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Introduction

In this paper we study the limit distribution of the solution Y, of the difference

equation
Y, =M, Y, ,+Q,, n=1, (1.1)

where M, and @, are random d x d matrices respectively d-vectors and Y, also is a d-vector.
Throughout we take the sequence of pairs (M, @,), »>1, independently and identically
distributed. The equation (1.1) arises in various contexts. We first met a special case in a
paper by Solomon, [20] sect. 4, which studies random walks in random environments.
Closely related is the fact that if ¥ ,(¢) is the expected number of particles of type ¢ in the
nth generation of a d-type branching process in a random environment with immigration,
then Y, =(Y,(1), ..., Y,(d)) satisfies (1.1) (Q, represents the immigrants in the nth genera-
tion). (1.1) has been used for the amount of radioactive material in a compartment ([17])
and in control theory [9a]. Moreover, it is the principal feacture in a model for evolution and
cultural inheritance by Cavalli-Sforza and Feldman [2]. Notice also that the dth order
linear difference equation

(1)

Yn=0n"Yn1+ 0'5»2)?/71—2 ot Gsld)?/n—d + ¢

can be brought into the form (1.1), if one takes

Y, = Wnta-1s Ynidaeos s Yn)s  @n={qn1a-1, 0 ..., 0)

(*) Research supported by the NSF under grant GP 28109 and by a Fellowship from the John
Simon Guggenheim Memorial Foundation.
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O';Ildﬂ, cens o.gl,d‘f)-d—l
1 0o 0
wnd M= o : (1.2)
o 1 0
Such random difference equations are mentioned in [0], section 4 and in [7], pp. 23, 125

and 181.

The solution of (1.1) is of course given by
Yn=Qn+MnQn—1 +MnMn—1Qn—2+ +MnMn——1 oo M2Q1 +MnMn—1 Ml YO’

which for given Y, has the same distribution as
klel e My 1 Qe+ M, .. MY,

Put now for any d-(row) vector x=(x(1)..., z(d)) and for any d x d matrix (m = (, §))
a 3
|z|= {Z x? (i)} s |Im|| = max zm.
i=1 |zl=1
It is known (1) (see [5], Theorem 2) that if

E log*|| M| < o0 (1.3)
then oa=lim %log I|M,...,|| exists and is constant w.p.1. (1.4)
n—o0

We shall assume that «<0 in which case ||}, ... M,|| >0 exponentially fast, and under
very weak conditions on @), the series '

R=§M1---Mk—-1Qlc (1.5)

will converge w.p.1. Then the distribution of Y, converges to that of R, independently of
Y,. We note that conditions for the exponential convergence of M, ... M, to 0 in the special
case (1.2) have been given by Konstantinov and Nevelson [13]. Spitzer conjectured for the
one dimensional case (i.e., d =1; this is the situation of [20]) that R should be in the domain

of attraction of a stable law. For the one dimensional case this is indeed not so hard to

(1) In [5] |x] denotes X|(¢)|, and the definition of ||m|| is changed correspondingly. But it is
easily seen that ratio between the present || M, ... M, || and that of [5] is bounded away from 0 and co,
so that (1.4) still holds.
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prove (the long section 2 is only needed for d>1). A comparatively simple argument (see
proof of Theorem 4) reduces the study of the tail of the distribution of R to that of

P{max[Ml...M,,|>t}=P{maleog[M,[>logt} (1.6)
n n 1

for large ¢. Since the M, are independent and identically distributed the behavior of (1.6)
can be found from renewal theory (see [4], section XI.6). Under reasonable conditions there
exist K >0 and x; >0 such that the probability in (1.6) behaves like Kt™™ as t—cc, and

also
0< lim # P{R >} < oo,

t—>o00
In the d-dimensional case the proof in section 3 still goes through, but now the tail behavior
of R reduces to that of

n M, ... M,
P M,. .M |>t}=P 1 &———’— >1 t} 1.9
{m3Xlx 1 ol >t} {mgxg B, M| % (1.7)

for any given row vector . This necessitates the development of revewal theory for the

sequence of sums

2 |aM,... M,

log m————+.
; gIZMl...Mg_ll

We take this up first in section 2, where we show that (1.7) still behaves like K¢~** under suit-
able conditions. The simplest case is when M, and @, have only positive entries, respectively

components. We summarize our results for this situation, using the following notation:
z =(x(1), ..., z(d)) stands for a generic row vector,
8s 1 ={x€R* |z| =1},
S, ={x€R" |z| =1, x(1) >0, 1 <i<d} <= §,,.

