x and  choose r yJEC~(U) with  9 = 1  near  supp r r  near  x. I f  A l v =  

eA~flv we have  A1EL ~ A l u = r 1 6 2  -~p)uEC ~ (by the  pseudo-local  p roper ty) ,  (x, ~)r 

y(A1) and  the  suppor t  of the  kerne l  of A is in U • U. The fac t  t h a t  one m a y  res t r ic t  a t ten-  

t ion to  such opera tors  A in (2.5.2) i m m e d i a t e l y  gives the  proposi t ion.  

I n  pa r t i cu la r  the  propos i t ion  shows t h a t  WF(u) and  WF(r agree over  the  set  where 

r 4 0  when e EC ~. I t  remains  now to s t u d y  d i s t r ibu t ions  of compac t  suppor t  in  R n. 

PROPOSITION 2.5.5. Let uE# ' (R~) ,  and let K be the closed cone obtained by the 

projection 
WF(u)~  (x, ~ ) - ~ E R n ~ 0 .  

I] K 1 is another closed cone c R n ~ 0  with K N K 1 =•  then 

] ( lq-]}I)N~(~)I  < CN, ~EK1, (2.5.3) 

]or any integer 2V, and K is the smallest closed cone such that (2.5.3) holds/or all disjoint 

closed cones K 1. 
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Proo/. W e  begin  wi th  the  las t  s t a t emen t ,  so we assume t h a t  (2.5.3) is va l id  when 

K N K 1 = O. L e t  p be a Coo func t ion  in R n vanishing near  the  origin and  near  K ,  such t h a t  

p(t~) =p(~) when t ~> 1 and  ]~l ~> 1. Then  the  p roduc t  p(~) ~(~) is r ap id ly  decreasing so p ( D ) u  E 

Coo. I f  r  and  ~ = l  in a ne ighborhood  of supp u, t hen  AuECoo if Av--r  

Since A is noneharac te r i s t i c  a t  (x, ~) if r  and  l im~_~p(t~)~=0,  we conclude 

t h a t  W F ( u )  ~ R ~ • K.  

To prove  the  o ther  half  of the  p ropos i t ion  we need a lemma.  

L ~,MMA 2.5.6. Let u E d~ n) and A = a(x, D) where a is o/order - oo in a conic neighbor- 

hood F o/ WF(u) .  Then A u  E C ~176 

Proo]. W e  m a y  assume t h a t  a(x, ~) = 0 for large x and  therefore  t h a t  (x, ~) E F for  large x. 

Choose a p rope r ly  suppor t ed  pseudo-di f fe rent ia l  ope ra to r  A 0 wi th  pr inc ipa l  symbol  1 in a 

conic ne ighborhood  of W F ( u )  and  over  the  complement  of a compac t  set such t h a t  the  

full symbol  is of order  - ~ in  a cone F1 wi th  F U F 1 = T* (Rn)~0 .  Using the  Bore l -Lebesgue  

l emma we now choose A 1 . . . . .  A k E L  ~ such t h a t  

k 

0 

and  AjuECoo, j = l  . . . . .  k. B y  Propos i t ion  2.5.1 we can choose E so t h a t  

k 

u - E  ~ A~ A j u E C  ~. 
0 

Thus  u - E A ~ A  o u E C oo 

and  so A u  - A E A ~  A o u E C ~. 

Because  1 ~ U F 1 = T*(Rn)~o ,  the  formulas  for the  symbol  of a p roduc t  show t h a t  A E A * A  o 

is of order  - c~, so A u  E Coo as asserted.  

End  o] proo/ o/ Proposition 2.5.5. Le t  p(~) E Coo be homogeneous  of degree 0 outs ide  a 

compac t  set, le t  p = 0  in a ne ighborhood  of K and  p = 1 a t  in f in i ty  in K r Then  p(D)  satisfies 

the  hypothes i s  of L e m m a  2.5.6 so p ( D ) u  E Coo. Hence  p(~)~(~) is r a p id ly  decreas ing so t h a t  

(2.5.3) holds.  

To sum up,  if u E ~ ' ( X ) ,  X c R n, t hen  (x, ~) ~ W F ( u )  if and  only  if the re  exists  a func t ion  

r E C ~ X )  with  r (x)=~ 0 such t h a t  the  Four i e r  t r ans fo rm of Cu is r ap id ly  decreasing in a 

conic ne ighborhood  of the  half  r a y  wi th  d i rec t ion  ~. 

W e  shall  now give an  example  improv ing  Propos i t ion  1.2.3. 



FOURIER INTEGRAL OPERATORS. I 123 

P R 0 P 0 S I T I 0 lv. 2.5.7. Let X ~ R n, F an open cone in X • (RN~0)  and r a phase/unct ion 

in F. I /  aES~,~(X •  ~ <  l ,  vanishes near the zero section and cone supp a ~ F ,  

then 
W F ( A )  ~ {(x, r (x, 0)econe supp ~, r 0) = 0} 

i/ A is the distribution u--->lr defined by (1.2.1). 

Note  t h a t  in sect ion 2.4 the  pr inc ipa l  symbol  was defined in a set which b y  Propos i -  

t ion  2.5.7 conta ins  the  wave  f ront  set of the  d i s t r ibu t ions  in  I~.o(X, Y). 

Proo/. I t  is sufficient  to  show t h a t  if K1, K 2 are d is jo int  closed cones in  R n ~ O  with  

r  1 as (x, 0 ) e c o n e  supp  a t hen  z A  is r a p id ly  decreasing in  K2 if z e C ~ ( X ) .  Now 

and  the  hypotheses  i m p l y  t h a t  for (x, 0)Econe supp a and  ~EK~ we have  for some C > 0  

Ir 0)-~1 >~c(101 + I~1). 

Modif ica t ion  of the  proof  of L e m m a  1.2.1 therefore  gives a f i rs t  order  dif ferent ia l  ope ra to r  

L = Z a i O/~xj + c 

wi th  % exp i(r O) - ( x ,  ~}) = exp i(r O) - ( x ,  ~}) such t h a t  aj(x, O, ~), c(x, O, ~) are  C ~~ 

funct ions  of x which  are  homogeneous  of degree - 1  wi th  respect  to  (0, ~) for (x, 0)E 

cone supp a and  ~ ~ K  2. I t  follows t h a t  for every  in teger  k > 0  

ff )~A (~) = e t(r176 Lk(a(x, O) Z(x))dxdO, 

where the  i n t eg rand  can be e s t ima ted  b y  

(1~1 + 101)-~(~ + 101) m§ 

Choosing k o >~ 0 so t h a t  m + (~ - 1) k 0 ~< - N - I we e s t ima te  th is  for k > k o b y  

(1 + 101)-N--1 (1 + I~l )(ko-k)(1-0) 

and  conclude t h a t  ZA (~) = 0(t~1 -k) 

for every  /~ when ~-~ ~ in K 2. 
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In  particular, if A is a pseudo-differential operator in X, and if Ka is the kernel of A, 

we have WF(KA) c normal bundle of the diagonal A in X • X which by the projection 

T*X • T*X-~ T*X on the first factor we can identify with T*X. Thus WF(KA) can be identi- 

fied with a closed cone in T * X ~ O  which we denote by WF(A).  I t  is clear that  if Y c X  

is an open set and Ar  the restriction of A to Y, then WF(Ar )=  WF(A)NT~-aY where 

~: T*X-+X is the projection. This reduces the study of WF(A) to the case with X c E  ~ 

and then we shall prove 

PROPOSITION 2.5.8. I] X c  R ~ and A is a properly supported operator in L~,~(X), 

0 <~(5 <~ <~ 1, then the complement o/ WF(A) is the largest open cone in T * X ~ O  where (~A, 

defined by (2.1.5), is rapidly decreasing. 

Proo]. That the complement of WF(A) contains this cone is an immediate consequence 

of Proposition 2.5.7. To prove the opposite inclusion let (x0, ~0) E T*(X)~(O U WF(A)).  

We have to prove that  (r A is rapidly decreasing in a conic neighborhood. Choose 

r y~EC ~176 equal to 1 near x0, but with such small support that  WF(r does not meet 

X • F where F is a conic neighborhood of ~0. Write ol for the symbol of v-+r which 

over a neighborhood of x 0 differs from aA by a rapidly decreasing function. If  Z(x, y ) =  

r then 

ZKA(~ +~, --~) = ( r  ) e ~<''-n-e>, A~oe ~''~} = e-~<~'n>ei(x, ~)dx = ~1(~], ~) 

is by assumption rapidly decreasing if ~e~c~ in a conic neighborhood I" 1 of ~0 and 

for a certain e>0 .  On the other hand (eft (2.1.3)) 

for any v. If follows that  

~t/[>e]~[ [ 11 ~)[d~ = 0(1~1 n+ra-(1-(~)v) (~, 

is rapidly decreasing as ~--> ~ so by the Fourier inversion formula al(X, ~) is rapidly de- 

creasing as ~ - + ~  in F r  Since alES~,~ it follows (see the proof of Theorem 2.9 in [13]) 

that  all derivatives of 11 are also rapidly decreasing in a smaller cone which proves the 

statement. 

Combining Proposition 2.5.8 with Lemma 2.5.6 we have proved 

PROPOSITION 2.5.9. I /  uE~ ' (X)  we have AuEC ~ /or all properly supported pseudo- 

di//erential operators A with 

WF(A) n WF(u) = 0 .  
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I f  F is a closed cone~  T*(X) the preceding proposit ion leads us to define as follows 

a pseudo-topology in ~(X)={uE~' (X);  WF(u)~F}: A sequence u jE~(X)  is said to 

converge to u E ~ ( X )  if 

(i) uj~u in ~ ' ( X )  (weakly) 

(ii) Aur in Cr176 if A is a properly supported pseudo-differential operator  with 

g n W F ( A )  = 0 .  

Note tha t  if the supports  of all uj belong to a fixed compact  set K c X we need only assume 

in (ii) t ha t  the convergence takes place in C~(Y) when Y is open and K c Y c X. Together  

with a part i t ion of uni ty  this allows us to consider only the case X c  R n and u E#'(X) in 

what  follows. 

First  we shall prove tha t  C~176 is sequentially dense in ~ ( X ) .  To do so we take 

(cf. Proposit ion 1.1.11) a funct ion z E ~ ( R  ~) with Z(0)=1 and set for uE~(X)(1  #'(X), 
X c  R ~, 

uj = x(D/i)  u e 5~(RD. 

When  ]-+ co we have uj--*u in 5 P', hence in ~ ' ( X ) .  I f  A is a pseudo-differential operator  

with WE(A)f3 F = O  we must  prove also tha t  Auj~Au in C~(X). I n  doing so we m a y  

assume tha t  the support  of u is so small tha t  there is no ~ ~=0 with (x, ~) E WE(A), (y, ~) E F 
and x, yEsupp  u. Let  K = ( ~ ;  (x, ~) EF for some xEsupp  u}. B y  Proposi t ion 2.5.5 w e k n o w  

tha t  ~ is rapidly decreasing outside K and we have arranged so tha t  supp u x K does not  

meet  WE(A). Now 

Au~ (x) = (2 ~)-~l 'e  ~<~' ~> a~ (x, ~) ~(~) X(~/j) d~, 
J 

where r ~)~(~) is rapidly decreasing over a neighborhood V of supp u because some 

factor  is. I t  follows t h a t  Auj~Au in C~(V). Since sA(x, ~)X(~/)) belongs to a bounded set 

in S~.s the kernel of (L4 (x, D)z(D/] ) converges in C ~ to t ha t  of aA(x, D) outside the dia- 

gonal which proves tha t  Auj=Az(D/j)u-~Au in C ~176 outside supp u. Thus  AuF~Au in 
C~176 I n  particular,  uj-~0 in C ~ outside supp u so we can modify  the sequence so tha t  

it has support  in a fixed compact  set by  mult ipl ication with a C~ funct ion which is one 

near supp u. 

We shall now s tudy  the multiplication of distributions. Let  F1, F2 be two closed cones 

in T*(X)~O such tha t  

F1 §  = {(x, ~1 § (x, ~ j ) e F j ) c  T*(X)~O. (2.5.4) 
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Then (FI+F2)U P~tJ P2 is also a closed cone in T*(X)~O.  In  fact, assume that  

(x ~, ~ ) e  I'j and tha t  (x~, ~ + ~)-+ (x, ~) where ~ =#0. I f  ~ -+0  (or $~=+0) it follows tha t  (x, $) 

F2 (or F1). I f  with respect to some Riemannian metric ]~ ] -+  0% then (x ,, ~[/1~1) has a 

limit point (x, ~) ~Pl, [~l = 1, and so (x ", ~ / I ~ ] )  has the limit point (x, -~1) er~ in contra- 

diction to (2.5.4). Ruling out these cases we can always pass to a subsequence such tha t  

(x ~, ~)  -+ (x, ~) ~ F~; and since ~ = ~ + ~2 we obtain then tha t  (x, ~) e [ ' l  + F2. 

THEOREM 2.5.10. Let F1, F2 be two closed cones in T*(X)~O satis/ying (2.5.4). Then 

the product ul u ~ o/distributions uj E ~ ( X )  can be de/ined in one and only one way so that it is 

sequentially continuous with values in ~ ' (X) .  We have 

WF(uxu2) c (P~ +F2) U F~ U F2. (2.5.5) 

Proof. The uniqueness is obvious so we need only prove the existence and (2.5.5). 

In  doing so we m a y  assume tha t  X =  R ~ and consider u 1 and u S with support in such a 

small neighborhood V of a point in X tha t  for the closed cones 

Kj ={~; (x, ~)eFj  for some xEsupp uj} 

we have 0 I K  1 + K  s. Let  pj(~) be a homogeneous function of degree 0 which is 1 in a neigh- 

borhood of Kj  and for which still 0 4~1 + ~2 if 0 =t-~j C supp pj. By  Proposition 2.5.5 we know 

then tha t  
sup 1(1 -pj($))aj(~) ] (1 + [~] )N< o~ 

v t for any ~Y, and if a sequence of u) E ~r~. with support in V converges to 0 then this supre- 

mum converges to O. Moreover, one then has pointwise convergence to 0 of the Fourier 

transforms and a uniform bound 

(We drop r in order not to complicate the notation.) 

The convolution 

is absolutely convergent. This is quite clear if we note tha t  the right-hand side is a sum 

f (P141) ( ~ -  ~)(P2 42)(~)d~ + f(p~41)(~ -*])((1 -P2)42)(~)d~ 

"JY f ( ( 1  -- ~91) 41) (~ -- V) (P242) (~]) dv "~ f ( ( 1  -- Pl) 41) (~ -- V) ((1 - P2) gz) (~) d~. 

The support of the first term lies in s u p p p l + s u p p p 2  and it can be bounded by 
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C'(1 + ]~l) 2~+n. Since (1 - p j ) d j  is rapidly decreasing the other  integrals can be bounded by  

C'(1 + [~1 )"  All will converge pointwise to 0 if we have sequences uy-~0 in ~ (X)wi th  

support  in V. This shows tha t  if we define 

u~u~=~-~((2=)-~f~(~-V)~(v)dv) 
we obtain a continuous map into ~ '  which of course is s tandard  multiplication if Ul, u 2 ~ C ~176 

I t  remains to verify (2.5.5). The first te rm again vanishes outside supp p l + s u p p  P2. 

The last one is rapidly decreasing and the other  two decrease rapidly outside supp Pl  

and supp P2 respectively. I t  follows tha t  WF(ulu2)= V • ((K 1 +K2) tJ K x U K2). If  we 

choose a small neighborhood of x, then (K 1 §  K 1 U K 2 is as close to the fiber of 

(FI+F2)  O FlU F~ as we wish which proves (2.5.5). 

I n  particular, the preceding results allow us to discuss restrictions to submanifolds. 

First  note t ha t  if V is the subspace xk+l . . . . .  x~ = 0 of R ~, the d i s t r ibu t ion /v  defined in V 

by  the restriction of a function ] in R ~ is given by  

/ ,(r162 1), eeoc (v )  

where ~ is the Lebesgue measure in V considered as a measure in R n. Now the Fourier  

t ransform of r  in R ~ is 
a ~  ~ ~ ~(~ ..... ~) 

which is rapidly decreasing except in the directions normal  to V. If  r  and 4~-~0 

in the sense of Schwartz,  then r in ~ ( R  n) if F is the normal  bundle of V. 

I f  ] is any  distr ibution with WF(/)N P = • the product  ](4~) still makes sense and 

r  (/(Ca), 1) (2.5.6) 

will be a continuous linear form on C~ (V). We take this as our definition of the restriction 

]v and have proved 

THEOREM 2.5.11. Let X be a mani/old and Y a submani]old with normal bundle denoted 

by N(Y) .  For every distribution / with WF(/) N N ( Y )  = 0  the restriction o] / can be uniquely 

de/ined so that it is a sequentially continnovs ]unction/rom ~ ( X )  to ~ ' (  Y) ]or any closed cone 

F= T*(X)~O with F ~ N(Y)=~) .  

Remark. This theorem is very  close to well-known results on partial  hypoell iptici ty 

(see t tSrmander  [17, Chapter  IV]). 

There is also a more general and precise version of Theorem 2.5.11. 
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T ~ O R E M  2.5.11'. Let X and Y be mani/olds and q): Y ->X be a C ~ map, and let 

N~ = {(~(y), ~)e T*(X); t~, (y)~ = 0} 

be the set o/ normals o/the map. I / / C ~ ' ( X )  and W F(/) a N r  we can de/ine the pullback 

~*/ in one and only one way so that it is equal to the composition/oq) when / is a continuous 

/unction and is sequentially continuous/rom ~ (X) to ~ ' (  Y) /or any closed cone F c T*(X)~O 

with F a N~ = 0 .  Moreover, 

WF(q~*/) c q~*WF(/) = {(y, tq~' u (y)~), (q~(y), ~) E WF(/)) .  

Proo]. I t  is sufficient to verify this locally so we assume tha t  X and Y are open subsets 

in R ~ and in R 'n respectively. I f  fEC~ we have by  Fourier ' s  inversion formula 

If  Z is a test  funct ion in Y with support  near Yo then 

where I z (~) = fX(y)  e '̀ ~(y)" ~> dy 

is rapidly decreasing in any  cone where t~0'(y)~ 4 0 when y E supp Z. If  V is a conic neigh- 

borhood of {~, t~'(Y0) ~ = O} it follows tha t  I x (~) is rapidly decreasing outside V if the support  

of Z is sufficiently close to Y0. On the other  hand, if V and the support  o~ / are suffi- 

ciently small, then 
sup If(~)l (1 + l~[ )  ~v 

V 

is for every N a continuous semi-norm in ~ ( X ) .  I t  follows t h a t  ~0*f can be extended by  

cont inui ty  as stated. To prove the last s ta tement  we note  t ha t  

( v )  = , -  ' <, ,  ,> X(y)dy. 

I f  (~, ~) is outside a conic neighborhood of 

C = {(}, ~); tq/(yo)} =V} 

and the support  of g is sufficiently close to Y0, then the inner integral can be est imated by  

C ~ ( I + I } I + [ ~ I )  -N for any  N so the corresponding contr ibut ion to the integral is 

0(1 + l~]) -~ for any  N. On the other  hand, near C we can estimate ]~1 by  I} I. I f  in addit ion 

is outside a conic neighborhood of 
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{t~'(y0) ~, ~ E WF~(y,)(/)) 

we mus t  have  f (~)=O(I~[  -N) for any  N if the  suppor t  of [ is sufficiently close to  ~(Yo)- 

Hence  .,~(Zq~*])(U) = O(]UI -N) for any  N outside a conic neighborhood of ~0" WF(/)yo if supp Z 

and supp ] are sufficiently close to Y0 and ~(Y0) respectively.  This completes  the  proof.  

Note  t h a t  we have  defined the  pul lback q0*/for every  / precisely when tq0' is injective,  

t h a t  is, ~0' is surjective. I n  t h a t  case the  definit ion is of course ve ry  well known. 

Nex t  we consider the  linear t r ans fo rmat ion  defined b y  a dis t r ibut ion K E~' (X  • Y) 

where X c  R ~, Y c R" are open sets. (The results have  an obvious extension to manifolds  

if one works th roughou t  wi th  densities of order 1/2 as we shall do in Chapter  IV.) Then  K 

defines a continuous m a p  K: C ~ ( Y ) ~ ' ( X ) ,  

<KF, yJ> =K(yJ |  q~EC~(Y), ~fEO~(X). 

