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Preface

Pseudo-differential operators have been developed as a tool for the study of elliptic
differential equations. Suitably extended versions are also applicable to hypoelliptic
equations, but their value is rather limited in genuinely non-elliptic problems. In this
paper we shall therefore discuss some more general classes of operators which are adapted
to such applications. For these operators we shall develop a calculus which is almost as
smooth as that of pseudo-differential operators. It also seems that one gains some more
insight into the theory of pseudo-differential operators by considering them from the point
of view of the wider classes of operators to be discussed here so we shall take the oppor-
tunity to include a short exposition.

Pseudo-differential operators as well as our Fourier integral operators are intended
to make it possible to handle differential operators with variable coefficients roughly as one
would handle differential operators with constant coefficients using the Fourier trans-

formation. For example, the inhomogeneous Laplace equation

Au=feCP(R™)
is for n >2 solved by

u(@) = —(27)™" f 0 | £ 72 (8) dE,

where f&= J‘e“m'@f(:v) dx

is the Fourier transform of f. To be able to solve arbitrary elliptic equations with variable

coefficients one is led to consider more general operators of the form

Af(@)=(27)" f =0 a(z, £) (&) g, | (0.1)
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where @ behaves as a sum of homogeneous functions when &— . These are the (classical)
pseudo-differential operators. On the other hand, suppose that we want to solve the
Cauchy problem

Au—~Pulot® =0; w=0, oufet =fE0F(R™) when t=0.

Then the solution is given by

u(,t) =(2n)—”fe““'f>“'f“(2i|§|)“lf(§) dé — <2n)-”fe“<“>‘”5'>(2i|§|)*1f(5) ds. (0.2)

Each of the terms on the right-hand side is similar to (0.1) except for the fact that the func-
tion <=, &) in the exponent has been replaced by <z, &> +t|&|. This is a homogeneous
function of & with critical points as a function of & where z=+t&/|£|, thus |z|*=¢*
which is the light cone. The function {z, &>, on the other hand, has no critical point except
when x =0. These observations reflect the fact that the fundamental solution of the wave
equation is singular on the light cone whereas the fundamental solution of the Laplacean
is singular only at the origin.

As a generalization of (0.1), (0.2) it is natural to consider operators of the form

Af(x)= fe”“'%(x, £)] (&) dé. (0.3)

Lax [21] showed that for any strictly hyperbolic equation the solution of the Cauchy
problem is for small values of the time variable a sum of operators of this form where S is
obtained by solving the characteristic equation with initial data x—<{x, £>. Related global
results were proved by Ludwig [22]. A more systematic study of operators of the form
(0.3) was made by Maslov [23] under the hypothesis that det Sz¢=-0, and his results have
subsequently been extended and applied by Eskin [9], Egorov [7, 8] in connection with
studies of non-elliptic pseudo-dfferential operators.

Introduction of the definition of the Fourier transform in (0.3) gives formally

Af(x)= ffeid’("”f)a(w, y, &) f(y) dy dé, (0.4)

where ¢(x, y, &) =8(z, &) — <y, &>, and @ is independent of y of course. Quite general operators
of the form (0.4) were discussed by the author [14] and the term Fourier integral operator
was introduced for them. The purpose was a study of the asymptotic properties of the
eigenfunctions of elliptic operators, which is actually a problem involving a related hyper-
bolic operator. A more systematic development with applications to differential operators

of principal type with real principal part was given in mimeographed lecture notes from the
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Nordic Summer School of Mathematics 1969 (see also [15, section 5]). Originally this paper
was intended as a finished version of those notes but in fact it has been completely revised
and very much extended in order to take into account the very important observation of
Egorov [7] that if A4 is an operator of the form (0.3) and P, @ are pseudo-differential opera-
tors with P4 =A4¢), then the principal symbols of P and @ are related by the canonical
transformation corresponding to the generating function S. Now it turns out that with
any operator of the form (0.4) where ¢ satisfies a certain regularity condition one can also
associate a canonical transformation and prove that the class of operators of the form
(0.4) is determined by the canonical transformation alone. It is then possible to develop a
fairly complete calculus of such operators where the result of Egorov is imbedded in a nat-
ural way. As a result one can for example give a reinterpretation of the result of Lax [21]
mentioned above which is valid globally in the time variable. The results indicated in [15]
concerning operators of principal type with real principal part can also be made global
under suitable convexity assumptions weaker than those discussed in [17, Chapter VIII].
These applications are left for the second part of the paper which is being written in colla-
boration with J. J. Duistermaat. However, we wish to call attention to the papers of
Egorov [8] and Nirenberg—Tréves [25] which use operators of the form (0.3) in a very
essential way in studies concerning existence and regularity theorems for general operators
of principal type.

The work of Egorov is actually an application of ideas from Maslov [23] who stated
at the International Congress in Nice that his book actually contains the ideas attributed
here to Egorov [7] and Arnold [1] as well as a more general and precise operator calculus
than ours. Since the book is highly inaccessible and does not appear to be quite rigorous
we can only pass this information on to the reader, adding a reference to the explanations
of Maslov’s work given by Buslaev [5]. In this context we should also mention that the
“Maslov index” which plays an essential role in Chapters IIT and IV was already con-
sidered quite explicitly by J. Keller [18]. It expresses the classical observation in geo-
metrical optics that a phase shift of /2 takes place at a caustic. The purpose of the present
paper is not to extend the more or less formal methods used in geometrical optics but to
extract from them a precise operator theory which can be applied to the theory of partial
differential operators. In fact, we only use the simplest expansions which oceur in geo-
metrical optics, and a wealth of other ideas remain to be investigated.

The plan of the paper is as follows. Chapter I presents generalities concerning Fourier
integral operators. Actually this is mainly a more systematic version of the introductory
chapter of [14]. In Chapter II we review the calculus of pseudo-differential operators from

this more general point of view and give some applications. The kernels of pseudo-differen-
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tial operators are certain distributions in a product X x X with singularities only on the
diagonal. With any manifold X and submanifold Y there is similarly associated in a natural
way a class of distributions with singularities only on ¥ which is discussed at the end of
Chapter II. Actually, these distributions are connected with the normal bundle of Y
in the sense that they have symbols living on that bundle. In Chapter 111 we study more
general classes of distributions which are associated with any conic Lagrangean submani-
fold of T*(X). If X is replaced by a product X x Y one can interpret these as classes of
operators from funections on Y to functions on X. In particular there is such a class of
operators associated with any canonical diffeomorphism of 7™*(Y)\0 on T*(XMNJ0.
Composition of such operators corresponds to composition of the canonical transformations.
Pseudo-differential operators are obtained when X =Y and the canonical transformation
is the identity. This general operator calculus contains the result of Egorov [7] referred to
above and also leads immediately to estimates for the norm of the operators. It is
developed in Chapter 1IV.

A summary of the results of this paper has been given in [16] which can also be read
as an introduction giving additional background material.

Finally I would like to thank J. J. Duistermaat for many discussions concerning

symplectic geometry which have improved the exposition.

I. Oscillatory integrals

1.0. Introduction

In this chapter we shall give precise definitions of integrals of the form (0.4) and discuss
some of their most elementary properties. Concerning the amplitude @ in (0.4) we shall
usually make essentially the same hypotheses as in earlier studies of pseudo-differential
operators (see [13]). The basic facts are collected in section 1.1. In section 1.2 we can then
give a precise definition of the corresponding integrals of the form (0.4) by means of essenti-
ally the same methods as in [14]. However, the hypotheses of sections 1.1 and 1.2 are some-
what too special for some purposes. In section 1.3 we shall therefore relax the conditions
on the amplitude @ in (0.4). Basic facts concerning operators of the form (0.4) are then
given in section 1.4. Under suitable additional assumptions concerning the phase function
¢ we shall give much more precise results in Chapters II and IV.

For standard notation not explained in the text we refer to Hérmander [17].

1.1. Symbols

The theory of distributions gives a meaning to the Fourier transform
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when f(x) =0(|x|™) for some m as &> co. The definition of (0.4) is somewhat more delicate
80 we have to impose suitable growth conditions of this type on all derivatives of the func-
tion a(x, y, 0). There is no reason for us at this time to consider the variables x and y
separately, so in the following definition we consider complex valued functions a defined

in X xRY where X is an open subset of R* (we allow » to be 0).

Definition 1.1.1. Let m, g, & be real numbers with 0<gp<1, 0<d <1. Then we denote
by S75(X x RY) the set of all a €C°(X x R¥) such that for every compact set K< X and all

multiorders «, f the estimate
| D2#Dg%(x,0)| < O, 5. (1 6] )" 010z K, 0ERY, (1.1.1)

is valid for some constant C, g x. The elements of Sg s are called symbols of order m and
type g, 6. If p+d=1 we also use the notation S7’ instead of Sj;, and when p=1, §=0
we sometimes write only §™ and talk about symbols of order m. If (1.1.1) is only valid for

large |0], we say that a €Sy s for large |6|. Finally we set
;?,s=l"gS.§’.‘,s, 0.8 =N8gs

By the conic support of a, denoted cone supp @ we denote the closure in X x R¥ of {(z,t0);
(, ) Esupp a, t=0}.

Somewhat incorrectly we shall also say that a set M < X xRY is conic if (z,0)EM
implies (x, t0)€ M when t>0. The conic support of @ is thus the smallest closed conic

subset of X x R¥ such that ¢ vanishes in the complement.

Example 1.1.2. 1f a€C® and a is a homogeneous function of degree m with respect to

6 for large |0|, then a is a symbol of order m (and type 1, 0).
Example 1.1.3. If a is semi-homogeneous in the sense that
afz, 0,6™, ..., O0yt™ ") =t"a(x, 0, ..., Oy)

for some m,;>0 and m€R, and if a€C® for 0 %0, then a is for large § a symbol of de-

gree max; m/m; and type min, , m;/m, O.

Example 1.1.4.1f y € #(R™), the Schwartz space, then a(x,0) =y(x|0|¢) is in 89 (R™ x RY)
for large [6].
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Example 1.1.5. If 0<¢<1, the function (x, §)>exp ic(x) [#]'~%, where ¢ is a real valued
function, is in 89, for large |6] if and only if p<f,§>1—¢, or ¢ is constant and p <{,

0 arbitrary, or ¢=0 and both ¢ and § arbitrary.

ProrosiTtioN 1.1.6. 87 s(X x RY) is a Fréchet space with the topology defined by taking
as seminorms the best constants C, 5 x which can be used in (1.1.1). This space increases when

d and m increase and ¢ decreases. If a€8y; it follows that
afy = @Dy)*(iD,)’ a € Sg.50 =1 *171,
and if bE Sy's it follows that ab€ ST§™ .

The proof is obvious. Note that to prove (1.1.1) for ab one needs to know only that
(1.1.1) holds for a and for b when the differentiations involved are of order <|«+f|. This
is important in some proofs by induction.

It follows immediately from Definition 1.1.1 that 87,5 is invariant for diffeomorphisms
in the « variable, so the definition makes sense also if X is a manifold. In order to be able
to consider more general fiber spaces than X x RY over X we shall need some fact con-
cerning the action on symbols of more general maps. In doing so it is useful to work locally
so we first extend Definition 1.1.1 somewhat. Thus let I" be an open conic set =X x R”.
If K is a compact subset of I' we set K°={(z, t0); (», 6) €K, t>1}. A function in C*(I') is
now said to be in 87 (1) if (1.1.1) is valid when (z, 8) € K° for any choice of the compact set
K. This agrees with Definition 1.1.1 when I' = X x R¥. Note that if I" does not meet X x0
then there are no restrictions on the growth of the derivatives of a(w, §) when 0—0.

Let I'ye X xR™, T, Y xR” be open conic sets disjoint from X x0 and ¥ x0, and
let y: I',~>T', be a C* map which is positively homogeneous of degree one, that is, com-

mutes with multiplication by positive scalars in the fibers of X x R¥ and ¥ xRY.

PropositioN 1.1.7. Under the preceding hypotheses we have aoy€Sys(I'y) for all
a €855(L'y) provided that either

i) p+d=1; or

(i) o +8=1 and v is fiber preserving, that is the projection of p(x, 0) on Y depends only
on x; or

(iii) o and & are unrestricted but v is the direct product of a map ¥ —X and a homo-

geneous map from a cone in B to a cone in RV,

Proof. A part of the last statement was already pointed out above. In the general

proof we shall use the notation , & for the variables in X x R” and y, # for the variables in
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Y xRY. Then y(x, &) =(y(z, &), n(x, £)) where y and # are homogeneous of degree 0 and
1 with respect to & If K is a compact subset of I'; we have for some positive constants

01: 02
C1|&] < |nlx, &)] <Cy|é] (1.1.2)

when (x, £)€K for by hypothesis #(z, £) +0 then. Since (1.1.2) is homogeneous it is also
valid when (z, §) €K°. Writing b=aoyp, b*=(0a/on,)oyp, b, =(0a/oy,)op, We have
objox; =2 b, oy, jox, + X Yon,jex,

(1.1.3)
8bJOE, = X b0y, 0+ 5 bFon,/eE .

Here 8y, /0x;, Ony/ox;, 0y,[08;, 01, [0E ; are homogeneous of degree 0, 1, —1, 0 with respect to &.
The estimates (1.1.1) for (x, £)€K° now follow immediately when |a+pg| <1 if we use
(1.1.2). (Note that in case (ii) we have 8y, /0%;,=0 and in case (iii) also 1, /0x;=0.) Assuming
that (1.1.1) is proved when |o+f| <k for any symbol a, we conclude that (1.1.1) is also
valid when |«+f8|=k+1 if we use the remark concerning the multiplicative properties

of symbols made immediately after Proposition 1.1.6.

Remark. 1f one takes for a one of the examples 1.1.4 and 1.1.5 it is easy to see that the
hypotheses on p and § in the proposition cannot be improved (apart from a case where
onyfox; =0 and g + 0 <1 which we have omitted as of no interest). The hypothesis on homo-
geneity could be somewhat relaxed to €51 o and an appropriate substitute for (1.1.2).

We can also compose symbols to the left with suitable functions:

PrROPOSITION 1.1.8. Let ay, ..., a, be real valued functions in Sg 5(X x RY) and let f be
a C® function in a neighborhood in R of all limit points of (a,(x, 6), ..., a,(z, 0)) when §— o
while & may vary in X. Then it follows that (z, 0)— f(a,(=, 0), ..., ax(z, 0)) is in S +(X xRY)
for large 6.

Proof. Choose C so large that f is C™ in a neighborhood of the closure of {(a,(, 9), ...,
ay(x, 0)), €X, |0| >C}. For |6]|>C it is then clear that f(ay, ..., @) is bounded. Since

oM, .., 000, §) = 3 @16 (@ao(z, )

and 9f/0a; are bounded functions, it is clear that f(a,, ..., a,) satisfies the estimates (1.1.1)
when |+ 8] <1. As in the proof of Proposition 1.1.7 it follows by induction that they are
valid when |« + 8| <jforj=1, 2, ..., for we can use the multiplicative properties of symbols

in Proposition 1.1.6 and the remark following that statement.
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Proposition 1.1.7 makes it possible to define Sg.s(V) when g-+d2>1if V is a cone bundle

over a manifold X in the sense that the following three conditions are fulfilled:

(i) V, X are manifolds(?) and we are given a O® projection p: V—X with surjective
differential.

(ii) There is given a C* action of R, on V which preserves the fibers.

(iii) Every point in V has a neighborhood N, invariant under the action of R, such
that there is a fiber preserving diffeomorphism »: Ny—~I" commuting with the group actions,
where I" is an open set in R"x (R"\0) invariant under the group action (¢, (x, 0))—
(z,t0); t€R., z€R® OERY, and with the projection (z,6)—~2z. Here n=dim X,

If N, and N, are two such neighborhoods with diffeomorphisms »; and s,, then
x=2x0x%;" is a diffeomorphism I'y,—T';, where I'y, and I'}, are open conic subset of I,
and I'; respectively, and x satisfies the hypotheses in part (ii) of Proposition 1.1.7. Composi-
tion with » therefore maps Sps(I'y,) to Sys(I's) continuously if g -+ > 1. For such g and ¢
we define S;5(V) as the set of functions @ on ¥V for which aozx~1 is in Sg5(I") (and vanishes
near R”x0) if x is a local trivialization with the properties listed in (iii). By the preceding
remarks it suffices to make this hypothesis for a set of such neighborhoods N; which
covers V.

Let V;be a cone bundle over X, j =1, 2, and let y be a fiber preserving C*° map V,-> 7V,
commuting with the action of R,. If a€Sys(Vy,), o +8>1, it follows from part (ii) of
Proposition 1.1.7 that aoy€ Sgs (V). If g+ =1, part (i) of the same result shows that the
same conclusion is valid even if y is not fiber preserving.

Let V be a cone bundle over X and let X be a fiber space over another manifold ¥
so that we have a C®° map py: X— Y with surjective differential. Then V is also a cone
bundle over Y if we replace the projection p: ¥V —X by pyp: VY. To prove this it suffices

to note that if U is an open set in R”, I" an open cone in R\ 0, and p the projection.
UxT'3(x, 0)—>a' = (x4, ..., v,) ER?,

where v <z, then U xI" is a cone bundle over R’. This follows from the fact that we have
the local homogeneous diffeomorphism

(z, 0) > (', 2" |6], ) ER* x R¥* "~
where 2" =(,,1, ..., Z,). We denote this cone bundle by Vy. The map V-V (but not the

map Vy->V) is then fiber preserving, so if g+d>1 we have the inclusions

85 1-¢(V)= 85 5(Vy) =85 5(V).

{) By a manifold we shall always mean a paracompact C* manifold.
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When Y is a point the left inclusion becomes an equality. Note that in that case Vyis V
with the projection p forgotten entirely. A cone bundle over a point will also be called a
conic mansfold in this paper.

With V still denoting a cone bundle over a manifold X we assume that we have a
complex vector bundle W over V in which there is given an equivariant C* action of R,.
(cf. Atiyah [2].) Thus the projection on V of the vector bundle map & W—W, t€R,, is
assumed to be the already given map t: V- V. We can now introduce in a natural way a
class S75(V, W) of sections of W over V. For in a conic neighborhood of any point v,€ ¥V
we can find a basis sy, ..., sy of O sections of W which are invariant under R . In fact, it
suffices to choose them on a manifold transversal to the orbit of R, at v, and extend them
by homogeneity. Two such bases differ by multiplication with a N x N matrix of functions
homogeneous of degree 0 in a conic neighborhood of v,. A section s of W over V is now said
to be in Sgs(V, W) if for the local representation s=X a;s; with such bases we have
a,€8;55 in a conic neighborhood of v,. It is clear that the definition does not depend on
the choice of bases.

All remarks made previously concerning the behavior of Sj'; under mappings carry
over with obvious modifications to Sys(V, W). We leave the statements for the reader in
order not to burden the exposition further. In the following results we only consider sym-
bols in X x R¥ for simplicity in the statements but it should be clear that i;hey carry over
easily to symbols in the spaces Sy;(V, W).

Now we recall an elementary but important completeness property of the space of

symbols, proved for example in [13, Theorem 2.7].

Prorosition 1.1.9. Let a,€ 87% (X x RY),j=0,1,2, ... and assume that m;~ — oo as

j— oo, Set mi =max;s,m;. Then one can find a€ S;"; (X x RY) such that for every k
a—kzka,.e 87 (X x R, (1.1.4)
The function a is uniquely determined modulo S=°(X x R¥) and has the same property relative

to any rearrangement of the series X a;. We write a~X a,.

The condition (1.1.4) involves bounds on all derivatives of the function on the left.
In order to simplify a verification of (1.1.4) it is therefore useful to have the following
result, which is Theorem 2.9 in [13].

Prorositron 1.1.10. Let a,€ Sy's(X xR, j=0,1,2, ... and assume that m;—~ — oo
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when j—oo. Let a € 0°(X x RY) and assume that for all multiorders «, § and compact sets
K < X we have for some C and p depending on a, f and K

B (@, 6)]<CA+[6]), 2€K.
If there exist numbers yy,— — oo such that for arbitrary K and k

|a(z, 0) — > a;(x, 0)| < Og (1 +]6])*, «€K,
k

i<

it follows that a € 87 5(X x R¥) where m = sup; m;, and that a ~ . a;.

Finally we shall make some remarks on the topology of the Fréchet space 87 s(X x RY).
Recall that a set M <87 is bounded if (1.1.1) is valid with O, g x independent of @ when
a€M. On a bounded set in Sy the topology of pointwise convergence, the topology of
C~(X xRY) and the toplogy of Sps(X xR¥), m'>m, all coincide. This is an immediate

consequence of Ascoli’s theorem.

ProrosiTioN 1.1.11. Let a€ S)5(X x RY) and let %€ L (R") be equal to 1 at 0. If
a.(z,0) =X(h) alz, ), it follows that a.€ Sy 5 (X x R¥)and that a,—a in S s(X x RY) when
e=>0if m' >m.

Proof. Tt suffices to note that the functions (x, 6)—>x(e6) form a bounded set in S o
when 0<e<1 (see Example 1.1.4), for the continuity of multiplication of symbols then
shows that the functions @, form a bounded set too.

In particular, we can take y with compact support. Then we obtain

CorOLLARY 1.1.12. Let L be a linear map from functions in C°(X x RY) vanishing for
large |0| to a Fréchet space F such that, for every m€R, the map L is continuous for the
topology induced by Sys(X xRY). Then there is a unique ewtension of L to Sgs(X x RY)

which is continuous on Sgs(X xRY) for every m.

1.2. Oscillatory integrals

We shall now discuss the definition of integrals of the form
Iy(au) = ffei""’f’)a(x, 6) u(x)dzdl, u€CF (X), (1.2.1)

where @ €8;5(X x RY). From now on we assume that ¢ >0 and that § <1. For the sake of

simplicity it will be assumed that ¢ is real valued and positively homogeneous of degree 1
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with respect to 0, and that ¢ € C® for 0 4-0. However, this hypothesis could easily be relaxed
(see also [14] for a somewhat weaker hypothesis).

The integral (1.2.1) is absolutely convergent for every a €Sy;(X x R¥) provided that
m+ N <0. In particular, it is well defined if a(x, 6) =0 for large |0]. We wish to extend the
definition of (1.2.1) to arbitrary a €855 using Corollary 1.1.12. This is not always possible
—for example it cannot be done if ¢ vanishes in an open set—but we shall prove that the
definition of (1.2.1) is always possible if ¢ has no critical point with § 4-0. The proof depends
on partial integrations in (1.2.1). In order to avoid having to split (1.2.1) into a sum of
terms where integration by parts with respect to a fixed variable will do, it is convenient

to use the following

Lremwma 1.2.1. If ¢ has no critical point (x, 0) with 6 %0, then one can find a first order

differential operator
L=%0,0000;,+% b;0/6x;+c

with a,;€SYX x RY) and b;, c€S-1(X x RY) such that *Le'® =¢' if L 1s the adjoint of L.
Proof. By hypothesis the sum
1012 Z (84/20,)" + = (8¢ /o,)*

is homogeneous of degree 2 with respect to 6 and <0 for 0+0. Let ¢ be the reciprocal
of this sum which is then homogeneous of degree —2 and C® for 6 +0. With y€C§(R")

chosen so that y =1 near 0, we set
M =X a;6/00,+ X bj6/ox; +7,
where a; = —i(l—y)p|0|%04/00,€8°, b = —i(1 —y)ypopow;€S-1.
The coefficients are chosen so that Me** =™, so L=!M has the required properties since
a;= —a;, b;=—bj, ¢=y—>0a;/00,— objjox,€81.

The lemma is proved.
If a vanishes for large |0|, we can integrate by parts in (1.2.1) after replacing '

by *Le*. This gives
I (au) = J.J.e"”(”’O)L(a(x, 6) u(x)) ded

or after iteration

Iy(au) = ffeid’(" DLk (a(x,0) u(x))dzdd, k=0,1,2,.... (1.2.2)

Now L is a continuous map of Sj'; into Sy';* if #=min(p,1—0). Hence L* maps Sy's
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continuously into Sp's**. If m—kt< — N, the integral (1.2.2) is thus defined and con-

tinuous on all of 87 5(X x R¥). In view of Corollary 1.1.12 we have therefore proved

ProrosiTiOoN 1.2.2. If ¢ has no critical points and ¢ >0, § <1, then the definition of the
integral (1.2.1) can be extended in one and only one way to all a €S3%5(X x RY) and w €05 (X)
so that Iz(au) is a continuous function of a€Sys for every fized m. The linear form A:
u—Iy(an) is a distribution of order <k ¢f a€8ys and m —ko<—N, m—k(1—0)<—N,

For the extended form I, we have the representation (1.2.2) if k is sufficiently large.

According to Proposition 1.1.11 we also have
I,(au)=1lim fje“""e)a(x, 0) x(e6) u(z) dxdo (1.2.3)
>0

if y €% and y(0)=1. We shall keep the notation (1.2.1) for the continuous extension of the
form I, which we have just defined and refer to the generalized integral as an oscillatory
integral.

If ¢ and a are continuous functions of a parameter ¢ with values in C°(X x (R¥"\ {0}))
and S75(X x RY) respectively, then an inspection of the proof of Lemma 1.2.1 and Propo-
sition 1.2.2 shows that I4(au) is a continuous function of ¢. Note that if ¢ is a continuous
function of ¢ with values in C°(X x RY) whose range is a bounded subset of Sgs(X x R"),
then @ is a continuous function of ¢ with values in 855 (X x R¥) when m’ >m. These remarks
allow us to pass to the limit in the oscillatory integral (1.2.2) if there is continuous
dependence on a parameter. In particular we can differentiate with respect to parameters
under the integral sign.

Now let ¢ be a C® function in X x ¥ x (R*™\ {0}) where X and Y are open subsets
of some Euclidean spaces, and assume that ¢ has no critical point even when considered
as a function in X x (R"\ {0}) depending on the parameter y€Y. If a €Sys(X x ¥ xRY),
>0, <1, and u€C®(X x Y), we can then prove a Fubini theorem

fffei"‘”'yﬂ)a(x,y, 6) u(x,y)dxdyd0=fdy (ffei¢($'y'6)a(x,y, ) u(x,y) dedf). (1.2.4)

Indeed, this follows if we introduce a factor y(¢f) as in (1.2.3) in both sides and then let
e—~>0.

After these remarks we return to the oscillatory integral (1.2.1). Let X, be the open
set of all z€X such that the function 6—¢(x, 6) has no critical point 0 0. If w€C*(X,),

we can regard ® as a parameter and rewrite (1.2.1) in the form
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I¢(au)=fA(x)u(x)dx, w€CY (X4),

where Ax)= fei¢(’”'6)a(x, 6)do, z€X,. (1.2.5)

By our preceding remarks on oscillatory integrals, 4 is a continuous function of x€Xj,
and since we can differentiate under the sign of (oscillatory) integration as often as we like,
we conclude that 4 €C®(X,). If we recall that the singular support (written sing supp)
of a distribution is the completment of the largest open set where it is a C*® function, we

have proved

Prorositron 1.2.3. For the distribution A: u—I,(au) defined by (1.2.1) we have
sing supp A< {z€X; ¢y(x, 6) =0 for some +0}. (1.2.6)

The formula (1.2.5) also makes sense for all x€ X provided that ¢ has no critical point
as a function of 6 in cone supp «, for this is clearly all that is required in the proof of Propo-
sition 1.2.3. Thus we have the following simple result which shows that the singularities of
the distribution A are uniquely determined by the behavior of the symbol a in a conical

neighborhood of the set of points where ¢ is critical with respect to the 0 variables.

Prorosition 1.24. If a€8, s(X xRY) and a vanishes in some conic neighborhood

of the set
C={(x,0);z€ X, 0€R"\ {0}, ¢ (, ) =0}, (1.2.7)

then the distribution u— I (au) defined by (1.2.1) is a C® function.

If one looks more carefully into the proof of Proposition 1.2.2 one finds easily that the
conclusion of Proposition 1.2.4 remains valid if we assume only that for some C and ¢
with & <min (g, 1/2) we have a(z, §) =0 when |¢o(z, 8)| [8]c<C. The proof is left to the
reader, but we shall prove a stronger result under some hypotheses on ¢ which guarantee
that C is a smooth manifold.

Let T" be an open conic set in X x RY and let ¢ be a positively homogeneous function
of degree 1 with respect to § which is in C* and has no ecritical point in I'™\ (X x {0}).
Such a function will be called a phase function from now on. It is clear that the definition
of (1.2.1) given above is still valid for such a function ¢ provided that we require that
cone supp a<I'U (X x {0}).

We shall say that ¢ is non-degenerate if at any point in the set C defined by (1.2.7)
the differentials d(0¢/6,), =1, ..., N, are linearly independent. This implies of course that
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C is a manifold of dimension dim X. For such phase functions we can improve Proposition
1.2.4.

ProrosiTioN 1.2.5. Let ¢ be a non-degenerate phase function in T< X x RY and let
a €87s(X x RY), cone supp a<I'U (X x0). We assume that ¢ >0 and that either ¢ is a linear
function of 6 or that p+8=1. Then the distribution u— I (au) defined by (1.2.1) is @ C®

function if o vanishes of infinite order on
C={(=.0)€T; $g(x,0)=0}.

If a just vanishes on C we can find bEST;°¢(X x RY) with cone supp b <" U (X X 0) such that
Iy (au) =14 (bu), u€ 05 (X).

For the proof we need a lemma.

Levma 1.2.6. Let ¢y, ..., ¢y be real valued C* functions in I'™\ (X x {0}) which are homo-

geneous of degree 0, and assume that the differentials dg,, =1, ..., k are linearly independent in
C={(x,0)€T, 60, ¢)x,0)=0,7=1, .., k}.