When 230 F=(x)" =|z| 2 2€8, ;.

f{ } denotes the number of elements in the set { }.

When m is a d xd matrix m >0(m>0) means m(z, j) =0(>0) for 1<, j<d. When
m >0, g(m) denotes its largest positive eigenvalue, the so called Frobenius eigenvalue ([6],
vol. 2, p. 53).

N.(t)=min {n >0: log [2M, ... M,| >t} (= when no such n exists).
On the event {N,(t) <o} we also define
14 —~732907 Acta mathematica 131. Imprimé le 11 Décembre 1973
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W,(t)=log |xM, ... My,| —t,
Z,(t)=(xM, ... Mn)" .

TaEOREM A. Let My, M,, ... be independent d x d matrices each with the same distri-

bution u such that
P{M,>0}~=1,

P{M, has a zero row} =0, (1.9
and E logH|| M, || <ee. (1.10)
Assume also that the group generated by
{log o(m): w=m, ... m,, for some n and m,Esupp (u) and 7>0} (1.11)

18 dense in R. Then, there exists a constant o< oo such that for each x €S8, one has w.p.1.
1 .1
lim ~|[My... M| =lim = |«M,... M,|=«.
n—>c0 N n—soo N

If a>0, then the limit distribution (as t— o) of Z,(t), W,(t) exists and is independent of x.
Also for x€S, and h>1

1imE'#{n:t<Ile...M,,]<th}=loih. (1.12)
If <0, and if in addition to the above conditions there exists a x,>0 for which
E{min (3, M, (i, ))}* > d*"?, (L.13)
T
and E|| M, log™ || My < oo, (1.14)
then there exists a x,€(0, »,] such that
lim ¢ P{max |xM, ... M,| >t} (1.15)

t—>o0 n

exists and s strictly positive for x€S,.

TarEorEM B. Let {M,, Q,},>1 be independent identically distributed, where the M, are
d xd matrices and the Q, d-(column) vectors. Assume that the M, satisfy all hypotheses of
theorem A (including (1.13) and (1.14)) and that a <0. Assume also

P{Q,=0}<1, P{Q,>0}=1, EQ,|*<e>,

for the x, of (1.15). Then for each x€S,_
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lim ¢#P{zR >t} (1.16)

t—o0
exists and is finite. For €S, the limit in (1.16) is strictly positive.

We want to point out that (1.12) is an analogue of Blackwell’s renewal theorem (see
[4], sect. XI.1) for produets of random matrices and that the existence of the limit distribu-
tion of W (#) is the analogue of the existence of the limit distribution of the residual waiting
time in renewal theory ([4], p. 370).

Theorems A and B, together with some extensions are contained in Theorems 2-4.
In section 4 we state without proof analogous results which do not presuppose M, >0
w.p.1. However, if we drop the condition M, >0 and if d>1, then we have to add some
absolute continuity requirements for the distribution u of M,. None of our results cover the
following simple example: Let d=2, m,;, m,>0 2 x2 matrices such that log g(m,} and
log g{m,) generate a group which is dense in R. Finally let m, be a rotation and take

P{M,=m}=p, 1<i<3,

for some p,>0, p, +p,+p,=1. We pose it as an open problem to prove appropriate forms
of (1.12) and the existence of the limits (1.15) and (1.16) in this case. Perhaps it will be a
little easier to solve similar problems for the special situation of [9], section 14.

Acknowledgement: The author is indebted to Professor L. Gross for discovering a mis-
take in an earlier proof of Theorem 3 and several other helpful comments.

2. Renewal theory for products of positive matrices

Even though some of the renewal theory of this section is applicable to more general prod-
ucts of matrices (see Remark 1), the conditions are least cumbersome for products of positive
matrics and the main results of this section are only formulated for such products. The basis
for this section is a renewal theorem proved elsewhere [11] for (random) functions on a Markov
chain. To be precise we consider a Markov chain {X,},., with stationary transition
probabilities on a separable metric space S. Throughout PYz, A)=P{X,,,€4|X,=x}
denotes the n-step transition probability for this chain, Pz, 4)=Pl(z, A) (*) and § the
o-field generated by the open sets of S, respectively B the collection of Borel sets of R. We
assume that another sequence {u,},., of random variables is defined on our probability

space such that the distribution of u; depends only on X, and X,,,, and not on the other