T t { E O l { ] ~  2.5.12. For any uEC~(Y) the set 

WFx(K) : {(x, }); (x, }, y, 0) E WF(K) ]or some y E Y} (2.5.7) 

contains WF(Ku). 

I n  view of Theorem 2.5.3 we obta in  

C o ~ o z L m a u  2.5.13. I /  WF(K) contains no point which is normal to a mani/old x =con- 

stant then KC~( Y) c Coo(X). 

Proo/ o/ Theorem 2.5.12. Since we m a y  split  K into a sum of distr ibutions with arbi- 

t rar i ly  small suppor t  i t  suffices to prove  t h a t  if K EE'  and  

WF(K) c X x Y • F, 

where F is a closed cone in R n + ~ , 0 ,  then  

WF(Ku) c X • F 0 where F 0 = {~, (~, 0) eF}.  

To do so we note  t h a t  

I f  I~1 c R n ~ O  is a closed cone which does not  mee t  I'o, we have  for some e > 0 

bl< l l,  er,. 

Since I/~(~, - ~ ) l  ~< C(1 + l al + I)< it follows t h a t  for ~ eP1, 

[Ku(~)[ < Ct(1 + 1~1)-~ + C ' [  (1 + 1~11 )~ [t%01)1 du 
Jlel  >~l~l 

so Ku is rap id ly  decreasing in F~. Hence  W ~ ( K u ) c  X x F e as was to be proved.  

9 -  71290B,Acta maIhvmatica 127. I m p r i m 6  le 3 J u i n  1971 
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An essentially dual question concerns the definition of Ku for general distributions u. 

First note that  if u E ~ ' (Y)  then W2'(1 | = X • W2'(u). The product K(1 | u) is therefore 

well defined when WF(K)§  (X • WF(u)) does not meet the zero section, that  is, WF(u) 

does no t  meet 

{(Y, 7); (x, O, y, -7)  E WF(K) for some x} = WFr(K). (2.5.8) 

When u EBb(Y) for some F not meeting WF'r(K) the product depends continuously on u 

and so does the integral with respect to y. This we define to be Ku. Explicitly, 

(Ku, r  = (K( l |  r174  CEC~(X). 

By what we have proved this is a continuous map from d~(Y) to ~ ' (X)  when F does 

not meet WF'r(K). In  particular, when the set WF'r (K) is empty we have a continuous 

map d ~ ' ( Y ) ~ ' ( X ) .  

To estimate WF(Ku) in terms of WF(K) and WF(u) we have to make sure that  

KC~ ~ C% so we assume that  the hypotheses of Corollary 2.5.13 are fulfilled. 

THnO~EM 2.5.14. Let X c R  n, Y c R  ~ and K E ~ ' ( X •  Y). I] WFx(K) is empty, 

uE#'(Y), and WF(u) does not meet WF'r(K) then 

WF(Ku) ~ WF'(K) WF(u), (2.5.9) 

where WF'(K) = ((x, ~, y, -7)  E T*(X) • T*( Y); (x, ~, y, 7) E W F(K) } is regarded as a relation 

mapping sets in T*(Y)~O to sets in T*(X)~O. 

Proo/. Localizing by a partition of unity as indicated in the proof of Theorem 2.5.12 

it suffices to prove that  if K has compact support and 

WF(K) c X • Y • F, WF(u) c Y • Fr 

where F(Fr) is a closed cone in R~+ '~0  resp. R ' ~ 0  then 

WF(Ku) c X • Y • (F'Fr). 

Here, we assume that (~,~)EF ~ 7=#0 and ~ - ~ ] ~ F r  when ~=0.  To prove this we 

choose functions p(~), q(~, 7) homogeneous of degree 0 which are equal to 1 in coni- 

cal neighborhoods of Fr  and F so small that  F, Fy may be replaced by suppq~{0} ,  

supp p ~ { 0 }  in the assumption above. Now 
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for this is true when u E C~ and the right hand side is a continuous function of u E#~•  

since ~ is rapidly decreasing in a neighborhood of 0 • ( - F z ) .  To s tudy Ku we split the 

integral into three parts  

= f(1 -q(e, -,7)) -n) p(n) d~? 

11 is rapidly decreasing since ( 1 - p ) 4  is rapidly decreasing and /~ is rapidly decreasing 

near Rn• 0 (see the proof of Theorem 2.5.12). Since (1 -q) /~  is rapidly decreasing it is 

clear tha t  12 is also rapidly decreasing. Finally I z vanishes unless for some ~ # 0  we have 

(~, ~ ) E s u p p  q, ~ E s u p p p  

which means tha t  ~ is close to F ' .Fy .  This proves the theorem. 

Remark. If  A is a pseudo-differential operator in X, it follows from (2.5.9) tha t  

WF(Au)= WF(u) if u E~'(X). This improves the pseudo-local property and is of interest 

in connection with the following construction which seems to be the analogue for distribu- 

tions of one given by Sato [27] for hyperfunctions: 

If  O= T*(X)~O is an open cone we introduce 

~o=2'(x)/2~o(X). 

These vector spaces form a presheaf cd on the unit sphere bundle of T*(X); the sections of 

the sheaf are easily seen to be isomorphic to ~'(X)/~'~(X)=~'(X)/C~176 The preceding 

remark shows tha t  all pseudo-differential operators in X (or more generally operators 

defined by distributions K with WF(K) contained in the diagonal) define sheaf maps on c6. 

Let  now X c R  nz, Y~R~r ,  Z c R n z  be open sets and K1E@'(X • Y), K2E~ ' (Y  • 

be properly supported. In  view of Theorem 2.5.12 the composition KI(K~u ) is then defined 

for u E C~ provided tha t  
WF'y(K1) N W Fr(K2) = ~. (2.5.10) 

(Note that  WFx(K1) ..... WFz(K~) are closed since K 1 and K 2 are properly supported.) 

The map C~(Z)~ U~Kl(K~u ) E S'(X) is then continuous so it defines a distribution 

K = KicK2 E~ ' (X  xZ), 
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T H v . O I ~  2.5.15. When (2.5.10) is valid we have 

WF'(KIoK2) = WF'(K1)o WF'(K2) O (WFx(K~) • U (X • WFz(K2)) (2.5.11) 

Proo]. Let  us first  ver i fy  t h a t  the  set jus t  defined is closed in T*(X • So let 

(x', ~', z',  $')-+ (x, ~, z, ~) where (~, ~) 4 (0, 0), let (x', ~', y', ~?~) e WF'(K1) and (y', ~ ,  z ~, ~) e 

WF'(K2). Since K1, K 2 are proper  the  points  y" belong to a f ixed compac t  set  so we 

m a y  assume t h a t  yv~y. I f  ~ ' - + ~  and ~? is a l imit  point  of ~ ' / ] ~ ' [ ,  then  (x, 0, y , ~ ) E  

WF'(Kx) and (y, 9, z, 0) E WF(K2) which implies t h a t  (y, ~?) E WFr(K1), (y, ~]) E WFr(K2) 

and contradicts  (2.5.10). Hence  we m a y  also assume t h a t  ~p has a finite l imit  9- I f  ~ # 0  

we conclude t h a t  (x, ~, z, ~) is in the  first  set on the  right,  and  if ~ = 0  it is in one of the  others  

since either ~ or ~ is #0 .  

The  preceding a rgumen t  also shows t h a t  one can replace WF(Kj) b y  conic neighbor- 

hoods so t h a t  the  r ight  hand  side of (2.5.11) does not  grow beyond  a given conic neighbor- 

hood. This observat ion  and a localization reduces the  proof to showing t h a t  if K j  have  

compac t  suppor ts  and there  are closed cones F 1 and  F 2 in R = x + ' r ~ 0  resp. R~r+~z~0  

such t h a t  
{9; (0, 9) e r~} ~ {9; (9, 0) e r~} = ~ (2.5.12) 

and  X • Y • F 1 (resp. Y •  • F2) is a neighborhood of WF'(K1) (resp. WF'(K2) ) t hen  

WF' (KloK2) ~ X • Z • (FloF~ U F ~ U F~ 

Here  r l  ~ = {(~, o) eRn~+=~; (~, 0) e r~} 

and r ~ ={(0, ~)eR=x+~; (0, $)~ r2}. 

(Note t h a t  0 denotes  the origin in any  one of the  vector  spaces R ~x, R =r, R=z.) 

Now we have  

J ' ~  f 
(2~) nr K 1 o K s (~, - $) = /~1 (~, - 9)/~2 (9, ~) d~?. 

I n  fact ,  the  integral  converges since /~1(~, - 9 )  (/~2(~], - ~ ) )  is rap id ly  decreasing outside 

F1 (F2) and (2.5.12) holds; the  formula  is obviously val id if KjEC~ and follows in general  

b y  cont inui ty.  The  integral  is a sum of the  following four where pj denotes the  charac- 

terist ic funct ion of Fj 
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f 
I1 = J~) l  (}, 7)  •1 (}, -- ~) ~02 (7 '  ~)/~2 (7, - ~) d7 

12 = f (  1 - iD 1 (}, 7))/~1 (~, - 7) 1% (7, ~')/~2 (~7, - ~) d~ 

13 = fPl (}, 7) .t~ (}, - -7)  (1 --P2 (7, ~)) R2 (U, -- ~) du 

I, =f(1 -p1(}, 7))RI(}, -7)(1 -p2(7, 0) R2(n, -0d7. 

Here (1 -:Pl(~, U))]~I (~, - 7 )  and (1 -P2(U, ~))/~2 (~, - ~) are rapidly decreasing so 14 is rapidly 

decreasing. The integrand in 13 can be estimated by 

c (1§ + ]nl)N( 1+ ]vl § l l) 

where N is fixed and ]c is arbitrary. If e >0  it follows that  13 is rapidly decreasing for 

I ~ I > ~ I ~ ] and that  the contribution when ]71 > ~ I ~ I is always rapidly decreasing. This 

implies that  13 is rapidly decreasing outside P ~ Similarly 12 is rapidly decreasing outside 

F ~ Since 11 vanishes outside FloP2 the proof is complete. 

t F ~ R e m a r k .  Note that  if W F x ( K 1 )  , W F y ( K 1 )  , W F r ( K 2 )  , W z(K2) are all empty, then 

(2.5.10) is automatically fulfilled and only the composition occurs in the right hand side 

of (2.5.11). Theorem 2.5.14 is essentially the special case when Z is a point. 

III. Distributions defined by oscillatory integrals 

3.0. Introduction 

In this chapter and in Chapter IV we shall extend the results of section 2.4 to arbitrary 

non-degenerate phase functions. The main complication which occurs is that  there is no 

simple analogue of Proposition 2.4.1. The extent to which Proposition 2.4.1 can be 

generalized will be determined in section 3.1. The result will not quite suffice for the proof 

of the transformation laws we need so the proof of these in section 3.2 will also depend on 

the method of stationary phase. Thus it is rather close to the earlier proofs of the invariance 

properties of pseudo-differential operators given in [13] for example. A consequence of 

this is that  the principal symbols of the distributions we consider will no longer be scalars 

but  sections of a line bundle defined by an integer cohomology class (or rather a class mod 4). 

This cohomology class also occurs in the work of Maslov [23] and Arnold [1]; in fact it was 

already introduced by Keller [18]. The geometrical interpretation of the line bundle is 

discussed in section 3.3 where we also establish the equivalence of our definitions with one 

used in [1]. 
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3.1. Equivalence of non-degenerate phase functions 

Let  X ~  R ~ and let 1 ~ be an open conic set in X • I t  ~, ~ a nondegenerate  phase funct ion 

in 1 ~. (For the definition see section 1.2.) We have seen in section 1.2 how a class of distribu- 

t ions is associated with ~ and symbols in S~ n (X • R N) with cone support  in F. We wish to 

determine to  wha t  extent  this class of distributions depends on the choice of ~b. First  of all 

it is clear t ha t  if in 1 ~ we have a fiber preserving diffeomorphism 

r ~ (x, 0) ~ (x, ~(x, 0)) e 

where ~) is a C ~ function, homogeneous with respect to 0 of degree 1, then a change of vari- 

ables in (1.2.1) gives 

= l-l-e ~(.~. "6)~ (x, 0 ) u(x) dx dO (au) 
.J j 

where r 0(x, 0))=r  0), a(x, ~x, O))[DO/DO I =a(x, 0). I f  a e S ~  it  follows t h a t  n e s t .  

I t  is thus clear t ha t  we can represent the same distributions in the form (1.2.1) with a 

symbol E S~ (and suitable cone support) whether  we use the phase funct ion r or 5. We shall 

say t h a t  r and r are (locally) equivalent.  

Our purpose in this section is to determine when two non-degenerate phase functions 

are equivalent. A necessary condition is obtained if we consider the map  (cf. Proposi t ion 

2.5.7) 
C~ (x, 0 ) ~  (x, r  T* ( X ) \ 0  (3.1.1) 

where 0 stands for the zero section and 

c ={(x, 0); r 0) =0}. (3.1.2) 

Since r = 0  on C it is clear t ha t  (3.1.1) makes sense if X is a manifold and X • R N is replaced 

by  a fiber space over X. Thus  the range of (3.1.1) is the same for two equivalent  phase 

functions. The map  (3.1.1) is regular if r is non-degenerate,  for the  tangent  plane of C is 

defined by  the equations d~r j = l ,  ..., N, and if in addit ion dx=O, d~r 
j = 1 . . . .  , n, it follows tha t  

~2r = 0, J = 1 . . . . .  N;  ~o2r dOk= 0, j = 1 . . . . .  n. 
k k 

These equations imply tha t  dOk =0,  k = 1 . . . . .  N, for the differentials of ~r k = 1, ..., iV, 

are linearly independent  by  hypothesis.  Locally the range A of the map  (3.1.2) is thus  a 

C ~176 manifold of dimension dim X. Furthermore,  A is conic, t ha t  is, invar iant  under  the 



F O U R I E R  I N T E G R A L  OPERATORS.  I 135 

multiplication b y  positive scalars which is defined in the fibers of T*(X), and we have 

<~, dx> = Z ~jdxj = 0 on A. (3.1.3) 

Here we have used local coordinates x 1 ..... x~ in X and corresponding local coordinates in 

T*(X) obtained by  taking dxl, .., dx~ as basis elements. We recall tha t  the first order form 

in (3.1.3) is invariantly defined in the cotangent space of a manifold. The proof of (3.1.3) 

is trivial: A is parametrized by  points on C according to (3.1.1), and we have 

<~, dx> = <r dx> = d e -  <r dO> = 0 

since r  on C and so r  r = 0 on C by  Euler 's identity. From (3.1.3) it follows 

by  differentiation tha t  
Z d~j A dxj = 0 on A. (3.1.4) 

Thus A is a manifold of maximal  dimension on which the symplectic two form of T*(X) 

vanishes. We shall call such a manifold Lagrangean, following Maslov [23]. I t  is classical 

tha t  the stronger condition (3.1.3) is fulfilled on any conic Lagrangean manifold A. Indeed, 

if we use local coordinates, the fact tha t  A is conic means tha t  if (x, ~) EA, then (0, $) be- 

longs to the tangent plane of A at  (x, ~). Thus the tangent plane is orthogonal to (0, ~) 

with respect to the symplectic form, which means tha t  (3.1.3) is valid. 

Example 3.1.1. I f  r is linear with respect to O, then as we have seen in section 2.4 the 

Lagrangean manifold A is the normal bundle of a submanifold Y of X. 

Example 3.1.2. Let H(~) be a homogeneous C ~ function of ~ of degree 1 in a cone F c R ~, 

and define 
r ~) = <x, ~> -H(~) .  

Then the condition r  means tha t  x=H' (~) ,  so r is non-degenerate and 

A = {(H'(~), ~), ~EF}. 

The preceding example essentially covers the general case, for we have 

THEOREM 3.1.3. Let A c T*(X) be a conic Lagrangean mani/old. For every ~0EA 

with the local coordinates x 1 ..... xn at ~ o  E X suitably chosen one can lind a/unction H which 

is homogeneous o~ degree 1 in an open cone F in R n such that i~ r ~ ) = Z ~ x ~ j - H ( ~ )  the 

Lagrangean mani/old de/ined by r is a neighborhood o/ ~o in A.  

Proo/. The local coordinates x 1 ..... x~ give rise to local coordinates xl, ..., x~, ~1 ..... ~n 

in T* (X) corresponding to the expression of a covector as a sum Z ~j dxr I f  the map 

A~ (x, ~ ) - ~  is regular at  ~0, then we can in a neighborhood of ~0 define A by  an equation 
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x = X(~) where X is homogeneous of degree 0 with respect to ~. Since A is Lagrangean and 

conic, we have E ~jdXj = O, t ha t  is, 

d(Z ~jXs) = Z X~d~j. 

I f  H(~ )=  Z~jX~(~),  it follows tha t  H is homogeneous of degree 1 and tha t  ~H/~j = Xj(~). 

Thus it only remains to show tha t  the map  A 9  (x, ~)-+~ is regular at  20 if we choose 

appropria te  local coordinates at  x o =~r4 o. Note  tha t  if yJ(x) = <x, ~0> is the linear form in the 

coordinates such tha t  (x0, ~yx(xo))=4o, this means tha t  the  tangent  plane of {(x, ~(x))} 

at  40 shall be transversal  to the tangent  plane at 40 of A. Bu t  for a suitable choice of ~v 

the set ((x, ~v'x(x))) is locally an arb i t rary  Lagrangean manifold transversal  to the  fiber, for 

closed 1-forms are locally exact. Since one can choose such a function~v as a local coordinate, 

what  we have to show is t h a t  there is a Lagrange plane in T~o(T* (X)) t ransversal  to two 

given Lagrange planes, namely the tangent space of the fiber and the tangent space of A. 

This is obvious if one has a suitable parametrization of all Lagrange planes, which we shall 

now introduce also as a preparation for section 3.3. (See also Arnold [I] for the following 

discussion.) 

By x or y we denote points in It ~ and by X = (x, ~) or Y = (y, U) we denote points in 

T*(R") =R~QR n. The map (x, ~)-.x+i~EC n allows us to identify this space with (P. The 

hermit ian scalar product  in C n is defined by  

(X, Y) = X (xj+i~j)(yj-iuj) 

so Re (X, Y ) = ~ x j y j + E ~ j ~ j = ( X ,  Y)~ is the  Eucl idean scalar p roduc t  in R 2n and 

I m  (X, Y ) = Z  (~jyj-~jx;)=[X, Y] is the s tandard  symplectic form which occurs in 

(3.1.4). Let  A(n) be the set of all n dimensional real subspaces 4 on which [X, Y] vanishes 

identically. This means tha t  4 and i~ shall be or thogonal  with respect to  (,)a. I f  U E U(n), 

the un i t a ry  group, it is therefore clear t ha t  2EA(n)  implies t ha t  U4EA(n).  The group 

U(n) acts t ransi t ively on A(n), for if 2EA(n)  and e 1 . . . . .  en is a real or thogonal  basis for 4, 

we have Re (ej, ek) = (Sjk, I m  (ej, %) = 0 so (er e~) = ( ~ ,  t ha t  is, we have a complex or thogonal  

basis for (P. Thus we have a un i ta ry  map U with UR ~ =4.  Now UR n = R  n if and only if U 

has real coefficients, t ha t  is, U belongs to the orthogonM group O(n), so we can identify 

A(n) with U(~)/O(~). 

If 4 = UR n is an arb i t rary  Lagrange plane we claim tha t  # = D R  n is a t ransversal  Lag- 

range plane when D is a diagonal matr ix  satisfying an algebraic inequality. I n  fact, we 

have t ransversal i ty  unless I m  D-~U is singular. I f  the diagonal elements are d~ +id/ 

Shis condition can be wri t ten 

det  (d 7 Re u~ - d~ Im  u~) = 0. 
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If this equation were satisfied identically for real d/, d~' we could take d~' = 1 and d / =  - i 

and conclude that  det U = 0 which is absurd. Except when the elements of the diagonal 

matrix D satisfy a non-trivial algebraic equation it follows that  DR n is transversal to any 

finite number of given elements of A(n). This completes the proof of Theorem 3.1.3 and even 

shows that  it is sufficient to introduce new coordinates of the form yk=yk(xk), 

k = l ,  ..., n. 