Let a€8Sps(X xRY) where we assume that 9+ 0 =1 unless ¢, ..., ¢y are functions of x only.
If a =0 in a neighborhood of X x {0} and a vanishes (of infinite order) on O, cone supp a<
T'U (X x {0}), one can find a,€855°(X xRY), j=1, ..., k, with cone supp a,=I'U (X x {0})

such that (a,; vanishes of infinite order on C and)

a,=_§a,,-¢,-. (1.2.8)
1

Proof that the lemma implies the proposition. If we apply the lemma with ¢;=04/00;,
which are functions independent of § precisely when ¢ is a linear function of §, an integra-

tion by parts gives

I4(au) = f fe"‘““" "’%i@aj (x,0)/00,u(x) dx df.

Here the new amplitude function is of order m + 8 —g and in case @ vanishes of infinite order
on C it will also vanish of infinite order there. If the argument is repeated k times we
find that a can be replaced by a symbol of order m + k(6 —p)—> — o, k> oo, so the dis-

tribution u— I, (au) is a C* function.

Proof of the lemma. Tt is sufficient to find a local solution of (1.2.8) and then apply
a partition of unity on the sphere bundle in I'c X x R", extended to a system of homo-
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geneous functions of degree 0, to obtain a global solution. If (w,, O,) €I, 0,40, the
existence of a solution in a conic neighborhood is obvious unless (%, 0,)€C as we shall
now assume. The functions ¢, ..., ¢, are then independent functions on the unit sphere
bundle at (z,, 04/|0,|) so we can find additional homogeneous functions ., ..., ¢, of
degree 0, I=dim X + N —1, all vanishing at (z,, 0,) so that ¢,, ..., ¢, is a local coordinate
system at (xy, 6o/ |0,|) on the sphere bundle. But then the map

(@, 0) > (b1, -n bi» |0]) ER xR,

is a homogeneous diffeomorphism of a conic neighborhood of (zy, 0y) on U xR, where U
is an open ball in R’ with center at 0. By part (i) of Proposition 1.1.7 symbols of type o, &
are preserved by such maps if p+6 =1 so when this is assumed we have reduced the proof
to the case when ¢,, ..., ¢, are equal to the first coordinates i, ..., #; in X and X is a ball
with center at 0. If ¢,, ..., ¢, are independent of § the same result is achieved by a substitu-
tion which only affects the x variables and thus preserves symbols of type g, § for arbitrary
0, 0. The lemma now follows from Taylor’s formula which gives, since @ vanishes when

Ty =...=2,=0
1

k
a(x,0) =§ xjf g, (8, oo T2y, Ty, ..., 0) dE,

0

where a, = da/dx,€ S75°. The proof is complete.

Summing up, when ¢ is non-degenerate the singularities of the distribution u— I4(au)
only depend on the Taylor expansion of a on the set € defined by (1.2.7), provided that
suitable assumptions are made concerning ¢ and 8. In Chapters IT and IIT we shall study
the consequences of this more closely and also discuss how essential the choice of the phase

function ¢ really is.

1.3. Singular symbols and oscillatory integrals

The definition of the oscillatory integral (1.2.1) given in the preceding section did not
fully use the hypothesis that a is a symbol in the sense of section 1.1. Indeed, we only used
the fact that for some first order differential operator L with the properties stated in Lemma
1.2.1 we can conclude that L*(au) is an integrable function for sufficiently large values of k.
This we shall exploit in what follows.

In some constructions of fundamental solutions one needs to be able to define inte-

grals of the form

ffei"’(“’)a(x, 6)/q(x, 0)dxdb, (1.3.1)

where ¢ is homogeneous with respect to 6 of degree m, say, and may have simple real zeros.
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These form an obvious diffieulty in defining the integral. To bypass this singularity we
would like to integrate over a suitable cycle in the complex domain instead of over R™.
Assume for simplicity that ¢, ¢ and a are analytic with respect to 0 in a neighborhood of
the real domain and that there is a vector % such that {grad, ¢(x, ), ) =0 when gq(x, §) =0
and H ERM™N 0, z€X. (It will in fact be necessary to let the direction of % vary and in case
the data a, ¢, ¢ are not analytic make suitable “almost analytic’” continuations of them.
These questions will be discussed elsewhere, but here we only wish to motivate what

follows.) Our hypotheses imply that
lg(x, 6+3n)| = |6]™ q(x, 6/|6] +in/{0])] = c|0]™?

for large |0], so if we replace § by 6+in in (1.3.1) we shall for large 0 no longer have
any infinities in the integrand. We shall now examine to what extent the function

(z, 0)—~a(x, 0+1in)/q(x, 0 +in) has the properties of a symbol. We have for example
oq~(x, 0 +1in)/ox; = — q%6q/ox;

and we can only be certain that this can be bounded by |6|™ %™~ = |§]2-™. Pursuing this
argument one will find that 1/g(x, 0 +11)€857" which does not suffice for application of

Proposition 1.2.2. However, we can say more about the action on ¢! of some operators
L =% a;x, 0)8/e0;,+Z b;(x, 0)0/ox,;+c¢ (1.3.2)

with ,;€8° and b;,c€S-1. Indeed, if X a,09/00;+2 b;0q/0x;=0 when ¢=0 we obtain
|Lo%| <C|q||6]~* if L° is the principal part of L, and this leads easily to a proof that
L(1/q(x, 0 +1in)) €8S57. More generally, application of k operators of this type will always
give an element in S§{" %,

We have made the preceding discussion rather brief for it has to be reexamined
after a precise definition of “almost analytic” continuation has been introduced. How-
ever, the preceding arguments should suffice to motivate the interest of the following
developments.

Let % be the set of all first order differential operators of the form (1.3.2) with
a,€8°(X xR") and b,,c€81(X xR"). This is a module over the ring S%X xR¥). If
a€SP(X xRY) and LEY we have La€S;¢(X xR¥) in view of Proposition 1.1.6. By
iteration it follows that L, ... L,a €Sy "X xRY) if L,, ..., L, €.%. Conversely, if we just
know that L,... La€S; (X xR¥) for all L,, ..., L,€%, taking these operators to be
differentiations with respect to x; and 6, variables we conclude that @ €S7(X x R"). This
connects our earlier definitions with the following one.

Definition 1.3.1. If F is a subset of ¥ we denote by 7Sy (X x R¥) the set of all
@€ S§H(X x RY) such that for arbitrary Ly, ..., L,€F, k=1,2, ... we have
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L,...L,a€ 8§ * (X x RY). (1.3.3)

It is clear by the definition that La€fSy ¢ if LE F and a €78}, If we set ™ =S"F
we also have #™FS;" < F8;* ™, For let LE ™, a€7S;". Then we have a € §§ so La€ S§*™.

Furthermore, if L,€ F,

I3
Ly..LLa=LL,..Lua+ 3 Ly...L,_[L,, L1 L., ... Lia.
j=1

We shall prove by induction over k that this is in S§*™ . This is clear for the
first term since L,...L,a€85 . Since Lj,... L,a€FS;" ~* "¢ and the commutator
[Lj,L]E,?'"_l, the inductive hypothesis shows that the terms in the sum are in
gr-irm—k=pe-G-De - gptm'~ke which proves the assertion. If b€ 8™ it follows similarly

that ba € 78, ™, for with the same notation we have
3
L,...Lyba=bL,... Lia+ > Ly ... Ly [L;, ] Ljyy ... Lya, (1.3.4)
1

and [L;, b]€ 8™, so the same proof by induction can be applied. It follows in particular
that if F’ is the 8° module generated by F and S™', then ¥'SJ* =*8;". We can therefore
always assume without restriction that ¥ is a module containing S~. If L € F' it follows
then that the principal part L)€ F, hence [L;b]=Lb€FSy~¢ if b€FS". An induction
proof based again on (1.3.4) therefore gives that ba € *S7*™ if b€ S and ¢ € FS;". Summing

up, we have proved

ProrositioN 1.3.2. If F' is the 8° submodule of C generated by F and S~ (consid-
ered as a set of differential operators of order 0), then TSy =8y, If a €*8), b€ TSy, we have
ab€F8y ™ and if LE ¥ we have La€¥S).

Note that the proposition shows that L, ... L,a€ S* " if L, ..., L € £ and j of these
operators belong to F. This could also have been taken as a definition and saved much
of the proof of Proposition 1.3.2.

If 4 is a real valued function €S'(X x R¥) (possibly only for large |6]) and if for some
LE€F we have 'Le'® =€, we can define the oscillatory integral (1.2.1) for all a €787(X x RY).
It is a distribution of order < kif m—ko<—N. Indeed the proof of Proposition 1.2.2

does not require any change.

Example 1.3.3. Let 2 be a closed conic 0® submanifold of X x (R¥\ {0}) and let F be
the set of all L€ % whose principal part defines a vector field tangential to X at every point
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in 2. (Equivalently, if L0 is the principal part of an operator in ¥, then L% vanishes on X
if @ does. Thus we are considering a generalization of the situation discussed at the
beginning of the section.) Then there exists an operator L€ ¥ with the required properties
if and only if neither ¢ nor the restriction of ¢ to X has a critical point. Indeed, as in the
proof of Lemma 1.2.1 we have LEF if and only if M=!L€EF, and if we write M =
Z @,0/00;+ X b;0/ox; + ¢ the problem is to choose the vector field (a, b) tangential to X on X

and such that
(X a;04/00,+ X b;0p)0x;) +¢ = 1. (1.3.5)

Since a;€.S° and b;, ¢ €S- this requires that ¢ has no critical point and that the restriction
to 2 has no critical point. Conversely, when this is true we can find a solution of (1.3.5)
in a conic neighborhood of any point, such that ¢ =0 and a;, b, are homogeneous of degree
0 and —1 respectively, by just choosing a vector field tangential to £ which does not
annihilate ¢ at the point in question. Application of a partition of unity, introducing the
solution ¢c=1, a;=b,=0 near 0, then gives the assertion.

A special case is obtained when ¢(z, §) =<z, 6> and for a splitting of the 0 variables
0 =0y ..., 0y 4), 0" =Oy_ry, ... Oy) we have X ={(x,6",6"); (6',0"') =0 and §’ =0 or 6" =0}.
This occurs in the study of the multiplicative properties of the index of elliptic pseudo-
differential operators (cf. Palais [26], pp. 206-209).

We shall use the notation =S instead of ¥S when F is defined by X as in Example
1.3.3. This should cause no ambignity.

When a €87, the singularities of the distribution defined by (1.2.1) may be caused
either by points with ¢;=0 or by points in T with ¢5=+0. We shall investigate the latter
contributions. In doing so we assume that the manifold X is transversal to the fibers
x =constant so that the sets 2, ={0; (x, 0)€X} are manifolds of the same codimension as
2 at every point. Let (zy, 0,) €X, ¢g(xo, 0,) =0, and let k be the codimension of T there.
Choose a labelling of the f coordinates so that with 6’ = (6, ..., Oy_.) and 0" = (Oy_sr1, .-, Ox)
the plane dr —=df’ =0 is transversal to 2. Then we have =0, for X, being a cone, the vector
(0, 6p) would otherwise lie in the tangent plane of X, at 0, In a neighborhood of
(%o, 0o) the manifold X is therefore of the form 6" =y(z, ') where g is homogeneous of

degree 1 with respect to 6’ and defined in a conical neighborhood of 65. In the integral

(A, u)y= ffe”’“' D a(x, 0) u(x) dxdo

we assume that the support of @ belongs to such a small conic neighborhood of (z,, 6,)
that we can introduce 0" —y(2, §') as a new variable instead of §” there. This transforms X
to the manifold X¢: §” =0. The new amplitude a,(z, 6) =a(z, 0’, 0" +y(, 6)) will belong to
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'Sy and vanish when [0”] >|6’|, say. Let F° be the corresponding subspace of £ de-
fined in Example 1.3.3. The operators in F® are then those which when §” =0 do not
involve differentiation with respect to the §” variables.—The new phase function ¢,(x, §) =
é(x, 0, 0" +ylx, 0)) will be defined in a conic neighborhood of cone supp a,, we have
$16(%g, B0, 0) 40 and

CAu)y = fj‘ei‘ﬁ’“'e)al (z, 0) u(x) dzdb,

If ¢1g (%9, 0o, 0)==0 and the support of a is so small that this inequality remains
valid in cone supp a,, we can prove that 4 €C® by using the proof of Prop. 1.2:3. In fact,
the derivatives of a, with respect to the 6’ variables are as well behaved as if ¢, were in
8y. If, on the other hand, $14 (2, 0o, 0) =0 we have instead ¢1qg-(2y, 0o, 0) ==0 and we may

assume that this is true in a neighborhood of cone supp o,. Now we can write

(A, uy= ffei""(" O Op(x,0") u(x) dedb’,

where b(z,0') = fe“""“’ 0,600 0.0, (2,6",0") dO".

Here we may assume that a, =0 when |6’| <1, for modification of @, on a compact set only
changes 4 by a C® term. We wish to prove that b€S;**. Since |6'| <|0] <2|6’| in cone
supp @, and |a,(z, 8)] <C(L+|0])™, it is clear that |b(z, 6')] <C(1+)6’])™"*. To estimate

the derivatives we note that

N
Ay (2,6',0") — ¢y (2,6, 0))/0x; =N_zk+1aﬁ, (%,0) 0,94,(x,0)/60,=0"| L; ¢,

where L;€ F°. A similar result without the factor || is valid for the derivative with

respect to 0; when <N —k. Now we obtain after an integration by parts
ob(x,0')/ox;= fei("’“’”' .00 6@ 0.0 9" | (CL, + 0" |1 0/0x,) ay (x, 6) 46"

and a similar formula for 8b(x, 6')20; when § <N —k. Here *L;+ |0'|-10/0x; belongs to FO
(after suitable modification when |6’| <1). Application of 8/26,, j=1, ..., N —k, or 8/éw;
to b is thus equivalent to operation on a, by an operator in F° followed by multiplication
by |6'| in the case of 8/ox;. This gives immediately that b€.S7"*. Summing up, we have

proved

THEOREM 1.3.4. Let a €E8Y vanish in a conic neighborhood of the set where ¢g=0;
assume that in a neighborhood of cone supp a the restriction of ¢ to X has no critical point and
that the manifold E can be expressed in the form 0" =vy(x, 0') where §'=(0y, ..., Oy_;) and
0" =(Oy_ss1s - Oy). Then the distribution A defined by

7— 1712906 Acta mathematica 127. Imprimé le 2 Juin 1971
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A, uy = ffei¢("o’a(x, 0) u(zx)dzdd, wu€ 05 (X)

can also be defined by means of the phase function $(x, 8, w(z, 0')) and an amplitude bESTH .

From the preceding result one should not conelude that there is no need to consider
singular symbols. The new features are caused by points in the set & where ¢5=0. We
leave for the reader to construct an example of this for example by means of the special
case of Example 1.3.3 mentioned at the end of it. We shall also encounter natural examples
in part II.

As in section 1.2 it is easy to extend the preceding discussion to operators depending
on parameters. Indeed, let ¢, be a continuous function of a parameter t € T with values in
C°(X x (R"™ {0})) and let Z, be a conic submanifold of X x (R¥\ {0}) which also depends
continuously on ¢. This means that locally in 7' x X x (R¥\ {0}) we can define %, by equa-
tions gi(x, 0) =... =qf(x, §) =0 where ¢/ is a continuous function of ¢ whose values are
(' functions of (z, §) with the differentials of ¢, ..., ¢ linearly independent. We assume
that neither X, nor the restriction of ¢, to X, has any critical point. Let F be the set of all
continuous maps L: T'—.% such that the corresponding vector field is tangential to X, for
every ¢ It is easy to see that one can choose L€ F so that L, exp i¢, = exp i¢, for every ¢.

Defining =87 in the obvious way using the operators in ¥, we conclude that
er""”(”'e)at (x,0) w(w) dedf, uw€CF(X),

is a continuous function of f. Again this allows passage to the limit under the integral sign,

differentiation with respect to parameters and so on.

1.4. Definition of Fourier integral operators

Let X, Y be open sets in R"* and R"7 and let ¢ be a real valued function of (, y, 0)€
X x Y xR" which is positively homogeneous of degree 1 with respect to § and infinitely
differentiable for 6+ 0. With a symbol a €S75(X x ¥ x R¥), >0, § <1, we wish to consider
the operator defined by the integral

ff W@y O(x,y,0) u(y) dydd, w€CF(Y) z€X, (14.1)
or a weak form of (1.3.1)

{Au,v> = f” B@v-0g(x,y,0)v(x) uly) dedydd, w€OF(Y),v€0F(X). (14.2)
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To give a meaning to these integrals we apply the results on oscillatory integrals (depending

on parameters in the case (1.4.1)) proved in section 1.2. The conclusions are as follows:

TueorEM 1.4.1. (i) If ¢ has no critical point as a funciion of (x,y, 0) with 640
then the oscillatory integral (1.4.2) exists and is a continuous bilinear form for the C& topo-

logies on u, v if

m—ko < —N, m-—k(1—-0)< —N. (1.4.3)

When (1.4.3) is valid we thus obtain a continuous linear map A from C§{(Y) to D"(X) which
has a distribution kernel K, €9'"(X x Y) given by the oscillatory integral

K, (u)= jffei¢(“'y'e’a(x,y,0) w(x,y)drdydl, w€COF(X x Y). (1.4.4)

(ii) If for each fixed x the function ¢ has no critical point (y, 0) with 6 =0, then (1.4.1)
s defined as an oscillatory integral. When (1.4.3) ts valid we obtain a continuous map
A: C§(Y)—~C(X). By differentiation under the integral sign it follows that A s also a continuous
map from C{(Y) to C/(X) if

m+N+j<ko, m+N+j<k(l-96). (1.4.5)

(iii) If for each fixed y the function ¢ has no critical point (z, 0) with 6 -0, then the adjoint
of A has the properties listed in (ii) so A is a continuous map of &(Y) into D X) when
(1.4.5) 4s fulfilled. In particular, A defines a continuous map from &'(Y) to 9'(X).

(iv) Let Ry be the open set of all (x, y) EX x Y such that $(z, y, 0) has no critical point
0 =0 as a function of 6. Then the oscillatory integral

KA (x»?/) :few(x,y.@)a(x’y,e) de, (%, y)eR¢: (146)

defines a function in C®(Ry) which is equal to the distribution (1.4.4) in Ry. If Ry=Xx Y,
% follows that A is an integral operator with a C® kernel, so A is o continuous map of &'(Y)
into C°(X).

The proof is an immediate consequence of Proposition 1.2.2 and the remarks fol-
lowing it.

Example 1.4.2. Pseudo-differential operators correspond to the function ¢(z, y, 6) =
{e—y, 0> (nz=ny=N). Then (i), (i), (iii) are fulfilled and B, is the complement of the
diagonal if we take X =Y. We shall study this case extensively in Chapter II.
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Ezample 1.4.3. In the introduction we saw that the study of the Cauchy problem

for the wave equation leads to the function
$(@, t; ¥, 0) = (x—y, 6> +¢|6].
Here ny—~1=ny=N and the variable in X is denoted by (x,¢). Then (i), (ii), (iil) are

fulfilled and (R, consists of all (x, ¢; y) with |2 —y|®>=#* This means that (x, ¢) lies on the
light cone with vertex at (y, 0).

Definition 1.4.4. A real valued function ¢ of (z, y, 0)€X x ¥ x R¥ which is a C* func-
tion for =0 and positively homogeneous of degree 1 with respect to 0 will be called an
operator phase function if for each fixed x (or ¥) it has no critical point (y, 0) (or (z, 6))
with 0+0.

When ¢ is an operator phase function the hypotheses of parts (i), (ii), (iii) of Theorem
1.4.1 are thus fulfilled. Let C; denote the complement of £ in X x ¥, that is, the projection
on X x Y of the conic set

C={(x,y,0)€X x ¥ x (R"™\{0}), do(w, y, 8) = 0}. (1.4.7)
From (iv) in Theorem 1.4.1 it follows then that
sing supp Au < Cy supp u, u€8'(Y) (1.4.8)

where the right-hand side is defined by considering O, as a relation between points in ¥

and in X, thus
Cy K = {x; (x, y) €0, for some yEK}.

In fact, if K =supp » and K’ is a compact subset of X which does not intersect Oy K, we
have K'x K< R4 so we can find neighborhoods Q' > K’, Q> K such that Q' xQ< Ry,
Hence Au€C=(Q') which proves (1.4.8). Using (ii) in Theorem 1.4.1 we can improve
(1.4.8) further. For if () is any neighborhood of sing supp %, we can make a decomposition

u=v+w where supp v<=Q and w€C>®. Since Aw€C® we obtain

sing supp Au = sing supp Av < C supp »,
so we have proved

TurorEM 1.4.5. If u€&'(Y), then
sing supp du < U, sing supp . (1.4.9)
Example 1.4.6. For pseudo-differential operators (see Example 1.4.2) this means that
sing supp Au < sing supp «,

which is usually called the pseudo-local property.
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Note that Propositions 1.2.4 and 1.2.5 can be applied to show that modulo operators
with C° kernel the operator 4 is determined by the behavior of the symbol a at the set ¢
defined by (1.4.7).

If we replace the results of section 1.2 by those of section 1.3 we obtain an analogue
of Theorem 1.4.1 for operators with singular symbols. Let X be a ¢ conic submanifold of
X x Y x (R {0}), and let a €ZS7(X x ¥ x RY).

THEOREM 1.4.7. (i) If neither ¢ nor its restriction to X has a critical point (x,y, 0)
with 0 =0 then the oscillatory integral (1.4.2) exists and s a continuous bilinear form for the

C% topologies on u, v if
m—ko< —N. (1.4.10)

When (1.4.10) is valid we thus oblain a continuous linear map A from C§(Y) to @(X) which
has a distribution kernel K ,€2'(X x Y) given by the oscillatory integral (1.4.4).

(il) Assume that the fibers x =constant intersect X transversally so that the corresponding
intersection 2, is a manifold of the same codimension as X at every point. If for each fixed x
the function ¢ as well as its restriction to X, has no critical point (y, 0) with 6 =0, then (1.4.1)
18 defined as an oscillatory integral. When (1.4.10) is valid we oblain a continuous map
A: C{(Y)—C(X). By differentiation under the integral sign it follows that A is also a
conbinuous map from OY(Y) to C/(X) if

m+N+j < ko. (1.4.11)

(ili) Assume that the fibersy =constant intersect T transversally so that the corresponding
intersection X, is a manifold of the same codimension as X at every point. If for each fived
y the function ¢ as well as its restriction to X, has no critical point (x, 0) with 6 %0, then the
adjoint of A has the properties listed in (ii) so A is a continuous map from &'(Y) to 2'%(X)
when (1.4.11) s fulfilled. In particular, A defines a continuous map from &'(Y) to 2'(X).

(iv) Let B, be the open set of all (v, y)€X x Y such that X intersects the fiber over (x, y)
transversally in X, , and neither ¢ nor its restriction to X, , has a critical point 6 +0. Then
the oscillatory integral (1.4.6) defines a function in C®(Ry) which is equal to the distribution
(1.4.4) in R,.

If we let Cy be the complement of Ry it follows again, when ¢ satisfies the hypotheses
in (ii) and (iii), that (1.4.9) is valid.

Example 1.4.8. Let g€C0°(X x ¥ x (R"™\_{0}) be homogeneous with respect to the last
variable, grad ¢+0 when ¢=0, and let X be the zeros of ¢. Then the conditions in

Theorem 1.4.7 reduce to

grad ¢ 40 and the covectors grad ¢, grad q are linearly independent when ¢ = 0.
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Here gradients are to be taken with respect to (z, y, 8) in condition (i), (y, #) in condition
(ii), (, 6) in condition (iii) and ¢ in the definition of Ry in (iv). In particular, let (z, y, 0) =
{w—y, 0> and assume that grady¢=+0 when ¢=0. The conditions (i), (ii), (iii) are then
fulfilled over a neighborhood of the diagonal.

IL. Pseudo-differential operators and related classes of distributions
2.0. Introduction

In this chapter we shall review the calculus of pseudo-differential operators using the
techniques developed in Chapter I. This leads to several simplifications. In particular, in
this framework it is easy to prove the invariance of pseudo-differential operators using an
idea of Kuranishi (see also Friedrichs [10] and Nirenberg [24]). The simplicity of this proof
also allows one to give a direct global definition of pseudo-differential operators on a mani-
fold which is particularly useful when one has to discuss operators depending on parameters.
A related definition has been discussed by Bokobza [4].

The kernel of a pseudo-differential operator in X has its singular support in the diago-
nal of X x X. In section 2.4 we shall see that oscillatory integrals with a linear phase func-
tion lead one to attach to every submanifold Y of a manifold X a class of distributions
with singular support in Y. With these we can associate a “‘principal symbol”. The
discussion of these distributions and indeed the whole chapter is to a large extent a prepa-
ration for Chapters IIT and IV where the corresponding questions for general non-degene-
rate phase functions will be studied.

M. Sato [27] has introduced for his hyperfunctions on a manifold X a closed subset
of the cosphere bundle which describes not only the location of the singularities but also
some of their harmonic analysis. His definition involves a considerable amount of
cohomological machinery but for a distribution one can use pseudo-differential operators
to give a very simple definition of a set with similar properties. We call it the wave front
set of the distribution. Section 2.5 is devoted to this concept which clarifies much of

the contents of this paper and will be indispensable in part II.

2.1. The calculus of pseudo-differential operators

If X is an open set in R™ we shall write LJ5(X) for the class of Fourier integral
operators (1.4.1) with the phase function ¢(z, y, ) =<{z —v, 6> in X x X x R" and a symbol
a€875(X x X xR™. As we shall see in a moment, this agrees with the definitions given in

[13] at least when §<p, so we shall call these operators pseudo-differential of type g, d.
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A pseudo-differential operator
Au(x)=ffei<’_y'e>a(x,y,0)u(y)dde (2.1.1)

is called properly supported if both projections supp K,—~X are proper, that is, if

{{x,y)Esupp K ,; x€K or y€K}

is compact for every compact set K< X. (Recall that K, is the distribution kernel of 4
given by (1.4.4).) It is clear that Au can then be defined without restrictions on the support
of u. Thus 4 maps C°(X) into 0°(X) and 2'(X) into %’(X). Furthermore, 4 maps C§°(X)
into C§°(X) and &'(X) into &'(X). If y is a function in C°(X x X) which is equal to 1 in a
neighborhood of supp K, and the projections supp ¥y =X are also proper, it is evident that
the operator 4 is also defined by the symbol a,(z, y, 8) =x(z, y)alz, y, §). Note that

{(x, y); x or yEK and (z, y, 6) Esupp a, for some §}

is then relatively compact in X x X for every compact set K< X. We shall say that a
symbol with this property is proper. Every pseudo-differential operator is the sum of one
with a C® kernel and one which is properly supported. This follows immediately if we
choose y €C®(X x X) so that y=1 in a neighborhood of the diagonal and y is properly
supported. In fact, the symbol (1 -—y)a defines an operator with C® kernel according to
Proposition 1.2.4, and ya is a proper symbol.

When 6 < we shall now derive an expression for a properly supported pseudo-diffe-
rential operator 4 which will connect the definition used here with that given in [13].
Thus let A be defined by (2.1.1) where a is proper. We may then consider 4 as an operator
from C=(R") to 0°(X)—which of course strictly speaking is the composition of the restric-
tion map to X and 4. Applying 4 to the exponential function e,(y) = exp i<y, >, we ob-

tain Ae,(x) =0,(z, n)e,(*) Where
o4z, )= Jfa(x, y,0) et F v OG-z gy g0 — ffa(x, x+y,n+0)e U Pdydo.

The oscillatory integral here may be interpreted as a repeated integral taken first with

respect to y and then with respect to 6. We set

b(x,y,n) =alz, x+y,7n)

and introduce the Fourier transform
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b(x,0,%) = fb(x, y,m)e <Oy,

Since a € §;' 5 and a is proper, we obtain for every compact set K — X
| D262 DY b(x,0,7)| < O(L+|y|ymHodetiboel  ye g, (2.1.2)
hence for any positive integer »

| D, D2 b(w,0,5)| < C(1 + || )ym+oded+n=elvl(] +|6]|)~. (2.1.3)
Now we have oa(2,m) = f@(w, 6, n+6)do.

Since § <1, it follows from (2.1.3) that ¢, and any one of its derivatives can be bounded
by some power of (1+|7n|). To obtain the asymptotic behavior of o, when 27— we

form the Taylor expansion of b(z, 0, 7+0). In view of (2.1.3) we have

|B(x, 6, +0)— > (iDn)éi)(x,e,n)ea/a!|<0|0|N0s1t1p1(1 + |+t reeN (1 +0]) .
N <t<

lef<

Here » may be chosen as any positive integer or 0. With y=N we obtain the bound
C(1+|n|)™ @@V if 10| <|n|/2, and if we choose » large we get a bound by any power

of (1+]6])* if |n]| <2|6]. Hence Fourier’s inversion formula gives
|oa(e,m)— (2%)"| EN (iD,)* D5b(@, y, m)oc! |y=o| < C(L +|y] )t nre-0%,
In view of Proposition 1.1.10 it follows that ¢,€ Sgs(X x R®) and that

oa (@)~ (2a)" 3 (iD,)* Dy, y, m)lac! -, (2.1.4)

If u€ #(R") we have Fourier’s inversion formula

uy) = (2n)‘"f€n (y)i(n) dn.

Since A4 is continuous from C°(R") to C*(X), we can apply 4 under the sign of integration
and obtain
Au(x) = (2n)_"fei<x'">o',4(x, n)d(n)dy, wEFL R, z€X. (2.1.5)

In the left-hand side we should interpret » as the restriction of « to X. Obviously (2.1.5)

determines ¢, uniquely. Summing up, we have proved
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TueorEM 2.1.1. If A is a properly supported operator €L} 5(X), §<g, then A can be
written in one and only one way in the form (2.1.5). Here 0,€8y s(X x R™) is asymplotically
given by (2.1.4) and is called the symbol of A.

Incidentally we note that for the phase function ¢(z, y, 0) =<{x ~y, 6> we have now
given another proof of Proposition 1.2.5.