(*) Of course these have to satisfy the standard assumptions that z—P(z, 4) is § measurable for
fixed 4€$ and P(z, -) is a probability measure on § for fixed z €.S. Moreover P" is the n'” iterate of P,
and the right hand side of (2.1) is assumed to be an § measurable function of z,.
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X; or v, when X, and X,,, are given. Formally, we assume that for each x, y €S there
exists a distribution function F(- |z, y) such that for 4,€S, B;€B

P{XiEAb 0<1;<’I’L, ujij, 0<7‘<n|X0=x0}
n—1
=1, () f P(z,,dz,) f f P(%,-1, dz,) iHoF(BiIx,, Tir1)- (2.1)
A An =

The expression F(B|x,y) in (2.1) of course stands for

f F(da|z, y).

Further notations and definitions to be used are as follows: F denotes the o-field
generated by the X; and u,, ¢ >0. P, is the unique measure on F for which

P{X,€A4,,0<i<n, u,€B;,0<j<n}
is given by the right hand side of (2.1). E, denotes expectation w.r.t. P,.

d(-,*) is the distance function on S,

n—1

Vo= 20 u; (Vo=0), (2.2)
N(t)=min {n>0: V,, >t} (=ce if no such n exists). (2.3)
On the event {N(f) < oo} we take
. W(t)=Vyu —t, (2.4)
2() = Xy (2.5)
C,={z€8: P{V ,=mk1 for all m >k} >1}. - (26)

The following definition reduces to Feller’s ([4], p. 362) when § is a one point set.
Definition. A function ¢: S x R—>R is called directly Riemann integrable if it is S x B
measurable and satisfies (with Cy=¢)

00 +o0 ’
kzo 1_2 (k+1) sup {|g(x, )| : € Cr 1\ Ci,, ISE<S T+ 1} < o0, 2.7)

and if for every fixed €8 and 0 <L < oo the function ¢{—>g(z, {) is Riemann integrable on
[—L, +L]. ;
Finally, if f is any function from I172,(S x R} into R and £>0, we put
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e, ¥gs X1, ¥y, --2)

=lim sup {f(¥y, Wo, Y1 Wy, ...): (X, ¥;) + |0, — w| < & for i< n}.

n—>0

Note that f¢ is automatically measurable w.r.t. I1724(S x B).

We also need the following set of conditions:
I.1. There exists a probability measure ¢ on § such that ¢P =g and

P{X,€ A for some n}=1 for all z€ S and
open A with ¢(4)>0.

1.2. J‘(p(dx) P(z, dy)ﬁl]F(de, y)< o
. Vn_ . 1 n—-1
and Lim 2= lm © %u‘

== f¢(dx) Pz, dy)le(ly |z, ) >0 a.s.(})

1.3. There exists a sequence {{,},, R such that the group generated by {,} is dense i
R and such that for each £, and 6 >0 there exists a y =y(», §) €S with the following property:
For each >0 there exist an 4 €$ with ¢(4)>0 and integers m;, m, and a 7 €R such that.

PAd(X,,, y) <, | le—rl <6} >0, (2.8)
as well as PAd(X,,, y) <&, | Vpm,—7—C,| <6}>0 (2.9),
whenever x€A4.

I.4. For each fixed €8, ¢>0 there exists an ry=ry(x, ) >0 such that for all functions:
f: Ii20(S x R)=R for which f(X,, Vy, X;, V4, ...) is an F-measurable function, and for alk
y with d(, y) <r, one has

E. (X, Vo, Xy, Vs, )< E f( Xy, Vo Xy, Vy, o) +Esup |f]
and E, {(Xg, Vo Xy, Vi, ) S E f5(Xgy Voo Xy, Vy, ...) +esup |f|.
In this setup the following theorem was proved in [11].

TrEoREM 1. If condition 1.1-1.4 are satisfied, then there exists a finite measure ¢
on § such that for every bounded, jointly continuous function g: S x (0, «)—>R and every €8

(') We say that an event A occurs almost surely (a.s.) if P (4)=1 for all z€S.