Remarlc 1. Theorem 3.1.3 is closely related to the classical representation of a 

canonical transformation by a generating function. (See e.g. Carath~odory [6].) 

Remark, 2. Theorem 3.1.3 remains valid if we drop the assumption that  A is conic and 

the conclusion that  H is homogeneous. Indeed, the only change in the proof is that  using 

(3.1.4) instead of (3.1.3) we obtain aXj/a~k=aXk/~j which implies tha t  locally X =H'~ for 

a suitable function H(~). 

Remark 3. If we regard the function r in Theorem 3.1.3 as defined on T*(X) we have 

that  de coincides with the form (4, dx) on A. This is an invariant statement. 

Theorem 3.1.3 shows in particular that  every homogeneous Lagrangean manifold can 

be represented by a non-degenerate phase function. Having settled this existence question 

we shall return to the study of the uniqueness of C--in the sense of equivalence--after 

indicating an important relation between a Lagrangean manifold and any non-degenerate 

phase function defining it. 

THEO~Wlg 3.1.4. Let r be a non-degenerate phase /unction in a conic neighborhood o] 

(Xo, 00) in X x R te with r 0o)=0, and set ~o=r 0o) so that (x0, 40) belongs to the cor- 

responding Lagrangean mani/old A. Then we have 

N - r a n k  r 00) = n - r a n k  dzA(x0, 40) C3.~.5) 

where 7~A is the restriction to A o] the projection T * (X)~  X and n =dim X. 

Proo/. The right hand side is equal to the dimension of the space of tangent vectors of 

C (defined by (3.1.2)) at (x0, 00) which are mapped to 0 by the differential of the composi- 

tion of the map (3.1.1) with ~A, tha t  is, the map C~ (x, 0)-*x. These are the solutions of the 

equations dr =0, dx =0, that  is, dx =0, r =0. The dimension is therefore given by the 

left hand side of (3.1.5). 

We note that  Cg00 =0 by Euler's identity so  d7~ A is never bijective, which means that  

A cannot be a section of T*(X). If ~0 C A and &z A has constant rank = k in a neighborhood of 
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~0, then there is a uniquely defined manifold Y c X of dimension k in a neighborhood 

of x o =Zr2o such tha t  ~ 6  Y when ~ is in a neighborhood of ~0 in A, and dzr A is of course 

surjeetive to T(Y) .  (See e.g. Sternberg [28, p. 41].) Since Z ~jdxj=O on A it follows 

tha t  a neighborhood of 20 in A is contained in the normal bundle of Y in T*(X) and since 

the dimensions are equal we conclude tha t  A is an open subset of the normal bundle of Y 

in a neighborhood of t0- Thus we have the situation studied in section 2.4. The hypothesis 

of constant rank is of course fulfilled at  all points in an open set, namely the set where the 

rank is maximal. We give an example which shows what  may  happen when the rank 

is not constant. 

Example 3.1.5. Consider in T*(R 2) the Lagrange manifold defined in Example  3.1.2 by 

H($)=$~/$~ when ($x, $3) is in a conic neighborhood of (0, _+I). We have x1=3(~1/$2) ~ 

and x2=-2(~1/~2) S so (Xl, x2) varies over a neighborhood of the origin on the curve 

(xl/3) 3 -(x2/2) 2= O. The manifold A becomes the closure of the normal bundle of the 

regular par t  of the curve. 

We shall now give an answer to the question concerning equivalence of phase functions. 

THEOREM 3.1.6. Let 4 and r be non-degenerate phase/unctions in conic neighborhoods 

o/ (x 0, 00) 6X • (RN~0) and (x0, 00) 6 X  • ( R ~ 0 )  respectively. Then the/unctions 4 and 

are equivalent in some conic neighborhoods o/these points, under a di//eomorphism mapping 

(x0, 00) to (Xo, Oo), i/ and only i/ 

(i) The elements o/ Lagrangean mani/olds de/ined by 4 and by r at (Xo, 0o) and 

(xo, 60) are the same. 

(ii) N=57 .  

(iii) 400 (xe, 00) and 400 (x0, 00) have the same signature. 

The necessity is obvious. Note tha t  when (i) and (ii) are valid, it follows from Theorem 

3.1.4 tha t  the ranks of the matrices in (iii) are equal. 

The proof of the sufficiency is fairly long. The first step is to show, using (i) and (ii) 

only, tha t  ~ is equivalent to a function ~v such tha t  4 -YJ vanishes to the second order on the 

set C defined by  (3.1.2). To do so we consider the map 

(x, 0)-~ (x, % %) = (x, r 0)). 

The differential of 4) for fixed x is injective, for if 4xodO =4'~dO = 0 it follows by  hypothesis 

tha t  dO = 0. By the implicit function theorem it follows tha t  there is a map ~o to R ~ from a 

neighborhood of (Xo, $0, O) where $0 =4"(x0, 0~), such tha t  
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0 =~(z ,  r r 

Replacing ~F by ~F(x,  1 01/1 1, w) l [/l 01 we may assume that  ~F(x, 4, w) is homogeneous 

of degree 1 with respect to 4. 

Corresponding to ~ we can choose a similar map ~ .  With a linear transformation 

A: R ~ R  N still to be determined we form the map 

(x, O) ~ (x, CF(x, r ~'o) + Ar (x, O) 101/100 I). (3.1.6) 

I t  is fiber preserving and the restriction to C is the diffeomorphism onto C such that  the 

diagram 

commutes. If the map (3.1.6) is a diffeomorphism at (x 0, 0o), the pullback ~ of r under the 

map will therefore have the required properties. 

Writing r 4, r  we can write the differential of (3.1.6) for fixed x in the form 

~ I f t  ~ t  t f  ~, ~2"~r + ~F~r + Ar 

We must therefore choose A so that  the matrix 

" !  i !  l !  ~r  + B~oo (3.1.7) 

is non-singular at (x0, 0o), where B=A+~CF/~w may be any matrix at (Xo, ~o, 0). This is 
v! ~ t  s . 

possible if (and only if) Coot = 0 implies ~wxot #0 if t ~=0, for then we can choose B so that  
n ~ t tt u 

the range on a space supplementary to Ker r is supplementary to ~tP~ Cxo Ker r (all 

computations taking place at (xo, 00)). What  we have to verify is thus that  if (0, t) is a tan- 

(x, ~F(x, r r E C is a diffeomorphism gent to C, then ~F~r # 0  if t # 0 .  Since C~ (x, 0)-~ ~ ' 

and the differential maps (0, t) to (0, ~r the proof is complete. 

Now assume that  r and yJ are two non-degenerate phase functions at (x0, 0o) such that  

r  vanishes to the second order on the set C defined by (3.1.2) in a neighborhood of 

(x o, 0o). This implies of course that  the corresponding Lagrangean manifolds are the same, 

so we have now exhausted conditions (i) and (ii) in Theorem 3.1.6 completely. Using 

Taylor's formula we can write 

= r + �89 Z bAx, O)~r O)/eOj~r 0)/~0~ 

where B =  (bjk) is a symmetric matrix. On C we obtain 
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~00"0 = r ( I  + Br Y~o = r (I + Br (3.1.8) 

so the non-degeneracy of yJ means  precisely t h a t  det  (1+ Br ~=0 at  (xo, 00). 

We  shall now prove  t h a t  y~ is equivalent  to  r in some neighborhood of (xo, 0o) if B 

is sufficiently small. To do so we first  note  t h a t  b y  Taylor's formula  

r ~)-r  0) = z (~j-0j)ar 0)/e0j + z (~j-0j)(0k--0k)r 0, ~) 

where ts~ is symmet r i c  with respect  to ] and k and homogeneous  of degree - 1 wi th  respect  

to  (0, 0). Now pu t  
~j = O j + Z w a x ,  0)~r 0)/~0~ 

with some homogeneous functions wjk still to be determined.  Then  we obta in  r 0) =yJ(x, 0) 

if 
ws~+2 w, j w ~  r  O, O) = bs~/2. 

B y  the implicit  funct ion theorem these equat ions have  a unique small solution w if the  

ma t r i x  ~ is sufficiently small, and the  solution mus t  then  necessarily be  homogeneous of 

degree 1. The condition DO/DO =~0 a t  (x o, 0o) will also be fulfilled for sufficiently small  B, 

so the  assert ion is proved.  

The  final p a r t  of the proof  of Theorem 3.1.6 is now to prove  t h a t  r and yJ are equivalent  

a t  (x0, 0o) if r - V vanishes to the  second order on C and r and V~o have  the same signature 

a t  (x0, 00). :By (3.1.8) this means  t ha t  r and  r +r162 have  the same signature there.  

The assert ion will follow f rom the second step in the proof  if we show t h a t  there is a con- 

t inuous funct ion Y~t of t, 0 ~ t  ~ 1, wi th  values in the  space of non-degenerate  phase  funct ions  

in some neighborhood of (xo, 0o) , satisfying the  hypothesis  t h a t  Ft - r vanishes to the  second 

order on C, such t h a t  YJo = r and  F1 = F. I n  fact,  since % is then  equivalent  to Fs if s and t 

are sufficiently close, the  equivalence of ~P0 and F1 follows in view of the  Borel-Lebesgue 

lemma.  

To show t h a t  Y~t can be chosen with the  required propert ies  it only remains  to analyse  

the  condit ion concerning signatures. Since the deformat ion  is clearly possible if B vanishes 

a t  (xo, 0o), it suffices to prove  the  following lemma: 

LEMMA 3.1.7. Let A be a real symmetric M • M matrix and let R be the set o/ all real 

symmetric M • M matrices B such that det  (I  + BA)  ~0. Two matrices B1, B~CR are then in 

the same component o/ R i/ and only i/ A + A B s A  has the same signature/or ] = 1, 2; the ranks 

are o/ course equal to rank A. 

Proo/. Let  N be the kernel  of A and 2V o the or thogonal  complement .  Then we have  

A N  ~ 0 and A maps  R M onto N o with JV as kernel. The opera tor  I + BA is the  iden t i ty  on N 
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so it is an isomorphism if and only if A +ABA restricted to N o is an isomorphism. If  P 

is the orthogonal projection on N ~ it follows that  det (I+BA)~=0 implies that  det ( I +  

B t A ) 4 0  if Bt= (1 - t )  B§ so B andPBP are in the  same component of R. Moreover, 

BI and B~ can be joined by an arc in R if and only if PB1P and PB2P can be joined by an 

arc in R consisting of operators vanishing on -N and with range contained in N ~ Thus 

we are reduced to considering operators from N o to _N O , and the statement then follows 

from the well known fact that  in the space of all non-singular k • k symmetric real matrices 

the components consist of matrices having the same signature. In  fact, the map 

B-+A §  from symmetric matrices to symmetric matrices is bijective if A is non- 

singular. 

We have now completed the proof of Theorem 3.1.6. Note that  the proof also shows that  

r 00) can have any signature compatible with Theorem 3.1.4 when we only know 

the corresponding Lagrangean manifold A. Only in one case do we get a perfect analogue 

of Proposition 2.4.1: 

CO~OLT, ARY 3.1.8. Let Cj be a non-degenerate phase /unction at (x0, 0j) where Oj40 

and Cj'0(x0, 0j)=O, Cj"oo(Xo, Oj)=0, 1"=1, 2. Then it /oUows that r and r are equivalent at 

(Xo, 01) and (Xo, 02) i/ and only i/the corresponding germs o/ Lagrange mani/olds are the same. 

Proo/. By Theorem 3.1.4 the number of 0 variables in the two functions must be the 

same so the hypotheses of Theorem 3.1.6 are fulfilled. 

We shall now discuss how to change the number of 0 variables in r without changing 

the corresponding Lagrangean manifold. In  view of Corollary 3.1.8 two phase functions 

defining the same Lagrangean manifold will give rise to equivalent phase functions if 

in this way we decrease the number of 0 variables in each as far as possible. 

First we shall show how to increase the number of 0 variables. Thus let r 0) be a 

non-degenerate phase function in a conic neighborhood of (x0, 00), let a E R" and introduce 

r 0, o) =r 0)+A(~, ~)/10l 

where A is a non-singular quadratic form in It ' .  This function is homogeneous of degree 

1 in a conic neighborhood of (x0, 00, 0) in X • R N+'. The equations 

~r = ~r = 0 

mean that  a =0  and that ~r =0, so it is clear that  r is a non-degenerate phase function 

defining the same Lagrangean manifold as r Thus we can always increase the number of 

0 variables as much as we like. 



142 LA~S HORMANDER 

On the other hand, assuming again that  r is a non-degenerate phase function in a 

conic neighborhood of (Xo, 00)E C (defined by (3.1.2)), we can decrease the fiber dimension 

by k units if r Oo) has rank at least k. For let us write 0'=(01, ...,ON-k), 

0" =(0N--k+1 .... , ON), and assume that det r 00)#0. This situation can of course be 

attained by a linear transformation of the 0 variables. Then we have 0~ # 0 for otherwise 

we would obtain using Euler's homogeneity relations that  

t t  u 

0 = r (x0, 0o) 0o = r (x0, 00) 0o 

which implies that  00=0 also, which is a contradiction. Among the equations r  

we first consider the k equations r =0  and note that  they locally determine 0" as a C ~ 

function ~p(x, 0'). Let now 
r 0') = r 0', w(x, 0')). 

We claim that  r is a non-degenerate phase function at (%, 0~) which defines the same 

Lagrangean manifold as r In  proving this we may assume that  ~v =0  identically, for other- 

wise we can introduce (0', 0"-~v) as a new variable instead of 0. Then the equation 

~r =0 is equivalent to 0" =0, so it follows that all mixed derivatives involving 0" are 

also 0 then. The differentials of r are therefore independent of dO" while the differentials 

of r only involve dO" on C. Thus the non-degeneracy of r implies that  of r 

3.2. Invariance under change of phase function and global definition 

Using the results proved in section 3.1 we shall now show that  the class of distribu- 

tions which are defined according to (1.2.1) with a fixed r is already determined by the La- 

grangean manifold corresponding to r Let r be a non-degenerate phase function in some 

conic neighborhood F of a point (x0, 00)E R n • (RN~0), and let a E S~.I_q (F), ~ > �89 vanish 

outside a conic closed set c F and in a neighborhood of R n • 0. As in section 2.4 we modify 

(1.2.1) slightly and set 

((e~r176 uE C~(Rn). (3.2.1) <A, u> = (27~) -(n+ 2N)/a 
J J  

The reason for the factor (2~) -(n+2N)/4 will become more clear when we switch to phase func- 

tions involving another number of 0 variables. 

Suppose now that  we make a change of variables 

x = x(~) ,  0 = 0(~,  0). 

In  doing so we shall, as in section 2.4, transform A and u as densities of order �89 so we set 
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~ (~) = ] Dx/D~[~ u(x) 

and define ~I so t h a t  (A,  ~> = (A,  u>. Wri t ing  

~(~., O) = r 0(~, 0)), 5(~., O) = a(x(~,), 0(~, 0)) I Dx/D.~I ~ l DO~DO I 
we obta in  

(3.2.2) 

We shall of course consider A and z~ as the same dis t r ibut ion densi ty  of order �89 expressed 

in te rms  of different local coordinates.  Generalizing Theorem 2.4.2 we shall now show how 

to assign to this dis t r ibut ion densi ty  a principal  symbol  in S~ (A, ~1/2), ~t = m  +N/2. (For 

the definit ion see section 1.1.) 

As in section 2.4 we note  t h a t  on the  manifold 

C = f ix ,  0); r 0) = 0} 

a densi ty  dc is defined as the  pul lback of the  Dirac measure  in R N under  the  m a p  

F ~  (x, 0)-+r 0). I f  21 . . . .  ,2n are local coordinates on C extended to a neighborhood of C, 

the  densi ty  is given b y  

de= I D(21, ..., 2,, ~r . . . . .  ar O) l-,d2, ... dZ,. 

Now we claim t h a t  the  densi ty  of order �89 on A which is the image of a~cc  under  the  m a p  

C9 (x, O)-~(x, r  is the  same as t h a t  obta ined f rom r and d (if we regard  x and 2 as 

local coordinates in the  same manifold).  In t roduce  ](2, 0)=2(x(2) ,  0@, 0)) so t h a t  2 and  

correspond to the same funct ion on A. W h a t  we have  to prove  is then  t h a t  on 

I n(~, r O)]-'/2a(x, 0) = ]D(~, r 0) 1-1/23(~, 0). 

The in te rpre ta t ion  of this and  the formulas  following should of course be t h a t  x and 0 

are regarded as funct ions of 2 and  0 ~. Since r 0 )=r  0) we have  r =r  and  

since r = 0  on C we obta in  

D(~, r )/ D(~, O) = (DO/DO) ( D(Z, r D(x, 0)) D(x, O)/ D@, 5) 

= (DO/DO) ~ (Dx/D~) D(;L, r 0). 

This proves  the asserted invar iance if we recall the  definition of c7. Note  t h a t  the deter- 

minan t  
D(~I . . . . .  "~n, ~r . . . . .  ~r D ( x  , O) 

is homogeneous  of degree n - N  if ~1 . . . . .  ~= are homogeneous of degree 1 with respect  to 0. 

The  densi ty  of order �89 we have  defined is therefore in S~(A, ~�89 if ~u=m§ 



144 LARS tIORMANDER 

If all non-degenerate phase functions defining the same Lagrangean manifold had 

been equivalent, this would have finished our proof that  the class of distributions defined 

by (3.2.1) is determined by the Lagrange manifold corresponding to r However, in order 

to be able to apply Corollary 3.1.8 we must also show that  the class of distributions in 

question does not change if we restrict the number of 0 variables as indicated after that  

result. In doing so we shall again split the 0 variables in two groups 

0 '  = (01 . . . . .  ON__k), 0 "  = ( 0 N _ k +  1 . . . . .  ON). 

We require that  det r # 0  at (x0, 00). As noted in section 3.1, r is then locally equivalent 

to a phase function such that  r =0  is equivalent to 0" =0  so we may assume that  this con- 

dition is fulfilled. Let  Q(O", 0") be a quadratic form of the same signature as r 0o) 

and set 
r 0) =r  0', 0) +Q(O", 0")/210' I 

which is a non-degenerate phase function equivalent to r near (x0, 0o) in view of Theorem 

3.1.6. Thus we have reduced our study to a phase function r of the form 

r 0) = ~(x, 0') +Q(O", 0")/210' I 

in a conic neighborhood of a point (xo, 0o) with 0o =0. We have 

<A, u>=  (2~r)-(n+2N)~4ffe~(~(~'~176176176 0', 0")u(x)dxdO'dO ~, 

which if we first integrate with respect to 0" leads to 

where 

(A, u>= 0') (x)dxaO' 

b(x, 0') = (2~)-k/2 f e~Q(~176176 (x, 0', 0") dO" 

= (2~)-~/210, i~fe,Q(o-, o..)Io'i/Ua(z, 0', 10'[0 ") dO". 

(3.2.3) 

(3.2.4) 

Note that  in the last integral we may assume that  the integrand vanishes for ]0"[ > 1, 

for example. 

To evaluate (3.2.4) we must recall some weli known facts concerning the method of 

stationary phase. 

a) The Fourier transform of the function 

tt~y-+e -z~'12, Re z >~ 0, z # 0, 
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is ~-+e-~Vuz(2~zlz) �89 where w ~ is defined when R e  w~>0 so t h a t  i t  is equal  to 1 when w = l .  