Conversely, every operator of the form (2.1.5) with ¢, €Sy sis in L7 s(X) by our present
definition, for (2.1.5) is equivalent to

Au(x) = (2n)"”fj‘ei<x_””’> oalz,p)wly)dydy, u€CFR). 2.1.5Y

Hence the definitions used here are equivalent to those used in [13] when § <g, which we
assume from now on. If we note that ¢,€S8-* if and only if K,€C®, the preceding
theorem shows that the map 4o, defined there together with the map o,—~ 4 given by
(2.1.5) leads to an isomorphism

L3 o/ Lg 5 —~ 8751855 .

We shall call a(z, §) €875(X xR") a symbol of A €LY s(X) when their equivalence classes
correspond in this isomorphism.

The formula for the symbol of the transpose of A given for example in [13] is an
immediate consequence of Theorem 2.1.1. Indeed, if 4 is properly supported and we define
the transpose of 4 by (Awu, v>=(u, *4v), then we obtain from (2.1.5)'

"Av(z) = (2n)‘"ffe'“"”‘ P o4y, n) v(y) dydy

or *Av(w) = (Qn)“"ffei<x‘”'”> o4y, —n)v(y) dydn.

Since *4 is properly supported it follows from Theorem 2.1.1 that the symbol is given by
oy, (%,1)~Z (iD,)* Dioa(x, —n)fal. (2.1.6)

The formula extends immediately to the symbols for arbitrary 4 € L7,.

Using the adjoint operator we can also get another useful representation for a properly
supported pseudo-differential operator, already used by Kohn and Nirenberg [19]. In
fact, if

"Av(y) = (2 n)""fei<y'5>0' (,£) 8(§) dé,

then A, — @) f f 0 ' (y, &) 8(E) uly) dEdy,
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which means that Au is the Fourier transform of

£~ (2 n)‘"femf%f (4, €) uly) dy.
Writing G 4(y, £) =o' (y, — &), we have then with the notation of oscillatory integrals

Au(x) = (2n)_"f f VDG (y, &) uly) dy dE

N i -
or equivalently (Au) (&) = fe"‘<1"5>0'A (y, &) uly) dy. (2.1.7)
If A4 is of the form (2.1.1), then

Ga(y, &)~ (22)" X (—iDg)* Dia(2,y, &)lo! o=, (2.1.8)

Now we shall compose 4 with another properly supported pseudo-differential operator
B. Using (2.1.5) for B and (2.1.7) for 4, we obtain

BAu(z)=(2 n)_"fje“”_l"bas (@, &) 04y, E)uly) dydE, =€ X,u€ (5 (X)

which proves that BA is a pseudo-differential operator. For the symbol we have by (2.1.4)

0pal®, ) ~ 2 (iD,)* Dg o 5(2, NG 4 (4, N)/ot! |yms-

In view of (2.1.8) we can introduce here

G4y, m)~2 (=D, DYy ouly, )/,
which gives

pa(%, M)~ Z (iD,)* Df o5, 0) (~iD,)P Df o4ly, )/ox! Bl],-
=2 (iD,)"o5(®, n)(—iD,)’ DF Po (e, m)/a! .
The right-hand side can be simplified by means of the binomial theorem

> pFlal pl=(n+0)[y!

atf=y

if we note as in the proof of Leibniz’ formula that a factor ¢D, to the left of a product is
equivalent to the sum of a factor iD, acting only on the first factor and one acting only

on the second factor. This gives the familiar result
054(%, ) ~ L (i D) o 5(x, 1)) DF 04(, n)/y!. (2.1.9)

Obviously this remains true if only one of the operators 4, B is properly supported.

We shall now consider the effect of a change of variables. Let
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w XX,
be a diffeomorphism between open sets in R” with inverse x,, let A€L7 ;(X) and set
Ayu = (A(uox))ox;, u€CF(X,).

This means, if 4 is of the form (2.1.1), that

ff 1D 9 (3¢, (), 1, 0) u(2(y)) dy dO

or after a change of variables
Ajulx)= ffe"”“' VO (e, (), %, (y), 0) | D, ()| Dy| wly) dy do,

where $(x, ¥, 6) = oy () —3,(y), 8> and Du,(y)] Dy =det »;(y). This is again a Fourier inte-
gral operator but the phase function has been changed. That 4,€L} ;(X,) follows for

suitable p and é from

TaEOREM 2.1.2. Let ¢ be a phase function in X x X x R" such that ¢(x, y, 0) is a linear
function of 0 and gz, y, 0) =0 is equivalent to x =vy. Every operator of the form (1.4.1) with
a €8y s(X x X xR") is then in Ly 5(X) if 1 —p<d<p.

As mentioned in the introduction we shall give a simple proof suggested by Kura-

nishi. The main point is the following

ProrosiTioN 2.1.3. Let ¢ be a phase function satisfying the hypotheses of Theorem
2.1.2. For some neighborhood Q of the diagonal in X x X one can then find a C®° map
w: Q—GL (n, R) such that

$(@, 4, (@, 9)0) = @y, 6>, (@, y)€Q. (2.1.10)
We have det y(x, z) det zo(@, ¥, 0) |-z = 1.

Proof. The hypothesis means that
(ﬁ(x! 3/, 0) = 2 ¢f(x> y)ejy
where ¢,(x, ) =0, but, since ¢ is a phase funection,
% 0,0¢,(, y)/ox, +0

for some k if x =y and 0 +0. Thus det (6¢;(x, ¥)/02,) =0 when z=y. By Taylor’s formula

we have

¢j(x’ y) =Z ¢ki(x7 y) (xk“yk):
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where ¢,;€C® near the diagonal. When z=y we have ¢z, y)=0¢,(x, y)/ox, thus
det (¢,;(x, x)) =det (0,(, y)/oz,) +0 then. Now we have

(=, y, 0) = X s, )0;(xp —y) = <x—y, O(w, y)0).

If p(x, y) is the inverse of ®(z, y), which is well defined in a neighborhood of the diagonal,
it follows that ¢(x, ¥, p(x, y)0) ={x—y, ) and the proposition is proved.

The lemma means that apart from vector bundle maps there is only one function
¢ satisfying the hypotheses of Theorem 2.1.2 near the diagonal. This will be the starting

peint for our definition of pseudo-differential operators on manifolds in section 2.3.

Proof of Theorem 2.1.2. In view of Proposition 1.2.4 it is no restriction to consider
only operators A of the form (1.4.1) where a(x, y, 0) €Sy 5(X x X x R") is properly supported
and vanishes outside a closed subset of X x X contained in the set  of Proposition 2.1.3.

Now a change of variables gives

Au(x) = ffe“"‘y"”a(x, ¥, p(x,y)0) |det y(x, y)| uly) dy do.

In view of Proposition 1.1.7, part (ii), the amplitude function here belongs to Sz s(X x X x
R"™) which proves the theorem.

We shall now return to the phase function

¢(x: Y, 0) = <M1($) —Hl(y)5 0>

which occurred in the change of variables, for we wish to determine the transformation

law for the symbol. With the notations used above we obtain

Ayu(@) = ffe“’"” P a(xy (%), %1 (), p(@, y) 0) D (x, y) uly) dy db,

where D(z, y) = |det »,'(x)| |det y(z, v)|,

thus D(z, )=1. (That D(x, ) =1 means precisely that dydy is an invariant measure on
the cotangent space of X which is of course very well known.) If we take a(x, y, )=
(27) "o 4z, m), it follows that

04, (@, 1) ~ 2 (D))" D 04 (21 (), (=, y) 1) D@, y)/ox! [o-. (2.1.11)

With the usual notation o (z,m) = (D,) P04 (%, 1),

the general term in (2.1.11) will be a linear combination of terms of the form
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(@, y) 5 o (e, (), p(=, y) )

with Iyl + e <|Bl< 2|« (2.1.12)

The second inequality is obvious. To prove the first we note that application of D, to a
function of this type does not change |f| - |y| while application of D, increases this
difference by 1. From (2.1.12) it follows that

Iyl <18l =1l <81 —B1/2 = |B/2 (2.1.13)
Adding the terms in (2.1.11) in a different order we therefore obtain in view of (2.1.13)
O, (2(2), ) ~ X 0D (w, % () ) g (@, 1)/ B! (2.1.14)

where ¢4 is a polynomial in 5 of degree <|f]/2,
dolx, ) =1. (2.1.15)

Since ¢z does not depend on A4, we can determine ¢z by choosing 4 as a differential operator.,

Then we have
Oy s M gy = €YD A VD | = e DD g (5 D) IO
Here we introduce the Taylor expansion
#(2) = (@) +x' () (2 — ) +(2),
where »;(z) vanishes to the second order when z=x. We have
(@), > = Celw), > — <, o (@) + <2, B (@) + o), M,
80 in view of Leibniz’ formula we obtain (2.1.14) with

b5 (@, m) = DEt ™| (2.1.16)
and with no other polynomials ¢5. Note in particular the first few polynomials:

$pl@,m) =0, |Bl =1;  ¢sla,n) = DEiln(@), n), [B]=2. (2.1.17)

These formulas are also given in [13] where the proof is different and leads directly to
(2.1.16).

The calculus we have given here is exact modulo operators in L=® and symbols in
8-, However, it is complicated by the presence of infinite sums in (2.1.6), (2.1.9), (2.1.14).
Now the terms with o =0 in these sums are of order <m-+(6—g), m+m’+(d—p) and
m+1—2g respectively if m(m') is the order of A (resp. B). In the case of (2.1.14) we have

assumed that ¢ +3>1 80 1 —2p <4 —g. We can therefore obtain a simpler but cruder calculus
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if from the isomorphism L7 ;(X)/L, 5 (X) =85 (X xR /8.8 (X xR") we deduce the iso-
morphism L7 5(X)/Ly 59 2(X)—> 85 s(X x R")/SF@ (X xR™. It A€Ly, and a€Sy, we
shall call @ a principal symbol of A4 if the residue classes of 4 and a correspond to each
other in this isomorphism. If a(x, §) is a principal symbol of 4, then a(x, —&) is a principal
symbol of ¥4, if b(z, &) is a principal symbol of 4 then b(z, &)a(x, £) is a principal symbol of
B4, and if A4, is obtained from A4 by a change of variables as discussed above, then a
principal symbol of 4, is given by a(<1(z), %/(x)&). In the generalizations of pseudo-
differential operators which we shall discuss later on we shall only develop an analogue

of this simple calculus.

2.2, The continuity of pseudo-differential operators

The estimates for operators in Ly 5( X)) which we shall prove here have been given before
in [13], and a variant of the proofs there has been published by Kumano-go [20]. Our
purpose here is to show that they also follow quite easily from the calculus which we have
established in section 2.1. We shall restrict ourselves to the L? continuity of operators of
order 0 and refer to [13, section 5] for the continuity of operators 4 €L} ; from H, to
H_.,, which is an easy consequence.

We shall write

(u,v) = fm?dx

for the scalar product in L*(X) and denote the corresponding adjoint of the operator
A€LY 5 by A*. Thus (Au, v)=(u, A*) if u, vECF(X), and we have

Au]®* = (Au, Au) = (A*Au, u).

THEOREM 2.2.1. Assume that A€LY 5(X) is properly supported, § <o, and that for every
compact set K< X L
lim sup |o,(z,9)|< M. (2.2.1)
7> rek
Then there exists a self adjoint integral operator R with properly supported kernel € C®(X x X)

such that
(Au, Au) < M*(u, )+ (Ru, w), u€ 0g(X). (2.2.2)

Proof. We shall prove that there exists a properly supported operator B=~Lj;(X)
such that

A*A+B*B—-M?>=R
has a C® kernel. Since
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(Au, Au) +(Bu, Bu) = M?(u, u) + (Ru, u)

this will prove the theorem. Now a principal symbol of M*— 4*4 is equal to M — | o 4(x,%)|?,

so the theorem follows from

ProrosiTioN 2.2.2. Let CE€L, 5(X) be properly supported, C*=C, and assume that

for every compact set K< X
lim inf Re o¢(z, %) >0. (2.2.3)

>0 zeX

Then one can find BEL 5(X) so that B is properly supported and B*B—C =R has a C®

kernel.
Proof. By Proposition 1.1.8 we can find a real valued symbol b,€Sg 5(X) such that
[bo(@, ) |* —Re oz, ) =0

for large |n| when x belongs to a compact set. (Note that the symbol of €' —C* is 2{ Im o
modulo S5, so Im ;€85 ¢ since O =C*) Let B, be a properly supported operator with
the symbol b,. Then the symbol of B*B is equal to |by(x, 1) | modulo S5 5, so we obtain

O~ By By€ L3 (X).
We claim that it is possible to find successively properly supported operators
B,eLi%?(X) such that for j=1,2, ...
R,=C—(By+...+B,_))*(By+ ... + B, )€ L}%?(X).
We know that this is possible for j=1. If By, ..., B;,_; have already been chosen and if
B,€ L% ?(X), then
C—(By+...+B)*(By+...+B)=R;—Bf B,— By B; modulo LJ}P¢"9.
Since E; is self adjoint we have Im g € S{3V“7%. If we choose B; so that for large |7|

2 O‘B,.(x, 7)) op, (%, m) = O'Ri(x, n)s

which is possible since (op,(x, 7))~ €8} 5 for large |5| by Proposition 1.1.8, we obtain an
operator B; with the desired properties. If we now take B so that the symbol of B is the
asymptotic sum in the sense of Proposition 1.1.9 of the symbols of B, j=0, 1,2, ..., we have
proved the proposition and so Theorem 2.2.1.

Theorem 2.2.1 has an important and well-known corollary.

CorOLLARY 2.2.3. Let A€LY ;(R"), 6 <p, and assume that the kernel of A has compact
support in R* xR*, and that
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lim sup | (e, )| < M.
Then one can find another such operator A, such that A —A,€EL~° and
Ayl <M Jlull, weCs®R).

Proof. Let y€CF(R"), {x(x)dx=1, and 0<7<1, and set y.(x) =& "y(x/e). Then we
obtain using (2.2.2) if 4,u=Au—A(y,%u)

[ Aewl® < M¥|lw—gexull*+ (Blu— % w), w—ge36u) < M¥|ul]*+ || Bou]| |lu],

where E, is an integral operator with kernel
R, (x,y)= R(x,y) — fR(x, y—ez) X(2)dz.

This is arbitrarily small with ¢ and has support in a fixed compact set, so if M,>M we
conclude that ||4,u||*<M3||u||* for small &. Thus A, has the required properties then.

COROLLARY 2.2.4. Let A €L 5(R™), § <o, and assume that the kernel of A has compact
support in R* xR"™ and that o,(zx, n)—~0 when 1~ oo, uniformly with respect to x. Then the

operator A is compact in L*(R™).

For a converse of these corollaries we refer to [13].

2.3. Pseudo-differential operators on a manifold

Let X be a (° paracompact manifold of dimension n. Using Theorem 2.1.2 we can
define the space L s(X) when 1 —p <4 <p as follows: a continuous linear operator 4 from
07 (X) to C®(X) belongs to Ly s(X) if and only if for each diffeomorphism » of a
coordinate patch X, in X to an open set »X,<R" we have A, € Lg 5(»X,)if (4,u)ox=
A{uox), €0 (»X,). By Theorem 2.1.2 this definition agrees with the one used in section
2.1 if X ©R" moreover, it is always sufficient to require that this condition is verified for a
set of coordinate systems such that the corresponding coordinate patches cover X if in addi-
tion we require that the kernel of 4 is ¢ off the diagonal. The definition can also be
expressed as follows: If z,, ..., z, are local coordintes in an open coordinate patch X; of X
and if v€CF(X,), then

E_KE’E)A(’UCKI’S)E ngé(Xl)~

Here £€R™ and {x, & =x. & +... +a,&,.
If ueC§((X,,nX,,)) then
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(A,,w)ox, = A(uox,) = A, (wox;0xz )ox,

so if #;, is the diffeomorphism ;0x5% %, (X, N X,,) >#(X,, N X,,), it follows that

(4,,u)0x,=A, (woxy,). For the symbols we therefore have
O, (#12(2), &) — O, (@, H12(2) §) € Sg. 5079 (305 (X, N Xoy)).

If we regard %jX,,i x R™ as the cotangent space of x]-X,,i, then #,, maps (%,, &) to (xy, &)
where @; =1, (2;) and {x1z (%,)t, &> =<t, &> for all t€ R*, thus & =tu1z(2,) £;. If we keep
Proposition 1.1.7 in mind, it follows that if using the map »; we pull ¢,, to a function
o’y on the cotangent space of X, x then 0% — 4 €SN 9 (T*(X,, N X,,)). Using a partition

of unity we can therefore piece together an element ¢ € S (1™ (X)) such that
0= 04 E85 5470 (T*(X.0))

for any coordinate system z,. We call ¢ a principal symbol of 4. (For more details see
also Atiyah and Bott [3, appendix].)

The preceding definition by localization often makes verifications of quite simple
facts rather heavy notationally. A more convenient approach can be based on
Theorem 2.1.2. 'We wish to define operators in L7} ;(X) directly as Fourier integral opera-
tors with phase function ¢ and symbol a defined on a real vector bundle £ with fiber
dimension » over a neighborhood Q of the diagonal in X x X. We wish ¢ to be linear in
the fibers and require that the restriction of ¢ to a fiber is critical at e€ F if and only if
the projection e of e on X x X belongs to the diagonal. The differential of ¢ at such a point
can be regarded as a cotangent vector of X x X atse = (x, ) which vanishes on the tangents
of the diagonal so it is of the form (£, —¢&) where £ is a cotangent vector of X at . The map
B, .2e—~Z€ Ty is linear and injective, hence bijective since the dimensions are equal. Thus
¢ defines over the diagonal an isomorphism of E and the cotangent space T*(X) lifted to
X x X by the projection (x, y)—y, and this isomorphism can be extended to a neighborhood
of the diagonal.

On the other hand, if F is defined in this way then we can choose ¢ so that ¢ vanishes
over the diagonal and d¢=Edx—Edy at (z, z, &), where £€7T7. Indeed, this is possible
locally and so globally by means of a partition of unity. In a neighborhood of the diagonal
we cannot have any critical points along the fibers then so ¢ has the required properties.
If ¢, and ¢, are two such functions, then ¢, —¢$, vanishes to the second order over the

diagonal and we conclude as in the proof of Proposition 2.1.3 that

¢'2(.’)§, Y, E) :¢l(x: Y, W(x: ?/)5)

8 — 1712906 Acta mathematica 127. Imprimé le 2 Juin 1971
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over a neighborhood of the diagonal where y is & homomorphism E — E which is the identity
over the diagonal. Thus the requirements on ¥ and ¢ determine £ and ¢ essentially uniquely.
Now we can define L7 ;(X), 1 —p<d<p, as the operators which can be written as a

sum of an operator with C® kernel and one of the form
Au(x)=(2 n)‘"ffew-y'")a(x,g‘/, n) u(y)dydy, w€CF(X),

where dydn is the invariant element of integration in 7™(X) and a€ S8; (X x X xR")
vanishes when («, y) is outside a suitably small neighborhood of the diagonal. A principal
symbol of A is given by a(x, x,%). The equivalence with the first definition is an

immediate consequence of Theorem 2.1.2.

2.4. Oscillatory integrals with linear phase function
Theorem 2.1.2 shows that the distribution kernels of pseudo-differential operators
are precisely the distributions which can be represented as oscillatory integrals with a
linear phase function (with respect to 8) which is critical only over the diagonal. We shall
now generalize by considering oscillatory integrals based on arbitrary linear phase func-
tions. This is in preparation for the non-linear case which will be studied in Chapter III.
Thus let X be an open set in R” and let ¢ be a phase function in X x R¥ which is linear
with respect to the 6 variables, that is,
$(@,0) =< D(x), 0>
where @ is a map X—R¥. That ¢ is a phase function means that <(D;j, 6> 40 for some j
when ¢3=® =0. Thus N < (if there are such points which we assume in order to exclude
a trivial case), and @} is of rank N when ®(x)=0. This equation therefore defines a sub-

manifold ¥ of codimension N.

If @, is another map X —RY such that ®;'(0)=Y and @y, is of rank N on ¥ , We can

choose a neighborhood U of Y and a C® map y: U—~GL (N, R) such that

D, () = y(z) D(x),
thus ¢, (2, 6) =<{D,(x), 0> =<{D(x), ‘p(x)0> =d(z, ‘p(x)0), x€U. In order to construect p we
first note that we must have @y, (x) =y(z)®,(x) when €Y. Since the matrices ®;, and
®, have rank N and the same kernel when #€Y this condition determines y uniquely as
a C® function of £ € Y, which we extend to a C® funetion in a neighborhood of Y. Then we
have that

D, () —yp(x) D(x)
vanishes to the second order on Y. Writing ®@(x)=(D(a), ..., D¥(x)) we obtain from

Taylor’s formula
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Qj(z) =X Pul@) OF(@) + Z R y(x) P¥(x),

where R, (x)=0 on Y. The matrix v+ R therefore has the required properties. Thus we

have proved the following extension of Proposition 2.1.3:

Prorosirion 2.4.1. If $isalinear phase functionin X x RV, then {(x,6); o(x, 6) = 0} =
Y x RY where Y is a submanifold of codimension N. If ¢, is another linear phase function with
the same critical points, we can find a neighborhood U of ¥ and a C° map y: U—GL (¥, R)
such that ¢,(x, 0) = d(x, p(x)0), x€U.

Conversely, let Y be a submanifold of X. Locally we can choose coordinates in X so
that Y is defined by #;=...=x, =0, say. Then the function ¢(z, 6) = 2% x,6, is linear with
respect to 6, and the equation ¢g=0 is equivalent to € Y. This construction can also be
made globally over a neighborhood of Y even if X and Y are manifolds, with ¢ defined in
the normal bundle N(Y) of Y in 7*(X), lifted to a bundle E over a neighborhood U of Y
by means of a O retraction U— Y. We define ¢ so that if s is the projection E— U, then
$=0 and dé(p) =n*p if pEE and mp€ Y. Here p in the right-hand side is considered as a
covector on X. This is a straightforward extension of the discussion in section 2.3 which
corresponds to the diagonal in X x X.

Returning to the local case where Y < X <R" and ¢ is a phase function in X x R* we

consider a distribution of the form
(A, w>= (2n)*<"+2N>’4ffef¢<f' Pa(x, 6) u(x)dxedd, w€Cy (X), (2.4.1)

where a € Sy'§" M4 (X x R"), 1 —9< 8< . The strange normalizations made here have
been chosen so that we have agreement with the representation for the kernel of a pseudo-
differential operator on a manifold of dimension k derived from (2.1.5)'. Indeed, in that
case we have n =2k (the dimension of the product of the manifold by itself) and N =k
so we get a factor (277)7" and a €S7,. A complete justification will follow from invariance
properties discussed in section 3.2 and multiplicative properties proved in section 4.2.

The set of all distributions in X which modulo C* (X) can be represented in the form
(2.4.1) with a€ Sg 52 will be denoted by I7;(X, Y). Note that in the case where a is
a homogeneous function of 6 the corresponding distribution is essentially a homogeneous
function of the distance from X to Y depending smoothly on the nearest point in Y. By
Propositions 2.4.1 and 1.2.4 the definition of I} is independent of the choice of ¢; more-
over, it suffices to have ¢ defined over a neighborhood of Y if one takes a vanishing out-

side a smaller neighborhood.
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Now we wish to assign a principal symbol to the distributions in I} ,(X, ¥). To do so
we first recall that by Proposition 1.2.5 the distribution 4 is determined modulo

Ims9-9(X, Y) by the restriction of @ to ¥ x R¥. Thus we have a surjective map
SR (F o R[S o2 0-0 (Y Re) > I7, (X, T)I2500(X, V). (24.2)

This is really an isomorphism. To prove this we must show that if 4 =0 then the re-
striction of @ to Y x R* is in Spf " "2M/4+@-0 (¥ »x R*). Since x4 is defined by the symbol
zo if y €C%(X), it is no restriction to assume that @ vanishes for 2 outside such a small
set that after a change of variables Y is defined by the equations x' = (x,, ..., ¥y} =0 and
that ¢(z, 0) =Xy x,0,=(2’, 6>. Taking w as the product of a function of &’'=(w, ..., zy)

and one of 2" =(xy,4, ..., x,) we find that
fem"‘”a(x', %", 0)u(x)de' dd =0, uw€CF RY).

Let » =1 near the origin. With £ ERY we replace «(¢') by %(z')e~**"® and conelude that for
all £ERY
Je“’”" a(x', 2", & +0)u(z') da’ d6 =0.

When £— o a Taylor expansion gives in view of the Fourier inversion formula (cf. the proof

of Theorem 2.1.1) that the integral is asymptotically equal to
) f £ 0 (iDyfa(a 2", §) 0*ulw’) da’ dB] o) = (22)" B ( — Do) (iDefa(a’, 2", &) |y-of !,

where all terms except the first are in SP§? -2V @-0(y » R"). Hence a(0, %", &) belongs
to Sy~ #Mitr@e-0 (¥ x R") which proves that (2.4.2) is an isomorphism.

We shall now examine to what extent (2.4.2) depends on the choice of the phase
function ¢ and the local coordinates in X. To begin with we keep the local coordinates in
X but replace the phase function ¢ by another ¢;. According to Proposition 2.4.1 we
may assume that ¢,(x, 0) = $(x, w(x)6), €U, where U is a neighborhood of ¥ and y a O®
map U—-GL (N, R). A substitution of variables now gives

er”’“' Da(z, 0) u(x) dedf = erm “Da, (x,0) u(r) dzdf,

where aix, 0) = alz, w(x)6) |det p(2}]. (2.4.3)
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To put this transformation law in a more natural form we first note that the map
Y xR¥3(x, 6) — (x, iz, 0))

is a bijection to the normal bundle N(Y) of Y in 7%#(X), which is linear along the fibers.
We can therefore regard ¢ as a function on N(Y), and similarly for a,. If x€Y and
@, olw, 0)) =(x, &), (%, 1.(x, 0;))=(x, &) we must have y(x)6,=0 so that a(z,0,) =
a(@, p(x)0;)|det ()| = a(z, 0) |det p(x)|. Regarded as functions on N(Y) the functions
a and a, therefore differ only by the factor |det y(x)|. To take care of this factor we shall
consider the measures defined in Y and in N(Y) by the choice of ¢.

Writing ¢(x, 0) ={(D(x), 0> we know that the map z—®(x) is of rank N when O(x)=0.
The composition §(®) where 6 is the Dirac measure in RV is then a well defined measure
with support in Y. If y,, ..., y,_y are local coordinates on Y and we extend them to C®

functions in a neighborhood of Y, then the measure is equal to
| D(y, @)/ Dx|~dy, ... dy,_y-.

Thus the measure is a density on Y, for a density in a manifold Y is a measure which
in a local coordinate patch with local coordinates yy, ..., 4, (k=dim Y} can be written in

the form
a(y)dyy ... Yy

If we have an overlapping coordinate patch with local coordinates §,, ..., 7, the measure

can also be expressed in the form @&(#)dg, ... d§,, so we have the transformation law

a(§) = aly)| Dy| Dg|

in the overlap. More generally, a density of order « on Y is defined if for each choice of
local coordinates we have a function a(y) of the local coordinates which obeys the trans-

formation law
a(g) = aly)| Dy/ Dg|*.

Densities of order « can of course be regarded as sections of a line bundle Q, on Y, defined
by the transition functions |Dy/Dg|* and we have Q,®Q=Q,.5. A more intrinsic
definition can be given as follows. The transformation law means that a(y)|det <¢;, dy,>|*
where ¢, ..., f, are tangent vectors is independent of the choice of local coordinates;
this quantity becomes a(y) if we choose a dual basis in the tangent space to the basis in
the cotangent space given by the differentials of the coordinates. Thus the fiber of
Q, at y is the space of all maps ¢ from A*T (YN0 (k=dim Y) to C such that
a(st) =|s|*a(t) if s€R\0 and t€EA*T 0. The notions of real or positive densities are
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therefore well defined, and every positive density has a unique positive square root in
;. By the invariance of the definition, if Z—Y is a diffeomorphism into, then any
density of order « on Y can be pulled back to a density of order « on Z. If %, v are densities
of order « and 1 —« and the tensor product uv has compact support, then wv is a measure
with compact support so f uv is well defined. Thus we can define the space of distributions
with values in €, as the dual space of O§°(Y, Q,_,).—Concerning the terminology we note
that Atiyah and Bott [3] have called Q, the volume bundle of Y.

Now let V be a cone bundle over a manifold ¥, with fiber dimension N. If t€R,. the
group operation ¢: V-V defines a linear map (Q,),,— (2,), so we have an equivariant
action of R, on Q,. If now »: V1" where I" is an open conic set in R* x (R"\ 0) is a dif-
feomorphism commuting with the R, action and preserving the fibers (see the definition
of cone bundles in section 1.1) then an element a €8} 5(V, Q,) is transformed to one in
85 s(I', Q,). With coordinates (y, 6) in I'; y ER", 6§ €RY; this element is defined by a function
ax(y, 0), (y,0)€L. The function |f| ™ corresponds to a density of order o which is in-
variant under the group action. By the definitions in section 1.1 we therefore have
a€845(V, Q,) precisely when a.(y, 0)|0|"*€85,5(I"), that is, a,€85"*(T).

Using the Lebesgue measure in R¥ we have on Y xRY a density given by d,=

0(D)db, ... dy, or in terms of local coordinates ¥y, ..., ¥,_y on ¥
| D(y, @)/ Dx|dy, ... dy,_yd0; ... dy. (2.4.4)

This we shall map to a density on the normal bundle N(Y) using the inverse of the map
ng: ¥ x RV3(y, 0) > (y,'®,0). We wish to compare d; with the density d4, constructed
from the phase function ¢,, that is, from ®,="‘y®. In local coordinates dy4, is given by

| D(y, @,)/Dx|dy, ... dy,_xdb; ...d0y = |det p| | D(y, ®)/Dx| dy, ... dy,_ydb; ... dby,

(2.4.5)
and d;, should be mapped to a density on N(Y) using the inverse of the map x,,:
Y xRY3 (y, 0)—>(y, *®y0). Now x =2 0xy is the map (y, 0) > (y, p~16) so x*dy, = | det p| ~2d,.
If we recall (2.4.3), which with our present notations [can be written x*a, = |det p]|a,
we conclude that x*all/cf,,l———al/d—,ﬁ. Thus al/d—,ﬁ and alm define the same element in
STEMA(N(T), Q;). That the order here becomes independent of N is another partial
justification for the normalizations that have been made.