214 HARRY KESTEN

lim E,g(Z(t), W(¢))
t—00

= “—lf 'l/)(dy) Py{XN(()) € dz, VN(O) € d},} g(z, 8) ds. (210)
S

8x(0, ) 0<sgi

Moreover, if g: SxR—>R is jointly continuous and directly Riemann integrable, then for
any x€8

o0 +o0
tlim E, ZO g X t=V,)= oc‘lf <p(dy)f g(y, s) ds. (2.11)

—>00 n= 5 —00
Despite the forbidding appearance of conditions I Theorem 1 is useful when dealing
with products of independent matrices (and probably for random walks on more general
semigroups as well), as we proceed to explain. Let {},},-, be a sequence of random d xd

matrices and put
My=LI1l,=M,M,.. M, n=>1.

Unless otherwise indicated all our vectors will be row vectors. If x is a d-vector, |x| denotes
its Euclidean norm, and if m is a d x d matrix, ||m| denotes its I, operator norm, i.e.,

|m|| =max |zm].
fzt=1
For any x€R® with |x]+0, we put = |x| 2. When the expression for « is complicated

we also use (x)” instead of Z.

To apply Theorem 1 we take for our state space a closed subset S of the unit sphere
d -
Sa_1={z=(x(1),..., 2(d)): |x|2=§1:x2(z) =1}.

We define {X,, u,},5, as the following functions of X, and {M,},>,:

‘ X "= (X Tt X,I0,
X, = (Xo1II,) (XoM,...M,) i oll, +0 (2.12)
0 if X,II,=0,
| Xy Mo .
u,=log —-""" (= —oo if X,II,=0). (2.13)
g IX()HuI ( 0
Note that for X,€8,_,
n~1
Vo= 2 un=logM=log|XoMl...M,,|. (2.14)
=0 |X0|

Thus we are really looking at the action of the successive products of the matrices M;, M,,
on d-space; V, measures the size of the vector after n steps and X, its direction. The
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probability measure is defined in terms of a measure u on the set of d x d matrices, a x>0,

and a function r(x) >0 on § satisfying

r(x) = f,u(dMHle" r((xM)7), z€S. (2.15)
For this to make sense, we shall of course require that for all z€8, u{M:2M =0 or
(xM)" ¢S} =0. We now want

P{Mn+1 €4 | (Xi: ui)ié n—1» Xn = xn}
1

r(,)

JM @) |2, D, M), (2.16)

By virtue of (2.15) this defines an honest probability distribution for M, ;. The M, are
independent of each other and the preceding X, in the case where g is & probability mea-
sure, % =0 and r(z) = 1; the more general case described here will be used later in this section.
We shall slightly abuse notation and write P, for the conditional measure given X,=x
governing {X,,u,},500nd {M ,},5,. Le., if 1is the Borelfield in the space of d x d matrices,(?)
then we think of P, as a measure on Il;.4(S x B x M) rather than on I;54(S x B). E, will
still denote expectation w.r.t. P,, and in accordance with (2.12), (2.13) and (2.16) we have
for any positive measurable function f: (8 x R)**®—(0, o), z€S and D,€ M(?)

B {f(Xy, ug, Xy, vy, ooy Xy, w); M€D,, 1<i<k+1}

1 ~
=7'(:1:) D ﬂ(dM1)---fD w@Myi1) [T [* r((2TTi+1) ")
' k+1
~ le2| ~ 'ka"’ll)
. 2.17
f(x, log | 211, |, (=11,) ,loglxnli, vees (2I1,) 7, log o1, @.17)

It is not hard to check that for D;= set of all d x d matrices, (2.17) agrees with (2.1) for suit-

able F and transition operator

P(X,,,€4|X,=x)=P(z, 4)

pd) [z M ¥ r((=M)").

- () (zM)~eA

Of course P{X,,,€A4|X,=x} will again be given by P*(z, A), the kth iterate of P.

(1) The space is just R% and M is generated by the open sets in this space.
(%) For any set of conditions C, E_{f; C} denotes the integral of f w.r.t P, over the set where C
is satisfied, ie., B {f; C} =B, /1.
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We introduce one more concept to help us obtain the aperiodicity condition 1.3.
We call a d xd matrix 7 feasible if there exists on n and my, ..., m, Esupp (u) such that
T =My My... My, and if in addition 7 has an (algebraically) simple eigenvalue p(z) >0 which
exceeds all other eigenvalues of 7 in absolute value (i.e., if 1+ (%) is an eigenvalue of 7z, then
|A] <o(w)). If this is the case we call p(w) a feasible eigenvalue and the corresponding right
and left eigenvectors of unit length d’(7) respectively d(x) feasible eigenvectors (the prime
in @’ denotes transposition; a’ is a column vector). Note that, by definition 4’ and b are the
unique solutions of

na' =p(n)a’, |a| =1,bn=p(x) b, |b| =1.
ProrosiTioN 1. Let 8 be a closed subset of S;_, such that
ui{M:2M=0 or (xM) ¢S}=0,x€S. (2.18)