F r o m  this we conclude t h a t  the  Fourier  t r ans form of 

RkB y-~exp  (i Z ar 

where a s are real and # 0  is g iven by  

-+ exp ( - i  Z ~i23r 1-I (2zU -iar �89 = exp ( - i  Z V2/2ai)(2Jr) kl2 exp (7d(r/4) 1-[ l a, l -~ 

where (r = Z  sgn as. I f  A is a symmet r i c  non-singular  ma t r ix  it  follows t h a t  the  Four ier  

t r ans form of 
R k g y - ~ e x p  (i<Ay, y>/2) 

is g iven b y  

R ~ ~ ~ -~ exp ( - i < A - ~ ,  ~>/2) (2~) k/e I det  A [ -�89 exp  (zi sgn A/4) 

where sgn A denotes  the  s ignature  of A. 

b) I f  ]E C~ (R k) we obta in  f rom Four ier ' s  inversion formula  and the  preceding com- 

pu ta t ion  of Fourier  t ransforms for t > 0 

f /(y) exp (it (Ay, y>/2) dy 

= (2ut)-k/2 Idet  A 1-�89 exp  (zd sgn A/4) r [ (V)  exp ( - i < A - '  v, V>/2t) d~. 
d 

I n  the  r ight  hand  side we take  the  Taylor  expansion of the  exponent ia l  function.  Since 

we obta in  
0 

(3.2.5) 

where C is independent  of t a n d / ,  and 

S~ (t) = (2~r/t) z'2 [det A [ -~ exp (zei sgn A/4) ~ c~D~/(O)t -I~1/~ (3.2.6) 
lr162 

Here  v~ = - -  exp ( - i <A-1 V, V>/2)I ~ ![7=o (3.2.7) 

vanishes for  odd [r162 and is of course independent  of t a n d / .  

e) Le t  us now consider the  integral  (3.2.4). As a l ready poin ted  out  we m a y  assume 

t h a t  a(x, 0', 0")= 0 when ]0"] > ]0'] .  Now app ly  (3.2.5). The  error t e rm will be bounded by  

a cons tant  t imes [0'[ raised to the power  

1 0 - -  712906 Avta mathematica 127. I m p r i m 6  la 3 J u i n  1971 
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k/2 - v  + m + (2v + k + l ) (1 -~)  = m + k/2 + (k + l ) (1 - q )  + v ( 1 - 2 q ) - ~  _ c r  

In  the  sum 

a S  ~---> ~ .  

(i) The di//erence 
= sgn r (x, 0) - sgn r ~ (x, 0), 

(3.2.10) 
~ i ! ~1  

=o, 

is constant in a neighborhood o/ (x o, ~o) in A. 

(ii) Every distribution which can be defined by (3.2.1) with a C S~ +(n-~N)I4, ~ > �89 and cone 

supp a in a su/ficiently small conic neighborhood o/(x0, 00) can also be written in the same/orm 

with r replaced by r and a replaced by a/unction ~ES~ +(~-2~)14 with cone supp ~ in a small 

conic neighborhood o/ (Xo, 0o), so that moreover 

G 2 
1~1<2~ (3.2.8) 

G = [det Q[-~ [0'[ k~ exp (=i sgn Q/4) 

the  general te rm is in S~ (~) where m(~) = k/2 + m + I ~ [(�89 - e)--> - oo as [ :r ] -~ ~ .  In  view of 

Proposi t ion 1.1.10 it  follows tha t  bE S~ +kl2 and tha t  b is the asymptot ic  sum of (3.2.8) 

when v - + ~ .  Since c ~ = l  when a = 0  and c~=0 when [g[ =1,  we have 

b(z, 0') - I d e t  Q[- �89 I o'l ~/2 exp (zi sgn Q/4) a(x, 0', 0) e S~ +a-2e). (3.2.9) 

Le t  C={(x ,  0); r 0 )=0}  and 0 = { ( x ,  0'); ~f'o.(x, 0')=0}. Since the equat ion r  

is equivalent  to 0 "=  0 and ~0~. =0, in a neighborhood of (Xo, 0o), the map  (x, O')~(x, 0', O) 

is a diffeomorphism of C onto C there, which gives a commuta t ive  diagram 

0 ) r  \ /  
Let  ~1, -.., ]tn be local coordinates on C, extended to a neighborhood. Then  we have on C 

D(2, r O) = I O' -k , , ' [ (det Q) D(,~, ~o.)/D(x, 0 ). 

This means tha t  the densities of order �89 on A defined by  a(x, O) V~c and by  a(z, 0', 0) 10'] k/~ 

[det Q[- �89 are the same. The conclusion is summed up in the following theorem, where 

we have adapted  the normalizations to those used in section 2.4. 

TI~EOREM 3.2.1. Let r 0) and r O) be non-degenerate phase/unctions in neighbor- 

hoods o/ (x 0, 00)eX • R ~ and (Xo, Oo)eX • R ~ which define the same elements o/Lagrange 

mani/old A there. In  particular, r 00)=r 00)=~0. Then 
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(exp ~i~/4)a (x, O) ~ c  - d(x, O) V~c E S~ +"1'+ ~-2 ~ (A, ~�89 (3.2.11) 

the two terms being o/course in S~ + ~14 (A, ~�89 

Proof. We have already verified the s tatement  when r and r are equivalent or when 

is obtained from r by  reducing the number  of 0 variables. Since Corollary 3.1.8 shows tha t  

reduction of the number  of 0 variables in both r and g will lead to equivalent phase func- 

tions, repeated application of these special cases proves the theorem. 

Since the signature is congruent to the rank mod 2, we have by  Theorem 3.1.4 tha t  

a ~ r a n k  r - rank ~" " r  = i v - : ~ .  

Hence a '  = (a - N § e Z. (3.2.12) 

With this notation we can rewrite (3.2.11) in the form 

i ~ exp (TdN/4) a(x, O) V~c-exp (~i2V/4) 5(x, 0) Y ~  es~+n~'+~-2e(A, ~�89 (3.2.13) 

We are now prepared to discuss the global situation, so let X be a manifold and A a 

closed (1) conic Lagrangean submanifold of T*(X)~O. Let J be the set of objects consisting 

of 

(i) A local coordinate patch X ' c  X with local coordinates (x 1 ... . .  x~) ~R ~. 

(ii) An integer N > 0  and a non-degenerate phase function r defined in a conic open 

subset U of X ' •  (RN~0) such tha t  

{(x, 0) e U; r (x, 0) = 0} 9 (x, 0)-~ (x, r 

is a diffeomorphism on an open subset U A of A. 

When ]eJ  we shall write X~, Cj, Nj, Uj, U A for the corresponding quantities. 

Definition 3.2.2. By I~(X, A) we shall denote the set of all A ~ ' ( X ,  ~ )  such tha t  

A = ~ j A j  with the supports of Aj locally finite and 

<Aj, u> = (2~)-(n+~N#)14 f fe*(r176 O) u(x) dx dO, uEC ~ (X), (3.2.14) 

where dx is the Lebesgue measure with respect to the local coordinates in X'j, 0 C R NJ and 

ajES~+(n-2NPl4(R~ • RNJ), supp a j c  {(x, tO); t >i l, (x, 0) EK} where K is a compact subset of 

the image of Uj in R~• R ~j. 

We shall now prove an analogue of Theorem 2.4.2. In  doing so we must  take the factor 

i ~' in (3.2.13) into account, so we introduce 

(x) The following results remain valid if A is not closed provided that we only consider symbols 
vanishing outside closed conic subsets. 
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ajk = ((sgn r (x, 0k) - Nk) -- (sgn Cj"00 (x, 0j) -- Nj))/2, (3.2.15) 

w h e r e  r (x, 0k) = r (x, 0j) = 0 and r  (x, 0k) = r  (x, 0j) = ~ e T* N A. This is a locally 

constant integer valued function in U~ 0 U~ by  par t  (i) of Theorem 3.2.1, so we have an 

integral cochain defining an element a EHI(A, Z). Let  L be the corresponding complex 

line bundle on A obtained from the cohomology class by letting 1 E Z act on (~ by  multiplica- 

tion with the imaginary unit i. (See e.g. Hirzebruch [11]. L is of course determined by  the 

image of (~ in Hi(A, Za). ) L is trivial as a complex vector bundle. For since the cohomology 

of a fine sheaf is trivial we can find functions aj E C~(U A) which are homogeneous of degree 

0 and satisfy the coboundary condition ~ k -  ~j = ~m in U A ~ U A. This implies tha t  i ~ = 

e-~r "~"~/e which gives the asserted trivialization. However, we shall not use this since 

the trivialization is not natural  and leads to a loss of par t  of the structure of L. Note tha t  

the action of R+ on L given by letting R+ act trivially on C in the trivialization is 

independent of how it is chosen, so L is an R+ bundle, and the spaces S~(A, g2�89174 are 

therefore well defined. 

Our purpose is to establish an isomorphism 

S'~+~/4(A,~�89174189174 I '~(X,A) / I '~+~-2e(X,A) .  (3.2.16) 

The first step is to define the surjective map i(3.2.16) using Theorem 3.2.1. In  doing 

so we note tha t  to have an element sESqm+~/~(A, ~�89174 means to have an element 

s~ E S~ + ~I4 ( U A, ~ )  for every ?" such tha t  

s i = i"J~s~ in U A f~ Uk A. 

I f  cone supp s ~ U h we define an element Aj =Aj(s)E I~ n (X, A) by (3.2.14) with 

aj e S':+(~-2NJ)~4 ( Uj) 

satisfying the conditions on the support in Definition 3.2.2 and chosen so tha t  aj ~ is 

mapped to sj by the map 

c j  = {(z, 0) e vj;  r (x, 0) = 0} ~ (x, 0) ~ (x, Cs'x) e u~ .  

This defines ajE S~+n/4-~/2+(n-NJ)/2(Cj). An extension to a neighborhood of Cj is obtained 

by  taking a homogeneous C ~ retraction to Cj, and aj is finally obtained after multiplica- 

tion by a suitable homogeneous cutoff function in U r By Proposition 1.2.5 different choices 

of the extension aj give operators differing by  an element of I~n+n14+(1-2e)(X, A) only. Thus 

we have defined a map 
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Sg+~/4(A, gl�89 |  3s-+.Aj(s)E Ig ~ (X, A)/ Ig  +~-20 (X,A) 

when cone supp s ~  U~. I f  in addition cone supp s c  U~, it  follows from (3.2.13) tha t  

Ak(s) =Aj(s). (We can split s in a finite sum of elements with supports in such small conic 

sets tha t  Theorem 3.2.1 is applicable.) 

Now choose a parti t ion of unity Z gj = 1 in A such tha t  gj is homogeneous of degree 0 

and the sets X; for which gj 4 0  form a locally finite covering of A. I t  suffices to define 

gs on the intersection of A with the unit sphere bundle in T*(X) with respect to some Ric- 

mannian structure in X. This is a compact set over any compact set in X (since A is assumed 

to be closed) so the existence of such a parti t ion of unity is clear. 

I f  sCS'~+'/4(A, f2�89174 we have s=E Zjs where rn+n/4 ZjsES o (A, g2�89174 and cone 

supp ~ j s~  U A. Thus we can define 

A(s) = ~ Aj(zjs). 

This definition is independent of the choice of parti t ion of unity. For if 1 = Z YJk is another 

Olle,  w e  have 

i t , k  i , k  k 

,qm+ ~/4 ~h ~ (X, A)/I~ +1-~ (X, A) is clearly surjeetive and The map A from -0 ,.~,~�89174 to I~ 
it maps S~n+~/4+I-2~189174 to 0. Thus it defines a surjective map (3.2.16). 

To prove tha t  (3.2.16) is injective we shall have to study how a distribution 

A E I~(X, A) acts on rapidly oscillating functions. (Compare the discussion following 

(2.4.2).) This will also yield a new proof of Theorem 3.2.1 which is independent of the 

results proved in section 3.1, and in addition we shall obtain an intrinsic definition of 

I~(X, A). 

We have to start  by  considering the local case so let X ~  1~ ~ and let r be a non- 

degenerate phase function in some conic neighborhood F of a point (x0, 00)EX • (RN~0). 

Let  uEC~(X) and let ~pEC'~(X) be real valued with ~o'x 4=0 in supp u. With A defined by  

(3.2.1) we shall determine the asymptotic  behavior of (A, ue -~t~') as t-+ ~ .  We have 

<A,ue-"~'>= (2~)-(~+~N)~4ffe~(*(x'~ O)u(x)dxdO 

= ffe to) (3.2.17) 

The important  contributions must  come from critical points of the exponent, tha t  is, points 

where r 0) = 0, r 0) =y/x(x). This means tha t  (x, r = (x, y)~) is an intersection between 
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A and the section d~o of T*(X). The critical point of the exponent is non-degenerate if 

,, 1 #0 .  (3.2.1s) det 
/ 

This means precisely tha t  A and dF shall have a transversal intersection. In  fact, the tangent  

plane of A is defined by {(dx, dr dr while tha t  of dyJ is defined by {(dx, d~0~)}. 

Transversali ty means tha t  there shall exist no vector (t, 3 ) # 0  in R~ |  n such tha t  

d ( t , x }+d(T , r  i f d r  

d( t ,x> + d  (v,~v'> =0 .  

The first condition means tha t  for some a E R N 

t d<t,x> + d  (T, r + d ( a ,  r =0 .  

I f  T = 0 the second condition shows tha t  t = 0 also so we can eliminate t by  subtraction and 

find tha t  our condition means tha t  

d <3, r  9"> + d <~, r = 0 

shall imply T = 0  and therefore a =0  (since ~ is non-degenerate). But  this means precisely 

tha t  (3.2.18) shall be valid. 

We can choose ~ so tha t  the transversali ty condition is fulfilled at  (x 0, ~(x0)  ) if 

r 0, 00)=~(x0) .  When supp u is sufficiently close to x 0 we then know that  r 0 ) - ~ ( x )  

has at most one critical point with x E supp u and (x, 0) E cone supp a, and this point is not 

degenerate. We denote it by (xs, 0~) if it exists. 

In  virtue of the Morse lemma it is possible to transform r 0) -yJ(x) +~(xs) to a quad- 

ratic form in a neighborhood of (xs, 0s), and this will allow us to apply the discussion of the 

method of s tat ionary phase made before in this section. Since we shall have to consider 

dependence on parameters  later on we pause to give a proof of the Morse lemma in the form 

needed here using the same argument as in the proof of Theorem 3.1.6. 

L~MMA 3.2.3. Let h(z, w) (zER k, wER z) be a C ~~ ]unction in a neighborhood o/ (0, 0) 

with h'~(0, 0 ) = 0  and Q=h~"~(O) non-singular. Then the equation h'z(Z, w ) = 0  determines in a 

neighborhood o/the origin a C ~~ ]unction z(w) with z(O) = 0 and we have h(z, w) =h(z(w), w) + 

< Q (w)~, ~> /2 where Q(w) = h'~ (z, W)lz=z(w) and ~ = z - z(w) § O( [ z - z(w) ] S) is a C ~176 ]unction of 

z and w at O. 

Proo/. By the implicit function theorem the equations h'~(z, w ) = 0  have a unique solu- 

tion z(w) with the stated properties. Introducing z - z ( w )  as a new variable instead of z 
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we m a y  assume t h a t  h'~(O, w ) = 0  for alI small w. Wri te  ~=R(z, w)z where R is a k •  

ma t r ix  to be de termined with R(0, w) = I so t h a t  (R*Q(w)Rz, z)/2 = h(z, w ) -  h(O, w). Now 

we have  b y  Tay lor ' s  formula  

h(z, w) -h(O, w) = �89 Y, bjk(z, w)zjzk 

with B = (bjk) symmet r i c  and C ~ as a funct ion of z, w. Thus  the  problem is to choose R 

so t h a t  
R*Q(w) R = B. 

When  z = 0  we have  the  solution R = I ,  for  B(0, w)=Q(w), and the  differential  when 

R = I is the m a p  
R -~ tt*Q(w) +Q(w) R 

which is surject ive since R*Q +QR =C where C is a symmet r i c  ma t r ix  if R =Q-1C/2. This 

proves  the  lemma.  

Choose a cutoff  funct ion z E C ~ ( R n •  N) which is 1 in a neighborhood of (xs, 0s) 

and  has suppor t  in ano ther  neighborhood where using L e m m a  3.2.3 we can m a k e  a change 

of variables  x=x(z), 0 =0(z) with z in a neighborhood of 0 in R ~+N such t h a t  

(i) x (0 )  = x~, 0(0)  = 0~, 

(ii) r O(z)) -~v(x(z)) = <Qz, z>/2 -y~(x~) where Q is the  ma t r ix  in (3.2.18) a t  (xs, 0~). 

(iii) J(z) = D(x, 9)/Dz --- 1 when z = 0. 

We can then  write 
<A,ue -~t~> = 11 (t) + 12 (t), (3.2.19) 

where 

/ 1  (t) = t ~ (2 ~) - '~+~ '%-"~(z ' ) fe ' t 'Q~"  z~'2a(x(z), t0(z))X(x(z), 0(z))~(x(z)) J(z) az, (3.2.20) 

12 (t) = t N (2~)-(~+2N)'~ffe't('(~" ~ (1 - Z(x, 0)) a(x, tO) u(x) $x dO. (3.2.21) 

We can obta in  an asympto t i c  expansion of (3.2.20) using (3.2.5). I f  a E S~ ~+n/t-N/2 the  

error can be es t imated  b y  a cons tant  t imes t to the  power  

N - ( N  § n ) /2 - v  +m + n / 4 -  N[2§ N §  + l)(1-Q).  

Since 2(1 -Q)  < 1 it will decrease like any  desired power  of t -1 if v is chosen large enough. I n  

view of Proposi t ion 1.1.10 it follows t h a t  

e't~(~)/~ ( t )~  (2~)~J4 Idet  Q I- ~ exp (~i sgn Q/4) t (N- ~)/2 

• Z c=D~a(x(z), tO(z)) u(x(z)) J(z) 
o~ 

where the  t e rms  are in S ~-~I4+l~l(�89 and  van ish  for odd I ~1. The  leading t e r m  is 
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(2 z)n/~ ]det Q 1-�89 exp (~i sgn Q/4)t (N- n)/2a(xs, tOs) u(xs). 

The integral  I2(t) decreases fas ter  t h a n  any  power  of 1/t as t--> oo. (The funct ion Z 

should be omi t t ed  in case there  is no critical point  for the  exponent  in cone supp a.) This 

fact  is ve ry  closely related to Proposi t ions 1.2.2 and 2.5.7 and so is the  me thod  of proof. 

Fi rs t  of all, in the  suppor t  of a(x, tO) (1 - Z ( x ,  0)) we have  for some e > 0  a t  every  point  ei ther  

I~b~[ > e  or [ r  >e(1 + [0l). Indeed,  if Ir <e  and  e is small  enough, it  follows b y  the  

definit ion of phase  funct ions t h a t  [ ~ ' ] >  c ]01 for  some c > 0 so the  assert ion is obviously 

t rue  for large [0]. For  small  ]0 [ i t  is t rue  since V'x ~= 0 so it  follows in general for  reasons of 

cont inui ty .  Now we can split  a in a sum a = a l + a  2 where ajES~ +~14-Nju, supp a ~ c s u p p  a 

( j = l ,  2) and a 1 = 0  when [r >e,  32=0 when [r <e/2.  The  opera tor  corresponding to  

a 2 has then  a C ~ kernel  according to Proposi t ion 1.2.4 so for the  corresponding opera tor  it  is 

clear t h a t  (3.2.17) is rap id ly  decreasing. We m a y  therefore  assume t h a t  a = a l  so t h a t  

] ~  - ~ [ > e(1 + l 0 [ ) in the  suppor t  of a(x, 0) (1 - X(x, 0)). Now we have  M(r  - V) = - i if 

M = X aje/~xj, a~ = - i~(r  (X (~(r -1. 

I n  the  suppor t  of a(x, tO)(1-g(x ,  0)) the  es t imate  

D~aj = 0((1 + [0]) -1) (3.2.22) 

is valid for all a. The  adjoint  L = tM is given b y  

=~ L - aj~/~xj + ao, a o = - ~ ~aj/~xj 
1 1 

so (3.2.22) is obviously valid also for j = 0. Now we obta in  for every  integer  v b y  repea ted  

par t ia l  in tegrat ions 

I~(t) = W (27~)-(~+ 2N)/4 f f e*t(r176 a(x, tO) (1 - -g(x,  0)) u(x) dxdO. 