We can now improve (2.4.2) by stating that for 1 —p <§<p there is an isomorphism
8o 5" (N(Y), Qy)[8g5 M4 OO (N(Y), Q) ~ I75(X, IIEEC P (X, Y)

which is independent of the choice of phase function ¢. However, we have still assumed that
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X <R" so it remains to consider the effect of a change of variables before we have a truly
invariant formalism.

Thus let X—>X be a diffeomorphism between open sets in R". Writing x=a(%) we
transform (2.4.1) to

(A, u> = (2q)~n+emi f fei‘?“i 0 (%, 0) (%) dBdO — (A, @). (2.4.6)

Here (%)= | Dx/D#|"*u(x), that is, we regard u as a density of order 1/2 which means

that 4 is also transformed to 4 as a density of order 1/2. Furthermore
(%, 0) =d(x(%),0), a®,0)=alx(®),0)| Dx/Dz|".

Let gy, ..., Yoy be local coordinates on Y = {x; qS,',(x, ) =0}, considered as functions in X,
and let &, ..., #,_y be the corresponding functions in X which are thus local co-
ordintes on ff:{i; %3(:?, ) =0}. Clearly (z, 6) and (%, §) define points in N(Y) and N (Y)

which correspond under the isomorphism between 7™(X) and T*(f( ). Now we claim that
a(z, 6)| Dy, ®)/Dx| ™% = a(z, )| D(7, B)/Dz| (2.4.7)

if the two sides are evaluated at points corresponding under the isomorphism X -X.
In fact, this follows from the fact that

D(y, ®)/ Dz =( D(§, ®)/ Dx)( D&/ Dw).

Thus our construction is also invariant under changes of variables in X.
There is no difficulty now in proving the preceding results globally on a manifold.

In order not to repeat arguments already given in section 2.3 we just state the result:

THEOREM 2.4.2. Let X be a manifold and Y a closed submanifold. Let Iy s(X, Y)
where 1-—-p<6<g be the set of all distribution densities of order 1/2 on X which are in
C®(X\Y) and in a neighborhood of any point in Y can be expressed in the form (2.4.1)
where a €Sy5™ 2" and ¢ is a linear phase function which is critical along the fibers over Y

and only there. Then the restriction of a to these points gives rise to an isomorphism
Spa™H (N(Y), Q) Sp 3™+ OO (N(Y), Qp) = I7 (X, Y) [ I75°72(X, Y). (2.4.8)
We shall say that a is & principal symbol of the distribution A€P'(X, Qy) if their residue

classes correspond under this isomorphism.

2.5. The wave front set of a distribution

We shall now introduce a refinement of the notion of singular support of a
distribution. To do so we let X be a manifold, «€2’'(X), and note that
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sing supp » =[N {z; ¢(x) = 0} (2.5.1)

the intersection being taken over all ¢ €(C®(X) with ¢u€C°(X). We shall replace ¢ by a
properly supported pseudodifferential operator 4 €L%(X). The characteristic set of A4 is
defined by

y(d)={(z, &) ETHX)\\0; Lim |a(x, t8)| =0}

if @ €8°(X) is a principal symbol for 4. Clearly the choice of principal symbol is irrelevant,
and since the functions (x, £)—~a(z, t£) are equicontinuous the complement of the charac-
teristic set is open so the characteristics are closed. Now set, in analogy to (2.5.1),
WFu)= N »4), (2.5.2)
Auec®

where A runs over properly supported operators in L% X). It is clear that W F(u) is a closed

cone in T*(X)\ 0, and since 4 may be chosen as a function in C®(X), we have
aW F(u) < sing supp «

if 7 T%(X)— X is the projection. In fact there is equality. For if x ¢z W F(u) it follows from
the Borel-Lebesgue lemma that there are finitely many A4,, ..., 4,€L°(X) such that
wénNiy(4,). Let A=3 AFA4;, the adjoints being taken with respect to some positive
O density in X. Then Au€C® and X |a,|? is a principal symbol for 4 so wy(4) does not
meet a neighborhood of 2. We shall now appeal to the standard regularity theorem for

solutions of elliptic equations.

ProrosiTioN 2.5.1. Let BELSX) be properly supported and elliptic in the sense that
y(B)=@. Then one can construct a properly supported E € LY X) such that EB—1 and BE —1
have C® kernels. Since u=(I—EB)u+ EBu it follows that

sing supp « < sing supp Bu, u€9'(X).

Proof. The principal symbol of EB is eb. So choose E, with principal symbol 1/6 which
is in 8° by Proposition 1.1.8. Then

E,B=1+R,,
where R, €L, Since RI€L™* it follows immediately from Proposition 1.1.9 that there is
a properly supported operator F;€L° such that for each k>0

Fi—I+Ri—...—(—R)F'eL™
This implies that

FyE,B—(I—Ry+...+(—R) ) (I+R)EL™,
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so that F, EyB-—I1€L* for all k. If E,=F, E, we therefore have B, B—I€L~®. Similarly
we construct E, with BE,—I€L-* and conclude that

E,—E, =(I—E,B)E,— E,(I - BE;)€EL~,

hence that E, or E, has the required properties.

Returning now to the discussion of singular supports, we take a function ¢ >0 which
is 0 near x but 1 outside such a small neighborhood that B=¢+ .4 is elliptic. We have
Bu=d¢u -+ Au€C® near x and it follows that 4 €C® near z.

We sum up the preceding discussion as follows:

Definition 2.5.2. If u€2'(X) the wave front set WF(u) of u is the closed cone<
T*(X)\0 defined by (2.5.2).

THEOREM 2.5.3. The projection of WF(u) in X is equal to sing supp u.

The preceding definition has been chosen because it is invariant. However, one can
make equivalent and sometimes more useful definitions which do not involve pseudo-

differential operators, and this we shall do now.

ProrosirioN 2.5.4. If Y is an open set in X, then WF(u|y)=(WF(u))|y, u€2'(X),
where u|y is the restriction of w to Y and (WF(u))|y=(WF(w)Na1Y.

Proof. If (x, &) ¢ W F(u), we can choose 4 €L with Au€C%, (z, ) ¢y(4). Let U be any
neighborhood of x and choose ¢, p €C§°(U) with ¢ =1 near supp ¢, $=1 near z. If 4,v=
$Ayv we have A4,€L0, Ayu=¢dAu—$A(l —p)u€C® (by the pseudo-local property), (, &) ¢
¥(4,) and the support of the kernel of 4 is in U x U. The fact that one may restrict atten-
tion to such operators 4 in (2.5.2) immediately gives the proposition.

In particular the proposition shows that W F(u) and W F(¢u) agree over the set where
¢ =0 when ¢ €C>. It remains now to study distributions of compact support in R".

ProrosiTIiON 2.5.5. Let w€&'(R™), and let K be the closed cone obtained by the
projection
WF(u)3(x, §)~>E€ER™\0.
If K, is another closed cone= R™N 0 with KN K, =0 then
|1+ &)V a@)] <Oy, E€Ky, (2.5.3)

for any integer N, and K is the smallest closed cone such that (2.5.3) holds for all disjoint

closed cones K,.
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Proof. We begin with the last statement, so we assume that (2.5.3) is valid when
KNK,=@. Let p be a C° function in R" vanishing near the origin and near K, such that
p(t&) =p(&) whent>1 and |£| > 1. Then the product p(£) (&) is rapidly decreasing so p(D)u €
C». If ¢,p€CY and =1 in a neighborhood of supp u, then Au€C> if Av=¢P(D)yv.
Since 4 is noncharacteristic at (z, &) if ¢(x)p(x)+0 and lim,, ., p(t£)+0, we conclude
that WF(u)<R"x K.

To prove the other half of the proposition we need a lemma.

LemMA 2.5.6. Let u€&'(R™) and A = a(x, D) where ais of order — oo ina conic neighbor-
hood T" of WF(u). Then Au€C®.

Proof. We may assume that a(x, £) =0 for large « and therefore that (x, &) €I for large .
Choose a properly supported pseudo-differential operator A, with principal symbol 1in a
conic neighborhood of WF(u) and over the complement of a compact set such that the
full symbol is of order — oo in a cone I'; with I'U I'; = T*(R")\ 0. Using the Borel-Lebesgue

lemma we now choose 4, ..., A,€L° such that
k
Q y(4;) =9
and 4,4€C%, =1, ..., k. By Proposition 2.5.1 we can choose E so that
k
u—E Af A, u€C™.
G
Thus u—HA§Au€0™
and so Au—AEA§ Agu€C™.

Because I'U T, =T*(R")\ 0, the formulas for the symbol of a product show that AEAF 4,

is of order — oo, s0 Au€C® as asserted.

End of proof of Proposition 2.5.5. Let p(£) € C® be homogeneous of degree O outside a
compact set, let p =0 in a neighborhood of K and p =1 at infinity in K;. Then p(D) satisfies
the hypothesis of Lemma 2.5.6 so p(D)u € (®. Hence p(£)#(&) is rapidly decreasing so that
(2.5.3) holds.

To sum up, if € P’ (X), X <R”, then (z, &) ¢ W F(u) if and only if there exists a function
¢ € 05°X) with ¢(x)+0 such that the Fourier transform of ¢u is rapidly decreasing in a
conic neighborhood of the half ray with direction &.

We shall now give an example improving Proposition 1.2.3.
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ProrosiTiON 2.5.7. Let X< R™, I" an open cone in X x (RN 0) and ¢ a phase function
in I If a€Sps(X xRY),0>0, 6 <1, vanishes near the zero section and cone supp a<T,

then
WEF(4)< {(=, ¢:); (x,0)Econe supp a, ¢o(x,0) =0}

if A is the distribution u—I4(au) defined by (1.2.1).

Note that in section 2.4 the principal symbol was defined in a set which by Proposi-
tion 2.5.7 contains the wave front set of the distributions in I} (X, Y).

Proof. It is sufficient to show that if K,, K, are disjoint closed cones in R"\ 0 with

~
$:€K, as (x,0)€cone supp o then x4 is rapidly decreasing in K, if y€C03(X). Now
N :
XA (5) = J‘J‘el((ﬁ(x,o)_(%@)a(x’ 6) x(x) dz d0

and the hypotheses imply that for (2, 0) €cone supp ¢ and §€K, we have for some C'>0

|$2(z, 0)—¢| =C(16] + |&))-
Modification of the proof of Lemma 1.2.1 therefore gives a first order differential operator

L=Xa;086x;+c

with ‘L exp i($(z, 0) —<(x, &) = exp i(¢(x, ) — (x, &) such that a,(z, 0, &), ¢(z, 0, &) are C®
functions of x which are homogeneous of degree —1 with respect to (6, &) for (z, 6)€

cone supp @ and £€K,. It follows that for every integer k>0
AN
1A (&)= ffe“"“’”"’"“' 2 L*(a(x, 0) x(=))dxdb,

where the integrand can be estimated by
([ + 617" L+ 6]
Choosing k,>0 so that m +(6 —-1)ky< —N —1 we estimate this for k>k, by

(1 + |0l )—N—-l(l + |§| )(ka—k)(l—-é)

and conclude that 724 & =0(&|™)

for every k when &—co in K,.
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In particular, if 4 is a pseudo-differential operator in X, and if K, is the kernel of 4,
we have WF(K,)<normal bundle of the diagonal A in X x X which by the projection
T*X x T*X —T*X on the first factor we can identify with 7#X. Thus W F(K ,) can be identi-
fied with a closed cone in 7*X™\ 0 which we denote by WF(4). It is clear that if Y< X
is an open set and A, the restriction of 4 to Y, then WF(A,)=WF(A4)N7x 1Y where
7: T*X—~X is the projection. This reduces the study of WF(A) to the case with X<R"

and then we shall prove

Prorosition 2.5.8. If X& R"* and A4 is a properly supported operator n Lj 5(X),
0<<d<g<l, then the complement of WF(A) is the largest open cone in T*X\0 where o4,
defined by (2.1.5), is rapidly decreasing.

Proof. That the complement of W F(A) contains this cone is an immediate consequence
of Proposition 2.5.7. To prove the opposite inclusion let (x,, &) € T*(X)\(0U WF(A4)).
We have to prove that o, is rapidly decreasing in a conic neighborhood. Choose
¢, pE€C™ equal to 1 near z,, but with such small support that WF(¢Ayp) does not meet
X xT" where I' is a conic neighborhood of &,. Write oy for the symbol of v—¢Ayv which
over a neighborhood of z, differs from ¢, by a rapidly decreasing function. If y(z, y) =

#(x)y(y), then
iR, (p+& =& =<$(-) e 1, Ayl Py = f e g, (@, E)da =6y (n, &)

is by assumption rapidly decreasing if &—>oco in a conic neighborhood I'; of & and
In] <e|&| for a certain £>0. On the other hand (cf. (2.1.3))

|64(n, )| <O, 1+ [n]) QA+ |&] )™

for any ». If follows that
f |51 (g, &) dy = O(|&[*+m~0-97)
[EE

is rapidly decreasing as £—co so by the Fourier inversion formula ¢,(z, &) is rapidly de-
creasing as §—oo in I';. Since ;€87 it follows (see the proof of Theorem 2.9 in [13])
that all derivatives of ¢, are also rapidly decreasing in a smaller cone which proves the
statement.

Combining Proposition 2.5.8 with Lemma 2.5.6 we have proved

ProrosiTion 2.5.9. If u€%'(X) we have Au€C® for all properly supported pseudo-

differential operators A with
WFAYN WF(u)=0.



FOURIER INTEGRAL OPERATORS, I 125

If T" is a closed cone< T™(X) the preceding proposition leads us to define as follows
a pseudo-topology in Pr(X)={u€P'(X); WF(u)<T}: A sequence u,€Z(X) is said to
converge to uE€Pp(X) if

@) u;,~u in 2'(X) (weakly)
(1) Au;~Aw in O°(X) if 4 is a properly supported pseudo-differential operator with

['nWFA4)=2.

Note that if the supports of all u; belong to a fixed compact set K < X we need only assume
in (ii) that the convergence takes place in C(°(Y) when Y is open and K < ¥ < X. Together
with a partition of unity this allows us to consider only the case X R" and #€&'(X) in
what follows.

First we shall prove that C®(X) is sequentially dense in Z(X). To do so we take
(ef. Proposition 1.1.11) a function y €% (R") with x(0)=1 and set for ¥€2(X)N &'(X),
X<Ry,

u, = y(Dfj)u€F(R").

When j—co we have u;—~>u in &, hence in 9'(X). If 4 is a pseudo-differential operator
with WF(A)NT'=© we must prove also that Au,—Au in 0®(X). In doing so we may
assume that the support of « is so small that there is no & +0 with (z, &) € WF(4), (y, §) €T
and z, y €supp u. Let K={; (x, £) €I for some z€Esupp u}. By Proposition 2.5.5 we know
that 4 is rapidly decreasing outside K and we have arranged so that supp % x K does not
meet WF(4). Now

Au,;(x) = (27z)_"fei<’”' D oqlx, E)H(E) X(ElF) dE,

where ¢ 4(x, £)%4(£) is rapidly decreasing over a neighborhood ¥ of supp % because some
factor is. Tt follows that Au,~ Aw in C°(V). Since o4(x, £)%(£/7) belongs to a bounded set
in S5 the kernel of o, (x, D)y(D/j) converges in C® to that of 5,(x, D) outside the dia-
gonal which proves that Awu;=Ay(D[j)u—Au in O® outside supp u. Thus Au,~Au in
0°(X). In particular, ;0 in C° outside supp u so we can modify the sequence so that
it has support in a fixed compact set by multiplication with a C§ function which is one
near supp u.

We shall now study the multiplication of distributions. Let I';, I'; be two closed cones
in T*(X)\0 such that

Ui+l ={(z, & +&); (# &) €T} < THINO. (2.5.4)
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Then (IN+T,)Ul UL, is also a closed cone in 7% (X)\0. In fact, assume that
{wv, &) €T, and that (xv, & 4 &) (x, £) where £ 40. If &0 (or £5->0) it follows that (z,&) €
[y (or T'y). If with respect to some Riemannian metric |&]| ~ oo, then (27, &/ ]E’{[) has a
limit point (z, 7)€LYy, |n] =1, and so (27, £&/|&]) has the limit point (x, —1) €T, in contra-
diction to (2.5.4). Ruling out these cases we can always pass to a subsequence such that
(@, &)~ (x, &) €L}; and since §=§&; +£&, we obtain then that (z, §) €l +T,.

THEOREM 2.5.10. Let I'y, T'y be two closed cones in T*( XY\ 0 satisfying (2.5.4). Then
the product u, u, of distributions u, E.@fi(X ) can be defined in one and only one way so that it is

sequentially continuous with values in 9'(X). We have
WP (uyu,) < (I, + ) U U T (2.5.5)

Proof. The uniqueness is obvious so we need only prove the existence and (2.5.5).
In doing so we may assume that X <R" and consider «, and u, with support in such a

small neighborhood V of a point in X that for the closed cones
K, ={&; (z, &) €L, for some xE€supp u,}

we have 0 ¢ K, + K,. Let p;(£) be a homogeneous function of degree 0 which is 1 in a neigh-
borhood of K; and for which still 0 =&, + &, if 0 4£&;€supp p,. By Proposition 2.5.5 we know

then that
sup [ (1 —pi&) a8 | (1 + [£])¥ < oo

for any N, and if a sequence of «] E@f]_ with support in ¥ converges to 0 then this supre-
mum converges to 0. Moreover, one then has pointwise convergence to 0 of the Fourier

transforms and a uniform bound
|48 < O+ | &)

(We drop v in order not to complicate the notation.)

The convolution

ey )~ [ (€ =) () d
is absolutely convergent. This is quite clear if we note that the right-hand side is a sum
[ €= mwet enan+ [ € - -paa) man
+ (=m0 €= i) o+ [ (0~ ) (€ =) (1~ ) ) )

The support of the first term lies in supp p,+supp p, and it can be bounded by
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C'(1+]&[)**". Since (1 —p;)#; is rapidly decreasing the other integrals can be bounded by
C'(1+|&|)*. All will converge pointwise to 0 if we have sequences u—0 in P (X) with
support in V. This shows that if we define

Uty =F ((2n)_"fﬁ1 (& —n) iy (n) dn)

we obtain a continuous map into &’ which of course is standard multiplication if u,, u, € C®.

It remains to verify (2.5.5). The first term again vanishes outside supp p, -+supp p,.
The last one is rapidly decreasing and the other two decrease rapidly outside supp p;
and supp p, respectively. It follows that WEF(u,u,)=V x ((K;+K,)UK,UK,). If we
choose a small neighborhood of x, then (K,+K,)UK,U K, is as close to the fiber of
([y+T5) U T UL, as we wish which proves (2.5.5).

In particular, the preceding results allow us to discuss restrictions to submanifolds.
First note that if V is the subspace 2;,; =... =2, =0 of R", the distribution f; defined in V

by the restriction of a function f in R" is given by

fid) =<fdo, 1>, $€CT(V)

where ¢ is the Lebesgue measure in V considered as a measure in R". Now the Fourier

transform of ¢o in R” is

R"3& > (&, .oy &)

which is rapidly decreasing except in the directions normal to V. If ¢*€C5°(V) and ¢*—0
in the sense of Schwartz, then ¢*6—~0 in Qp(R") if I' is the normal bundle of V.
If fis any distribution with WF(f)nT'=© the product f(¢o) still makes sense and

¢—<f($o), 1 (2.5.6)

will be a continuous linear form on C§° (V). We take this as our definition of the restriction

fv and have proved

TrEOREM 2.5.11. Let X be a manifold and Y o submanifold with normal bundle denoted
by N(Y). For every distribution f with WF(f)N N(Y) =0 the restriction of | can be uniquely
defined so that it is a sequentially continuous function from Gp(X) to D'(Y) for any closed cone
e T*X)\0 with I' n N(Y)=0.

Remark. This theorem is very close to well-known results on partial hypoellipticity
(see Hormander [17, Chapter IV]).

There is also a more general and precise version of Theorem 2.5.11.
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THEOREM 2.5.11". Let X and Y be manifolds and ¢: Y~ X be a C® map, and let
Ny = {(gp(y), §) € T*(X); 'y ()€ = 0}

be the set of normals of the map. If f€9'(X) and WF(f)N N,=D we can define the pullback
¢*f in one and only one way so that it is equal to the composition fop when [ is a continuous
function and is sequentially continuous from G1(X)to D'(Y) for any closed cone I'< T*(X)N\0
with I'N N,=@. Moreover,

WF (@) <@*WEF(f) = {(%, ‘g, () &), (9(y), &) EWF(f)}.

Proof. 1t is sufficient to verify this locally so we assume that X and Y are open subsets

in R™ and in R™ respectively. If f€CF° we have by Fourier’s inversion formula

(@ (y)= (273)_"f6i@(”’ ©f(&) dé.
If X is a test function in ¥ with support near y, then

p*f > = (2 n)"”ff(&) I,(&)dE

where L(&)= fx(y) WO gy

is rapidly decreasing in any cone where “p’(y) £ 0 when y€ supp X. If V is a conic neigh-
borhood of {,%’(y,)&=0} it follows that I, (£) is rapidly decreasing outside V if the support
of y is sufficiently close to y,. On the other hand, if V and the support of f are suffi-

ciently small, then

sup /&) (1 + ¢l

is for every N a continuous semi-norm in @p(X). It follows that ¢*f can be extended by

continuity as stated. To prove the last statement we note that
F () = (2ﬂ)_"ff(§)d§f€i @Oy (y) dy.

If (£, 7) is outside a conic neighborhood of
C={¢n); '¢'W)é =n}

and the support of y is sufficiently close to y,, then the inner integral can be estimated by
Cy(1+|&| +|n]|)7" for any N so the corresponding contribution to the integral is
O(1 + |5|)™" for any N. On the other hand, near C we can estimate |5| by |£|. If in addition

7 is outside a conic neighborhood of
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{t(p’(yO) 57 E € WF(P(yu)(f)}

we must have f(£)=0(|£| ™) for any N if the support of f is sufficiently close to g(y,).
Hence & (y¢*f)(n) =0(|n| ") for any N outside a conic neighborhood of ¢*W F(f),, if supp %
and supp f are sufficiently close to y, and ¢(y,) respectively. This completes the proof.

Note that we have defined the pullback ¢*f for every f precisely when ‘g’ is injective,
that is, ¢ is surjective. In that case the definition is of course very well known.

Next we consider the linear transformation defined by a distribution K €2'(X x Y)
where X <R”, Y <R’ are open sets. (The results have an obvious extension to manifolds
if one works throughout with densities of order 1/2 as we shall do in Chapter IV.) Then K
defines a continuous map K: C¢°(Y)—2'(X),

(Ko, y) =Ky@e); ¢eli(Y), pely(X).
TarorREM 2.5.12. For any w€CF(Y) the set
WFx(K)={(x, &; (, &, y, 0)EWF(K) for some y€Y} (2.5.7)
contains W F(Ku).
In view of Theorem 2.5.3 we obtain
CoroLrARrY 2.5.13. If WF(K) contains no point which is normal to a manifold x = con-

stant then KCg°(Y)< O°(X).

Proof of Theorem 2.5.12. Since we may split K into a sum of distributions with arbi-
trarily small support it suffices to prove that if K€&’ and

WFEK)ycXxY xT,
where I' is a closed cone in R**"™\ 0, then
WF(Ku)< X xI'y where I'j={&, (&, 0)eT'}.
To do so we note that

Ku(#) = (2n)” f R(E, —n)diln)dn.

If T’y c R™\ 0 is a closed cone which does not meet Iy, we have for some ¢ >0
|K(& —n)| <C1+|&))7% k>0, || <el€|, &€l
Since |K(£, —n)| <C(L+|&] + |n])¥, it follows that for £€T,

Kugl<cia+leh 0 [+l lan]an

7l > el &l

N
so Ku is rapidly decreasing in I';. Hence WF(Ku)< X xI', as was to be proved.

09— 712906..Acta mathematica 127. Imprimé le 3 Juin 1971
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An essentially dual question concerns the definition of Ku for general distributions .
First note that if wu€2’(Y) then WF(1®w) =X x WF(u). The product K(1®@wu) is therefore
well defined when WF(K)+ (X x WF(u)) does not meet the zero section, that is, W#(u)

does not meet
{(,m); (=, 0,y, —) € WF(K) for some z} = WFy(K). (2.5.8)

When 4 €&p(Y) for some I' not meeting W Fy(K) the product depends continuously on u
and so does the integral with respect to y. This we define to be Ku. Explicitly,

(Ku, ¢y =<K(1®u),$®1), ¢$€CF(X).

By what we have proved this is a continuous map from &p(Y) to 2'(X) when I' does
not meet WF%(K). In particular, when the set WFy(K) is empty we have a continuous
map (YY)~ 2'(X).

To estimate WF(Ku) in terms of WF(K) and WF(u) we have to make sure that
KC§ <™, so we assume that the hypotheses of Corollary 2.5.13 are fulfilled.

TuroreM 2.5.14. Let X<R" 'Y< R and KE€ED'(X xY). If WFx(K) ts empty,
u€&(Y), and WF(u) does not meet WF(K) then

WF(Ku) < WEF'(K)WF(u), (2.5.9)

where WF'(K)={(z, &, y, —) €ET*X) x T*(Y); (%, &, y, ) € WF(K)} is regarded as a relation
mapping sets in T*(Y)N0 to sets in T*X)\0.

Proof. Localizing by a partition of unity as indicated in the proof of Theorem 2.5.12
it suffices to prove that if K has compact support and

WFER)cXxYxI', WFu)c YxTI'y
where I'(I'y) is a closed cone in R**\ 0 resp. R"™\ 0 then
WFKu)< X x Y x(I'Ty).

Here, we assume that (£, 7)€" = #+0 and = —n¢I'y when £=0. To prove this we
choose functions p(§), ¢(£, 1) homogeneous of degree 0 which are equal to 1 in coni-
cal neighborhoods of I'y and T' so small that I, T'y may be replaced by supp ¢\ {0},
supp p\{0} in the assumption above. Now

1@(5) = (2zz)‘”f13(§, —n)d(n) dy
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for this is true when # €C§ and the right hand side is a continuous function of 4 €&5, v

N\
since K is rapidly decreasing in a neighborhood of 0 x (—I'y). To study Ku we split the
integral into three parts

- f RE ~n) (1= p () dln) dn
1,= f(l —q(& —n) K(&, —n) pln) d(n) dy

I, is rapidly decreasing since (1 —p) is rapidly decreasing and K is rapidly decreasing
near R” x0 (see the proof of Theorem 2.5.12). Since (1 —¢)K is rapidly decreasing it is

clear that I, is also rapidly decreasing. Finally I, vanishes unless for some %40 we have

(&, ~m)€supp g, nEsuppp

which means that £ is close to I'':T'y. This proves the theorem.

Remark. If A is a pseudo-differential operator in X, it follows from (2.5.9) that
WF(Au)= WF(u) if w€2'(X). This improves the pseudo-local property and is of interest
in connection with the following construction which seems to be the analogue for distribu-
tions of one given by Sato [27] for hyperfunctions:

If O=T*(X)\0 is an open cone we introduce

Co=9" (X)|Dyo (X).

These vector spaces form a presheaf € on the unit sphere bundle of 7*(X); the sections of
the sheaf are easily seen to be isomorphic to 9'(X)/D(X) =2’ (X)/0=(X). The preceding
remark shows that all pseudo-differential operators in X (or more generally operators
defined by distributions K with W F(K) contained in the diagonal) define sheaf maps on 4.

Let now X<R"*, YR, Z<R"Z be open sets and K, €9'(X x Y), K,€2'(Y x Z)
be properly supported. In view of Theorem 2.5.12 the composition K,(K,u) is then defined

for u€C®(Z) provided that
WFy (K )N WEFy(Ky)=0O. (2.5.10)

(Note that WFy(K,), ..., WF5(K,) are closed since K; and K, are properly supported.)
The map C§*(Z)3 u—K,(K,u)€&'(X) is then continuous so it defines a distribution

K = K0K,€9'(X x 7).
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THEOREM 2.5.15. When (2.5.10) is valid we have
WF' (K, oKy) < WF'(K)oWF'(K,)U(WF3(Ky) xZ)U (X x WF3(K,) (2.5.11)

Proof. Let us first verify that the set just defined is closed in 7%#(X x Z)\ 0. So let
(@, &, z*, ")~ (=, &, 2, {) where (€, {) +(0, 0), let (x7, &, y*, n*)E WF'(K,) and (y*, n*, 2*,{*) €
WF'(K,). Since K,, K, are proper the points y* belong to a fixed compact set so we
may assume that y*—y. If 9»~>oc and % is a limit point of #*/|#*|, then (z,0,y,7)€
WEF'(K,) and (y,7, 2, 0)€ WF(K,) which implies that (y, ) E WFy(K,), (y,7)E WFy(K,)
and contradicts (2.5.10). Hence we may also assume that #” has a finite limit . If =30
we conclude that (x, &, 2, {) is in the first set on the right, and if # =0 it is in one of the others
since either £ or { is 0.

The preceding argument also shows that one can replace WF(K,) by conic neighbor-
hoods so that the right hand side of (2.5.11) does not grow beyond a given conic neighbor-
hood. This observation and a localization reduces the proof to showing that if K, have
compact supports and there are closed cones I'; and I'y in R*x+"¥\ 0 resp. R"r+"2\ 0

such that
0, METIN{n; (1, 0)ET,} =D (2.5.12)
and X x ¥ xT'; (resp. ¥ xZ x I';) is a neighborhood of WF'(K,) (resp. WF'(K,)) then
WF (KioK,)c X x Z x (IyeT', U TS U TY).
Here I1={(& 0)€R"x*"z; (£,0)€T}

and I3 ={(0,)ER"x*"z; (0, {) €Ty}

(Note that 0 denotes the origin in any one of the vector spaces R"x, R"7, R"2.)

Now we have
(@m)"r K, 0 K, (£, — ) = f Ry(E, —m) Ra, ©) .

In fact, the integral converges since K,(£, —7) (Ky(%, —()) is rapidly decreasing outside
I';(T";) and (2.5.12) holds; the formula is obviously valid if K,€C§° and follows in general
by continuity. The integral is a sum of the following four where p; denotes the charac-

teristic function of T,
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L= fpl &) B —n) paln, §) Ka(n, —0)dn
Iﬁf(l—pl(f,n))lfl(é, —n)p2(n, §) Ka(n, =) dn
I = f P& ) Ry (& ~n) (L~ pa(n, ) Ro(y, — L) dn

I4=f(1 01 &) Bi(& =) A —pa(n, 0)) Ro(m, — ) d.

Here (1 —p,(& 7)) K, (&, —n)and (1 —py(n, ENK,(n, —) are rapidly decreasing so I, israpidly

decreasing. The integrand in I3 can be estimated by
Cel+ €] + D™+ [n] +12])*

where N is fixed and k is arbitrary. If ¢>0 it follows that I, is rapidly decreasing for
[¢] >¢|£]| and that the contribution when || >¢|£]| is always rapidly decreasing. This
implies that I, is rapidly decreasing outside I'{. Similarly I, is rapidly decreasing outside

TS. Since I, vanishes outside T,oT, the proof is complete.
1 10l b P

Remark. Note that if WFy(K,), WFy(K,), WF(K,), WF3(K,) are all empty, then
(2.5.10) is automatically fulfilled and only the composition occurs in the right hand side
of (2.5.11). Theorem 2.5.14 is essentially the special case when Z is a point.

HI. Distributions defined by oscillatory integrals

3.0. Introduction

In this chapter and in Chapter IV we shall extend the results of section 2.4 to arbitrary
non-degenerate phase functions. The main complication which occurs is that there is no
simple analogue of Proposition 2.4.1. The extent to which Proposition 2.4.1 can be
generalized will be determined in section 3.1. The result will not quite suffice for the proof
of the transformation laws we need so the proof of these in section 3.2 will also depend on
the method of stationary phase. Thus it is rather close to the earlier proofs of the invariance
properties of pseudo-differential operators given in [13] for example. A consequence of
this is that the principal symbols of the distributions we consider will no longer be scalars
but sections of a line bundle defined by an integer cohomology class (or rather & class mod 4).
This cohomology class also occurs in the work of Maslov [23] and Arnold [1]; in fact it was
already introduced by Keller [18]. The geometrical interpretation of the line bundle is
discussed in section 3.3 where we also establish the equivalence of our definitions with one
used in [1].
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3.1. Equivalence of non-degenerate phase functions

Let X< R™ and let I' be an open conic set in X x R¥, ¢ a nondegenerate phase function
inI'. (For the definition see section 1.2.) We have seen in section 1.2 how a class of distribu-
tions is associated with ¢ and symbols in §3' (X x R") with cone support in I'. We wish to
determine to what extent this class of distributions depends on the choice of ¢. First of all

it is clear that if in I’ we have a fiber preserving diffeomorphism
T'3(@,0)~ (z, 6z, 0) €T

where 0 is a C® function, homogeneous with respect to 0 of degree 1, then a change of vari-

ables in (1.2.1) gives
Is(au)= er . Ha(x, 0) u(z) dodd

where $(z, 0(z, 0)) =¢(x, 0), @(x, 6(x, 6))| DO/ DB| =a(x,6). It €S8 it follows that GEST.
It is thus clear that we can represent the same distributions in the form (1.2.1) with a
symbol €S}’ (and suitable cone support) whether we use the phase function ¢ or (;S We shall
say that ¢ and 42 are (locally) equivalent.

Our purpose in this section is to determine when two non-degenerate phase functions
are equivalent. A necessary condition is obtained if we consider the map (cf. Proposition
2.5.7)

03(z,0)—>(x,¢f,)€T*(X)\0 (3.1.1)
where 0 stands for the zero section and

O ={(x,0); $5(x,0) =0} (3.1.2)

Since ¢g=0 on O it is clear that (3.1.1) makes sense if X is a manifold and X x R¥ is replaced
by a fiber space over X. Thus the range of (3.1.1) is the same for two equivalent phase
functions. The map (3.1.1) is regular if ¢ is non-degenerate, for the tangent plane of C is
defined by the equations dé¢/éf;=0, j=1, ..., N, and if in addition dxz=0, dog/ox,=0,
j=1, ..., n, it follows that

Ek:aqu/anaekdak:O,jf:l,... ,N;Ek:ag¢/8x]30kd6k=0, j:]_, R (B

These equations imply that d0, =0, k=1, ..., N, for the differentials of 0$/00,, k=1, ..., N,
are linearly independent by hypothesis. Locally the range A of the map (3.1.2) is thus a

C® manifold of dimension dim X. Furthermore, A is conic, that is, invariant under the
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multiplication by positive scalars which is defined in the fibers of 7%#(X), and we have
&, dey =2 &;dx; =0 onA. (3.1.3)

Here we have used local coordinates z;, ..., #, in X and corresponding local coordinates in
T*(X) obtained by taking dz,, .., dx, as basis elements. We recall that the first order form
in (3.1.3) is invariantly defined in the cotangent space of a manifold. The proof of (3.1.3)
is trivial: A is parametrized by points on € according to (3.1.1), and we have

<&, duy =g, da> = dp — ¢y, d6) =0

since ¢o=0 on €' and so ¢ =<0, ¢p> =0 on C by Euler’s identity. From (3.1.3) it follows
by differentiation that

ZdEndx; =0 onA. (3.1.4)
Thus A is a manifold of maximal dimension on which the symplectic two form of T*(X)
vanishes. We shall call such a manifold Lagrangean, following Maslov [23]. It is classical
that the stronger condition (3.1.3) is fulfilled on any conic Lagrangean manifold A. Indeed,
if we use local coordinates, the fact that A is conic means that if (x, £) €A, then (0, &) be-
longs to the tangent plane of A at (z, £). Thus the tangent plane is orthogonal to (0, &)
with respect to the symplectic form, which means that (3.1.3) is valid.

Example 3.1.1. If ¢ is linear with respect to 0, then as we have seen in section 2.4 the

Lagrangean manifold A is the normal bundle of a submanifold Y of X.

Example 3.1.2. Let H(E) be a homogeneous O function of £ of degree 1 in a cone ' R?,
and define

Then the condition ¢;=0 means that z=H’(£), so ¢ is non-degenerate and

A = {(HI(§)7 E)s §EF}'

The preceding example essentially covers the general case, for we have

Turorem 3.1.3. Let A< T*(X) be a conic Lagrangean manifold. For every 1,€ A
with the local coordinates @y, ..., x, at Ay € X suitably chosen one can find a function H which
18 homogeneous of degree 1 in an open cone ' tn R™ such that if d(x, &) =TT x,&,— H(E) the
Lagrangean manifold defined by ¢ is a neighborhood of i, in A.

Proof. The local coordinates z, ..., , give rise to local coordinates z,, ..., &,, &, ..., &,
in T™(X) corresponding to the expression of a covector as a sum X &;dz;. If the map
A3 (z, £)—¢ is regular at 4,, then we can in a neighborhood of 4, define A by an equation
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=X (&) where X is homogeneous of degree O with respect to &. Since A is Lagrangean and
conic, we have X &,dX, =0, that is,

dXEX) =% X d§,.

If H(&)=27&;X,(&), it follows that H is homogeneous of degree 1 and that 8H[0&; = X (&).

Thus it only remains to show that the map A>3 (z, §)—¢£ is regular at 4, if we choose
appropriate local coordinates at z,=nA,. Note that if p(x) =(x, &, is the linear form in the
coordinates such that (zy, y:(x,)) =4y, this means that the tangent plane of {(z, y;(z))}
at Ay shall be transversal to the tangent plane at 4, of A. But for a suitable choice of y
the set {(z, y:(%))} is locally an arbitrary Lagrangean manifold transversal to the fiber, for
closed 1-forms are locally exact. Since one can choose such a functionyas a local coordinate,
what we have to show is that there is a Lagrange plane in 7', (7% (X)) transversal to two
given Lagrange planes, namely the tangent space of the fiber and the tangent space of A.
This is obvious if one has a suitable parametrization of all Lagrange planes, which we shall
now introduce also as a preparation for section 3.3. (See also Arnold [1] for the following
discussion.)

By x or y we denote points in R* and by X =(z, &) or ¥ =(y, ) we denote points in
TR =R"@®R" The map (z, &)~z -+1£EC" allows us to identify this space with €. The

hermitian scalar product in C" is defined by
(X, Y) =2 (;+1&) (y,— )

so Re (X, Yy=Xa,y,+X &n;=(X, ¥)p is the Euclidean scalar produet in R and
Im (X, ¥)=2 (§;y;,—n;z;)=[X, Y] is the standard symplectic form which occurs in
(3.1.4). Let A(n) be the set of all n dimensional real subspaces 4 on which [X, Y] vanishes
identically. This means that A4 and 74 shall be orthogonal with respect to-(;)z. If U€U(n),
the unitary group, it is therefore clear that A€ A(n) implies that UA€A(n). The group
U(n) acts transitively on A(n), for if A€A(») and ey, ..., e, is a real orthogonal basis for 4,
we have Re (e;, ¢,) =8, Im (e;, ¢,) = 0 50 (e;, ¢,) =0, that is, we have a complex orthogonal
basis for C*. Thus we have a unitary map U with UR"=4. Now UR"=R" if and only if U
has real coefficients, that is, U belongs to the orthogonal group O(n), so we can identify
An) with U(n)/O(n). ’

If 2= UR" is an arbitrary Lagrange plane we claim that u=DR" is a transversal Lag-
range plane when D is a diagonal matrix satisfying an algebraic inequality. In fact, we
have transversality unless Im D-1U is singular. If the diagonal elements are d;-+id;

this condition ecan be written

det (d; Re u;, —d;j Tm uy) =0.
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If this equation were satisfied identically for real d;, d; we could take d; =1 and dj = —4
and conclude that det U =0 which is absurd. Except when the elements of the diagonal
matrix D satisfy a non-trivial algebraic equation it follows that DR" is transversal to any
finite number of given elements of A(n). This completes the proof of Theorem 3.1.3 and even
shows that it is sufficient to introduce new coordinates of the form y,=y.(xy),
k=1, .., n

Remark 1. Theorem 3.1.3 is closely related to the classical representation of a

canonical transformation by a generating function. (See e.g. Carathéodory [6].)

Remark 2. Theorem 3.1.3 remains valid if we drop the assumption that A is conic and
the conclusion that I is homogeneous. Indeed, the only change in the proof is that using
(3.1.4) instead of (3.1.3) we obtain 0X,/0&, =0X,/0&; which implies that locally X = H for
a suitable function H(&).

Remark 3. If we regard the function ¢ in Theorem 3.1.3 as defined on T%(X) we have

that d¢ coincides with the form (&, dz> on A. This is an invariant statement.

Theorem 3.1.3 shows in particular that every homogeneous Lagrangean manifold can
be represented by a non-degenerate phase function. Having settled this existence question
we shall return to the study of the uniqueness of ¢—in the sense of equivalence—after
indicating an important relation between a Lagrangean manifold and any non-degenerate

phase function defining it.

THEOREM 3.1.4. Let ¢ be a non-degenerate phase function in a conic neighborhood of
(20, Op) in X xRY with $o(xy, B,) =0, and set &y=d,(x,, 0,) so that (xy, &) belongs to the cor-
responding Lagrangean manifold A. Then we have

N —rank ¢gp(xg, ) = n —rank do(@o, &) (3.1.5)
where 5, is the restriction to A of the projection T*HX)—~>X and n=dim X.

Proof. The right hand side is equal to the dimension of the space of tangent vectors of
C (defined by (3.1.2)) at (wx,, 0,) which are mapped to 0 by the differential of the composi-
tion of the map (3.1.1) with xz,, that is, the map C3 (%, 6) >x. These are the solutions of the
equations dgg=0, dx =0, that is, dx =0, ¢gsd0 =0. The dimension is therefore given by the
left hand side of (3.1.5).

We note that ¢g6 =0 by Euler’s identity so dn, is never bijective, which means that
A cannot be a section of 7%(X). If 4, € A and dz, has constant rank = k in a neighborhood of
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2y, then there is a uniquely defined manifold ¥ < X of dimension & in a neighborhood
of z,=mnl, such that #A€Y when A is in a neighborhood of A, in A, and dr, is of course
surjective to T(Y). (See e.g. Sternberg [28, p. 41].) Since X &;dz,=0 on A it follows
that a neighborhood of 1, in A is contained in the normal bundle of ¥ in 7™*(X) and since
the dimensions are equal we conclude that A is an open subset of the normal bundle of ¥
in a neighborhood of 4,. Thus we have the situation studied in section 2.4. The hypothesis
of constant rank is of course fulfilled at all points in an open set, namely the set where the
rank is maximal. We give an example which shows what may happen when the rank

is not constant.

Example 3.1.5. Consider in 7*(R?) the Lagrange manifold defined in Example 3.1.2 by
H(E) =& when (£, &) is in a conic neighborhood of (0, +1). We have z; =3(£,/&,)°
and = —2(&,/£,)® so (x,, %,) varies over a neighborhood of the origin on the curve
(2/3)® — (%5/2)=0. The manifold A becomes the closure of the normal bundle of the
regular part of the curve.

We shall now give an answer to the question concerning equivalence of phase functions.

THEOREM 3.1.6. Let ¢ and q~$ be non-degenerate phase functions in conic neighborhoods
of (xg, 0p) EX x (R"N\0) and (x,, 50) €X x (RX’\O) respectively. Then the functions ¢ andqz
are equivalent in some conic neighborhoods of these points, under a diffeomorphism mapping
(@, 0o) to (x, B,), if and only if

(i) The elements of Lagrangean manifolds defined by ¢ and by ;S at (x,, 0,) and
(%o, 50) are the same.

(ii) N=N.

(i) B (2o, Oo) and By (2o, Op) have the same signature.

The necessity is obvious. Note that when (i) and (ii) are valid, it follows from Theorem
3.1.4 that the ranks of the matrices in (iii) are equal.

The proof of the sufficiency is fairly long. The first step is to show, using (i) and (ii)
only, that q; is equivalent to a function y such that ¢ —y vanishes to the second order on the
set C' defined by (3.1.2). To do so we consider the map

(, 0)~> (2, bz, po) = (2, D, 0)).

The differential of @ for fixed x is injective, for if ¢ydf =dgedd =0 it follows by hypothesis
that d§ =0. By the implicit function theorem it follows that there is a map y to RY from a
neighborhood of (z,, &, 0) where &,=d¢.(xo, 65), such that



FOURIER INTEGRAL OPERATORS. T 139
7 !
0 =‘F(x’ (]Sza ¢0)

Replacing ¥ by ¥'(z, &|&|/|£], w)|&|/|&| we may assume that¥(x, &, w) is homogeneous
of degree 1 with respect to &.

Corresponding to g[: we can choose a similar map Y. With a linear transformation
A: R¥—>RY still to be determined we form the map

(@, )~ (2, P, $s, o) + Ao (x, 0)|0]/]6,)). (3.1.6)

It is fiber preserving and the restriction to C is the diffeomorphism onto € such that the
diagram

0—> ¢

\/

commutes. If the map (3.1.6) is a diffeornorphism at (z,, §,), the pullback y of $ under the
map will therefore have the required properties.
Writing ¢, =&, ¢sg=w we can write the differential of (3.1.6) for fixed « in the form

W igrod0 + W daodd + Adgodb.

We must therefore choose A so that the matrix
Widao+ Bboo (3.1.7)

is non-singular at (z,, 0,), where B=A4 +8‘i’/6w may be any matrix at (z,, &, 0). This is
possible if (and only if) ¢get =0 implies ‘i’;:f:zet =0 if £ =0, for then we can choose B so that
the range on a space supplementary to Ker ¢p, is supplementary to ¥'; 47 Ker ¢po (all
computations taking place at (xy, 0,)). What we have to verify is thus that if (0, £) is a tan-
gent to C, then Wi ¢!yt =0 if 0. Since 03 (x, 6) ~ (z, V'(z, 45, $5)) € C is a diffeomorphism
and the differential maps (0,t) to (O, ‘i’érﬁ;gt) the proof is complete.

Now assume that ¢ and y are two non-degenerate phase functions at (x,, 0,) such that
¢ —p vanishes to the second order on the set C defined by (3.1.2) in a neighborhood of
(g, 0y). This implies of course that the corresponding Lagrangean manifolds are the same,
so we have now exhausted conditions (i) and (ii) in Theorem 3.1.6 completely. Using

Taylor’s formula we can write
p=¢+% 2 by, 0)04(z, 0)/00,08(, 0)/00,

where B=(b,) is a symmetric matrix. On C' we obtain
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oo = oo(I + Beo),  Pzo=z0(I + Bepo) (3.1.8)

so the non-degeneracy of ¢ means precisely that det (I + Bege) =0 at (2, 0,)-
We shall now prove that y is equivalent to ¢ in some neighborhood of (z, 8,) if B
is sufficiently small. To do so we first note that by Taylor’s formula

(=, 0) —(, 0) = = (B, — 6, e, 0)/20,+3 (B,—6,) (B, —0) (. 0, )

where ¢, is symmetric with respect to j and % and homogeneous of degree —1 with respect
to (0, 5). Now put
0;=0;+2 wy(x, 0)0p(x, 6)/00,

with some homogeneous functions wy, still to be determined. Then we obtain ¢(«, 5) =y(z, 0)
if

W+ 2 Wy Wy by (2, 0, 5) =b/2.
By the implicit function theorem these equations have a unique small solution w if the
matrix B is sufficiently small, and the solution must then necessarily be homogeneous of
degree 1. The condition D0~/D0 +0 at (z,, 6,) will also be fulfilled for sufficiently small B,
so the assertion is proved.

The final part of the proof of Theorem 3.1.6 is now to prove that ¢ and y are equivalent
at (@, 0,) if ¢ — 1 vanishes to the second order on C and ¢g and g have the same signature
at (g, 0,). By (3.1.8) this means that ¢gs and dgy +pg Boes have the same signature there.
The assertion will follow from the second step in the proof if we show that there is a con-
tinuous funection y, of {, 0 <¢ <1, with values in the space of non-degenerate phase functions
in some neighborhood of (x,, 0,), satisfying the hypothesis that y, — ¢ vanishes to the second
order on C, such that y,=¢ and y, =y. In fact, since g, is then equivalent to ¢, if s and ¢
are sufficiently close, the equivalence of v, and v, follows in view of the Borel-Lebesgue
lemma.

To show that 1, can be chosen with the required properties it only remains to analyse
the condition concerning signatures. Since the deformation is clearly possible if B vanishes

at (xg, 0,), it suffices to prove the following lemma:

LEMMA 3.1.7. Let A be a real symmetric M x M matriz and let R be the set of all real
symmetric M x M matrices B such that det (I + BA) +0. Two mairices By, B,€ R are then in
the same component of R if and only if A+ AB, A has the same signature for j =1, 2; the ranks

are of course equal to rank 4.

Proof. Let N be the kernel of 4 and N° the orthogonal complement. Then we have
AN =0 and A maps R onto N°® with N as kernel. The operator I + B4 is the identity on N
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so it is an isomorphism if and only if 4 + A4 BA restricted to N° is an isomorphism. If P
is the orthogonal projection on N?, it follows that det (I + BA)=+0 implies that det (I +-
B,A)=*+0if B,=(1—¢)B+tPBP, so B and PBP are in the same component of R. Moreover,
B, and B, can be joined by an arc in R if and only if PB, P and PB,P can be joined by an
arc in R consisting of operators vanishing on N and with range contained in N° Thus
we are reduced to considering operators from N0 to N9, and the statement then follows
from the well known fact that in the space of all non-singular & x k symmetric real matrices
the components consist of matrices having the same signature. In fact, the map
B—>A+ABA from symmetric matrices to symmetric matrices is bijective if 4 is non-
singular.

We have now completed the proof of Theorem 3.1.6. Note that the proof also shows that
bo0(2o; B,) can have any signature compatible with Theorem 3.1.4 when we only know
the corresponding Lagrangean manifold A. Only in one case do we get a perfect analogue

of Proposition 2.4.1:

CoROLLARY 3.1.8. Let ¢, be a non-degenerate phase function at (xy, 0,) where 6,50
and $jo(y, 0,) =0, diop(xg, 0;) =0, j=1,2. Then it follows that ¢, and b, are equivalent at

(g, 04) and (g, 0,) if and only if the corresponding germs of Lagrange manifolds are the same.

Proof. By Theorem 3.1.4 the number of § variables in the two functions must be the
same so the hypotheses of Theorem 3.1.6 are fulfilled.

We shall now discuss how to change the number of § variables in ¢ without changing
the corresponding Lagrangean manifold. In view of Corollary 3.1.8 two phase functions
defining the same Lagrangean manifold will give rise to equivalent phase functions if
in this way we decrease the number of # variables in each as far as possible.

First we shall show how to increase the number of 6 variables. Thus let ¢(z, 0) be a

non-degenerate phase function in a conic neighborhood of (z,, 6,), let ¢ € R” and introduce
¢'1(x: 0: G) =§6(CIJ, 0) +A(0" G)/lel

where 4 is a non-singular quadratic form in R”. This function is homogeneous of degree

1 in a conic neighborhood of (%, 6, 0) in X x R¥**. The equations
86,100 = 8¢, /06 — O

mean that ¢=0 and that &¢/00 =0, so it is clear that ¢, is a non-degenerate phase function
defining the same Lagrangean manifold as ¢. Thus we can always increase the number of

0 variables as much as we like.
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On the other hand, assuming again that ¢ is a non-degenerate phase function in a
conic neighborhood of (x4, 0,) €C (defined by (3.1.2)), we can decrease the fiber dimension
by k units if ¢gg(xy, 0,) has rank at least k. For let us write 0 =(0y, ..., Oy—s),
0" =(Oy—ss1, - Oy), and assume that det ¢gro- (,, O,) 0. This situation can of course be
attained by a linear transformation of the § variables. Then we have 0o ==0 for otherwise

we would obtain using Euler’s homogeneity relations that
0 == 60 (%o, o) o = oo~ (2o, o) B

which implies that 6;=0 also, which is a contradiction. Among the equations ¢g=0
we first consider the k equations ¢g =0 and note that they locally determine 0” as a C®

function y(z, 0). Let now

‘ﬁl(xa 0,) =¢(:1:, 6’: 1/’(‘”7 6,))

We claim that ¢, is a non-degenerate phase function at (w,, 6p) which defines the same
Lagrangean manifold as ¢. In proving this we may assume that ¢ =0 identically, for other-
wise we can introduce (0', 60" —y) as a new variable instead of 0. Then the equation
d¢$[00" =0 is equivalent to " =0, so it follows that all mixed derivatives involving 6" are
also 0 then. The differentials of ¢¢ are therefore independent of d0” while the differentials
of ¢¢- only involve df” on O. Thus the non-degeneracy of ¢ implies that of &,.

3.2, Invariance under change of phase function and global definition

Using the results proved in section 3.1 we shall now show that the class of distribu-
tions which are defined according to (1.2.1) with a fixed ¢ is already determined by the La-
grangean manifold corresponding to ¢. Let ¢ be a non-degenerate phase function in some
conic neighborhood I' of a point (x, 0,) € R* x (R"™\0), and let a €851, ("), > 1, vanish
outside a conic closed set <I' and in a neighborhood of R* x 0. As in section 2.4 we modify
(1.2.1) slightly and set

<A,u>=%2nf*””N”4ff&““ma@gO)MQﬂdxd& u€ O (R™). 3.2.1)

The reason for the factor (27)~**™* will become more clear when we switch to phase func-
tions involving another number of § variables.

Suppose now that we make a change of variables
r=x(%), 0=0(%,0).

In doing so we shall, as in section 2.4, transform 4 and u as densities of order , so we set
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i (%) = | D DE|* u(x)
and define 4 so that (4, @) =<4, u>. Writing

~

$(%,0) = $(x(@),0(2,0)), @(*,0)=a(x(®),0(,0))|Dz/Dx|* | Do/DB|
we obtain
(A, &y = (2)(nremwre j f EDg(x, 0) i(%) dedd, 4ECT. (3.2.2)

We shall of course consider A and 4 as the same distribution density of order }, expressed
in terms of different local coordinates. Generalizing Theorem 2.4.2 we shall now show how
to assign to this distribution density a principal symbol in S§(A, Qy2), p=m +N/2. (For
the definition see section 1.1.)

As in section 2.4 we note that on the manifold
O ={(z, 0); $o(x, 0) = 0}
a density d. is defined as the pullback of the Dirac measure in R¥ under the map

I's (x, 6)—>¢s(x, ). If A4, ..., A, are local coordinates on C extended to a neighborhood of C,
the density is given by

do=|D(Ay, ..., Ay, 04[00,, ..., 04[00y)/D(x, )| ~1dA, ... dA,.
Now we claim that the density of order § on A which is the image of al/d‘c under the map
C3(z, 0)—(z, ¢;) €A is the same as that obtained from gl: and d (if we regard « and & as

local coordinates in the same manifold). Introduce i(a?, é) =Ax(%), 6(%, 0)) so that A and 1

correspond to the same function on A. What we have to prove is then that on &
| D@, $)/D(z, 6)] 7 alz, 6) = | D(A, 45)/ Dz, 6)| 2 a(z, 6).

The interpretation of this and the formulas following should of course be that x and 0
are regarded as functions of # and 6. Since ¢(%, 6) =¢(z, 6) we have d:é — $400/80, and

since ¢y=0 on C' we obtain
D(L, $2)/D(%, 6) = (D6]D6) (D(2, $5)/ D(=, 0)) D(z, 6)] D(, 6)
= (D6/D6)* (Dx| DZ) D(A, $3)/ D(x, 9).

This proves the asserted invariance if we recall the definition of 4. Note that the deter-

minant

DAy, ..., A, 86/004, ..., 04/06y)] D(x, 6)

is homogeneous of degree n — N if 1, ..., 4, are homogeneous of degree 1 with respect to 0.
The density of order + we have defined is therefore in Sy (A, Q,) if u=m+N/2.
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If all non-degenerate phase functions defining the same Lagrangean manifold had
been equivalent, this would have finished our proof that the class of distributions defined
by (3.2.1) is determined by the Lagrange manifold corresponding to ¢. However, in order
to be able to apply Corollary 3.1.8 we must also show that the class of distributions in
question does not change if we restrict the number of § variables as indicated after that

result. In doing so we shall again split the 6 variables in two groups
0’ = (61, evey 0N—k)7 0” = (BN*kﬁ-ll cony BN)'

We require that det ¢g-g +0 at (x,, 6,). As noted in section 3.1, ¢ is then locally equivalent
to a phase function such that ¢g =0 is equivalent to 6” =0 so we may assume that this con-
dition is fulfilled. Let Q(8”, 0”) be a quadratic form of the same signature as ¢y g-(2, 0,)

and set

$1(x, 0) =p(x, 0, 0)+Q(6”,0")/2|0'|

which is a non-degenerate phase function equivalent to ¢ near (x,, 0,) in view of Theorem

3.1.6. Thus we have reduced our study to a phase function ¢ of the form
b, 0) =y(x, 6") +Q(6",6")/20"|

in a conic neighborhood of a point (z,, 6,) with 65=0. We have
(A, uy = (27;)_(”+2N)/4ffei(w(x,6’)+ Q020D gy §' ") u(w) dac 4O’ 6",

which if we first integrate with respect to 6” leads to

(A, uy = () nTEN-R f f eV (z, 0') u(x) de db’ (3.2.3)
where b(x,0') = (273)”’“2[6“)“’"'0")’2'6"0& (x,6',6")do"
- (2n)_k/210'l"fem(0"' P20 o', (0']67) d6". (3.2.4)

Note that in the last integral we may assume that the integrand vanishes for |6"| >1,
for example.
To evaluate (3.2.4) we must recall some well known facts concerning the method of

stationary phase.

a) The Fourier transform of the function

Roy—>e "2 Rez>0,z+0,
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is n—>e " 7%%(27/z)* where w? is defined when Re w>0 so that it is equal to 1 when w=1.

From this we conclude that the Fourier transform of
R¥3y-—exp (1 X a;47/2)
where a; are real and +0 is given by
7 exp (—i £ n2/2a,) [1 @] —ia,)? = exp (—i T 7%/2a;) (27)" exp (wio/d) [1 |a,] ~*

where ¢ =2 sgn a,. If 4 is a symmetric non-singular matrix it follows that the Fourier

transform of

RF3y~>exp (i{4y, y>/2)
is given by

RE39 > exp (— <A™ ', p>/2) (27)* |det A]~* exp (ni sgn A/4)

where sgn A denotes the signature of 4.
b) If € CF (R¥) we obtain from Fourier’s inversion formula and the preceding com-

putation of Fourier transforms for ¢ >0
f f(y) exp (it {4y, y>[2)dy
= (2nt)"%2|det A|7F exp (i sgn A/4)ff(n) exp (—1{A7 'y, n>[2t) dn.