The in tegrand can be bounded  b y  a cons tant  t imes 

t-" (1 + [OI) -" (1 + l tO I) m+"14-N'z+"(1-~ 

which can obviously be bounded  by  (1 + IO[)-N-at ~-o" for a certain cons tan t /z  which is 

independent  of v. Thus  the  integral  decreases faster  t h a n  any  power  of 1/t as asserted.  Sum- 

ming up, we have  proved  

THEOREM 3.2.4. Let ~ be a non-degenerate phase /unction in an open conic set 

F c R n  • (Rm'x0) and let aE S~+~/4-N/2(R n • R N) vanish outside {(x, tO); t >~ 1, (x, O) E K~ /or 
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some compact set K ~  F. Let u~C~ ~ ~C~r assume that ~f is real valued and that 

grad ~p ~:0 in supp u. Then 

(i) I / there  is no point (x, O) in cone supp a with x E s u p p  u and r  r thenthe 

/unction t ~ ( A ,  ue -ar where A is defined by (3.2.1) belongs to S-~176 

(ii) 1/there is precisely one point (xs, 0~) in cone supp a with x~ e supp u and r 0~) = 0, 

r s, Os)=~'x(xs), and i/  (3.2.18) is valid there, then 

t-~ e t~(~') ( A ,  ue-  i~} 
is in S~+n/~-~12(R+) and we have 

e ~t~(~') (A ,  ue -~v} - (2~) n/4 [det Q[-�89 exp (~i sgn Q/4) t(N-n)/~a(Xs, tOs)U(Xs) ~ S~ -n/4+l-~q (R+) 

(3.2.23) 
where Q is the matrix in (3.2.18). 

Theorem 3:2.4 can be extended to the  case where ~f (and u) m a y  depend on para-  

meters .  Thus  let YJt be a posi t ively homogeneous  C ~176 funct ion of a p a r a m e t e r  tEF~, an 

open cone in RM~0, say, with values in C~(R n) satisfying the  hypotheses  of Theorem 

3.2.4. (For simplici ty we keep u fixed instead of as an e lement  in S~(X • F1).) Then  the  

s ta t ionary  point  of r is a C ~176 posi t ively homogeneous funct ion (xz (t), 0~ (t)) where it  is 

defined, and we have  
( A ,  ue -~  t} - e-i~t(x~(t)) b(t) e S -~  (1~1), (3.2.24) 

where b vanishes outside the  set where x s (t) is defined and  

b(t) - (2~)~/4 A(t) -�89 exp (~ia/4)a(x s (t), Os (t)) u(xs(t)) e S~ -n/4+1-2~ (F1). (3.2.23)' 

Here  A(t) and ~ are the  de te rminan t  and s ignature  of the  ma t r ix  in (3.2.18) when y~ is re- 

placed b y  ~t, eva lua ted  a t  the point  (xs(t), O~(t)). Note  t h a t  A(t) is a homogeneous  funct ion 

of degree n -  N. 

We can now prove  t h a t  the  m a p  (3.2.16) is injective. To do so we assume as in Defini- 

t ion 3.2.2 t h a t  A = Ej~jAj and t h a t  for a certain point  go all t e rms  except  one, say A0, 

have  the  p rope r ty  t h a t  (x, r # ~o when  (x, 0) E cone supp aj and  r = 0. We mus t  p rove  

t h a t  if A = 0 then  no(x, O)CS~ +n/~-N~ on the surface r 0 ) =  0 in a conic neighbor- 

hood of the  point  (x0, 0o) where (x0, r 00) ) =Xo. I n  doing so we choose coordinates near  

Xo according to Theorem 3.1.3, t ake  u e C~ (X) wi th  suppor t  close to x 0 and  let  F1 be a small  

conic neighborhood of r 00)eR ~. Wi th  y~t(x)=(x, t}, tEF1, we then  obta in  t h a t  

( A  j, ue-~tvt} is rap id ly  decreasing for ] =4=0, and since A 0 = - E s . o A  j this mus t  also be t rue  

when ~ =0 .  Now the intersect ion between A and d~t is a t  (H'(t), t) and it  is t ransversa l  in 

view of Theorem 3.1.3, so we obta in  
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e iH(O (A  o, ue -~') - (2 xe)n/~A(t)- ~ exp (~io'/4) a(x~ (t), O~ (t)) u(x~(t)) ~ S~-  n~+ 1- 2@ 

in F1. Here (x~(t),r is a homogeneous parametrization of A 

close to ~o. I t  follows tha t  a(xs(t), O~(t))eS~+~-~+~-~Q(F~) which proves our assertion. 

Summing up: 

T~EOREM 3.2.5. The map (3.2.16) de/ined above is an isomorphism. 

I t  is clear tha t  using (3.2.24), (3.2.23)' with Ft chosen as in the preceding argument  

one can give a new proof of the transformation laws which we have here based on the 

analogue of the IMorse lemma proved in section 3.1. At the same t ime one can obtain a 

characterization of 1re(X, A) as the distributions for which (3.2.24) is valid when dv2t and 

A intersect transversally. This is quite analogous to properties of pseudo-differential 

operators sometimes used to define them (see e.g. [12]). We leave the development of 

this approach to the reader but  the relations between the two methods will be clarified in 

the next  section. 

The proof tha t  (3.2.16) is injective also gives the second par t  of the following theorem; 

the first par t  follows from Proposition 2.5.7. 

T E ~ o R ~, ~ 3.2.6. Let A E I~ (X, A) and let a E S~ + nit (A, ~ �89 | L) be a principal symbol. 

Then W E ( A ) ~ A  and aES'~ +~14+1-~ in A ~ W F ( A ) .  

3.3. Interpretation of the line bundle L 

Let again A be a homogeneous Lagrangean manifold c T* (X)~0 ,  let ~oEA and x o = 

~/~o- Let  ~ be a non-degenerate phase function in a conic neighborhood of (z o, 00) with 

~0~=0 and (x, ~ )  =20 at  (x0, 00). If  ~EC ~176 at  Xo, if (Xo, ~(Xo) ) =~0 and {(x, ~(x))}  is trans- 

versal to A at  ~o, we shall denote by  S(~0, ~) the signature of the non-singular matr ix  (3.2.18) 

which occurs in (3.2.23). This is of course evaluated at  (x0, 0o) where ~(x, 0 ) -~ (x )  has a 

critical point, so it is clearly invariant  under a change of variables in X or a fiber preserving 

change of 0 variables. The following s ta tement  follows in par t  from the consistency of the 

main argument in section 3.2 with tha t  outlined at  the end but  we give a direct proof. 

PROPOSITION 3.3.1. I] q~ and ~ are non-degenerate phase ]unctions in neighborhoods 

o/ (Xo, 0o) and (Xo, 0o) both de/ining A at ~o, then 

S(% ~0) - S(~, yJ) = sgn q~o"o (x0, 0o) - sgn @00 (xo, 0o). (3.3.1) 

Proo]. Both sides are equal to 0 if ~0 and ~ are equivalent. If  ~0 is obtained from 

by increasing the number of 0 variables as described in section 3.1 it is also clear tha t  
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(3.3.1) is valid, and in view of Corollary 3.1.8 these two cases combined prove the proposi- 

tion. 

By our definition of L, to define an element in the fiber L~~ means to give for each phase 

function ~ defining A at ~0 a complex number z~ such that  

z~ = z~ exp ~i((sgn ~0  (x0, 00) - iV) - (sgn ~ (x0, 00) - 57))/4 

where iV and i~ denote the number of variables 0 and 0. In  view of (3.3.1) this implies tha t  

zr exp ~i(S(q~, ~) - iV)~4 = z~ exp ~i(S(~, F) - i~)/4, 

so we obtain a linear isomorphism L~~ C independent of ~ but  depending on F, or rather on 

the tangent plane of {(x, ~'(x))} at ~0. This is an arbitrary Lagrange plane in T~o(T*(X)) 

transversal to T~o (A) and to the tangent space of the fiber at  $0. (See the proof of Theorem 

3.1.3.) 

Next we examine how the isomorphism depends on ~o. Passage from ~e to ~1 will of 

course mean multiplication by e ~/4 to the power 

~ ( ~ ,  ~)1) - -  ~ ( ~ ,  ~)2) ~-~ ~ ( ~ ,  ~)1) - -  S ( ~ ,  ~)2)" (3.3.2) 

We shall give a geometric interpretation of this integer which is always even since S(~, ~1) 

and S(T, ~0~) are both congruent to N + n  mod 2. To facilitate computations we choose 

local coordinates according to Theorem 3.1.3 so that  A is defined near ~0 by means of a 

phase function 
~(x, ~) = (x, ~) - H(~) 

which is linear with respect to x. Writing A =H'~(~o) , B t =~PTxx (xo) we have 

Note that  in our local coordinates 

1) the tangent plane '~1 Of the fiber is defined by x=0;  

2) the tangent plane t 3 of A is defined by  x = A ~ ;  

3) the tangent plane #j of {(x, ~0~(x))} is defined by ~ = B j x .  

We now recall the structure of HI(A(n)) where A(n) is the space of all Lagrange planes 

in T*(Rn)=C ~. (We shall use integer coefficients unless other coefficients are specified.) 

As we have seen in section 3.I, 

A(n) = U ( n l / O ( n ) ,  
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and since (det 0) 3= 1 if OE O(n), this gives a map det2: A(n)-*S 1. As shown by Arnold 

[1], HI(A(n)) is the free group generated by the pullback a of the generator of HI(S 1) 

under this map. The class a only depends on the symplectic structure. For let E be any 2n 

dimensional vector space with a given non-singular skew symmetric bilinear form a. We 

can then find linear isomorphisms ?: E - ~ R n |  ~ such that  a is the pullback of the 

standard symplectic form in R n O R  n. If  we have two such maps 71 and 72, then 717~ 1 

is a symplectic map ?: R~| Such a map is homotopie to a map (x, ~)~(Ox, 0~) 

where 0 is orthogonal. In  fact, the Lagrange plane ?(Rn| {0}) is of the form UR n where 

U E U(n). Since U(n) is connected it follows that  7 is homotopic to U-l?, which is of the form 

R~ | R ~  (x, ~) ~ (Anx + A l ~ ,  A22~ ). 

That this map is symplectic means that  ~ A 3 u A l l  = I and that  *A32Ale is symmetric. Re- 

placing A13 by ~A12 we conclude that  the map is homotopic to one where A13 is 0, and since 

A n can be connected in GL (n, R) to an orthogonal transformation, the assertion is proved. 

Now a transformation (x, ~)-> (Ox, 0~) transforms the Lagrangean plane parametrized by 

U to one parametrized by OU. Since this does not change the square of the determinant, 

we conclude that  ~*~ =~  if ~ is the map A(n)-~A(n) defined by 7" If  ~ is the map A(E)-~ 

A(n) defined by ?j, we obtain ~* ~* 71 ~ =  73 ~. This class in H i (A(E)) we shall denote by ~E. 

Arnold [1] proved that  it is dual to the twosided cycle of all elements of A(E) which are 

not transversal to a fixed one. This cycle was considered before in a similar context by 

Maslov [23] and even earlier by Keller [18]. Various alternative descriptions are discussed 

by Maslov [23]. 

Let ~1, ~ ,  /~1, #3 be four elements of A(E) such that  ~j and #~ are transversal for 

] = 1, 2 and k = 1, 2. We can choose a path from #1 t o / ~  of planes transversal to 2k, for the 

set of Lagrangean planes transversal to a fixed one forms a cell. In  fact, the Lagrange planes 

in R n |  ~' which are transversal to x = 0  arc of the form ~ = A x  with A symmetric and 

so they form an affine space even. The homotopy class of such a curve ?k is therefore 

uniquely determined and so is that  of the closed curve ? =71-?2 .  We shall now compute 

(?, a)  and see that  we get essentially (3.3.3). 

First assume that  A1 and 22 are transversal and choose the coordinates so that  A1 is 

defined by x =0  and A3 by ~ =0. Then 

~ = {(~,  B~), ~en"}, 

where Bk is symmetric and det B~ 40.  To choose a curve from #1 to #2 which consists of 

planes transversal to ~1 means to choose continuously a symmetric matrix Bt, 1 ~<t ~<2 

with given values for t = 1, 2, which we can do. Now the plane ~ = Bx is equal to UR n if U 

is a unitary matrix with 
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U s = ( I+ iB)  (I - i B )  -1. 

This is clear if B has diagonal form and follows in generaI by diagonalization. The 

square of the determinant of U is [I ( l+i f l{ ) / (1- i  N) if U defines Bt and fl~ are the 

eigenvalues of B,. I f  a denotes the pullback to A(n) of the invariant one form of S 1 with 

integral 1, then 

f~, = ~-~ (~ + i -- + iN) ). arg (1 ~ )  6~ arg (1 

Here we have used that  arg w is uniquely defined for l~e w > 0 so tha t  it vanishes for real w. 

The integral over Y2 is similar, and we can reduce it to the ease already studied by 

replacing Bj by  - / / 71 ,  for (x, ~:)-~(~, - x )  preserves ze. Hence 

f ~  = ~-1  (~  + ~N) - - - ~ + ~/~l) - - i//~i)). (arg (1 arg (1 i/fl~) ) (arg ((1 arg (1 

For real t 4=0 we have arg (1 + i t ) -  arg (1 - i / t )  =~/2 if t > 0, = - z / 2  if t < 0, for it(I - i / t ) =  

1 + it. Hence 
Q,, ~) = (sgn B ~ - s g n  B1)/2. (3.3.4) 

Assume now tha t  23 is defined by x =A~ where A is invertiblo and symmetric. Then 

the symplectic transformation (x, ~)~(x,  ~ - A - i x )  reduces us to the case already con- 

sidered and so 
<7, 6} = (sgn (B 2 - A  -1) - s g n  (B 1 -A-1))/2, 

Now we have ( ;  0 

SO 

I t  follows tha t  

sgn -- B~ 

(~'~ -AI --~l)--sgn( -gx --~2))/2" (3.3.5) 

This formula remains valid by  continuity even if A is not invertible provided tha t  the 

matrices are non-singular, which means tha t  23 is transversal to #1 and /~ .  We have now 

established the asserted connection ~4th (3.3.3) and introduce 

Definition 3.3.2. I f  21, 2~,/~1, #2 are four Lagrange planes in a symplectic vector space E 

such that  each of the first two is transversal to each of the last two, we define 

0'(21' 22; ~21' /22) = <7' ~E}, (3.3.6) 
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where y is a closed curve in A(E) which consists of an arc from/s to/s of Lagrange planes 

transversal to 21 followed by an arc from/s to/s of Lagrange planes transversal to 22. 

Here ~E is the class of Keller, Maslov and Arnold. 

I t  is clear that  (3.3.6) gives an integer, and we have 

(T(21' 22;/s /s = --  O'(22' 21; /s /s = --  O'(/s /s 21, 22)" (3.3.7) 

The first equality follows immediately from the definition, for interchanging 21 and 22 

means reversing the orientation of ~. To prove the second we choose coordinates so that  

21: x=0 ;  ),2: x=A~; /s ~=0; /s ~=Bx. The symplectic transformation (x, ~)-+(-~,  x) 

will interchange 2j and/s apart from a substitution of - B, - A  for A, B, so (3.3.5) reduces 

the statement to the obvious one 

sgn ( - A  _ / ) = - s g n  (B A/). 

In addition we have of course the obvious cocycle conditions such as 

0"(21' 22; /s /s ~-0"(21, 22; /s /s = 0"(21' 22; /s /s (3.3.8) 

If  we sum up the discussion which led us to introduce Definition 3.3.2, we have 

proved 

Tn]~OR]~M 3.3.3. Let 2 be a point on the Lagrangean mad/old A c  T*(X). Denote by 

M~ the set o/all Lagrange planes in T~( T*X) which are transversal to T~(A) and to the tangent 

space T o o/ the /iber. Then the /iber L~ o/ the line bundle L is naturally isomorphic to the 

set o/ all maps 1: M~-~C such that /or all/s /s 

1(/s = i . (~ .r~(A); . , , .2 )  1(/s (3.3.9) 

The preceding interpretation is of course already underlying the evaluation of 

A (u e ~t~) when A and {(x, ~'x (x))} intersect transversally. An invariant interpretation of the 

main term in (3.2.23) is given by Theorem 3.3.3 and the fact tha t  a density (or order 1) 

on A together with the density u in X lifted to {(x, ~'x(x))} produces a density at the inter- 

section which by means of the symplectic measure dx d~ in the cotangent bundle gives a 

scalar. (See also the discussion following Theorem 4.2.2.) 

We shall now consider the preceding construction in a general setting which seems 

instructive although it is not really required for the rest of the paper. Let  Y be a 

Hausdorff topological space and E a symplectic vector bundle of fiber dimension 2n over Y. 

Then every point in Y has a neighborhood U such that  there is a vector bundle isomorphism 
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U • Cn-+ E{v preserving the symplectic structure. I t  is clear tha t  the set A(E)ofLagrange  

planes in the fibers of E form another fiber bundle over Y with fiber A(Ca). 

We can now assign to any two continuous sections ~1, ~2 of A(E) over Y (if such exist) 

an element ~(21, ~-,)6H1(Y). To do so we first modify the construction in Theorem 3.3.3 to 

avoid reduction mod 4. Thus let F be the set of all pairs (/~, z) EA(E) • C such tha t  # is 

transversal to )~lx and ~2x if # E A(Ex), with the equivalence relation (#1, Zl) ~ (#2, z~) if/%1, #2 

are in A(Ex) and z 1 - z  2 =(~()~lx, ~ ;  ttl, #2). That  this is an equivalence relation follows from 

(3.3.7). F has a natural  topology and is a fiber space with fiber C and structure group Z 

acting by  translations so it defines an element ~(X1, X2)EHI(Y, Z). (Similarly, by  copying 

(3.3.9) we obtain a line bundle with structure group Z 4 defining the reduction of ~(~1, ~2) 

rood 4.) Explicitly, let {(U~,/~), i E 1} be a set of continuous integer valued sections of F 

over open sets Ui=  Y with [J Ui = Y. Clearly /~ j= / j - /~  is a locally constant integer in 

Ut N Uj so we have a 1-cocycle defining ~(~1, ~e). Note tha t  

(X(~I, ~2) : --0~(~2, ~1); g(~l '  ~3) : ~(~1' ~2) ~- ~(J2' 23)" (3.3.10) 

The construction is obviously functoriah If  g: Z-~ Y is a continuous map, the pullback 

g*E is a symplectic vector bundle on Z with Lagrangean subbundles g*Al and g*~2, and we 

have g(g*~l, g*~2)=g*~ As). 

Example. Let E be a symplectic vector space and consider E as a symplectic vector 

bundle/~ over Y =A(E) .  Every  point in Y is a Lagrange plane in E which gives us a sec- 

tion ~2 of A(/~). Let  ~1 be defined by a fixed Lagrange plane in E. Then we have 

~(A1, A2) : ~E. (3 .3 .11)  

To prove this we may  assume tha t  E = C a and that  A1 is defined by  iR a. Now a cohomology 

class in Hi(A(E)) is equal to ~E if and only if its restriction to some closed curve which 

is mapped bijectively on the unit circle by  the map det ~ considered above is the 

generator of H ~ for the curve. Such a curve is given for example by the uni tary trans- 

formations U ( t ) z = ( e i t : ' z l ,  z 2 . . . . .  za) corresponding to the Lagrange planes (0~<t~l)  

~(t): x I sin t z - ~ 1  cos tT~=O, ~2 . . . . .  ~a =0 

where we have used the notation x + i~ for points in C a. Let  V~(V~) be the par t  of the curve 

where t=#~(t4~), and define a section ]# of F in V~ so t h a t / 1 = 0  at/ t(~) a n d / 2 = 0  at #(~). 