In the right hand side we take the Taylor expansion of the exponential function. Since

o =S Gpljt|<Japiot, aeR,

we obtain

' ff(y) exp (it {Ay,y>/2)dy — 8, () |< Ot *2 3 | D*f| dy (3.2.5)

je|<2v+k+1

where C is independent of ¢ and f, and

S, (t) = (27/t)**|det A|~% exp (nisgn Af4) > ¢, D*f(0)¢™1I"2 (3.2.6)
lec| <2v
1]
Here c,=%; exp (— (A, n>/2) ! =g (3.2.7)

vanishes for odd |«|, and is of course independent of ¢ and f.
¢) Let us now consider the integral (3.2.4). As already pointed out we may assume
that a(z, §’, 0") =0 when |6”| > |6’|. Now apply (3.2.5). The error term will be bounded by

a constant times {§’| raised to the power

10— 712908 Aeta mathematica 127. Imprimé le 3 Juin 1971
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E2—v+m+2v+Ek+1)(1—p) =m+k/24(k+1)(1—p)+v(1-20)> —o0 asy—>oo,

In the sum
G 3 c|0'|"" Dg.a(@, 6,16 0") lp-~0,
x]<2v
=l (3.2.8)
G =|det Q|6 |*2 exp (i sgn Q/4)
the general term is in S5*® where m(a) =k/2+m + || (3 — ) > — o as || —>co. In view of

Proposition 1.1.10 it follows that bGSZ,"J""’2 and that b is the asymptotic sum of (3.2.8)

when y-> 0. Since ¢, =1 when «=0 and c¢,=0 when |«| =1, we have
b(z,0') —|det Q|~¥|6'|** exp (ni sgn Q/4) a(x, 8, 0)€ S7+* 722, (3.2.9)

Let C={(z, 0); ¢o(, ) =0} and O ={(z, 0'); o (x,0’) =0}. Since the equation ¢s=0
is equivalent to 6” =0 and g =0, in a neighborhood of (x,, 6,), the map (z, ")~ (z, 6, 0)

is a diffeomorphism of ¢ onto C there, which gives a commutative diagram

éq/a

Let 4y, ..., 4, be local coordinates on C, extended to a neighborhood. Then we have on C
D(2, ¢5)/Dix,0) =|6'|* (det Q) D(A,yg)/D(,0’).

This means that the densities of order  on A defined by a(x, 6) /g, and by a(z, 6", 0 )0 [*2
|det @|~*Vdz are the same. The conclusion is summed up in the following theorem, where

we have adapted the normalizations to those used in section 2.4.

TaEOREM 3.2.1. Let ¢(x, §) and g[;(x, 5) be non-degenerate phase functions in neighbor-
hoods of (x4, 0) EX xRN and (w,, 50)€X x RN which define the same elements of Lagrange
manifold A there. In particular, ¢,(x,, 0,) =</:;(x0, 60) =&y Then

(1) The difference

o =sgn $ye(x,0) —sgn ¢ 75 (2, 0),
(3.2.10)

bo=¢5=0, o= =EET]
is constant in a neighborhood of (x,, &) in A.
(ii) Every distribution which can be defined by (3.2.1) with a €SE+ ™2V o> L and cone
supp a in @ sufficiently small conic neighborhood of (x,, 0,) can also be written in the same form
with ¢ replaced by é and a replaced by a function &€ 8L+ 201 with cone supp @ in a small

conic neighborhood of (%, éo), so that moreover
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(exp mio/4)a (@, 0) Vdy —d(x, B) Vds € Setr*+1-2¢(A, Q), (3.2.11)
the two terms being of course in Syt ™A, Qy).

Proof. We have already verified the statement when ¢ and 4: are equivalent or Whenq/;
is obtained from ¢ by reducing the number of 6 variables. Since Corollary 3.1.8 shows that
reduction of the number of 6 variables in both ¢ and q; will lead to equivalent phase func-
tions, repeated application of these special cases proves the theorem.

Since the signature is congruent to the rank mod 2, we have by Theorem 3.1.4 that

o=rank ¢ ~rank g} =N —N.

06

Hence o =(c—N+N)2€Z. (8.2.12)

With this notation we can rewrite (3.2.11) in the form
i@ exp (niN/4) a(, 0) Vi — exp (will/4) a(x, §) Vdz €84 "4+1-2¢(A, Q). (3.2.13)

We are now prepared to discuss the global situation, so let X be a manifold and A a
closed () conic Lagrangean submanifold of 7*(X)\ 0. Let J be the set of objects consisting
of

(i) A local coordinate patch X' X with local coordinates (x, ..., x,) ER™

(ii) An integer N >0 and a non-degenerate phase function ¢ defined in a conic open
subset U of X’ x (RV\ 0) such that

{(z,0)€U; ¢g(x, 0)=0}3 (x, 6) > (=, ¢;)

is a diffeomorphism on an open subset U” of A.

When j€J we shall write X, ¢, N,, U,, U for the corresponding quantities.

Definition 3.2.2. By Ig(X, A) we shall denote the set of all A€%'(X, Q,) such that
A =73, A, with the supports of 4; locally finite and

{4, u>=(2n)‘<"+2”ﬂ’4ffei<¢f“-‘”-"Nf/‘*)a,(x,e)u(x)dxde, u€C0*(X), (3.2.14)

where dz is the Lebesgue measure with respect to the local coordinates in X;, 6 € R¥ and
a; €S ENIARM « RY), supp a,< {(x, t0); =1, (x, 0) €K} where K is a compact subset of
the image of U; in R x R¥.

We shall now prove an analogue of Theorem 2.4.2. In doing so we must take the factor

¢ in (3.2.13) into account, so we introduce

(1) The following results remain valid if A is not closed provided that we only consider symbols
vanishing outside closed conic subsets.



148 LARS HORMANDER
o = ((sgn 95;00(90, 0) — Ny) — (sgn 4%0(39, 6,)— NJ-))/2, (3.2.15)

where ¢ro(2, 0,) = djo(x, 0,)=0 and ¢\, (x,0,) =i (x,0;) =EETENA. This is a locally
constant integer valued function in U n U# by part (i) of Theorem 3.2.1, so we have an
integral cochain defining an element ¢ € HY(A, Z). Let L be the corresponding complex
line bundle on A obtained from the cohomology class by letting 1 €Z act on € by multiplica-
tion with the imaginary unit 4. (See e.g. Hirzebruch [11). L is of course determined by the
image of ¢ in HY(A, Z,).) L is trivial as a complex vector bundle. For since the cohomology
of a fine sheaf is trivial we can find functions ¢,€ C®(U#) which are homogeneous of degree
0 and satisfy the coboundary condition ¢, — o, =0y in U0 US. This implies that %=
e~ ™i2¢mH2 which gives the asserted trivialization. However, we shall not use this since
the trivialization is not natural and leads to a loss of part of the structure of L. Note that
the action of R, on L given by letting R, act trivially on € in the trivialization is
independent of how it is chosen, so L is an R, bundle, and the spaces S5(A, Q;®L) are
therefore well defined.

Our purpose is to establish an isomorphism

SpEmE A, Q@ L)SP Tt (A, Q@ L)~ I (X, A)IZH (X, A). (3.2.16)

The first step is to define the surjective map (3.2.16) using Theorem 3.2.1. In doing
so we note that to have an element s€S7*"*(A, Q;®L) means to have an element
5;,€ 8T "4 (UM, Q) for every § such that

s;=1"%s, in UAN UL,
If cone supp s < U we define an element 4,=4,(s)€ I7 (X, A) by (3.2.14) with
a,-e Sgn+(n-2N,-)/4(Uj)

satisfying the conditions on the support in Definition 3.2.2 and chosen so that a; I/Zi:, is
mapped to s, by the map

OJ'= {(x’ 6) € UI; ¢J,B (x: 6) = 0} 2 (x’ 0)_) (.’L‘, ¢J’1‘)e Ué\

This defines a;€ S "4~ 72+(=Np2(()  An extension to a neighborhood of C; is obtained
by taking a homogeneous C® retraction to C;, and a; is finally obtained after multiplica-
tion by a suitable homogeneous cutoff function in U,. By Proposition 1.2.5 different choices
of the extension a, give operators differing by an element of If*™**1-20 (X A) only. Thus

we have defined a map



FOURIER INTEGRAL OPERATORS. T 149

Sén+nl4(A’ Q%®L) 38—>A.j(8)€-[£" (X, A)/Ig‘+1—2g (X,A)

when cone supp s U, If in addition cone supp s< U%, it follows from (3.2.13) that
Ak(s) 4 #(8). (We can split s in a finite sum of elements with supports in such small conie
sets that Theorem 3.2.1 is applicable.)

Now choose a partition of unity £ ¥,=1 in A such that X, is homogeneous of degree 0
and the sets X; for which X;+0 form a locally finite covering of A. It suffices to define
X; on the intersection of A with the unit sphere bundle in 7*(X) with respect to some Rie-
mannian structure in X. This is a compact set over any compact set in X (since A is assumed
to be closed) so the existence of such a partition of unity is clear.

If seSTHMA(A, Q;®L) we have s=2X X;s where ijES;"“L""* (A, Q;®L) and cone

supp X,;5< U{. Thus we can define
Als) =3 4,(1;9).

This definition is independent of the choice of partition of unity. For if 1 =2 y, is another

one, we have

ZAi(xis) =2 A;(X;yy5) :jzkA:k(XjWIcs) = % Ak(WkS)-

i 1k

The map 4 from S;*"*(A,Q,®L) to I} (X, A)/I7*172¢(X,A) is clearly surjective and
it maps Sy 12(A,Q, ® L) to 0. Thus it defines a surjective map (3.2.16).

To prove that (3.2.16) is injective we shall have to study how a distribution
A€IF(X, A) acts on rapidly oscillating functions. (Compare the discussion following
(2.4.2).) This will also yield a new proof of Theorem 3.2.1 which is independent of the
results proved in section 3.1, and in addition we shall obtain an intrinsic definition of
ID(X, A).

We have to start by considering the local case so let X<R” and let ¢ be a non-
degenerate phase function in some conic neighborhood I' of a point (%, ;) €X x (R¥\ 0).
Let u€0§(X) and let y€C0°(X) be real valued with 4,40 in supp ». With A defined by
(3.2.1) we shall determine the asymptotic behavior of (A, ue ™) as t—>oc. We have

<A, ue—itw> — (zﬂ)—(n+2N)/4JJei(¢(x. 0)—tw(z))a(x, 0) u(x) dxd@
= (2q)"(nHENIN f fe“w- OV g, 10) u(x) dr db. (3.2.17)

The important contributions must come from critical points of the exponent, that is, points

where ¢g(z, 0) =0, ¢;(z, 0) =y;(x). This means that (z, ¢;) = («, y;) is an intersection between
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A and the section dy of 7T%(X). The critical point of the exponent is non-degenerate if

det ("‘2" ¢€," . ) 4 0. (3.2.18)
‘}Szo ﬁl’xz  Yaz

This means precisely that A and dy shall have a transversal intersection. In fact, the tangent

plane of A is defined by {(dz, d¢;); dgs=0} while that of dy is defined by {(dz, dy;)}.

Transversality means that there shall exist no vector (£, ) 0 in R*®@R" such that

At a) +d<r, 4> =0 if dpy=0
A<t x> +d (T, 90> =0.

The first condition means that for some o€ R¥

d<t, x) +d{t, ¢y +d<{a, dgy =0.

If v =0 the second condition shows that £=0 also so we can eliminate ¢ by subtraction and

find that our condition means that

shall imply 7=0 and therefore ¢ =0 (since ¢ is non-degenerate). But this means precisely
that (3.2.18) shall be valid.

We can choose y so that the transversality condition is fulfilled at (zq, ¥z (%)) if
bz (29, Bp) =z (w,). When supp « is sufficiently close to x, we then know that ¢(x, 6) — p()
has at most one critical point with « € supp % and (x, 0) € cone supp a, and this point is not
degenerate. We denote it by (x,, §;) if it exists.

In virtue of the Morse lemma it is possible to transform ¢(z, ) —y(x) +y(z,) to a quad-
ratic form in a neighborhood of (x, 6,), and this will allow us to apply the discussion of the
method of stationary phase made before in this section. Since we shall have to consider
dependence on parameters later on we pause to give a proof of the Morse lemma in the form

needed here using the same argument as in the proof of Theorem 3.1.6.

LeEMma 3.2.3. Let h(z, w) (zER¥, w€ER?) be a C® function in a neighborhood of (0, 0)
with B0, 0)=0 and Q="h;,(0) non-singular. Then the equation h)(z, w)=0 determines in a
neighborhood of the origin a C®, function z(w) with 2(0) =0 and we have h(z, w) =h(z(w), w) +
Qw)E, /2 where Q(w) = hz, (2, W)]emeqwy and { =2 —2(w) +O(|2—-2(w)|?) is a C® function of

z and w at 0.

Proof. By the implicit function theorem the equations (z, w) =0 have a unique solu-

tion z(w) with the stated properties. Introducing z —z(w) as a new variable instead of 2
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we may assume that %0, w)=0 for all small w. Write {= R(z, w)z where R is a kx#k
matrix to be determined with R(0, w) =1 so that (R*Q(w) Rz, z>/2 =h(z, w) — (0, w). Now
we have by Taylor’s formula

h(z, w) —h(0, w) =1 Z by(z, w)2,2,

with B=(b;) symmetric and €® as a function of z, w. Thus the problem is to choose B
8o that
R*Q(w)R = B.
When z=0 we have the solution B=1, for B(0, w)=@Q(w), and the differential when
R =1 is the map
R~ R*Q(w) +Q(w) R

which is surjective since B*Q+QR=C where C is a symmetric matrix if R=Q1C/2. This
proves the lemma.

Choose a cutoff function y€CF(R" xRY) which is 1 in a neighborhood of (z,, 6;)
and has support in another neighborhood where using Lemma 3.2.3 we can make a change
of variables x=w(z), 8 =6(z) with z in a neighborhood of 0 in R"*" such that

(i) 2(0) =z, 6(0) =6,
(i) P(x(z), 6(z)) —plx(z)) = <Qz, 2>/2 —p(x,) where @ is the matrix in (3.2.18) at (w,, §;).
(iii) J(z) = Dz, 0)/Dz =1 when z=0.

We can then write

(Aue ™ =1, (1) +1,(b), (3.2.19)
where

L =172 n)”‘“wme"itw(rs)feit‘Qz‘ D2a(x(2), 10(2)) %(x(2), 0(2)) wl(x(z)) J (z) dz,  (3.2.20)

L= tN(2n)"("+2N)’4ffe't(¢(x"”""m) (1 —%(z, 0)) a{z, 10) u(zx) dx df. (3.2.21)

We can obtain an asymptotic expansion of (3.2.20) using (3.2.5). If a € S§*"*~ "2 the

error can be estimated by a constant times ¢ to the power
N—-(N4+n)2—vi+m+n/d—N[2+2v+N+r+1)(1—p).

Since 2(1 —p) <1 it will decrease like any desired power of £~ if » is chosen large enough. In

view of Proposition 1.1.10 it follows that
eitw(z‘s)_ll (t) ~ (2715)"/4 [det Q,—é exp (7'6@ sgn Q/4) t(N— n)/2
% 2.0, DFa(x(2), t0(z)) w(@(2)) J (2) | =g 1%,

where the terms are in §™~"/**1¢/4-9 and vanish for odd |a|. The leading term is
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(27)™*|det Q| % exp (i sgn Q/4)tV " a(x,, t0,) u(x,).

The integral I,(t) decreases faster than any power of 1/t as {— oo, (The function y
should be omitted in case there is no critical point for the exponent in cone supp @.) This
fact is very closely related to Propositions 1.2.2 and 2.5.7 and so is the method of proof.
First of all, in the support of a(x, t6) (1 — x(z, 0)) we have for some & >0 at every point either
|po| >& or |pz—p:| >e(1+ [6]). Indeed, if |¢s| <e and ¢ is small enough, it follows by the
definition of phase functions that |¢;] >¢|6| for some ¢>0 so the assertion is obviously
true for large [0]. For small || it is true since y; =0 so it follows in general for reasons of
continuity. Now we can split @ in a sum a=a, +a, where a;€ 87 ™2 supp a;<supp a
(j=1,2) and a,=0 when |¢9] >¢, a,—0 when |¢| <&/2. The operator corresponding to
@, has then a C® kernel according to Proposition 1.2.4 so for the corresponding operator it is
clear that (3.2.17) is rapidly decreasing. We may therefore assume that a=a, so that
|¢z—we| >e(1+]0]) in the support of a(x, 6) (1 —x(x, 6)). Now we have M(¢—y)=—1 if

M =X a;00m;, ;= —id($—y)ow; (X (2 —y)/0x,)*)".
In the support of a(x, 10) (1 —x(z, 0)) the estimate
Dia,=0((1+|0])™") (3.2.22)

is valid for all x. The adjoint L=*M is given by

n

n
L=3 —a8/om;+ay, ay=— ;aa,./ax,.
1

80 (3.2.22) is obviously valid also for j=0. Now we obtain for every integer » by repeated
partial integrations

L, (f) =tV (27)~(n 2 f f i@ O T g0 10) (1 — Xz, 0)) u(z) da db.

The integrand can be bounded by a constant times
t—v(l + le l )—ﬂ(l + |t0| )m+nl4—N12+v(1—g)

which can obviously be bounded by (1+ [0])~""'#*~ for a certain constant x4 which is
independent of v. Thus the integral decreases faster than any power of 1/t as asserted. Sum-

ming up, we have proved

THEOREM 3.2.4. Let ¢ be a non-degenerate phase function in an open conic set
Fc R x (RV\0) and let a€ STV V2(R™ x RY) vanish outside {(z,t0);t>1, (x,0)€ K} for
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some compact set K<T'. Let w€O0®(R"), yECF(R"); assume that v is real valued and that
grad 1y =0 in supp u. Then

(i) If there is no point (z,0) in cone supp @ with x€supp u and ¢,=0, ;=1;, then the
function t—<A, ue™™) where A is defined by (3.2.1) belongs to S—°R.).

(ii) If there is precisely one point (x, 0;) in cone supp a with x,€supp % and ¢4(x,, 6,) =0,
bz (5, 0,) =z (), and if (3.2.18) is valid there, then

t—> eI A etV
is in SFTETM2(R, ) and we have

A, ue™ ™y — (2)"* |det Q

“¥ exp (vt sgn Q/4) tV 2 g, 0,) u(x,) € SPATI-Ze (R )

(3.2.23)
where Q is the matriz in (3.2.18).

Theorem 3.2.4 can be extended to the case where y (and %) may depend on para-
meters. Thus let ¢, be a positively homogeneous C® function of a parameter (€T, an
open cone in R\ 0, say, with values in C®(R") satisfying the hypotheses of Theorem
3.2.4. (For simplicity we keep u fixed instead of as an element in S§(X xTI';).) Then the
stationary point of ¢ —1p; is a C® positively homogeneous function (x,(t), 8, (f)) where it is

defined, and we have
(A, ue" Wty —e =D ptye S~ (T), (3.2.24)

where b vanishes outside the set where x(f) is defined and
b(t) = (27)"* A(t)~ exp (mic/4)a(w, (£), 0, (8)) u(x,(t) € S+ 72¢(Ty).  (3.2.23)

Here A(t) and ¢ are the determinant and signature of the matrix in (3.2.18) when y is re-
placed by vy, evaluated at the point (z,(t), 6,(¢)). Note that A(£) is a homogeneous function
of degree n—N.

We can now prove that the map (3.2.16) is injective. To do so we assume as in Defini-
tion 3.2.2 that A =X ,;4; and that for a certain point A, all terms except one, say 4,,
have the property that (x, ¢;;) + 4, when (, ) Econe supp a; and ¢js=0. We must prove
that if 4 =0 then a,(, ) €Sy +™* ¥/2¥1~2¢ on the surface dog(2, 0) =0 in a conic neighbor-
hood of the point (xy, ,) Where (g, doz(xo, 0p)) =4, In doing so we choose coordinates near
xy according to Theorem 3.1.3, take w € CF°(X) with support close to x, and let I'; be a small
conic neighborhood of ¢, (y, 0) ER™. With ,(x)=<x,t>, t€T;, we then obtain that
(A, ue™™ is rapidly decreasing for § =0, and since 4,= —Z,,, 4, this must also be true
when j =0. Now the intersection between A and dy, is at (H'(t), t) and it is transversal in

view of Theorem 3.1.3, so we obtain
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e FO Ay, ue™™y — (2)"* A1) exp (mio[4) a(x (8), 0, (8)) u(x,(t) € Sy~ ™*+1-%

in T';. Here (z,(t), po(x:(t), 05(t)) = (H'(£),t)EA is a homogeneous parametrization of A
close to Ay It follows that a(z(t), 0,(t)) € SF+™4-2+1=2¢(" ) which proves our assertion.

Summing up:
THEOREM 3.2.5. The map (3.2.16) defined above is an isomorphism.

It is clear that using (3.2.24), (3.2.23)" with v, chosen as in the preceding argument
one can give a new proof of the transformation laws which we have here based on the
analogue of the [Morse lemma proved in section 3.1. At the same time one can obtain a
characterization of I™(X, A) as the distributions for which (3.2.24) is valid when dy, and
A intersect transversally. This is quite analogous to properties of pseudo-differential
operators sometimes used to define them (see e.g. [12]). We leave the development of
this approach to the reader but the relations between the two methods will be clarified in
the next section.

The proof that (3.2.16) is injective also gives the second part of the following theorem;
the first part follows from Proposition 2.5.7.

THEOREM 3.2.6. Let A€ I} (X, A) and let a € S7*™* (A, Q; ® L) be a principal symbol.
Then WEF(A)< A and a€87 V41722 i ANWF(A).

3.3. Interpretation of the line bundle L

Let again A be a homogeneous Lagrangean manifold < T*(X)\ 0, let 4,€A and x,=
7t Let ¢ be a non-degenerate phase function in a conic neighborhood of (,, §,) with
@o=0 and (z, g;) =2, at (%, 0,). If pEC® at x,, if (w0, 1 (%)) =4 and {(z, vy (2))} is trans-
versal to A at A;, we shall denote by S(p, v) the signature of the non-singular matrix (3.2.18)
which occurs in (3.2.23). This is of course evaluated at (x,, 0,) where g(z, ) —y(z) has a
critical point, so it is clearly invariant under a change of variables in X or a fiber preserving
change of 0 variables. The following statement follows in part from the consistency of the

main argument in section 3.2 with that outlined at the end but we give a direct proof.

Prorositron 3.3.1. If ¢ and ¢ are non-degenerate phase functions in neighborhoods

~

of (g, 0y) and (x4, 0,) both defining A at Ay, then

S(@,p) — S(@, ) = 581 @go (%o, O) — 581 o (%, Oy)- (3.3.1)

Proof. Both sides are equal to 0 if ¢ and ¢ are equivalent. If ¢ is obtained from

¢ by increasing the number of § variables as described in section 3.1 it is also clear that
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(3.3.1) is valid, and in view of Corollary 3.1.8 these two cases combined prove the proposi-
tion.
By our definition of L, to define an element in the fiber L;, means to give for each phase

function ¢ defining A at 4, a complex number 2, such that
2 = 2 €Xp 7vi((3gn @0 (2p, 0o) — N) — (sgn F55 (o, 0) — N))/4
where N and ¥ denote the number of variables 6 and 6. In view of (3.3.1) this implies that
2y exp wi(S(p, ) ~ N)/4 =25 exp wi(S(@, y) — N)/4,

80 we obtain a linear isomorphism L; —C independent of ¢ but depending on y, or rather on
the tangent plane of {(x, y'(x)}} at 4,. This is an arbitrary Lagrange plane in 7' (1%(X))
transversal to T, (A) and to the tangent space of the fiber at 4,. (See the proof of Theorem
3.1.3))

Next we examine how the isomorphism depends on y. Passage from v, to ¢, will of

7vi/4

course mean multiplication by ¢™* to the power

S(p, 1) — 8(@, va) = 8(@, 1) — S(P, ws)- (3.3.2)

We shall give a geometric interpretation of this integer which is always even since S(gp, ;)
and S(p, y,) are both congruent to N +# mod 2. To facilitate computations we choose
local coordinates according to Theorem 3.1.3 so that A is defined near 4, by means of a

phase function

p(@, &)=<z, & —~H(§)

which is linear with respect to ». Writing 4 = He(&y), B, = yjzz (%) We have

—4 I). (3.3.3)

—A I
S(%%)—S(%%)—Sgn( 7 _Bl)—sgn( I -B,

Note that in our local coordinates

1) the tangent plane A, of the fiber is defined by z=0;
2) the tangent plane 4, of A is defined by x=4§&;
3) the tangent plane u; of {(z, yj(z))} is defined by &= B;=.

We now recall the structure of H(A(n)) where A(n) is the space of all Lagrange planes
in T*(R")=0". (We shall use integer coefficients unless other coefficients are specified.)
As we have seen in section 3.1,

A(n) = U(n)[O(n),
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and since (det 0)®=1 if O€ O(n), this gives a map det*: A(n)->S'. As shown by Arnold
[1], H*(A(n)) is the free group generated by the pullback « of the generator of H(S!)
under this map. The class « only depends on the symplectic structure. For let £ be any 2n
dimensional vector space with a given non-singular skew symmetric bilinear form ¢. We
can then find linear isomorphisms y: E—~R*@R" such that ¢ is the pullback of the
standard symplectic form in R*@R". If we have two such maps y, and y,, then y,y3?
is a symplectic map y: R*@R"—~R". Such a map is homotopic to a map (x, §)—~(Oz, 0f)
where O is orthogonal. In fact, the Lagrange plane y(R*@® {0}) is of the form UR" where
U € U(n)}. Since U(n) is connected it follows that y is homotopie to U~1y, which is of the form

R*@R"S (x, §) > (@ + Ay8, Agf).
That this map is symplectic means that *4,,4,,= I and that ‘4,, 4, is symmetric. Re-

placing A4, by t4,, we conclude that the map is homotopic to one where 4,, is 0, and since
A4, can be connected in GL (», R) to an orthogonal transformation, the assertion is proved.
Now a transformation (z, &) (O, Of) transforms the Lagrangean plane parametrized by
U to one parametrized by OU. Since this does not change the square of the determinant,
we conclude that y*o =« if 3 is the map A(n)— A(n) defined by y. If 9, is the map A(E)—
A(n) defined by y;, we obtain pfa= 3 «. This class in H'(A(E)) we shall denote by oz.
Arnold [1] proved that it is dual to the twosided cycle of all elements of A(Z) which are
not transversal to a fixed one. This cycle was considered before in a similar context by
Maslov [23] and even earlier by Keller [18]. Various alternative descriptions are discussed
by Maslov [23].

Let Ay, A5, gy, pe be four elements of A(E) such that A; and y, are transversal for
j=1,2 and k=1, 2. We can choose a path from y, to u, of planes transversal to 4, for the
set of Lagrangean planes transversal to a fixed one forms a cell. In fact, the Lagrange planes
in R"@R” which are transversal to x=0 are of the form &= Ax with 4 symmetric and
so they form an affine space even. The homotopy class of such a curve y, is therefore
uniguely determined and so is that of the closed curve y =y, —y,. We shall now compute
{y, ) and see that we get essentially (3.3.3).

First assume that 4, and A, are transversal and choose the coordinates so that 1, is
defined by =0 and 4, by £=0. Then

U = {(xa Bkw): xeR”}:

where B, is symmetric and det B, +0. To choose a curve from u, to u; which consists of
planes transversal to A, means to choose continuously a symmetric matrix B,, 1<¢<2
with given values for t =1, 2, which we can do. Now the plane £ = Bz is equal to UR" if U

is a unitary matrix with
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U?=(I+iB)(I—iB).

This is clear if B has diagonal form and follows in general by diagonalization. The
square of the determinant of U is [[(1+¢gf)/(1 —iBl) if U defines B; and (3] are the
eigenvalues of B,. If « denotes the pullback to A(n) of the invariant one form of §! with

integral 1, then
J a=m"'(2 arg (} +i p) —arg (1 +iB})).
Y1

Here we have used that arg w is uniquely defined for Re w >0 so that it vanishes for real w.
The integral over y, is similar, and we can reduce it to the case already studied by

replacing B; by —B;?, for (x, &)~ (£, —=) preserves «. Hence
J a=n""(2 (arg (1 +if) —arg (1 —i/Bh)) — > (arg (1 +ip1) —arg (1 —3/p)).
¥ ,

For real £+0 we have arg (1 +t) —arg (1 —i/t) =x/2 if £ >0, = —x/2 if { <0, for ¢#(1 —i/t) =

1 +4t. Hence
{y, ay = (sgn B, —sgn B,)/2. (3.3.4)

Assume now that 1, is defined by ¢ =4¢ where A is invertible and symmetric. Then
the symplectic transformation (z, &)—(x, £ —d-1x) reduces us to the case already con-

sidered and so
{y, oy = (sgn (By— 471) —sgn (B, —A471))/2.

Now we hav (—A I =( I 0\(—-4 0 I —47!
v ¢ 1 -B) " \-4 1)\ 0 a*-BV0 1
-4 I -
) sgn( 7 _Bj)=—~(sgnA+sgn(B,»—A H).

It follows that
—A4 I -4 I
y, o= (sgn ( I —31) —sgn ( 7 _Bz)) /2. (3.3.5)

This formula remains valid by continuity even if 4 is not invertible provided that the
matrices are non-singular, which means that 1, is transversal to 4, and u,. We have now

established the asserted connection with (3.3.3) and introduce

Definition 3.3.2. If Ay, Ay, . o are four Lagrange planes in a symplectic vector space B

such that each of the first two is transversal to each of the last two, we define

0‘(}'1’ 12? My, ;uz) = <'J/, aE>’ (336)
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where 7 is a closed curve in A(E) which consists of an arc from u, to u, of Lagrange planes
transversal to 4, followed by an are from u, to y, of Lagrange planes transversal to A,.
Here oy is the class of Keller, Maslov and Arnold.