Here /t(t) is defined by  x~ s i n t z - ~ l  cos t z = 0 ,  x2=~2 .. . . .  Xn=~a. Then / 2 - / 1 = 0  when 
1 3 < t < ~, and in the other interval of V~ fi V~ we have 

/ 3 - 1 ~  = ~ ( ~ ,  ~(0) ,  ~(~), ~(~)) = - 1  

by (3.3.4). This proves (3.3.11). 
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More generally, let E again be a symplectic vector bundle over Y and lift E to a sym- 

plectie vector bundle ~ over A(E) by  means of the projection A(E)-+ Y. Let  2j be the pull- 

backs of the Lagrangean subbundles 2j of E by  this projection. As above we also have a 

natural  section S of A(E) defined by  noting tha t  every point in A(E) is a Lagrange plane 

in the fiber over tha t  point. In  view of (3.3.10) we have 

g(~l, ~2) = (~(~1, ~ ) -  g(~2, S ) =  A(21)-A(22) , 

where we have defined A(2j)= ~(2j, S)EHI(A(E)).  If  s is any section of A(E) over Y then 

the pullback s*S is equal to s ~nd s*~j=2j. Choosing s = ~  2 we therefore have 

(X(21, 23) = 2~A(21). (3.3.12) 

Dropping the subscript we note tha t  A(2) has the properties 

2*A(2) = 0, (3.3.13) 

i 'A(2) = c~E~, (3.3.14) 

where iy is the injection A(Ey)->A(E). In  fact, (3.3.13) means just tha t  ~(2, 2)=0,  and 

(3.3.14) follows from (3.3.11) and the functorial properties. The conditions (3.3.13), (3.3.14) 

determine A(2) uniquely. In  fact, since HI(A(Ev)) is the free group generated by ~y, condi- 

tion (3.3.14) means tha t  A(2) is a cohomology extension of the fiber. The Leray-Hirsch 

theorem therefore shows tha t  every cohomology class in HI(A(E)) is of the form 

AI = z~*c + kA (2), 

where k is an integer, cCHI(Y) and ~ is the projection A(E)-~ Y. If  2*A1=0 we obtain 

0 =2"~*c = (~A)*c =c. I f  the restriction of A 1 to the fibers is equal to ~Ey it follows tha t  k = 1 

also. The class A(2) is a natural  generalization to a symplectic vector bundle with a given 

Lagrangean subbundle of the class of Keller, Maslov and Arnold which corresponds to a 

fixed symplectic vector space. I f  A is the class in HI(A(T(T*(X))))corresponding to the 

Lagrangean bundle given by  the tangents of the fibers, (3.3.12) means tha t  the line bundle 

L on a Lagrangean submanifold A0 of T*(X) is defined by  the pullback of A to A o by  

the map assigning to each point in A0 its tangent space. 

In  this context it is very easy to give an example showing tha t  the structure group of 

L cannot always be reduced further. For example, starting from Example  3.1.5 in a neigh- 

borhood of 0 we extend the curve (xl/3) 3 - (x2/2) ~ =0  so tha t  at infinity it becomes the axis 

x I = 0 with a finite segment removed. This is then a circle in P~, and the normal bundle 

A0 defined according to Example  3.1.5 near the origin splits in two components, each of 
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which is homeomorphie to S 1 • R. We can define A 0 by a linear phase function except near 

the origin where a defining phase function is given in Example  3.1.5. This gives easily tha t  

the  eohomology class in HI(Ao, Z~) corresponding to L is a generator for HI(S  1 • R, Z4) 

in each of the components, thus ,non:trivial. 

However, we know tha t  L mus t  be trivial in the case studied in section 2.4. Our next  

purpose is to relate this trivialization to the interpretation of L given by  Theorem 3.3.3. 

As in section 2.4 let Y be a submai~ifold of X of codimension N and choose local coordinates 

x I ..... x~ in X so tha t  Y is defined by the equations x' = (x 1 .... , XN) = 0, thus x" = (Xtr . . . . .  x~) 

are local coordinates in Y. The phase function cp(x, O) = ENx~Oj then defines the normal 

bundle of Y. If  ~v is a function with 4o=(Xo ,~ ' (Xo) )EN(Y)~O at a point x0EY , the 

matr ix  (3.2.18) becomes (ZI 0) 
- Y~.x. - YJ~,x ~ 

tt tt 

which is non-singular precisely when det ~v~,x~4~0, tha t  is, the restriction of ~ to Y has a 

non-degenerate critical point at  x 0. The signature is -sgnF~,,x,,. The isomorphism of L~0 

and C corresponding to ~v according to Theorem 3.3.3 should therefore be multiplied by  

exp gi  sgn F~x~(x0)/4 to agree with tha t  used in section 2.4. 

I f  the coordinates in T*(X)  are denoted by  x', x", ~', ~" the tangent plane of N(Y) 

has the direction of the plane x' =~" =0.  I ts  intersection with the tangent plane of the fiber 

becomes x' = x " =  ~" = 0  wi th  or thogonal  space~ with respect to the symplectic form given 

by  x'  =0.  Intersecting the plane ~ =yJx", (x0)x, which is parallel to the tangent plane of the 

graph of dyJ, with the plane x ' =  0 and taking the quotient with respect to its orthogonal 

space we obtain the plane ~" = y ~ ( x ~  defined by  the non-singular matr ix  in which we 

are interested. This leads us to the following construction. 

Let V be a symplectic vector space and ~1, 4~, # three Lagrangean subspaces with 

# transversal to 41 and to 42. I f  41 and he are also transversal we choose coordinates so tha t  

~1 is defined b y  x = 0 ,  42 by ~ 0 : , a n d  consequently # is defined by $ = A x  for some 

symmetric non-singular matr ix  A .  A different choice of bases would give an equivalent 

matr ix  so we can set independently of the choice of basis 

a(~l, 4e; #) = sgn A. (3.3.15) 

In  the general ease let O=J~l N 22. Then 0 is contained in its orthogonal space 0" with 

respect to the symplectie form in V, and 0• = V ~ is clearly a symplectic vector space with 

the symplectic fo rm inherited from V. I f  # is any Lagrange plane in V,; then #o = (t t fl ~• 

is a Lagrango plane in V Q, for 

1 1 -  712906 Acta mathematica 127. Impr i rn6  le 4 J u l n  1971 
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dim (# fl 0 -L) - d i m  (# n q) = dim V - d i m  (~u +e)  - d i m  (# n ~) 

= dim V - d i m #  - d i m  ~ = (dim V - 2  dim ~)/2 = dim VQ/2. 

When  ~u is t ransversal  to 2j it follows tha t  ft N 0 = {0} and therefore t h a t  #q is t ransversal  

to  ~ which are also mutua l ly  transversal.  We can now define 

- 0"(21, 2s, pQ). 0"(21, 23; #) - o o. (3.3.16) 

I f  b o t h / &  and #2 are t ransversal  to 21 and 22, we have 

G(21' 22; /'~1:' ~2) = (0"(21' 22; ]A2) -- 0"(21' 22; ~1))/2" (3.3.17) 

This follows f rom (3.3.4) when 21 and 22 are transversal,  so all we have to prove is t h a t  

with the  preceding notat ions 

a(21, 23,/~1,/~2). o'(21, 22; ~1,/-/3) = ~ ~" Q (3.3.18) 

To prove this we introduce coordinates similar to those used in the in t roductory  argu- 

ments,  so tha t  x=(x ' ,  x"), ~= (~', ~"), .~1 is defined by  x=O and 23 by  x'=~"=O. We can 

write # j  in the form ~ = BJx where 

\B~, B'=/" 

)~2 is the limit of the plane x ' = 0 ,  x"=~"/r  2 when e-~0, so for small e we can write 

2 a(2l, 23; #1,/~2) as the difference of the signatures of 

i 0 o 1 O, - F i e  ~ 0 " 

o 

I" - B~I - B~2 / 

for ~ = 1, 2. I f  we mult iply  by  e in the second row and column the  signature does no t  

change which when e-~ 0 shows t h a t  i t  is equal to t h a t  of the mat r ix  

(i ~  O, - F 0 
0 - B h  - B I 2  

0 - B~I - B ~ I  

which is non-singular since/xr is t ransversal  to 2~.. The signature is equal to - s g n  I " -  

sgn B~2. Hence 
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a(X1, s #1, pt2) (sgn B~22-sgn B1~)/2 (r(X~, ~" ~ -= = X2, #1, #~) by  (3.3.4). Thus we have proved 

(3.3.17). Note tha t  whereas a(21, 2~; ~u 1, #2) is a continuous function of the four variables 

when 2j is transversal to/zk, we can only claim tha t  a(21, 22; #) is a continuous function when 

ft is transversal to Xj and dim (21 f3 ~2) is fixed. In  tha t  case, however, we conclude tha t  the 

eohomology class a(21, X2) is trivial if 21 and X, are Lagrangean subbundles of a symplectic 

vector bundle E over a space Y. (Note tha t  (a()~, ~ ; / z j ) - d i m  # j - d i m  (~IN ~))/2 is an 

integer which allows us to obtain an integral 0-cochain from (3.3.17).) Summing up, we have 

in particular 

T ~ E O R ] ~  3.3.4. Assume that on the Lagrangean mani/old A c T*(X) the intersection 

T~ (A) N T o o/the tangent planes o / A  and o/the/iber has constant dimension. Then the bundle 

L is trivialized in a way compatible with the de/initions used in section 2.4 i /we  assign to the 

map/ :  M ~ f J  in Theorem 3.3.3 the complex number 

/(tt) exp uia(21, ~2;/~)/4 

which is independent o]/z E M~. 

The preceding discussion shows tha t  an assertion concerning the line bundle may  be 

perfectly obvious if L is defined in terms of phase functions while it requires some effort 

to prove in terms of Theorem 3.3.3. In  Chapter IV we shall therefore use whichever 

definition of L tha t  seems more convenient in the case at  hand and omit translations to the 

other definition. When using the definition in terms of phase functions we shall omit the 

factor e -~vj/4 from (3.2.14) and so use the transition functions (3.2.10) instead of (3.2.12). 

The only reason for not doing so from the beginning is tha t  it gives the incorrect impression 

tha t  the structure group of L is i s  instead of Z4. 

1V. A calculus for some classes of Fourier integral operators 

4.0. Introduction 

In  this chapter we consider operators having a distribution kernel in one of the classes 

of distributions considered in Chapter I I I .  The distribution kernel must  of course be de- 

fined in a product manifold, so in section 4.1 we examine some additional structure for 

phase functions and Lagrangean manifolds when we are working in a product. In  section 

4.2 we then deduce the main results concerning adjoints and products from the theory 

developed in Chapter I I I .  The resulting precise L ~ estimates are discussed in section 4.3. 

In  view of the calculus H(s) estimates are immediate consequences so we shall not even state 

them explicitly. 
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4.1. Operators associated with a canonical  relation 

Let P and Y be two manifolds, of dimensions nx and nr  in general different. I f  A is a 

distribution density of Order �89 in X • Y, in our notation A E ~ ' ( X  • Y, ~�89 ), then A defines 

a continuous bilinear form on C~(X, ~t)•162 Y, ~ )  and therefore a continuous map 

C~r Y, ~ , ) ~ ' ( X ,  ~ )  which we also denote by A. (Conversely, every such map is defined 

by  a distribution A E ~ ' ( X  • Y, ~ t ) i n  view of Schwartz'  kernel theorem.) 

I f  A is a closed conic Lagrangean submanifold of T*(X • Y ) ~ 0 ,  we can in particular 

regard the space ]~(X • Y, A) defined in section 3.2 (for Q > �89 as a space of continuous 

linear maps from C~(Y) to @'(X). Since A can locally be defined with phase functions 

~b(x, y, 0) where 0ER ~, N = n x + n r  (Theorem 3.1.3) the following is an immediate con- 

sequence of Theorem 1.4.1. 

THEOREM 4.1.1. Every element o/ I~(X • Y, A) is a continuous map/tom C~(Y) to 

~'k(x) i/ 
m--]c e < - 3(nx § nr)/4. (4.1.1) 

I / A  does not intersect T*(X) • Or (resp. Ox • T*( Y) ) where Or (resp. Ox) is the zero section in 

T*(Y) (resp. T*(X)) then every element o/ I'~(X z Y, A) is a continuous map/rom C~(Y) to 

CJ(X) (/tom #'J(Y) to ~'k(X)) il 

m § < --3(nx+nr)/4. (4.1.2) 

The Icernels o/all operators in I~(X • Y, A) are in C ~ outside the projection o/ A in X • Y. 

All hypotheses on A in Theorem 4.1.1 are thus fulfilled if A is a conic Lagrangean 

submanifold of ( T * ( X ) ~ 0 ) x  (T*(Y)~0)  which is closed in T*(X • Y)~O. 

If  ax and a r  denote the symplectic forms in T*(X) and T*(Y) or their liftings to 

T*(X) • T*(Y), then the symplectic form in T*(X • Y) is equal to ax + at .  Thus the restric- 

tion of ax + a r  to a Lagrangean submanifold equals 0. If  A'  denotes the image of A under 

the map which is the identity on T*(X) and multiplication by  - 1  in the fibers of T*(Y), 

it follows tha t  the restriction of a x - a r  to A '  is equal to 0. Clearly, (A') '  = A ,  so we have a 

one to one correspondence between Lagrangean manifolds satisfying the conditions in 

Theorem 4.1.1 and the manifolds in the following definition: 

Definition ~.1.2. A closed conic submanifold C of T* (X • Y ) ~ 0  will be called a homo- 

geneous canonical relation from T*(Y) to T*(X) if C is contained in ( T * ( X ) ~ 0 ) •  

(T*(Y)~0)  and is Lagrangean with respect to a x - a r ,  tha t  is, C' is Lagrangean with 

respect to ~ x •  

The reason for the terminology is of course tha t  if C is the graph of a function X from 

T*(Y) to T*(X), we have Z*(~x=~r which means tha t  X is a canonical transformation. 
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(X and Y have the same dimension since dim C =d im X +d im Y.) I t  is usually more natural  

to work with the canonical relation C than with the corresponding Lagrangean manifold C'~. 

For example, pseudo-differential operators in X are related to A = N ( A )  where A is the 

diagonal in X •  and C = A '  is then the graph of the identity T * ( X ) ~ O ~ T * ( X ) ~ O .  

This interpretation will be much more useful in studying multiplicative properties. 

I f  C is a canonical relation from T*(Y) to T*(X) and coEC, then one can define C 

in a neighborhood of c o by  means of a non-degenerate operator phase function r in a conic 

neighborhood of (x0, Yo, 0o)EX • Y • (RN~0) where (x0, Y0) is the projection of c o on X • Y. 

Thus 
Cr = {(x, y, 0); r y, 0) = 0} 

is a smooth conic manifold near (x0, Y0, 00),and 

r  (z, y, o)-+(x, r y, -r 

is a homogeneous diffeomorphism on a conic neighborhood of c o in C. We shall now examine 

how various properties of C are reflected by  properties of ~. In  doing so we first assume tha t  

local coordinates have been chosen at  x o and at  Y0 and denote the corresponding local 

coordinates in T*(X) and T*(Y) by (x, ~) and (y, ~). 

PROPOSITION 4.1.3. The di/]erential o] the map C ~  T*(X) is bijective i / a n d  only i/ 

n x ~ n  Y and 

\r  r  0 at (x0, yo, 00). (4.1.3) 

The map Cr T*(X) then gives local coordinates (x, ~) at (xo, Y0, 00) on Cr and the density 

dcr162 .... , ~r used in section 3.2 is equal to I D(r  ... dxnd~ .. d~n. 

Proo/. The dimension of C is n x §  so we must  have 2 n x = n x §  tha t  is, n x = n  r. 

Since the map Cr  is a diffeomorphism, the bijectivity of the differential of the map 

C--> T*(X) means precisely tha t  the map Cr (x, y, 0)-~(x, r shall give local coordinates 

on Cr tha t  is, tha t  (x, y, 0)-~ (x, r r shall give local coordinates at (x0, Y0, 00). But  

, , l evy  r  
D(x, Cx, r y, O)=Get ~r r = 9(4)) 

so this gives precisely the condition (4.1.3). The last s tatement  follows at  the same time, for 

dc = ]D(x, 4'~, r y, 0) ] -~ dxl ... dxn d ~  ... d~n. 

The condition (4.1.3) must  clearly be independent of the choice of local coordinates in 

X and in Y and cannot change if one makes a fiber preserving substitution of the variables 
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(x, y, 0). However, it is not quite obvious that  even the matrix in (4.1.3) is invariant so we 

digress to give a discussion of this point. 

Let us consider a fiber space Z over a manifold ~.  Thus Z is a manifold and we have a 

projection p: ~:-+~ with surjective differential. I f  oo E Z and w0 =pc0, then the differential 

dp maps the tangent space T~(oo) onto Ta(~o0) with a kernel Tr~o(Oo) which is the tangent 

space of the fiber. Now let r be a C 2 function on ~ and assume that  r is s tat ionary at o o 

on the / iber  through a0, that  is, de =0  on T~ Then the linear form de on T~.(oo) can be 

regarded as a linear form on T~(eo0). We are interested in the second order derivatives of 

at 00. Let 11 and l~ be two vector fields on ~,  also regarded as first order differential 

operators, and choose vector fields L 1 and L,  in Z so that  ( d p ) L j = l j ,  ] =  1, 2. This can be 

done with Lj (a0) equal to any vector tj with (dp)t j  = lj (00), for if (x, 0) are local coordinates 

in Z such that  p(x ,  O) = x ,  then the condition means precisely that  

L I = l~ + Z ajk~/~Oz, j = 1, g. 

Note that  for the commutator we have 

[L .  Z2] = [1. 12] § Z c~a/aOk 

for some coefficients ck. Thus, r being stationary along the fiber, 

ILl, L2]r  = [11, l~]r = 0 if [l~, 12] = 0.  (4 .1 .4)  

We shall use this observation in two ways. First, if there is a fixed coordinate system 

in ~,  that  is, ~ c  R ~, we conclude that  a symmetric bilinear form on T~(o0) is invariantly 

defined by setting 

B( t  t, t2) =LtL~r ifLj(o0) = tie T~(o0), (4.1.5) 

with Lj obtained as above from operators with constant coefficients in ~. In  fact, such 

operators Lj exist for any choice of tj, and if L~, L~ is another choice, then Lj - L / =  0 at 

o0 so that  
! ! tLt J~1-L2r = L1-L2r = L251r = L2 1(~(o0), 

which at the same time proves the uniqueness of the definition of B and its symmetry. In 

local coordinates the matrix of B is of course the block matrix 

r r  

Next we use the construction in the case at hand where g2 = X  • Y is the product of 

two manifolds with no preferred coordinate systems. Then the tangent space T~(o0) 
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has subspaces T~ resp. T~ consisting of vectors whose projections are tangent vectors of 

X resp. Y. Clearly 
= + = n 

I f  t 1 s T~ and t~ e T~ we can repeat  the definition (4.1.5) where we now demand that  LI and 

L~ should correspond to vector fields 11 and l~ on X resp. Y. Such vector fields commute, so 

the preceding arguments apply. Thus B is an invariantly defined bilinear form on T~ • T~ r 

with symmetric restriction to T~ • T~; if x and y are local coordinates in X and Y and 

(x, y, 0) are local coordinates in Z such tha t  p(x, y, O) = (x, y), then the matr ix  of B is 

r r (4.1.6) 
Cx /" 

Since any function of (x, y) which vanishes at  P(g0) is stat ionary along the fiber through 

go (if it is lifted to a function on Z by means of the projection), it is clear tha t  there is no 

sensible way of defining B on a larger space. 

I n  what  follows we denote the bilinear form just discussed by Be. When ~ is a phase 

function defining the canonical relation C, there arc several ranks associated with r which 

give geometric information concerning C. We assume of course tha t  r is nondegenerate, 

which means tha t  there is no element of T ~  which is orthogonal to T = TX+ T r with 

respect to B~. 

PROPOSITIO~I 4.1.4. The rank o/ the di//erential o/ the laro]ection a) C-+T*(X), b) 

C-~ T*(Y), c) C-~ X,  d) C-+ Y, e) C-> X • Y, is equal to 

a) dim T * ( X ) - d i m  {t16TX; Br T r) =0}  = 2  dim X - d i m  T X + r a n k  Br 

b) dim T * ( Y ) - d i m  {t26 Tr; B~(T x, Q) = 0} = 2  dim Y - d i m  T r + r a n k  Be, 

c) dim X - d i m  {toe T~ Bc~(to, T r) = 0}, 

d) dim Y - d i m  {toe T~ Br x, to) = 0}, 

e) dim (X • Y ) - d i m  {toe T~ Br T ~ = 0}. 

Proo/. We use local coordinates throughout the computation, a) We have to determine 

the dimension of the vectors (t, ~ )ERn•  =, n=nx,  such tha t  

<t, dx> + <T, dr = 0 if dr = 0. 

This means tha t  there shall exist a vector a 6 R  • such tha t  

<t, dx> + <,:, dr -4- <a, d~b'a> = O. 