It is clear that (3.3.6) gives an integer, and we have

(A1, Ao s po) = — 0(Agy Ars iy, o) = — 0y, fs3 Ays Ao)- (3.3.7)

The first equality follows immediately from the definition, for interchanging A, and 4,
means reversing the orientation of y. To prove the second we choose coordinates so that
Ay x=0; Ay x=AE; puy: E=0; py: &= Bx. The symplectic transformation (x, &)~ (—¢, z)
will interchange 4; and u;, apart from a substitution of — B, —4 for 4, B, so (3.3.5) reduces

the statement to the obvious one

. (——A IN__ (B I
g\ 1 _B iy 4)

In addition we have of course the obvious cocycle conditions such as

0(Aas Ao5 1, o) +0(Ays Ags o, i) = 0(Ay, Ags g, p3)- (3.3.8)

If we sum up the discussion which led us to introduce Definition 3.3.2, we have

proved

THEOREM 3.3.3. Let A be a point on the Lagrangean manifold A< T*(X). Denote by
M ; the set of all Lagrange planes in T ;(T*X) which are transversal to T (A) and to the tangent
space T3 of the fiber. Then the fiber L, of the line bundle L is naturally isomorphic to the
set of all maps f: M;—~C such that for all py, u,€M;

fluy) = 10T T 3 CAY; g i) Flus)- (3.3.9)

The preceding interpretation is of course already underlying the evaluation of
A(ue™) when A and {(x, y: (%))} intersect transversally. An invariant interpretation of the
main term in (3.2.23) is given by Theorem 3.3.3 and the fact that a density (or order 3)
on A together with the density u in X lifted to {(z, y;(2))} produces a density at the inter-
section which by means of the symplectic measure dx df in the cotangent bundle gives a
scalar. (See also the discussion following Theorem 4.2.2.)

We shall now consider the preceding construction in a general setting which seems
instructive although it is not really required for the rest of the paper. Let Y be a
Hausdorff topological space and E a symplectic vector bundle of fiber dimension 2»n over Y.

Then every point in ¥ has a neighborhood U such that there is a vector bundle isomorphism
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U x C"— E|y preserving the symplectic structure. It is clear that the set A(E)of Lagrange
planes in the fibers of E form another fiber bundle over ¥ with fiber A(C™).

We can now assign to any two continuous sections A;, A, of A(E) over Y (if such exist)
an element o(4;, 4,) EHY(Y). To do so we first modify the construction in Theorem 3.3.3 to
avoid reduction mod 4. Thus let F be the set of all pairs (u, 2) EA(E) x C such that u is
transversal to 4, and 1z, if € A(E,), with the equivalence relation (uy, 2;) ~ (19, 25) if yy, s
are in A(E,) and z; —2, =0(Ay,, Ags; e, o). That this is an equivalence relation follows from
(3.3.7). F has a natural topology and is a fiber space with fiber € and structure group Z
acting by translations so it defines an element «(;, A,) € HY(Y, Z). (Similarly, by copying
(3.3.9) we obtain a line bundle with structure group Z, defining the reduction of a(4,, 4,)
mod 4.) Explicitly, let {(U,, f,), €1} be a set of continuous integer valued sections of F
over open sets U, Y with UU;=7Y. Clearly f;;=f;—f, is a locally constant integer in
U;n U, so we have a 1-cocycle defining «(4,, 1,). Note that

Ay, Ag) = — (g, A1); oAy, Ag) = oAy, Ay) + atlAg, As). (3.3.10)

The construction is obviously functorial: If g: Z— Y is a continuous map, the pullback
g*E is a symplectic vector bundle on Z with Lagrangean subbundles g*4; and g*2,, and we
have a(g*y, g*2s) =g* (A1, As).

Example. Let E be a symplectic vector space and consider E as a symplectic vector
bundle & over ¥ = A(E). Every point in Y is a Lagrange plane in E which gives us a sec-
tion 4, of A(E). Let 1, be defined by a fixed Lagrange plane in E. Then we have

Ay, Ay) = atp. (3.3.11)

To prove this we may assume that #=0C" and that 4, is defined by iR". Now a cohomology
class in HY{A(E)) is equal to «z if and only if its restriction to some closed curve which
is mapped bijectively on the unit circle by the map det? considered above is the
generator of H! for the curve. Such a curve is given for example by the unitary trans-

formations U(f)z=(¢""2y, 2y, ..., 2,) corresponding to the Lagrange planes (0<t<1)

AQR): @y sintir —&; cos tr =0, &y=...=£,=0
where we have used the notation x +4& for points in C*. Let V,(V,) be the part of the curve
where £+ (t+%), and define a section f; of F in ¥V, so that f, =0 at u(}) and f,= 0 at w(2).
Here u(t) is defined by =, sintz—§&, costn =0, 2,=&,, ..., #,=§&,. Then f,—f, =0 when
1<t<32, and in the other interval of V,n V, we have

fo—t =00y, 2(0), u(3), (@) = -1

by (3.3.4). This proves (3.3.11).
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More generally, let £ again be a symplectic vector bundle over ¥ and lift E to a sym-
plectic vector bundle & over A(E) by means of the projection A(E)—Y. Let A ; be the pull-
backs of the Lagrangean subbundles 4; of E by this projection. As above we also have a
natural section S of A(X) defined by noting that every point in A(E) is a Lagrange plane

in the fiber over that point. In view of (3.3.10) we have
aas Ba) = s, 8) e, ) = A(hy) — A(hy),

where we have defined 4(4;) =oc(i,-, S)EHYA(E)). If s is any section of A(E) over Y then
the pullback s*S is equal to s and s*ijzll,-. Choosing s =4, we therefore have

(A, Ap) = A5 A(4y). (3.3.12)

Dropping the subscript we note that 4(4) has the properties
A*A (1) =0, (3.3.13)
iy AA) = oz, (3.3.14)

where 4, is the injection A(E,)—~A(E). In fact, (3.3.13) means just that «(4, 1) =0, and
(3.3.14) follows from (3.3.11) and the functorial properties. The conditions (3.3.13), (3.3.14)
determine A(A) uniquely. In fact, since HY(A(F,)) is the free group generated by oz,, condi-
tion (3.3.14) means that 4(4) is a cohomology extension of the fiber. The Leray—Hirsch

theorem therefore shows that every cohomology class in H'(A(E)) is of the form
A, =m*c+kA(A),

where k£ is an integer, c€ HY(Y) and x is the projection A(E)~Y. If 2¥4,=0 we obtain
0 =2*n*c = (wA)*c =c. If the restriction of 4, to the fibers is equal to oz, it follows that k=1
also. The class 4(A) is a natural generalization to a symplectic vector bundle with a given
Lagrangean subbundle of the class of Keller, Maslov and Arnold which corresponds to a
fixed symplectic vector space. If 4 is the class in HYA(T(T™(X)))) corresponding to the
Lagrangean bundle given by the tangents of the fibers, (3.3.12) means that the line bundle
L on a Lagrangean submanifold A, of T%(X) is defined by the pullback of 4 to A, by
the map assigning to each point in A, its tangent space.

In this context it is very easy to give an example showing that the structure group of
L cannot always be reduced further. For example, starting from Example 3.1.5 in a neigh-
borhood of 0 we extend the curve (x,/3)® — (2,/2)> =0 so that at infinity it becomes the axis
%, =0 with a finite segment removed. This is then a circle in P}, and the normal bundle

A, defined according to Example 3.1.5 near the origin splits in two components, each of
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which is homeomorphic to S! x R. We can define A, by a linear phase function except near
the origin where a defining phase function is given in Example 3.1.5. This gives easily that
the cohomology class in H,(A,, Z,) corresponding to L is a generator for H'(S' xR, Z,)
in each of the components, thus-non-trivial.

However, we know that L must be trivial in the case studied in section 2.4. Our next
purpose is to relate this trivialization to the interpretation of L given by Theorem 3.3.3.
Asin section 2.4 let ¥ be a submanifold of X of codimension N and choose local coordinates
Zy, ..., ¥, 1n X so that Y is defined by the equations 2’ = (,, ..., #y) = 0,thus 2" = (¥ys4, ..., 2,)
are local coordinates in Y. The phase function ¢(z, ) = XY 2,0, then defines the normal
bundle of Y. If ¢ is a function with A;=(z,, ¥'(z,)) EN(Y)\0 at a point z,€Y, the

matrix (3.2.18) becomes
0 I 0
(I — Yo —wﬁw)
0 —ora —Yoror

which is non-singular precisely when det yy~,- =0, that is, the restriction of p to ¥ has a
non-degenerate critical point at x,. The signature is —sgn 4y»,». The isomorphism of L,
and C corresponding to y according to Theorem 3.3.3 should therefore be multiplied by
Xp 716 SgN Y 1() 4 to agree with that used in section 2.4.

If the coordinates in 7™(X) are denoted by 2, 2", &', & the tangent plane of N(Y)
has the direction of the plane 2’ =¢&” —0. Its intersection with the tangent plane of the fiber
becomes &’ —=x” =£" =0 with orthogonal space with respect to the symplectic form given
by 2’ =0. Intersecting the plane & =y}, (%,)x, which is parallel to the tangent plane of the
graph of dy, with the plane 2" =0 and taking the quotient with respect to its orthogonal
space we obtain the plane & =y .~ (xo)x”'defined by the non-singular matrix in which we
are interested. This leads us to tfhe following construction.

Let V be a symplectic vector space and 1, 45, 4 three Lagrangean subspaces with
4 transversal to 4; and to A,. If A; and A, are also transversal we choose coordinates so that
Ay is defined by xz=0,4, by £=0.and consequently u is defined by §=Ax for some
symmetric non-singular matrix 4. A different choice of bases would give an equivalent

matrix so we can set independently of the choice of basis
o(Ay, Ao ) =sgn A. (3.3.15)

In the general case let p=24,NA4,. Then p is contained in its orthogonal space p' with
respect to the symplectic form in ¥, and g*/o = V* is clearly a symplectic vector space with
the symplectic form inherited from V. If 4 is any Lagrange plane in V, then °=(u N g*)/o

is a Lagrange plane in V%, for

11— 712906 Acta mathematica 127. Imprimé le 4 Juin 1971
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dim (N ¢t) —dim (uN ¢} =dim V —dim (g +¢) —dim (x N g)
=dim V —dim g —dim ¢ = (dim V —2 dim )/2 = dim V¢/2.

When g is transversal to 4, it follows that g N g={0} and therefore that u is transversal

to 2¢ which are also mutually transversal. We can now define
0(Ay, Ao p) = 0 (43, 25; u°). (3.3.16)
If both g, and u, are transversal to 4; and 4,, we have
(A, g3y, piz) = (0(Ay, A3 o) — 0( Ay, Ao p1))/2- (3.3.17)

This follows from (3.3.4) when A, and A, are transversal, so all we have to prove is that

with the preceding notations
0(Ay, Ags iy, ) = 025, 23; 4, 148). (3.3.18)

To prove this we introduce coordinates similar to those used in the introductory argu-
ments, so that z=(z', "), £= (&, &"), 4; is defined by £=0 and 4, by 2’ =£"=0. We can
write g, in the form &=B/a where

B (Bh B{2)
Bél -Bé2

Ay is the limit of the plane 2’ =0, 2" =£"/¢? when £—0, so for small ¢ we can write

2 g{Ay, As; Hy, po) a8 the difference of the signatures of

0 0 r o
0 -I'l&# 0 I
I 0 -Bi —-Bh
0 I" -—Bh —Bh

for j=1,2. If we multiply by & in the second row and column the signature does not

change which when &0 shows that it is equal to that of the matrix

0 0 I 0
o I 0 0
r 0 _B{I _B{2
0 0 -Bjj —B

which is non-singular since u; is transversal to 4,. The signature is equal to —sgn 1" —

sgn Bi,. Hence
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0(Ay, Agy pa, pa) = (sgn Bz —sgn Bio)/2 = o(48, 43; p$, 43) by (8.3.4). Thus we have proved
(3.3.17). Note that whereas o(4,, A5; yy, ps) is a continuous function of the four variables
when 4, is transversal to y,, we can only claim that o(4;, 4,; ¢) is a continuous function when
u is transversal to A, and dim (4, N 4,) is fixed. In that case, however, we conclude that the
cohomology class &(,, 4,) is trivial if A; and 1, are Lagrangean subbundles of a symplectic
vector bundle E over a space Y. (Note that (o(4,, Az p;) —dim u;—dim (4,0 4,))/2 is an
integer which allows us to obtain an integral 0-cochain from (3.3.17).) Summing up, we have

in particular

THEOREM 3.3.4. Assume that on the Lagrangean manifold A <T*(X) the intersection
T, (A) 0 T° of the tangent planes of A and of the fiber has constant dimension. Then the bundle
L is trivialized in a way compatible with the definitions used in section 2.4 if we assign fo the

map f: M;—~C in Theorem 3.3.3 the complex number

f(p) exp wwio(d,, Ao; p)/4
which is independent of u€M;.

The preceding discussion shows that an assertion concerning the line bundle may be
perfectly obvious if L is defined in terms of phase functions while it requires some effort
to prove in terms of Theorem 3.3.3. In Chapter IV we shall therefore use whichever
definition of L that seems more convenient in the case at hand and omit translations to the
ather definition. When using the definition in terms of phase functions we shall omit the
factor e~™"* from (3.2.14) and so use the transition functions (3.2.10) instead of (3.2.12).
The only reason for not doing so from the beginning is that it gives the incorrect impression
that the structure group of L is Zg instead of Z,.

IV. A calculus for some classes of Fourier integral operators
4.0. Introduction

In this chapter we consider operators having a distribution kernel in one of the classes
of distributions considered in Chapter ITI. The distribution kernel must of course be de-
fined in a product manifold, so in section 4.1 we examine some additional structure for
phase functions and Lagrangean manifolds when we are working in a product. In section
4.2 we then deduce the main results concerning adjoints and products from the theory
developed in Chapter III. The resulting precise L* estimates are discussed in section 4.3.
In view of the calculus H , estimates are immediate consequences so we shall not even state

them explicitly.
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4.1. Operators associated with a canonical relation

Let P and Y be two manifolds, of dimensions ny and ny in general different. If 4 is'a
distribution density of order  in X x Y, in our notation 4 €2'(X x Y, ;), then A defines
a continuous bilinear form on C§(X, Q;) x C5°(Y, Q;) and therefore a continuous map
Co(Y, Qn—~2'(X, Q,) which we also denote by 4. (Conversely, every such map is defined
by a distribution 4 €%'(X x Y, Q) in view of Schwartz’ kernel theorem.)

If A is a closed conic Lagrangean submanifold of 7%(X x Y)\ 0, we can in particular
regard the space If(X x Y, A) defined in section 3.2 (for ¢ >3) as a space of continuous
linear maps from C*(Y) to 2'(X). Since A can locally be defined with phase functions
d(x, y, 0) where 0ERY, N =nz+ny (Theorem 3.1.3) the following is an immediate con-

sequence of Theorem 1.4.1.

TuEOREM 4.1.1. Every element of INX x Y, A) is a continuous map from C§(Y) to
(X)) if
m—ko<—3(nx+ny)/4. 4.1.1)
If A does not intersect T*(X) x Oy (resp. 05 x T*(Y)) where Oy (resp. Ox) is the zero section in
T*(Y) (resp. T*(X)) then every element of I™(X x ¥, A) is a continuous map from C§(Y) to
X)) (from &'(Y) to D™(X)) if

m~+7—ko< —3(nyx-+ny)/4. (4.1.2)
The kernels of all operators in I(X x Y, A) are in C® outside the projection of A in X x Y.

All hypotheses on A in Theorem 4.1.1 are thus fulfilled if A is a conic Lagrangean
submanifold of (7™(X)\0) x (T™*(Y)\0) which is closed in 7™(X x Y)\0.

If o and oy denote the symplectic forms in 7*(X) and T*(Y) or their liftings to
T*X) x T*(Y), then the symplectic form in 7*(X x Y) is equal to o5+ oy. Thus the restric-
tion of o5 +0oy to a Lagrangean submanifold equals 0. If A’ denotes the image of A under
the map which is the identity on 7%(X) and multiplication by —1 in the fibers of 7*(Y),
it follows that the restriction of 6y —oy to A’ is equal to 0. Clearly, (A') =A, so we have a
one to one correspondence between Lagrangean manifolds satisfying the conditions in

Theorem 4.1.1 and the manifolds in the following definition:

Definition 4.1.2. A closed conic submanifold € of 7% (X x Y)\ 0 will be called a homo-
geneous canonical relation from T*(Y) to T*(X) if C is contained in (T"™(X)N\0) x
(T*(Y)\0) and is Lagrangean with respect to oy—oy, that is, 0’ is Lagrangean with

respect to oxxy=0x+0y.

The reason for the terminology is of course that if € is the graph of a function y from

T*(Y) to T*X), we have y*6y=0y which means that y is a canonical transformation.
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(X and Y have the same dimension since dim ¢'=dim X +dim Y.) It is usually more natural
to work with the canonical relation C' than with the corresponding Lagrangean manifold C".
For example, pseudo-differential operators in X are related to A =N(A) where A is the
diagonal in X x X, and C=A’ is then the graph of the identity 7%(X)\0—T*(X)\0.
This interpretation will be much more useful in studying multiplicative properties.

If C is a canonical relation from 7*(Y) to 7™%(X) and ¢,€C, then one can define C'
in a neighborhood of ¢, by means of a non-degenerate operator phase function ¢ in a conic
neighborhood of (%4, ¥y, 05) €X x ¥ x (R¥™\0) where (z,, ¥,) is the projection of ¢ on X x ¥,

Thus
Cy={(=, ¥, 0); do(=, y, 0) =0}

is a smooth conic manifold near (z,, ¥,, 0,),and

O¢3 (CL‘, Y, 6)»(17: ¢;’ Y, ~¢1ll)

is a homogeneous diffeomorphism on a conic neighborhood of ¢, in €. We shall now examine
how various properties of € are reflected by properties of ¢. In doing so we first assume that
local coordinates have been chosen at z, and at y, and denote the corresponding local
coordinates in 7™(X) and T*(Y) by (z, &) and (y, 7).

ProrositioN 4.1.3. The differential of the map C~ T*(X) is bijective if and only if
Ng="ny and ) ,
D($)=det (¢2“’ "52”) =0 at (zy, Yo, Op)- (4.1.3)
951/0 ¢.7!1‘
The map Cy—~C— T*(X) then gives local coordinates (x, &) at (y, Yo, 0o) on Oy, and the density
dc¢=6(6</>/601, ey 0B[00y) used in section 3.2 is equal to |D($)|dx, ... dx,dE, .. dE,.

Proof. The dimension of C is nyz+ny so we must have 2ny=nx+ ny, that is, ny=n,.
Since the map Uy—~C is a diffeomorphism, the bijectivity of the differential of the map
C~T*(X) means precisely that the map Cy3 (z, y, 6)—(x, ¢1) shall give local coordinates
on Oy, that is, that (z, y, )~ (z, ¢z, $o) shall give local coordinates at (%, o, 0p). But

D(x, $.» $5)|D(z, y, 8) = det ("‘%y "‘%") - D(g)
?SBZI ¢99

80 this gives precisely the condition (4.1.3). The last statement follows at the same time, for
do=|D(®, 3, $o)/D(x,y,0)| du, ... dx, dE, ... dE,.

The condition (4.1.3) must clearly be independent of the choice of local coordinates in

X and in ¥ and cannot change if one makes a fiber preserving substitution of the variables
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(z, v, 0). However, it is not quite obvious that even the matrix in (4.1.3) is invariant so we
digress to give a discussion of this point.

Let us consider a fiber space X over a manifold Q. Thus X is a manifold and we have a
projeetion p: £—Q with surjective differential. If 6,€Z and w,=pa,, then the differential
dp maps the tangent space T'x(o,) onto To(w,) With a kernel 75(c,) which is the tangent
space of the fiber. Now let ¢ be a C? function on X and assume that ¢ is stationary at o,
on the fiber through g, that is, d¢ =0 on T'%(c,). Then the linear form d¢ on T'x(c,) can be
regarded as a linear form on 7'g(w,). We are interested in the second order derivatives of
$ at ¢y Let I, and I, be two vector fields on €, also regarded as first order differential
operators, and choose vector fields L, and L, in X so that (dp)L,=1;, j=1, 2. This can be
done with L, (s,) equal to any vector ¢; with (dp)t,=1,(a,), for if (z, §) are local coordinates
in 2 such that p(z, §) ==, then the condition means precisely that

L;=1l;+>a,0/00,, j=1,2.
Note that for the commutator we have
[Ly, Ly] = [}, L1 +X ,8/00,
for some coefficients c,. Thus, ¢ being stationary along the fiber,

[Ly, Lo]$(0o) =[l, Lalp(oe) =0 if [, 5] =0. (4¢.14)

We shall use this observation in two ways. First, if there is a fixed coordinate system
in Q, that is, Q<=R", we conclude that a symmetric bilinear form on T'g(0,) is invariantly
defined by setting

B(ty, t5) = Ly Lyd(og)  if Lyoy) =¢,€ T'x(0y), (4¢.1.5)

with L; obtained as above from operators with constant coefficients in Q. In fact,such
operators L, exist for any choice of t,, and if Lj, Ly is another choice, then L,—L; =0 at

g, 50 that
L, L, §(a9) = L1 Ly $(00) = Ly Ln $(0o) = Lz L1 (0),

which at the same time proves the uniqueness of the definition of B and its symmetry. In

local coordinates the matrix of B is of course the block matrix

(5 o).

Next we use the construction in the case at hand where Q=X x Y is the product of

two manifolds with no preferred coordinate systems. Then the tangent space 1'g(a,)
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has subspaces 7'§ resp. T’ consisting of vectors whose projections are tangent vectors of
X resp. Y. Clearly

Teg=TE+Tg, T:=TEnTS.
If t,€ TE and t,€ Ty we can repeat the definition (4.1.5) where we now demand that L, and
L, should correspond to vector fields I, and I, on X resp. Y. Such vector fields commute, so
the preceding arguments apply. Thus B is an invariantly defined bilinear form on T§ x T's;
with symmetric restriction to 7% x T%; if # and y are local coordinates in X and ¥ and

(z, y, 0) are local coordinates in X such that p(z, y, 0) =(z, y), then the matrix of B is

(¢§" ‘H,’”). (4.1.6)
¢,;o ‘l’xu

Since any function of (z, y) which vanishes at p(c,) is stationary along the fiber through
g, (if it is lifted to a function on Z by means of the projection), it is clear that there is no
sensible way of defining B on a larger space.

In what follows we denote the bilinear form just discussed by B,. When ¢ is a phase
function defining the canonical relation C, there are several ranks associated with ¢ which
give geometric information concerning C. We assume of course that ¢ is nondegenerate,
which means that there is no element of 7\ 0 which is orthogonal to T'= T*+ T with
respect to B,

ProrosiTioN 4.1.4. The rank of the differential of the projection a) C—T¥(X), b)
C>T*Y), ¢) C—X,d) C—>Y, e) C>-Xx7Y, is equal to

a) dim T%X)—dim {¢, € T'%; By(t,, T") =0} =2 dim X —dim 7% +rank By,
b) dim T*(¥)—dim {t,€ T%; By(T*, t,) =0} =2 dim ¥ —dim 77+ rank B,,
¢) dim X —dim {t, €T By(t, T) =0},

d) dim ¥ —dim {t,€ 7% B,(T%, t,) =0},

e) dim (X x ¥)—dim {f, € T By(t,, T°) =0}.

Proof. We use local coordinates throughout the computation. a) We have to determine
the dimension of the vectors (¢, 7) ER" xR", n=ny, such that

&, dxy + (v, ddy> =0 if ddg = 0.
This means that there shall exist a vector ¢ €RY such that
<t, dx> +<T’ d¢;> + <a: d¢;> =0.

Here a is uniquely determined by (¢, 7) since ¢ is non-degenerate, so we may instead deter-
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mine the dimension of {(¢, 7, @)} for which this identity is valid. But ¢ is determined by
(%, @) so we may instead determine the dimension of {(r, @)} for which such a texists, that
is, all (7, @) with

$z, day Ay + ¢z d0> + <a, $eodl + o, dy> =0.
This means that By((r, a), T%)=0, which proves a). The statement b) is symmetric. To

prove ¢) we have to determine the dimension of all {€R"™ such that
(¢, dzy =0 if dgg=0.

As in a) we find that this is equal to the dimension of all a €RY with (a, ¢z df +de, dy> =0,
which proves c). Since d) is symmetric and e) is included in Theorem 3.1.4, the proposition
is proved.

We now return to the most regular case considered in Proposition 4.1.3.

Definition 4.1.5. A homogeneous canonical relation C from 7*(Y) to 7*(X) will be
called a local canonical graph if the projection C—T*(Y) and consequently the projection
O—T*X) is a local diffeomorphism so that C is locally the graph of a canonical transfor-

mation. (This implies that ny=ny.)

On a local canonical graph we have a density u intrinsically defined by lifting the
standard density in either 7%(X) or 7#(Y) by means of the map C—T*X) or C—T*(Y).
The results will agree since C is canonical and the canonical densitiesin 7*(X) and T%(Y)
are defined by ¢%/n! and o%/n! where n =ny=ny. [tis clear that,l/ﬁe St3(C, Q4). If Lis the
line bundle on € obtained by transporting the line bundle associated with the Lagrange

manifold A=C" in section 3.2, it is clear that the map
8¢ (C, L)~>85""*(C, Q3 ® L)

defined by multiplication with V; is a bijection. For local canonical graphs it follows

that we have an isomorphism
Sy(C, L)[Sg+172(C, L)~ I (X x Y, CH[IF+ 72X x ¥, (). (4.1.7)

Note that the dimension of X x\¥ is 2n so the order m+(2n)/4 in (3.2.16) is precisely
reduced to m. In particular, if X =Y and C is the identity, we have recovered the approxi-
mate calculus of pseudo-differential opérators outlined at the end of section 2.1 (with
0+d=1 of course).

Using Proposition 4.1.3 we can make (4.1.7) quite explicit. For let ¢ be a non-degener-
ate phase function in a conic neighborhood U of {(z,, #,, 8;) in X'x ¥ x (R™\ 0} which-de-



FOURIER INTEGRAL OPERATORS. I 169

fines a neighborhood of ¢, in €. With a €872 vanishing outside a small conic neigh-
borhood of (x,, ¥4, 8,) and local coordinates chosen at x, and y, we form theoperator with

kernel A defined by (see the concluding remarks in section 3.3)
(A, u) = (2m) (nH N2 eri¢‘z'y'0’a(x, y,0)u(z, y)dedydh, w€COF (X x Y).

Then a principal symbol for A is represented by al/d—cj transported to C by the map
Cy—~ A—C. By Proposition 4.1.3 the quotient by the square root of the standard density in
C corresponds to the function

b, y, 0) =a(x, y,0)| D(¢)| ~*

which is in S} if @ =0 near X x ¥ x 0 because D(¢$) is homogeneous of degree n—N. The
situation is therefore as follows, Taking b€Sy(X x ¥ x (R¥\0)) with cone supp b= U and
b=0 near X x Y x0, we form the density of order } given by

(A, 0y = (2x)~ T2 ffe‘¢(x'”‘e)b(x, ¥,0) | D($) |} ulz, y)dxdy, u€ECT

or equivalently the operator from densities of order } to densities of order } defined

locally by

Aulzx)=(2 n)““”’mffe“’(”'o)b(x, ¥,0) | D(¢)|F uly) dydh, w€CF(Y).

To this operator is assigned a symbol which is the composition of & with the inverse of the

map
0¢3 (x,?/y 0)—> (Cl), ‘?S;H Y.~ ‘ﬁ;) €eC

which has support in the open set U< €' parametrized by means of ¢ and should be regarded
as an element of S5 (C, L). For the case of local canonical graphs this would give a some-
what simpler discussion than that of section 3.2, which does not involve densities on C.
However, we do not wish to duplicate the arguments given there and have merely wanted
to indicate a slight shortcut available in a special case including pseudo-differential

operators and many other important classes of operators.

Our result will give much more complete control of operators in I'i(X x ¥, C) when C
is a local canonical graph than in the general case. We shall therefore discuss now to what
extent ‘a reduction to this case is possible by considering some variables as parameters.
To motivate we first consider an example related to the Cauchy problem for the wave

equation.

12 — 712906 Acta mathematica 127. Imprimé le 4 Juin 1971
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Example 4.1.6. Let (z, y, 0) ={a' —y’, 0> + (%, —¥.)|0| where x=(2', ,) and y = (¥, y,,)

are in R" and 0+0€R" 1. Then the equation ¢y=0 becomes

&~y + (@a—yn)0/|0] = 0.

If (2, ds, ¥ —y) =(, &, 9,7) We have E=9—=(0, |6]). Thus C is defined by the equations
pla—y) =]z —y'|? — (@, —Y)2 =0, £ =1, p(£) =0, and that & is proportional to ép(x —y)/ox
if 2 +y. Thus we do not obtain a local canonical graph. Hoﬁever, if , and y, are regarded
as parameters, then {&', ¢z, y', —¢,)} ={(&', 0, y’,0)} is the graph of the canonical trans-
formation (2, )~ (2" + (2, —y,)0/|6|, ). Note that also in the classical energy integral
method for the wave equation one usually regards the time variable as a parameter.