Here a is uniquely determined by  (t, T) since r is non-degenerate, so we may  instead deter- 
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mine the dimension of {(t, T, a)} for which this identity is valid. But  t is determined by 

(~, a) so we may  instead determine the dimension of {(~, a)} for which such a t exists, tha t  

is, all (~, a) with 
u H (~, r dy + r dO~ + (a, r dO + r dy) = O. 

This means tha t  Br a), T r) =0,  which proves a). The statement  b) is symmetric.  To 

prove c) we have to determine the dimension of all t E R n such tha t  

( t ,  d x )  = 0 if  dr = 0. 

As in a) we find tha t  this is equal to the dimension of all a E R  ~ with (a, r +r =0,  

Which proves c). Since d) is symmetric and e) is included in Theorem 3.1.4, the proposition 

is proved. 

We now return to the most  regular case considered in Proposition 4.1.3. 

De/inition 4.1.5. A homogeneous canonical relation C from T*(Y)~to T*(X) will be 

called a local canonical graph if the projection C-~ T*(Y) and consequently the projection 

C~ T*(X) is a local diffeomorphism so tha t  C is locally the graph of a canonical transfor- 

mation. (This implies tha t  nx=nr.) 

On a local canonical graph we have a density # intrinsically defined by lifting the 

standard density in either T*(X) or T*(Y) by means of the map C-~ T*(X) or C-> T*(Y). 

The results will agree since C is canonical and the canonical densities in T*(X) and T*(Y) 

are defined by  a~/n! and a~/n ! where n = nx = n r. I t  is  clear t h a t  ~ E S~ ~/2(C, ~ �89 I f  L is the 

line bundle on C obtained by  transporting the line bundle associated with the Lagrange 

manifold A = C' in section 3.2, it is clear tha t  the map  

s2 (c', L) ~$2 +'/~ (c, ~�89 | 

defined by  multiplication with ~ is a bijection. For local canonical graphs it follows 

tha t  we have an isomorphism 

S'~ (C, L)/S~'+I-~e(C, L)-'.'-I'~ (X x Y, O')/I~'+I-2Q(X x Y, C,'). (4.1.7) 

Note tha t  the dimension of X • is 2n so the order m+(2n)/4 in (3.2.16) is precisely 

reduced to m. In  particular, if X = Y and C is the identity, we have recovered the approxi- 

mate  calculus of pseudo-differential operators outlined a t t h e  end of section 2.1 (with 

§  of course). 

Using Proposition 4.1.3 we can make (4.1.7) quite explicit. For le t r  be a non-degener- 

ate phase function in a conic neighborhood U of (x0, Yo, 00) in X:x :Y• (RN~0) which'~le- 
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fines a neighborhood of c o in C. With a6Sr~ +(n-N)le vanishing outside a small conic neigh- 

borhood of (x0, Y0, 00) and local coordinates chosen at x o and Y0 we form the operator with 

kernel A defined by (see the concluding remarks in section 3.3) 

(A, u)  = (2z) -(~+N)/2 f feir y, O) u(x, y) dxdydO, ue C~ (X x Y). 

Then a principal symbol for A is represented by a dY~vj transported to C by the map 

C ~ A - ~  C. By Proposition 4.1.3 the quotient by the square root of the standard density in 

G corresponds to the function 

b(x, y, O) = a(x, y, 0)[D(r189 

which is in S~ if a = 0  near X • Y • because D(r is homogeneous of degree n - N .  The 

situation is therefore as follows. Taking b CS~(X • Y • (Rg~0))  with cone supp b c  U and 

b = 0 near X • Y • 0, we form the density of order �89 given by  

(A, u)  = (2 ~)-(~+ N),, [~e,~(x.~.O)b(x, y, 0)ID(r ) I' u(x, y)dx dy, u E C~ 
d d  

or equivalently the operator from densities of order �89 to densities of order �89 defined 

locally by 

Au(x) = (2 ~)-(n+ N)/2 ( l'eir O)b(x, y, O) ]D(r 1�89 u(y) dy dO, u E C~ r (Y). 
d d  

To this operator is assigned a symbol which is the composition of b with the inverse of the 

map 
t 

C~9 (x, y, 0)-~ (x, r Y, - Cy) E C 

which has support in the open set U~ = C parametrized by means of r and should be regarded 

as an element of S~ (C, L). For the case of local canonical graphs this would give a some- 

what simpler discussion than that  of section 3.2, which does not involve densities on U. 

However, we do not wish to duplicate the arguments given there and have merely wanted 

to indicate a slight shortcut available in a special case including pseudo-differential 

operators and many other important  classes of operators. 

Our result will give much more complete control of operators in I~(X • Y, C) when C 

is a local canonical graph than in the general case. We shall therefore discuss now to what 

extent a reduction to this case is possible by considering some variables as parameters. 

To motivate we first consider an example related to the Cauchy problem for the wave 

equation. 
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Example 4.1.6. Let r y, O) = (x' - y ' ,  O) + (x~ -yn)lOI where x = (x', x~) and y = (y', Yn) 

are in R n and 0~=0ER n-1. Then the equation r  becomes 

x ' -y '+(xn-y~)O/[O I =0 .  

I f  (x, r y, -r  = (x, ~, y, ~) we have ~ =~ = (0, 10 I)" Thus C is defined by  the equations 

p ( x - y )  = I x ' - y ' l  2 - ( x ~ - y n )  2 =0,  ~ =~, p(~)=0,  and tha t  ~ is proportional to ~p(x-y) /~x  

if x ~=y. Thus we do not obtain a local canonical graph. However, if x~ and y~ are regarded 

as parameters,  then {x', . . . .  y', Cx', y ,  -r = {(x, 0, 0)} is the graph of the canonical trans: 

formation (x', O)->(x'+(xn-y~)O/[O], 0). Note that  also in the classical energy integral 

method for the wave equation one usually regards the time variable as a parameter.  

Let  us first ignore the fact that  we are working in a product manifold X • Y and 

consider as in Chapter I I I a  conic Lagrangean submanifold A of T*(X) where X is a mani- 

fold. L e t  X 1 be a submanifold of X. I f  now r is a non-degenerate phase function in an open 

conic neighborhood F of (x0, 00) in X • (RN~0) defining an open subset A t of A, we let 

r denote the restriction to F ~ (X 1 • (RYe0)) and ask when r is a non-degenerate phase 

function. First, tha t  r is a phase function means tha t  r cannot vanish on T(X1) if 

r  tha t  is, tha t  Ar ~ N(X1)=O.  Secondly, tha t  r is non-deg enerate means tha t  the 

intersection of the tangent plane of Cr 0); r 0)=0} with the tangent plane of 

X 1 • R N has dimension dim X1, so tha t  the two planes are transversal. This means tha t  the 

intersections of A and T*(X)Ix, (which is of eodimension equal to codimx X1) are also 

transversal. Summing up, we have 

PaOrOSITION 4.1.7. Let A be a conic Lagrangean submani/old o/ T*(X) and let X 1 

be a submani]old o / X .  I / r  is a non-degenerate phase/unction in a neighborhood o/ (xo, Oo) 

in X • (RN~0) where xoEX1, and i / r  defines a neighborhood o/20EA,  then the restriction 

r o / r  to X 1 • (RN~0) is a non-degenerate phase /unction at (xo, 0o) i~ and only i/ 

(i) 2o CN(X~) 

(ii) A intersects T*(X)Ix~ transversaUy at 2o. 

The element o/Lagrangean submani/old A 1 o/T*(X1) defined by r is then locally the projec- 

tion o~ A N T*(X)Jx, on T*(X1). 

The projection mentioned in the theorem refers of course to the exact sequence 

0 ~ N(X~) -> T*(X)lx, ~ T*(X1) - - >  O, 

where the last map is the restriction of forms on T(X) to T(X1). Condition (ii) implies condi- 

tion (i) since the radial vector at  ~0 is symplectically orthogonal to the tangent plane of 

A and so must  not be orthogonal to tha t  of T*(X)Ix ,. Let us also note tha t  (ii) is equivalent 

to 

(iii) The composed map T~o(A)->T~,(X)->T~,(X)/T:~,(X1) is surjective. 
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If we have two different phase functions ~v and ~ defining a neighborhood of X0, we 

find using the proof of Proposition 3.3.1 that  

t! " t!  t! 
sgn r  s g n  r - s g n  r = s g n  4'1oo - ""  

This shows that the pullback of the line bundle L 1 on A1 under the projection mentioned in 

Proposition 4.1.7 can be identified in a natural way with the restriction of the line bundle L 

on A to A N T*(X)[xl. 

In  particular, we can apply Proposition 4.1.7 when X and X 1 are replaced by products 

X • Y and X1 • Y1 with X I =  X and YI= Y. If  C is a homogeneous canonical relation from 

T*(Y) to T*(X) defined in a neighborhood of e 0 E C with :~c o E X 1 • Y1 by an operator phase 

function ~, and if 

(i) c o CN(X1) • T*( Y)Ir, U T*(X)Ix, • N(Y~), 

(ii) C intersects T * ( X •  Y)x~• transversally at %, 

then the restriction of r to X1 • Y1 • (RN~ 0) is another operator phase function de- 

fining locally the projection of C ~ T*(X • Y)Ix,• r~ into T*(X 1 • Y1) along N(X1) • N(Y1). 

We shall now examine when for a given c o 6 C it is possible to choose X 1 and Y1 with 

~ c o 6 X  1 • YI  so that  (i), (ii) are fulfilled and the local canonical relation from T*(Y~) to 

T*(X1) obtained from C at c o is a canonical graph. In  terms of the bilinear form Be on 

TX• T r this means that  we must choose X1, Y1 so that  (i) is fulfilled--which is usually 

the case--and so that  Be is non-singular on T x' • T r~. (This implies that  the restriction of 

is non-degenerate so that  (ii) is fulfilled.) The situation is analyzed in the following 

simple 

LEMMA 4.1.8. Let V be a vector space, V 1 and V2 two subspaces with Vl § V 2 -  V, and 

B a bil inear/orm on V x x V 2. I n  order that there shall exist subspaces W1, W 2 o/ V x, V 2 with 

W 1 N W 2 = V1 N V~ such that B is non-singular on W 1 x W 2 it is necessary and su//icient that 

no element o / V  1 N V2 is orthogonal to V 1 or to V S. One can even choose W 1 and W2 with dimen- 

sion equal to rank B then. 

Proo/. The necessity is trivial. To prove the sufficiency we denote the rank of B by r. 

Thus B defines two maps VI-+ V* and V2 -~ V* of rank r, which are injective on V 0 = V1 fl V s. 

Choose Wj with Vo= W j c  V 1 of dimension r so that  the maps are injective on W~. Then B 

is non-singular on W 1 • W 2. For if w 2 e W~ is orthogonal to W 1 with respect to B, then w2 

is orthogonal to V1, and since the map W2-~ V~ is injective this proves that  w2= 0. 

All quantities which occur in Lemma 4.1.8 can be expressed in terms of the canonical 

relation if one applies Proposition 4.1.4. This gives 
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T~EOREM 4.1.9. Let C be a homogeneous canonical relation/rom T*( Y) to T*(X) and 

let c o 6 C. Suppose that the projections 

C-~ X ,  C-+ Y ,  (4.1.8) 

have sur]ective di//erentials at co, and let k x (resp. kr) be the rank o/the di//erential at c o o/the 

projection C-~T*X minus dim X (resp. rank d(C-~T*Y) minus dim Y). Then k x = k r = k  

and one can/ind submani/olds X 1 = X and Y1 c y o/dimension k so that xc o 6 X 1 • Y1 and a 

neighborhood o~ c o in C which defines a canonical graph ]rom T*(Y1) to T*(X1). 

Proo/. The equality k x = k r  follows from a) and b) in Proposition 4.1.4. The hypo- 

theses concerning (4.1.8) mean in view of c) and d) in Proposition 4.1.4 that  Lemma 4.1.8 

can be applied to choose the directions of X 1 and Y1. A dense subset of directions satisfies 

the conditions in Lemma 4.1.8 and also condition (i) preceding it, which proves the theorem. 

Somewhat loosely we can express Theorem 4.1.9 as follows. Assume that  the differen- 

tial of the projection C ~  T*(X) always has rank ~> r + dim X where r ~> 0, and that the maps 

(4.1.8) have surjeetive differentials. Then one can consider C locally as a canonical graph 

between the cotangent spaces of manifolds of dimension r, depending on dim X + dim Y - 2r 

parameters. We shall use this fact later to give L 2 estimates for the corresponding 

operators. 

A rather complete local description of C analogous to Example 4.1.6 can be given in a 

neighborhood of a point c o E C where the maps (4.1.8) have surjective differentials and the 

differential of the projection C-+T*(X) has constant rank r + d i m  X. The differential of 

the map C-~T*(Y) has rank r + d i m  Y then. Locally, the range of the projection of Cin  

T*(X) (resp. T*(Y)) is defined by dim X - r  (resp. dim Y - r ) e q u a t i o n s  Fj(x ,~)=0,  

1 ~<] <d im X - r  (resp. Gj(y, ~]) =0, 1 ~<?" ~dim Y - r )  which are homogeneous with respect 

to ~ (resp. ~) and have linearly independent differentials. The Hamiltonian vector fields 

HFr (resp. HGj) in T*(X) (resp. T*(Y)) corresponding to these differentials via the sym- 

plectie form are then in the tangent plane of C. Hence HF~, Fj = 0 if all F~ = 0 and similarly 

for G, or if we introduce Poisson brackets 

{F~, Fj} = O when all F k = 0; {G~, Gj} = 0 when all Gk = O. (4.1.9) 

Now the set of points in C with fixed component in T*(X) is a manifold of dimension 

dim C -  (r + dim X) = dim Y - r  whose projection to T*(Y) is of the same dimension and so 

must be the integral of the (dim Y - r )  dimensional planes spanned by the Hamiltonian vector 

fields Has. The roles of X and Y can of course be reversed here. Summing up, if we choose 

submanifolds X 1 and Y1 of dimension r as in Theorem 4.1.9, then C is locally obtained as 
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follows: With @1, ~1) 6 T*(X1), (Yl, ~x) 6 T*( Y1) related by the canonical t ransformation in 

Theorem 4.1.9 one first solves the equations F~(x, ~)=0,  Gk(y, ~ ) = 0  with x=xl,  Y=Yl 

so tha t  ~1 (resp. ~1) is the projection of ~ (resp. N) along N(X1) (resp. _N(Y1)). Then we include 

in C the product of the "bicharaeteristics" through (x, ~) and (y, ~) obtained by integrating 

the Hamil ton-Jaeobi  equations with the Hamiltonians _Yi and G~ using these initial data. 

(See e.g. Carathgodory [6].) The total  dimension of C then becomes 2 dim X 1 + (dim X-r)  + 

(dim Y -  r) = dim X + dim Y as it should. We leave for the reader to check tha t  the condi- 

tions on ranks and so on required in the preceding discussion are actually verified so tha t  

the argument is valid locally. Conversely, one can also define canonical relations by starting 

from a canonical transformation ~I'*(X1)-~T*(Y1) and Hamil ton functions satisfying 

(4.1.9) provided tha t  the "bieharacteristies" are transversal to X 1 and to Yx. An example 

is given in Example  4.1.6 and we shall come across a more general example of the same 

type  in par t  H. 

4.2. Adjoints and products 

I f  u and v are two densities of order �89 in a manifold and supp u f] supp v is compact, 

we write 

(u, v) = <u, ~> = j u ~ .  

The adjoint of an operator A e I~(X • Y, C') where C is a homogeneous canonical relation 

from T*(Y) to T*(X) is defined by  

(Au, v) = (u, A'v), veC3~ ~) ,  ueCF(Y, ~ ) .  

I f  A is represented in the form 

<A, u> = O)u(x,y)dxdydO, uE C~, 

in a local coordinate patch, then 

< A * ,  = f y, y) xdy O, U~ C~. 

Here - r  should be regarded as a phase function in Y • X • ( R ~ 0 ) ,  so the corresponding 

canonical relation is the range of the map 

o ,  ~ (z, y, o ) ~  (y, - r x, CD 

which differs from C by the map  T*(X) • T*( Y)-~ T*( Y) • T*(X) interchanging the two 
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factors. The principal symbol is just changed by complex:lconjugation. Note that  the 

complex conjugate of a section of the line bundle L is a section of L -1. Thus we have 

THEO~ES~ 4.2.1. I /  C is a homogeneous canonical relation/rom T*(Y) to T*(X) and 

A E I~ n (X x Y, C'), ~ >�89 then the adjoint A*EI~(Y  x X, C's) where Cs is the inverse image 

o/ C under the map s: T*(Y) x T*(X)-~T*(X) x T*(Y) interchanging the two ]actors. I /  
a~,qm+(nz+nr)14[(~ ~'~�89 i8 a principal symbol /or A, then 8*dEsrn+(nz+nr)/4[C ~-~ "5"5 ~ 

since there is a natural isomorphism between Lc, and s*Lc 1, and s*5 is a principal symbol 

/or A*, 

The isomorphism between Lc~ and s*Lc 1 is obtained by noting that  L c is the line bundle 

corresponding to C and the symplectic form ~ x - a r ,  so L~ 1 corresponds to C and the form 

- ( a x - a t ) ,  and s*Lc 1 corresponds to s*C = C~ and s*((~r-az). But that  is the definition of 

Lc.  These are obvious consequences of Theorem 3.3.3. 

We shall now discuss products, so let C 1 be a canonical relation from T*(Y) to T*(X) 

and C 2 another from T*(Z) to T*(Y) where X, Y, Z are three manifolds. Let A 1 E I~'  (X • Y, 

C~) and A 2 E I ~ ( Y •  C~) and assume that  both are properly supported so that  the 

composition A1A 2 is defined. We wish to show that  A1A2EI~+~(X • C') where C is 

obtained by composition of the canonical relations C 1 and C~. (Cf. Theorem 2.5.15.) The 

first step in doing so is to study the composition of canonical relations. 

The direct product 

C] x C2 c T*(X) x T*(Y) x T*(Y) x T*(Z) 

is a symplectic manifold with respect to the symplectic form a x - a r ~ + a r ~ - a z  where 

the two copies of Y are denoted by subscripts. The composition of C 1 and C~ is defined as 

the projection in T*(X)• T*(Z) of the intersection of C 1 • C 2 with the diagonal A in 

T*(X) • T*(Y) • T*(Y) • T*(Z) consisting of elements for which the two components in 

T*(Y) are equal. If  C 1 • C2 intersects A transversally, then dim ((C 1 x C2) N A) =dim (C 1 • 

C2)-  codim A =dim X +d im Z. Transversality means that  there are no non-zero normals 

of the tangent planes of C 1 x C~ and of A (with respect to the symplectie form) or equiva- 

lently that  there is no non-zero tangent of C 1 x C 2 at an intersection which is also a tangent 

of A with zero components in T(T*(X)) and T(T*(Z)). Thus the projection of (C 1 • C2) N A 

in T*(X) • T*(Z) will then (locally) be a manifold of dimension dim X + dim Z on which 

a x - a z  vanishes since - a t ,  +ar~ vanishes on A. The projection will be a manifold and so a 

canonical relation CloC 2 from T*(Z) to  T*(X) if the map 

(C 1 x C2) n A ~ T*(X) x T*(Z)~O 
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is in addi t ion injective and  proper.  I f  either C1 or C 3 is the  graph  of a canonical diffeo- 

morph i sm the  preceding conditions are t r ivial ly fulfilled. 

We shall now determine the  condit ion for t ransversa l i ty  in t e rms  of local defining 

phase  funct ions when local coordinates are introduced.  Le t  r  be a phase  funct ion near  

(X0' Y0, 00) EX X ]7 X (RN'~0) and r a phase funct ion near  (Yo, Zo, ao) E Y • Z • (RSvp0).  

We assume t h a t  bo th  are non-degenerate,  t h a t  they  define a pa r t  of C x and  of C 2 respec- 

t ively,  t h a t  r Yo, 0o)=0,  r %, % ) = 0 ,  and t h a t  when x = x  o .. . . .  a =ao  

(x, r (x, y, 0), y, - r (x, y, 0), y, r  (y, z, (~), z, - r  (y, z, ~) ) e A 

t h a t  is, t h a t  r (Xo, Yo, 0o) + r (Yo, Zo, ao) = 0. As no ted  above,  t ransversa l i ty  means  t h a t  

there  is no vector  (0, 0, t, 7, t, 7, 0, 0) 4 0 or thogonal  to  the  t angen t  plane of C1 • C3 with  

respect  to the  symplect ic  form a x - a t ,  + a r ~ -  az. Orthogonal i ty  to the  t angen t  plane 

means  tha t ,  a t  (xo, Yo, 0o) and  (Yo, Zo, ao), dr (x, Yl, 0) = 0, dr (Y3, z, a) = 0 implies 

< d y ,  7> - <dy3, 7> + <dr t> + <dr t> = 0. 

This is equiva len t  to  the  existence of vectors  a, b such t h a t  

d (r (x, Yx, 0), a> + g (r (Y3, z, a), b} + g (y~ - Y3, T> + d (r (x, Yi, 0) + r  (Ys, z, a), t} = 0. 

(4.2.1) 

Transversa l i ty  thus  means  t h a t  this shall imply  t h a t  t = 7 = 0  and  therefore a = b = 0 since 

r and 43 are non-degenerate  phase  functions.  I t  suffices t h a t  (4.2.1) implies t h a t  a = b = t = 0 

for then  it  follows immedia te ly  t h a t  7 = 0 also. Now it is clear t h a t  given a, b, t one can find 7 

so t h a t  (4.2.1) is val id if and only if 

d ( r 1 6 2 1 6 2 1 6 2  (4.2.2) 

Transversa l i ty  therefore  means  precisely t h a t  (4.2.2) implies a = b  =t=O. 

Now we can consider r y, 0) + r (Y, z, a) as a funct ion r z, co) of (x, z, o~) E X x 

Z x (gNl+N*+al~r~0) where 

= ((10[ 3 + 1~ls)�89 y, 0, ~ )e  R~,+ N ' + d l ~ , 0 .  

When  0 and  a v a r y  in conic neighborhoods of 0o and  a o and  y varies over  a neighborhood of 

Yo we obta in  a d i f feomorphism on a conic neighborhood of (o o = (( {0o {8 + I ao 18)�89 Y0, 00, ao). 

I t  is clear t h a t  r is homogeneous of degree 1 wi th  respect  to co, and the  equat ions r = 0 

mean  precisely t h a t  
r = r = r + r  = 0. (4.2.3) 
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At  such a point  the linear combinations of the differentials of the part ial  derivatives ~r 

are precisely the  same as the linear combinations of the differentials ~r ~r and 

~(r162 Thus (4.2.2) means tha t  r is a non-degenerate phase funct ion near 

(x0, z0, ~o0). The corresponding canonical relation is 

{(~, r ~, - r r  = C b  = r + r  = 0},  

which means t h a t  r defines Clo C 2 locally. 

Let  now 

Alv(x)=(27e)-(nz+nr+2N~)l'f feir176 (4.2.4) 

where a 1E S~ ~+(nz+ nr-2N')/a (X • Y x R N~) vanishes in a neighborhood of the zero section 

and  has cone supp a 1 inside a conic set F1 where r is a non-degenerate  phase funct ion 

defining par t  of G1. Similarly, assume tha t  

A2u(y ) = (2 ~r) - (=r+  f f ~ ")a s (y, z, o) u(z) dz da, (4 .2 .5 )  

where a2E S~+(nr+~z-2N~)/4(Y x Z x R N~) vanishes near the zero section and cone supp a 1 

belongs to a conic set F 2 where r is non-degenerate and defines pa r t  of C2. Here we are of 

course working with local coordinates so t h a t  the integrals are well defined. I f  now a x and 

a~ vanish for large [0] and l a] ,  we obtain 

(nx+nz+2N)/4 ( ~ (  ~(r y 0)+r z a)) A1A2u(x)=(2~r )- e . . . .  al(x,y,O)a2(y,z,~)u(z)dzdydOd(~. JJJJ 

Here  2V=N 1 + N 2  + d i m  Y is the number  of "fiber coordinates" if we regard the exponent  

as a phase funct ion r z, ~o), as we did above. We would like to extend the val idi ty  of this 

formula  to general a~ bu t  notice tha t  this meets the difficulty t ha t  al(x, y, O)a2(y, z, o) 
is not  quite a symbol  (because differentiation with respect to  0 for example improves only 

by  a factor  (1 + [ 0 ] )-Q and no t  by  a factor  (1 + ]0 [ + [ a [ )-~). I n  addit ion the cone support  

contains points with 0 = 0  or 0 = 0  which are on the bounda ry  of the set where the 

exponent  is a phase function. However  all essential contributions are expected f rom a 

neighborhood of points where (4.2.3) is valid and there the preceding difficulties do no t  

occur. Motivated by  this observat ion we argue as follows. 

Since r = 0 implies r # 0  we can always restrict the support  of a 1 wi thout  changing 

the  singularities of A 1 so tha t  [ r  1/101 is bounded f rom above and f rom below in cone 

supp al. Similarly we m a y  assume tha t  [r I/1~1 has fixed positive upper  and lower bounds 

in cone supp a 2. Hence there are positive constants  C 1 and C~ such t h a t  
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o 1 1< 101< when r 1 6 2  (4.2.6) 

We choose a homogeneous function Z(O, (~) of degree 0 which is equal to 1 when C 1 ]a]/2 < 

Iol <2c~1~1 and has support in the cone where Ol l~ l /3<  10l <3C~1~1. Thus 

C~[~l/3< 1ol <3c~1~ in supp Z; 
(4.2.7) 

C~]a]/2>~]O[ or [0[>~2C~]a] in supp (1-Z) .  

~ow introduce 

B u ( x ) =  (2~)-('x+nz+~N)l'fg~e~(r162 z, y ,  O, (~)u(z)dzdydOd(~,  (4.2.8) 
J J J J  

where b(x, z, y,  O, (~) =Z(0, (~)al(x, y,  O)a2(y, z, (~). By the first part  of (4.2.7) we have 

b ES~ for m = m 1 §  2 § (nx  §  § 2 (n r - iV  1 -/V~))/4 = m  1 §  2 § (nx  §  - 2N)/4 § nr, pro- 

vided of course that  a 1 and a S are symbols of the degrees indicated above. If we introduce 

aS above a variable co in R N instead of (y, 0, a), then D(y,  O, (~)/D~o is a homogeneous func- 

tion of co of degree - n  r so it follows that  (4.2.8) is an operator of order m 1 + m  2 belonging 

to the canonical relation ClO C2. 

Writing r(x,  z, y, 0, a )=  (1 -Z(0, a))a l (x  , y,  O)a2(y , z, (~) we shall now prove that  

R(x, z, O, = f z, y, O, (~) dy 

is in S-% The integrand vanishes when [0] + [ a  ] is sufficiently small, and by (4.2.6) and 

the second part  of (4.2.7) we have 

]01 + I ~ ] < O] r  y, 0) + r  (y, z, ~ 

in the support of r. But repeated partial integrations with respect to y (cf. the proof of 

Propositions 1.2.2 and 2.5.7 then show that  R can be bounded by any power of ([ 0] + [~[)-1, 

and the same is true for any derivative of R. 

Now we claim that  A 1 A  2 = B + R where 

R u ( x )  = (27~) -(nx+"z+2N)14 I'F ~R (x, z, O, a) u(z) dz dO da 
J J J  

is an operator with C ~ kernel obtained by integration with respect to 0 and ~. In  fact, this 

is obvious if a I and a S have compact support. In general we just insert cutoff functions 

as in (1.2.3) and obtain in the limit when it converges to one that  A I A ~ = B + R .  This 

proves that  A 1 A  2 is a Fourier integral operator, so we have proved 
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THV~OREM 4.2.2. Let C i and C s be homogeneous canonical relations ]rom T*( Y) to T*(X) 

and /rom T*(Z) to T*(Y) respectively, assume that C i • s intersects the diagonal in 

T*(X) • T*(Y) • T*( Y) • T*(Z) transversaUy and that the projection /rom the intersection 

to T*(X) • T*(Z) is proper, thus gives a homogeneous canonical relation ClO C s/rom T*(Z) to 

T*(X).  I / A ~ E I ~ I ( X  • Y, C~), AsE I ~ (  Y • C~) are properly supported, it/ollows that (/or 

e>i) 
A1 As E I ~  '+ ~ (X • Z,  (Cio Cs)'). 

I n  order  to  descr ibe  the  symbol  of the  p roduc t  we mus t  f irst  discuss some facts  con- 

cerning the  line bundles  of which the  symbols  are  sections. F i r s t  we discuss some 

proper t ies  of densit ies.  

I f  E is a real  vec to r  space of d imension  n, we define g2~(E) as the  space of al l  m a p s  

a: A n ( E ) ~ 0 - ~ C  such t h a t  a(st)= ]siVa(t), t E A ~ ( E ) ~ 0 ,  0 4 s E R .  Of course ~ ( E )  is iso- 

morph ic  to  C b u t  the  i somorph ism is no t  unique  for ~ =~0 unless for example  we have  a 

prefer red  basis  in E.  Clear ly  the  tensor  p roduc t  ~a(E) |  is i somorphic  to  ~a+~(E) 

since the  p roduc t  of two maps  homogeneous  of orders  ~ and  fl is homogeneous  of o rder  

~+f l .  I f  E i is a subspaee  of E,  of d imension  hi, t hen  the  bi l inear  m a p  

gives an  i somorph ism 

A~I(E1) • An-~(E/E~) -~ An(E) 

~a( E1) | ~a( E / E1) .~ ~a( E) 

or if we tensor  wi th  C2_a(E/Ej) and  note  t h a t  ~0 is i somorphic  to  C, 

~ ( E,) ~= ~ (  E) | ~ ~( E/ F~). 

I f  E is a vec tor  bundle ,  t hen  ~ ( E )  is a line bundle  wi th  the  same base,  and  the  pre- 

ceding formulas  r e m a i n  val id .  I n  pa r t i cu la r ,  if M is a mani fo ld  we can t a k e  E = T M  and  

ob t a in  t he  bundle  ~ = ~ a ( M )  over  M def ined also in sect ion 2.4. 

L e t  now M i and  M s be two submanifo lds  of a mani fo ld  M wi th  t r ansversa l  in ter -  

section. W e  w a n t  to  re la te  densi t ies  in M i ~] M s to  densi t ies  in  M 1. (We shall  l a t e r  t a k e  

M = T*(X) • T*(Y) • T*(Y) x T*(Z), M s = A (the diagonal) ,  and  M 1 = C1 • Cs where C i 

and  C s are  canonical  relat ions.  Note  t h a t  the  symplec t ic  s t ruc tu re  then  gives au toma t i -  

cal ly  densi t ies  in  M s and  in M.)  I f  m EM 1 (] M s we have  b y  def ini t ion of t r ansve r sa l i t y  

T,~(M1) + T,~(Ms) = T,~(M), 

so Tm(M1)/Tm(M 1 N Ms) ~- Tm(M)/T,n(Ms) which gives an  i somorph ism 

n=(T=(MI N M,)) ~ n=(T~(M,))| 
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I f  we are given a positive section of ~_a(T,~(M)/Tm(M2) ) over M s we can therefore use this 

section to define an  isomorphism 

Since for m E M  2 we have 
g2:(M1 N Me) "~ ~:(M1)M, nM ~. (4.2.9) 

~_:,( Tm(M)/ Tm(M2) ) ~ g2_~( T~(M) ) |  Tm(M2) ) 

we have such a section if there is given a positive densi ty in M and one in Ms, for a positive 

densi ty on a manifold allows one to  identify ~1 with ~0 and so s with ~0 for all g. I n  

particular,  we can thus de/ine the product o /a  density o] order �89 on each o I the canonical rela- 

tions C 1 and C~ as a density o I order �89 on CloC 2 by/irst  taking the direct product o I the two 

densities on C 1 x C~ and then intersecting with the diagonal A. 

There is another  wa y  of defining a section of ~_~(T,~(M)/Tm(M2)) over M which is 

bet ter  related to our definitions in sections 2.4 and 3.2. Suppose tha t  we have a map y: 

M-+N where N is a manifold with a given positive density, dim N =  eodimMM2, such 

t h a t y M  2 is a point  n o and the rank of ? '  is d im N. Since ? '  is a bi ject ionof Tm(M)/T,n(Me) 

on T~o(N) we can pull the element of ~l(Tno(N)) given b y  the positive densi ty in N back to  

the required section of ~I(Tm(M)/T~(M2)). I n  the example where M =  T*(X)x  T * ( Y ) x  

T*(Y) x T*(Z) we have if Y is contained in a vector  space an  isomorphism 

M-~ A • T*( Y) 

preserving densities given by  letting the image in A be defined by  repeti t ion of the first 

component  in T*(Y) of an element in M and letting the image in T*(Y) be the second 

component  in T*(Y) minus the first. This shows t h a t  the map M-~ T*(Y) defines the same 

section of ~ ( T ( M ) / T ( A ) )  as the one obtained from the sympleetie measures in M and in A 

(identified of course with T*(X) • T*( Y) • T*(Z)). 

I f  in addit ion to  the densi ty in N and the map  ? we also have a densi ty in M, the iso- 

morphism 
~ (  Tm(M2) ) ~= ~ (  T,~(M) ) | T,n(M)/ T,n(M2) ) 

gives a densi ty on M~. For  example, if M = R  n+N and ?: l~n+N--->l~ N has surjective differential 

on M S =~/-1(0), the Lebesgue densities in R ~+~ and R N define a densi ty on M S. If  Yl, ..., Yn 

are local coordinates on Ms, considered as functions in a neighborhood of Ms, and we use 

y(x), ?(x) as local coordinates in a neighborhood of M, then the densi ty in R n+N with respect 

to these local coordinates (or more precisely, the densi ty evaluated on the dual basis of 

tangent  vectors) is given by  I D(y, ~)/Dx 1-1, so the  densi ty defined on M S agrees with the 

one defined in section 2.4. 
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This construction may  be made in steps: Let  y~: M-+Nj,  ?" = 1, 2, be C ~ maps. Assume 

tha t  positive densities are given in M, N 1, N~ and tha t  ~ = (~1, ~2): M ~ N 1  • has surjec- 

rive differential on M ~ =~-l(n~ nO). From Y2 and the densities in N~ and M we then obtain 

M '  -in~ M ~ a density in =ys ~ near and from this density, the density in AT 1 and the map ~1 

we then obtain a density in M ~ This is the same as the one defined by  the density in 2/ 

and by  the map ~ directly. The simple verification is left for the reader. 

Now C 1 x C 2 is locally isomorphic to the inverse image of 0 in R ~+g~ for the map 

and this map together with the Lebesgue measures defines the density ~ • dV~cr of 

order 5. The intersection of C 1 • C~ with the diagonal corresponds to the submanifold 

where Yl = Y~ and r § r = 0, and the density of order �89 which we have defined there 

corresponds to the map 

I t t A t  ~ ~ ]I:~NI+N~+2ny 
(x, Yl, 0, y~, z, a) ~ (r r  Yl - Y~, r + ~ ~ 

I f  we first consider the map to Yl-Y2 which obviously gives the Lebesgue density in the 

plane Yl =Y2, we see that  an equivalent manifold and density is defined by  the map 

(x, z, y, 0, a) -~ (r r r + r ERN'+N'+nr, 

where now y =Yl =Y2. But  this is the manifold Cr with the density dV~c~ of order �89 

corresponding to CloC 2. Thus the density of order �89 on CloC 2 corresponding to A1A ~ 

and the phase function r is the product of the densities of order �89 on C 1 and Ca corresponding 

to A 1 and A 2 for the phase functions r and r as explained above. 

The preceding construction simplifies considerably when C 1 (or Ca) is a locally canonical 

graph. For  we have an isomorphism (at a point in (C 1 • Ce)N A) 

~I=(T((C, • Cs) FI A)) ~ ~I=(T(C~ x C2))| 

~= n~(T(C1) ) | ~_~(T(C1)) | g2~(T(Ca) ) = no(T(C1) ) @ ~a(T(C~)) 

obtained from the isomorphisms of T(M)/T(A) and T(C1) with T(T*(Y)). The sections of 

~0(T(C1)) are just the functions on C 1 obtained by identifying densities of order �89 with 

functions. Thus multiplication consists in this case simply in multiplication of the density 

of order �89 on C a by  the function on C 1 after both have been pulled back to the intersection 

(C 1 • Ca) N A by  means of the obvious maps to C1 and C2. (The second one is a local diffeo- 

morphism.) When both C1 and C a are local canonical graphs, then so is ClOC ~ and the 

multiplication becomes just multiplication of two functions. 
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Finally we shall relate the line boundles L1, L 2 on C1, C2 to the line bundle L :on 

ClOC2. Let r r resp. r r be phase functions representing a neighborhood of a point 

in C 1 resp. C2, and write 

r z, ~) = r y, O) + r (y, z, ~), 

(x, ~, ~) = r (x, y, 0) + r ~, ~), 

where co and ~ are defined as in the discussion preceding (4.2.3). These are phase functions 

defining CloC2, and we have 

t !  " l !  v! ~ y / !  ~vv 

sgn r  - sgn r = sgn r - sgn r + sgn r - sgn r (4.2.10) 

This follows by repeating the proof of Proposition 3.3.1: the equality is trivial when Cj 

and Cj are equivalent or when they are obtained from each other by increasing the number 

of fiber variables as indicated in section 3.1. I t  follows that  we have an isomorphism of the 

tensor product L 1 • L~ on C 1 • C2, restricted to the intersection with A, and L which for the 

trivializations of L~, L2, L corresponding to r r and r is given by standard multiplication. 

I t  follows that  we have a bilinear map from sections of gi~| over C 1 and sections of 

gl�89174 over C 2 to sections of ~'l~| ~ over CloC ~. We denote it by  •  have proved 

T~]~OREM4.2.3. Let the hypotheses o/Theorem 4.2.2 be/ul/illed. I / a  1 and a s are principal 

symbols o / A  1 and As, then a 1 • 2 is a principal symbol o/ the product A1A 2. 

4.3.  L 2 e s t imates  

Let C be the graph of a canonical diffeomorphism T*(Y)--> T*(X). If  A E l~  • Y, C'), 

and A is properly supported, then A*A is a pseudo-differential operator with principal sym- 

bol ]a] 2 if a is a principal symbol for A, regarded as a function on T*(Y). We can therefore 

apply the well-known results on L 2 estimates for pseudo-differential operators recalled 

in section 2.2 to show that  A*A is L ~ continuous (or compact, in case a ~ 0  at ~ ) .  Since 

this is equivalent to the same statements concerning A, we obtain 

THEOREM 4.3.1. Every A E I~  • Y, C') which is properly supported is continuous 

/rom L~(Y, t'l~) to L~(X, gl,) where subscript c indicates compact support, and also /tom 

L~or ~ )  to L~oo(X, ~lj), provided that C is locally a 'canonical graph. A maps bounded 

sets to compact sets i /and  only i / a  principal symbol tends to 0 at c~ in C over compact subsets 

o / X •  

We could of course also give the precise norm modulo compact operators but leave 

this for the reader. Instead we shall give a sufficient condition for L s continuity in the gen- 

eral case using Theorem 4.1.9. First recall that  (3.2.14) defines a distribution in I~ if 
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a jES~ +(n-2Np/4. I t  follows t h a t  if as in Theorem 4.1.9 we res t r ic t  to  submanifolds ,  the  

order  is going to  increase  b y  the  codimension d iv ided  b y  4. I n  the  no t a t i on  of Theorem 

4.1.9 the  degree will therefore  increase b y  (nx +ny-2lc)/4. This leads  i m m e d i a t e l y  to  

T ~ ]~ o R ~ M 4.3.2. Let C be a homogeneous canonical relation/rom T*(Y) to T*(X) such 

that the maps C ~ X and C---> Y have sur]eetive di//erentials. Let the di//erentials o/the projec- 

tions C-~T*(X) and C-->T*(Y) have rank at least k + d i m X  and k + d i m  Y respectively. 

Every A E 1~ (X • Y, C') is then continuous /rom L~ ( Y, g2~) to L~oo (X, ~ )  provided that 

m ~ ( 2 k - - n  x - n z ) / 4 .  
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