Let us first ignore the fact that we are working in a product manifold X x Y and
consider as in Chapter III a conic Lagrangean submanifold A of 7*(X) where X is a mani-
fold. Let X, be a submanifold of X. If now ¢ is a non-degenerate phase function in an open
conic neighborhood I' of (%, 8,) in X x (R¥\ 0) defining an open subset A, of A, we let
¢, denote the restriction to I' N (X; x (R¥*\0)) and ask when ¢, is a non-degenerate phase
function. First, that ¢, is a phase function means that ¢;dz cannot vanish on 7'(X,) if
$9=0, that is, that A,nN N(X,)=@. Secondly, that ¢, is non-degenerate means that the
intersection of the tangent plane of Cy4={(, 0); $g(x, 0)=0} with the tangent plane of
X, x RY has dimension dim X, so that the two planes are transversal. This means that the
intersections of A and 7*(X)|s, (which is of codimension equal to codimy X,) are also

transversal. Summing up, we have

ProrosiTioN 4.1.7. Let A be a conic Lagrangean submanifold of T*(X) and let X,
be a submanifold of X. If ¢ is a non-degenerate phase function in o neighborhood of (%, §,)
in X x (RY\0) where z,€X,, and if ¢ defines a neighborhood of A,€A, then the restriction
&1 of ¢ to Xy < (R¥\0) is a non-degenerate phase function at (xy, 0,) if and only if

(i) 2, 6N(X;)

(i) A intersects T*(X)|x, transversally at A,

The element of Lagrangean submanifold A, of T*(X,) defined by ¢, is then locally the projec-
tion of AN T*X)|x, on T*X,).
The projection mentioned in the theorem refers of course to the exact sequence

0> N(Xy) ~ T"(X)|x, > THX,4) >0,

where the last map is the restriction of forms on 7(X) to T(X,). Condition (ii) implies condi-
tion (i) since the radial vector at A, is symplectically orthogonal to the tangent plane of
A and so must not be orthogonal to that of 7%(X)|x,. Let us also note that (ii) is equivalent
to

(iii} The composed map T, (A)—~ T (X)—> T, (X)/T,,(X,) is surjective.
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If we have two different phase functions ¢ and ¢ defining a neighborhood of 4, we

find using the proof of Proposition 3.3.1 that
520 oo — SZ0 doo = SgN Pios — Sgn F15-

This shows that the pullback of the line bundle L; on A; under the projection mentioned in
Proposition 4.1.7 can be identified in a natural way with the restriction of the line bundle L
on A to AN T X))y,

In particular, we can apply Proposition 4.1.7 when X and X, are replaced by products
X xYand X, x Y, with X, X and Y,< Y. If C'is a homogeneous canonical relation from
T*(Y) to T*(X) defined in a neighborhood of ¢, € with scy€ X, x Y, by an operator phase

function ¢, and if

(i) co ¢ N(Xy) x THV)]y, U THX)|x, x N (),

({i) C intersects T™(X x Y)x,«v, transversally at c,,
then the restriction of ¢ to X, x ¥; x (R¥\0) is another operator phase function de-
fining locally the projection of C N T*(X x ¥)|x,x v, into T*(X, x ¥,) along N(X,) x N(Y,).

We shall now examine when for a given ¢,€C it is possible to choose X, and ¥, with
7c €X, x Y, so that (i), (i) are fulfilled and the local canonical relation from 7*(Y,) to
T*(X,) obtained from C at ¢, is a canonical graph. In terms of the bilinear form B, on
TX x T¥ this means that we must choose X;, ¥; so that (i) is fulfilled—which is usually
the case—and so that By is non-singular on 7% x T, (This implies that the restriction of
¢ is non-degenerate so that (ii) is fulfilled.) The situation is analyzed in the following

simple

LEmMma 4.1.8. Let V be a vector space, Vi and V, two subspaces with V,{+V,=V, and
B a bilinear form on V, x V,. In order that there shall exist subspaces Wy, Wy of V,, V, with
W.NWy=V,NV, such that B is non-singular on W, x W, it is necessary and sufficient that
no element of VNV, is orthogonal to V, or to V4. One can even choose W, and Wy, with dimen-

sion equal to rank B then.

Proof. The necessity is trivial. To prove the sufficiency we denote the rank of B by r.
Thus B defines two maps V,— V3 and V,—> V7 of rank r, which are injective on Vo=V, N V,.
Choose W, with V= W,= ¥V, of dimension r so that the maps are injective on W,. Then B
is non-singular on W, x W,. For if w,€ W, is orthogonal to W, with respect to B, then w,
is orthogonal to V,, and since the map W,— V¥ is injective this proves that w,=0.

All quantities which occur in Lemma 4.1.8 can be expressed in terms of the canonical

relation if one applies Proposition 4.1.4. This gives
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TrEOREM 4.1.9. Let C be a homogeneous canonical relation from T*(Y) to T*(X) and

let co€C. Suppose that the projections
cC—+X, -7, (4.1.8)

have surjective differentials at c,, and let ky (resp. ky) be the rank of the differential at ¢, of the
projection C—>T*X minus dim X (resp. rank d(C—~T*Y) minus dim Y). Then kx=ky=k
and one can find submanifolds X, = X and Y,< Y of dimension k so that mc € X, x Y, and a

neighborhood of ¢, in C which defines a canonical graph from T*(Y,) to T*(X,).

Proof. The equality ky==Fky follows from a) and b) in Proposition 4.1.4. The hypo-
theses concerning (4.1.8) mean in view of ¢) and d) in Proposition 4.1.4 that Lemma 4.1.8
can be applied to choose the directions of X, and Y,. A dense subset of directions satisfies
the conditions in Lemma 4.1.8 and also condition (i) preceding it, which proves the theorem.

Somewhat loosely we can express Theorem 4.1.9 as follows. Assume that the differen-
tial of the projection C'— T™(X) always has rank > r +dim X where r >0, and that the maps
(4.1.8) have surjective differentials. Then one can consider C locally as a canonical graph
between the cotangent spaces of manifolds of dimension r, depending on dim X +dim ¥ —2r
parameters. We shall use this fact later to give L? estimates for the corresponding
operators.

A rather complete local description of €' analogous to Example 4.1.6 can be given in a
neighborhood of a point ¢,€C where the maps (4.1.8) have surjective differentials and the
differential of the projection C'—T%*(X) has constant rank r+dim X. The differential of
the map O~ 7T*(Y) has rank r+dim Y then. Locally, the range of the projection of Cin
T*(X) (resp. T™(Y)) is defined by dim X —r (resp. dim Y —r) equations F,z, &) =0,
1<j<dim X —r (resp. G)(y,n)=0,1<j<dim Y —r) which are homogeneous with respect
to £ (resp. ) and have linearly independent differentials. The Hamiltonian vector fields
Hy; (resp. Hgi) in T*(X) (resp. T*(Y)) corresponding to these differentials via the sym-
plectic form are then in the tangent plane of C. Hence Hr, F;= 0 if all F,= 0 and similarly

for G, or if we introduce Poisson brackets
{F, F;}=0 when all F, =0; {G,G;} =0 whenall G, =0. (4.1.9)

Now the set of points in ¢ with fixed component in 7*(X) is a manifold of dimension
dim ¢ —(r +dim X)=dim Y —r whose projection to T*(Y) is of the same dimension and so
must be the integral of the (dim Y —7) dimensional planes spanned by the Hamiltonian vector
fields Hg;. The roles of X and Y can of course be reversed here. Summing up, if we choose

submanifolds X, and ¥, of dimension 7 as in Theorem 4.1.9, then € is locally obtained as
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follows: With (z, &) € T*(X,), (34, n1) € T*(Y,) related by the canonical transformation in
Theorem 4.1.9 one first solves the equations F,(x, £) =0, Gi(y,n) =0 with x=x,, y=y,
so that £, (resp. 7,) is the projection of £ (resp. %) along N(X,) (vesp. N(Y,)). Then we include
in C the product of the “bicharacteristics’ through (z, £) and (y, ) obtained by integrating
the Hamilton—Jacobi equations with the Hamiltonians F; and G, using these initial data.
(See e.g. Carathéodory [6].) The total dimension of C then becomes 2 dim X; + (dim X—¢) +
(dim Y —7)=dim X +dim Y as it should. We leave for the reader to check that the condi-
tions on ranks and so on required in the preceding discussion are actually verified so that
the argument is valid locally. Conversely, one can also define canonical relations by starting
from a canonical transformation 7*(X;)—7*(Y,) and Hamilton functions satisfying
(4.1.9) provided that the ‘“bicharacteristics’ are transversal to X, and to Y,. An example
is given in Example 4.1.6 and we shall come across a more general example of the same

type in part II.

4.2. Adjoints and products

If » and v are two densities of order } in a manifold and supp u N supp v is compact,

we write

(u,v)=u, )= fuﬁ

The adjoint of an operator A€ (X x Y, C') where C is a homogeneous canonical relation
from T*(Y) to T*(X) is defined by

(Au, v) = (u, A*v), v€CF(X, Qy), u€CF(Y, Q).
If A is represented in the form
(A, = (2q)nxt ”Y+2N>’4jffe“”‘x'y'e’a(x, ¥,0) u(x,y) dedyd, w€ CF,
in a local coordinate patch, then

(A%, u) = (27)nxt "Y“N)"‘fffe‘”’“'y"”a(x, v, 0) ulz, y) dxdydd, u€CY.

Here —¢ should be regarded as a phase function in ¥ x X x (R"™\0), so the corresponding

canonical relation is the range of the map

C¢ 3 (.’U, Y, 0)_> (?/, - ¢;> z, 95.;)
which differs from C by the map T%(X) x T*(Y)—~>T*(Y) x T*(X) interchanging the two
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factors. The principal symbol is just changed by complex(conjugation. Note that the

complex conjugate of a section of the line bundle L is a section of L—!. Thus we have

THEOREM 4.2.1. If C is a homogeneous canonical relation from T*(Y) to T*(X) and
AEIM(X x Y, ('), 0>}, then the adjoint A*€I;(Y x X, ) where Cj is the inverse image
of C under the map s: T*(Y)x THX)—>T*(X)x T*(Y) interchanging the two factors. If
a€SpHmxtmOINC, O, L) is a principal symbol for A, then s*@ €Sy "XV (0, Q, ® Ly )
since there is a nmatural isomorphism between L and s*Lg', and s*a@ is a principal symbol
for A*.

The isomorphism between L and s*Lg' is obtained by noting that L is the line bundle
corresponding to C and the symplectic form ¢y —0oy, so Lg' corresponds to ¢ and the form
—(6x—07y), and s*Lg! corresponds to s*C' =C; and s*(oy—ox). But that is the definition of

Le,. These are obvious consequences of Theorem 3.3.3.

We shall now discuss products, so let C; be a canonical relation from 7%(Y) to T™(X)
and O, another from T*(Z) to T*(Y) where X, Y, Z are three manifolds. Let 4, € I7*(X x Y,
C1) and A,€I7(Y xZ, C;) and assume that both are properly supported so that the
composition 4,4, is defined. We wish to show that 4,4,€I7"*"™(X xZ, ") where C is
obtained by composition of the canonical relations € and C,. (Cf. Theorem 2.5.15.) The
first step in doing so is to study the composition of canonical relations.

The direct product

0, x Oy < THX) x T*Y) x T*Y) x T*(Z)

is a symplectic manifold with respect to the symplectic form oy—oy, +0y, —0z Where
the two copies of Y are denoted by subscripts. The composition of €, and C, is defined as
the projection in T*(X)x T%(Z) of the intersection of C; x C, with the diagonal A in
THX) x THY) x T*(Y) x T*(Z) consisting of elements for which the two components in
T*(Y) are equal. If ) x 0, intersects A transversally, then dim ((C; x C5) N A) =dim (C; x
Cy) —codim A =dim X +dim Z. Transversality means that there are no non-zero normals
of the tangent planes of € x 0, and of A (with respect to the symplectic form) or equiva-
lently that there is no non-zero tangent of 01 x C, at an intersection which is also a tangent
of A with zero components in 7(7T*(X)) and 7(7*(Z)). Thus the projection of (C; x Cy)N A
in T%(X) x T*(Z) will then (locally) be a manifold of dimension dim X +dim Z on which
0x— 0z vanishes since —gy, +0y, vanishes on A. The projection will be a manifold and so a
canonical relation C,o0C, from T*(Z) to T*(X) if the map

(Cy x C3) N A—>THX) x T*Z)\0
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is in addition injective and proper. If either €, or C, is the graph of a canonical diffeo-
morphism the preceding conditions are trivially fulfilled.

We shall now determine the condition for transversality in terms of local defining
phase functions when local coordinates are introduced. Let ¢; be a phase function near
(Zos Yo» 00) EX X ¥ x (RM\0) and ¢, a phase function near (y,, zg, 0o) €Y X Z x (R¥\0).
We assume that both are non-degenerate, that they define a part of C; and of C, respec-
tively, that ¢14(%g, ¥y, 0o) =0, b2s(¥o, 2 0g) =0, and that when x =2, ..., 0 =0,

(@, $1:(x,9,0), ¥, — b1, (%, ¥, 0), ¥, b2, (¥,2,0),2, — b, (¥, 2, 0)) EA

that is, that é1, (g, Yo, Oo) + b2y (Yos 20 69) =0. As noted above, transversality means that
there is no vector (0,0,%,1,¢,7,0,0)+0 orthogonal to the tangent plane of C; x C, with
respect’ to the symplectic form ox— oy, + 0y, — 0z Orthogonality to the tangent plane
means that, at (zg, Yo, 0o) and (yy, 2o, o), db1s (%, ¥y, 0) = 0, ddos (¥y, 2, 0) =0 implies

{dys, v (Yo, > + by, £) + Ay, ) =0,
This is equivalent to the existence of vectors a, b such that

d <¢{0 (x’ ?/1, 0)> a> + d <¢éo‘ (?/2: z: 6)’ b> +d <?/1 ~—y2’ T> + d <¢{y1 (x> ?/1, 0) + ‘]séya (?/2; Z, U): t> = O
4.2.1)

Transversality thus means that this shall imply that =7 =0 and therefore a =b=0 since
¢, and ¢, are non-degenerate phase functions. Tt sutfices that (4.2.1) implies that a =b=t=0
for then it follows immediately that 7 =0 also. Now it is clear that given @, b, t one canfind 7
so that (4.2.1) is valid if and only if

d<{$10(2, 9, 0), a> +d{$ss(y,2, 0), by +d (b1, (2,9, 0) + 5, (4,2, 0),£> =0.  (4.2.2)

Transversality therefore means precisely that (4.2.2) implies a =b=t=0.
Now we can consider ¢, (x,y, 0) + ¢5(y,2, o) as a function ¢(x, 2, w) of (z,2, ®)€ X x
Z x (RN Notdim?\ () where

w=((|0+|c)ty,0, 5) € RV ¥eraimI\ g,

When § and ¢ vary in conic neighborhoods of 6, and ¢, and y varies over a neighborhood of
%o We obtain a diffeomorphism on a conic neighborhood of wy=((|6y|2+ |70|2)* ¥o, by, 00)-
It is clear that ¢ is homogeneous of degree 1 with respect to w, and the equations ¢, =0

mean precisely that
b1o= oo = b1, + b2, =0. (4.2.3)
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At such a point the linear combinations of the differentials of the partial derivatives &¢/éw,
are precisely the same as the linear combinations of the differentials ¢,/80;, d¢,/60; and
O(¢1+¢5)/0y;. Thus (4.2.2) means that ¢ is a non-degenerate phase function near

(%9, 2, wg). The corresponding canonical relation is
{(.’E, ¢{x> Zy, ¢éz); ¢{0 = ‘ﬁéa = (]S{y + ¢éy = O})

which means that ¢ defines C,o0 C, locally.

Let now

Ay () = (2)(nxtrprENA f f eh @0 (2,4, 0) v(y) dy do, (4.2.4)

where a, € Syt ("x*nr—2N0/4 (¥ » ¥ x RM) vanishes in a neighborhood of the zero section
and has cone supp a, inside a conic set I'; where ¢, is a non-degenerate phase function

defining part of C,. Similarly, assume that
Ayuy) = @z) ort "fz”’”'*f f £#0-590,(y 2, 6) ulz) dedo, (4.2.5)

where a,€ Syt ("rtns 2N (Y » 7 x R™) vanishes near the zero section and cone supp a,
belongs to a conic set I'; where ¢, is non-degenerate and defines part of C,. Here we are of
course working with local coordinates so that the integrals are well defined. If now a, and

a, vanish for large |0| and |¢|, we obtain
A, Ayu(z) = (2m)~rxt "Z+2N)’4ffffe“¢‘(r'”'"’*"52“‘""””% (x,y,6) ay(y, 2, 6) u(z) dzdy db do.

Here N=N;+N,+dim Y is the number of ““fiber coordinates” if we regard the exponent
as a phase function ¢(z, z, w), as we did above. We would like to extend the validity of this
formula to general a; but notice that this meets the difficulty that a,(z, y, 0)ay(y, z, o)
is not quite a symbol (because differentiation with respect to 6 for example improves only
by a factor (1-+-|6|)—¢ and not by a factor (1+|6] + |¢])~?). In addition the cone support
contains points with § =0 or ¢=0 which are on the boundary of the set where the
exponent is a phase function. However all essential contributions are expected from a
neighborhood of points where (4.2.3) is valid and there the preceding difficulties do not
occur. Motivated by this observation we argue as follows.

Since ¢19=0 implies ¢1, +0 we can always restrict the support of a, without changing
the singularities of 4, so that |¢1,|/[6] is bounded from above and from below in cone
supp a,. Similarly we may assume that | ¢z, |/|o| has fixed positive upper and lower bounds

in cone supp a,. Hence there are positive constants C; and C, such that
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Cy|o|<|0]< Cy|e| when ¢1,(x,y, 0) + b3, (y, 2, 0) =0. (4.2.6)

We choose a homogeneous function %(6, ¢) of degree 0 which is equal to 1 when C;|o|/2<
|6] <20,|o| and has support in the cone where C,|o|/3<|6] <3C;|o|. Thus

Cy1lo|/3<]0] <3Cy|o in supp y;
(4.2.7)
Cylo}/2=16]| or |0] 22C,|e| insupp (1—y).

Now introduce

Bu(x) = (2)~mx? "Z+2N)’4ffffei(¢‘(x'”' O+d .2 Np(z. 2,4, 0, 0) u(z) dedydfdo, (4.2.8)

where b(w, 2, y, 0, 6) =x(0, o)a,(x, y, )as(y, 2, 6). By the first part of (4.2.7) we have
beSY for m=my+my+ (nx+ng+2(ny— Ny —N,))/d=my+my+ (ng+n;—2N)/4+ny, pro-
vided of course that a, and @, are symbols of the degrees indicated above. If we introduce
as above a variable o in RY instead of (y, 0, ¢), then D(y, 8, ¢)/ Dw is a homogeneous func-
tion of w of degree —ny so it follows that (4.2.8) is an operator of order m, +m, belonging
to the canonical relation C;o0C,.

Writing r(z, 2, y, 0, 0} =(1 —%(0, 0))a,(, ¥, 0)as(y, 2, 6) we shall now prove that
R(@,2,0,0)= fe“‘“"”'”“"“'”’r(x, 29,9, 0) dy

is in §-. The integrand vanishes when |6| + |o| is sufficiently small, and by (4.2.6) and
the second part of (4.2.7) we have

Iol +|O‘]<0|¢{y(x: Y, 6)+¢éy(y; z, G)I

in the support of r. But repeated partial integrations with respect to y (cf. the proof of
Propositions 1.2.2 and 2.5.7 then show that R can be bounded by any power of (|6] + [o[)7%,
and the same is true for any derivative of R.

Now we claim that 4,4,=B+ R where

Ru(x) = (27)~"x* "Z”N)"*fffR (x,2,0,0)u(z) dzdb do

is an operator with 0 kernel obtained by integration with respect to 8 and ¢. In faet, this
is obvious if @, and a, have compact support. In general we just insert cutoff functions
as in (1.2.3) and obtain in the limit when it converges to one that 4, A,=B+ R. This

proves that 4;4, is a Fourier integral operator, so we have proved
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THEOREM 4.2.2. Let C; and C, be homogeneous canonical relations from T*(Y) to T*(X)
and from T*Z) to T*(Y) respectively, assume that C,xC, infersects the diagonal in
T*HX) x T*(Y) x T*(Y) x T*(Z) transversally and that the projection from the intersection
to T*(X) x T*(Z) is proper, thus gives a homogeneous canonical relation CyoC, from T*(Z) to
T*(X). If A, €I/ (X x Y, 03), A,€I(Y x Z, C3) are properly supported, it follows that (for
e>13)

A, A, €I ™ (X x Z, (C100,)).

In order to describe the symbol of the product we must first discuss some facts con-
cerning the line bundles of which the symbols are sections. First we discuss some
properties of densities.

If E is a real vector space of dimension »n, we define ,(E) as the space of all maps
a: A"(E)N\0—C such that a(st)=|s|%a(t), tE A™(E)\0, 0=s€R. Of course Q,(E) is iso-
morphic to C but the isomorphism is not unique for & =40 unless for example we have a
preferred basis in E. Clearly the tensor product Q,(E)®€Qs(E) is isomorphic to O, s(K)
since the product of two maps homogeneous of orders « and f is homogeneous of order

a+f. If E, is a subspace of E, of dimension n,, then the bilinear map

A™(Ey) x A""(E[Ey) ~ A™(E)
gives an isomorphism
Qa(E1)®Qa(E/El) = Qa(E)
or if we tensor with Q_,(E/E;) and note that ), is isomorphic to C,
Qo (By) 2 Qo (B)®Q_o(E| By).

If E is a vector bundle, then Q. () is a line bundle with the same base, and the pre-
ceding formulas remain valid. In particular, if M is a manifold we can take F=TM and
obtain the bundle Q,=Q,(M) over M defined also in section 2.4.

Let now M, and M, be two submanifolds of a manifold M with transversal inter-
section. We want to relate densities in M, N M, to densities in .M;. (We shall later take
M=T*X)x THY)x T*(Y)x T*Z), My,=A (the diagonal), and M;=C; xCy where C,
and O, are canonical relations. Note that the symplectic structure then gives automati-

cally densities in M, and in M.) If m€M,N M, we have by definition of transversality
Tu(My) + T( M) = Tr(M),
so T, (M)|T(M,nM,)= T, (M)]T,(M,) which gives an isomorphism

Qa(Tm(Ml n MZ)) = Qa(Tm(Ml))®Q—a(Tm(M)/Tm(Mz))°
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If we are given a positive section of Q_ (7,(M)/T,(M,)) over M, we can therefore use this

section to define an isomorphism

Qu (M1 Mp) = Qu( M), (4.2.9)
Since for m €M, we have

Q_ (T )| T M) = Q_o(T (M) @ Qo T'( M 2))

we have such a section if there is given a positive density in M and one in M,, for a positive
density on a manifold allows one to identify Q, with Q, and so Q, with £, for all &. In
particular, we can thus define the product of a density of order % on each of the canonical rela-
tions Oy and Cy as a density of order § on C 00, by first taking the direct product of the two
densities on C; x Cy and then intersecting with the diagonal A.

There is another way of defining a section of Q_ (7T ,(M)/T(M,)) over M which is
better related to our definitions in sections 2.4 and 3.2. Suppose that we have a map y:
M~—N where N is a manifold with a given positive density, dim N = codim,, M,, such
thatyM, is a point », and the rank of 9’ is dim N. Since ' is & bijection of T, (M)/T (M)
on T, (N) we can pull the element of Q,(T, (IV)) given by the positive density in N back to
the required section of Q,(7,(M)/T,(M,)). In the example where M =T*(X) x T*(Y) x

T*(Yyx T*(Z) we have if Y is contained in a vector space an isomorphism
M—-AxTHY)

preserving densities given by letting the image in A be defined by repetition of the first
component in T#(Y) of an element in M and letting the image in 7*(Y) be the second
component in 7#(Y) minus the first. This shows that the map M —T*(Y) defines the same
section of Q (T(M)]T(A)) as the one obtained from the symplectic measures in M and in A
{identified of course with T™*(X) x T*(Y) x T*(Z)).

If in addition to the density in V and the map y we also have a density in M, the iso-

morphism
Qa( Tm(Mz)) = Qa(Tm(M)) ®Q—a( Tm(M)/Tm(Mz))

gives a density on M,. For example, if M =R""¥ and y: R**¥—R? has surjective differential
on M,=y=1(0), the Lebesgue densities in R"*V and RY define a density on M,. If yy, ..., ¥,
are local coordinates on M,, considered as functions in a neighborhood of M,, and we use
y(x), y(x) as local coordinates in a neighborhood of M, then the density in R*" with respect
to these local coordinates (or more precisely, the density evaluated on the dual basis of
tangent vectors) is given by | D(y, y)/Dz|~1, so the density defined on M, agrees with the

one defined in section 2.4.
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This construction may be made in steps: Let y;: M->N;, =1, 2, be C° maps. Assume
that positive densities are given in M, N,, N, and that y = (y;, y,): M — N, x N, has surjec-
tive differential on M®=y—1(ng, n3). From y, and the densities in N, and M we then obtain
a density in M’ =y;'n3 near M° and from this density, the density in N, and the map y,
we then obtain a density in M°. This is the same as the one defined by the density in N
and by the map y directly. The simple verification is left for the reader.

Now €, x G, is locally isomorphie to the inverse image of 0 in RV*¥: for the map

Rrxtrrt Nt nrtnat g (2, 41, 0, 45, 2, 0) ~ (10, poo) ERVT,

and this map together with the Lebesgue measures defines the density Vd, 52 < Vdg,, of
order }. The intersection of C; x €, with the diagonal corresponds to the submanifold
where y;, =y, and 1, + dz,, =0, and the density of order } which we have defined there

corresponds to the map

(x> Y1, 6’ Yas %, 0') - (‘IS{O, ¢é0'7 Y=Y, ‘]S{yx + ¢éy2) € RN1+N2+2nY'

If we first consider the map to y, —y, which obviously gives the Lebesgue density in the

plane y, =y,, we see that an equivalent manifold and density is defined by the map
(@, 2,9, 0, 0) > (10, b2 P1y + pa,) ERVH V1T,

where now y =y, =y, But this is the manifold ¢y with the density Vd, 3 of order %
corresponding to C,0C,. Thus the density of order } on C,0C, corresponding tc 4,4,

and the phase function ¢ is the product of the densities of order } on €, and C, corresponding
to 4, and 4, for the phase functions ¢, and ¢, as explained above.
The preceding construction simplifies considerably when C, (or C,) is a locally canonical

graph. For we have an isomorphism (at a point in (C; x Cy) N A)

Qu(T(Cyx Co) N A)) = O (T(Cy x Co)) ©Q_(T(TH(Y))
= QT(C))RQ_H(T(C)®Q(T(Cy)) = Qy(T(C1)) ®Q(T(Cy))

obtained from the isomorphisms of 7'(M)/T(A) and T(C,) with T(7*(Y)). The sections of
Qo(T(0,)) are just the functions on C; obtained by identifying densities of order 1 with
functions. Thus multiplication consists in this case simply in multiplication of the density
of order 4 on C, by the function on C, after both have been pulled back to the intersection
(Cy x Cy) N A by means of the obvious maps to C; and C,. (The second one is a local diffeo-
morphism.) When both C, and O, are local canonical graphs, then so is (;00, and the

multiplication becomes just multiplication of two functions.
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Finally we shall relate the line boundles L,, L, on C,, C, to the line bundle L on
C10C,. Let ¢, ;Sl resp. ¢, q~52 be phase functions representing a neighborhood of a point
in C resp. C,, and write

$(z,2, ©) = $1(2,9,0) + $5 (3, 2, 0),

¢ (.’L‘, R, 65) = ¢1 (.’IJ, Y, 6) + ()62 (?/, z, 6'),
where w and & are defined as in the discussion preceding (4.2.3). These are phase functions

defining C,0C,, and we have

SEN Po, — SN Pa= = SEN Plog — SN <{;'1'5§ + 5gn Pass — 8N qS.;;; . (4.2.10)
This follows by repeating the proof of Proposition 3.3.1: the equality is trivial when ¢;
and ¢:,- are equivalent or when they are obtained from each other by increasing the number
of fiber variables as indicated in section 3.1. It follows that we have an isomorphism of the
tensor product Ly x L, on €y x Oy, restricted to the intersection with A, and L which for the
trivializations of Ly, L, L corresponding to ¢,, ¢, and ¢ is given by standard multiplication.
It follows that we have a bilinear map from sections of Q,®L,, over C; and sections of

Q. ®Lg, over (), to sections of Q,® Lg,.q, over C;0C,. We denote it by x and have proved

THEOREM4.2.3. Let the hypotheses of Theorem 4.2.2 be fulfilled. If a, and a, are principal
symbols of A, and A, then a, xay is a principal symbol of the product A, A,.

4.3. L2 estimates

Let O be the graph of a canonical diffeomorphism 7*(Y)—T*(X). If A€ INX x ¥, ("),
and 4 is properly supported, then 4*4 is a pseudo-differential operator with principal sym-
bol |a|?if @ is a principal symbol for 4, regarded as a function on 7*(Y). We can therefore
apply the well-known results on L? estimates for pseudo-differential operators recalled
in section 2.2 to show that 4*4 is L? continuous (or compact, in case a—0 at oo). Since

this is equivalent to the same statements concerning 4, we obtain

THEOREM 4.3.1. Bvery A€IY(X x Y, C') which is properly supported is continuous
from LYY, Q) to LAX, Q;) where subscript ¢ indicates compact support, and also from
L (Y, Q) to L2.(X, Q;), provided that O is locally a:canonical graph. A maps bounded
sets to compact sets of and only if a principal symbol tends to O at oo in C over compact subsets
of Xx Y.

We could of course also give the precise norm modulo compact operators but leave
this for the reader. Instead we shall give a sufficient condition for L? continuity in the gen-

eral case using Theorem 4.1.9. First recall that (3.2.14) defines a distribution in I} if
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a; €87 H=2NDIt Tt follows that if as in Theorem 4.1.9 we restrict to submanifolds, the
order is going to increase by the codimension divided by 4. In the notation of Theorem

4.1.9 the degree will therefore increase by (ny+ny—2k)/4. This leads immediately to

TaEoOREM 4.3.2. Let C be a homogeneous canonical relation from T*(Y) to T*(X) such

that the maps C—+X and C— Y have surjective differentials. Let the differentials of the projec-
tions C—T*X) and C—T*(Y) have rank at least k+dim X and k+dim Y respectively.
Bvery ACIZ(X xY, (") is then continuous from LZ(Y, ) to L3 (X, Q;) provided that
m<(2k—ny—ny)/4.
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