Assume further that r: S—(0, o) satisfies (2.15), is continuous and bounded away from 0 and
oo, and that for all z€S (and P, as in (2.17))

P,{30>0 with |aIl,| ZC||IL,|| forall n}=1. (2.19)

Finally, let the group generated by

log o(7): 7t feasible and min |yd’ (x)| >0} (2.20)
e s
Ye.
be dense in R, and
Juaany nartrog a1 < oo @.21)

Then, there exists a probability measure ¢ on S such that conditions 1.1, 1.3 and 1.4 are ful-
filled and such that

fqv(dw) P(z, dy) f A F(dh|x, y)= ftp(dx) B uy

=J‘<p(dx)% wdM)|xM [*r((xM)") log* |aM|< oo, (2.22)

as well as

lim Va_ o= fw(dx) B, u,

n—c0

=J}p(dw)%fﬂ(dM)Ile”r((xM)") log |zM| a.s. (2.28)

(However — oo <a<0 is possible.)
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Remark 1. The conditions (2.18)—(2.20) are somewhat awkward. However, as we shall
see in Theorems 2 and 3, things become easy when u is concentrated on the set of positive
matrices. Of course, once we have an S for this situation, then we can also handle the case
where 4 is concentrated on matrices of the form A-1BA, B(s, j) >0, for some fixed non
singular 4. For then we only have to replace the former S by {(x4) : x€8}. Another case
in which (2.18) and (2.19) hold, and in which every m=m, ... m,, m;Esupp (u) is feasible,
occurs when all m €supp (u) are of rank one, i.e. of the form m(i, j) =a(s) b(j) for some

d-vectors a and b, and when

inf {? b1 (1) Gy (1) : my = (a,(3) b, (§)) and
Mg = (“2(?:) by(j)) arein supp (u) for some a,, bz} >0.
Then we may take
S=closure of {b:3 a such that m=(a(i) b(j)) Esupp (u)}.
Proof of Proposition 1. We first prove condition 1.4. For €S, >0 let

E(x, 8, k)={(my, ..., m;): m; d xd matrices such that
|zmy ... my| =>68||m, ... my|| >0 for 1<I<EK},

E(z, 6) ={{my}ns1: (my, ..., m)EE(z, d, k) for all k}.

Then for |y —x| <d,6 and (m, ..., m,) € E(x, J, k) and 7, =m, ... m; we have

(1=8,) |2me| <|2me| — |y —=| |||
<yme| <1 +6) |vm) (2.24)
as well as | (ym)™ — ()" |
1

=Wl(|mk| —yme|) ym + lyme| (o — 2m) | < 26,

In other words, for any sample path with X,=y, |y —z| <6,6, and (M, ..., M;) € E(x, d)
we have for sufficiently small §, and k>0

log |9IL| 28, (2.25)

IXk“ (2II)” I = '(?/Hk)~ — ()" | <24, le_ 108| xnk“ =
|xnk|

Consequently, for any bounded and F-measurable f(X,, Vo, Xy, Vy, ...) and |y—2z| <
0,0(E°(z, ) is the complement of E(z, 8))
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Eyf(XO’ VO: X1>V1’ ---) < S“P Ifl Pu{Ec(x: 6)}
+E,{{(Xo,Vy, ...); B, 6) <sup |f| P,{E°(x, 8)}
+ B, f*% (2,0, (zI1;)", log |2I1,| (=I1,)", log |«I1,|, ...); E(x, 8)}.  (2.26)

But from (2.17), (2.24) and (2.25) we see that for |z —y|< 4,6 and DEM*

1 ~
P{E(z,6,k)nD}= @) fE(I , k)np'u(dMl) ven (DL | YT r((y1T,) ")

1

(@) J B 6.00D

> [ min 1(2—1)]2(1 —8,)"

los—zsl<20: T(23)

p(dMy) ... u(@My) |oI1, [*r((TL) ")

=[ min 5(31—)]2(1—51)"P,{E(x, 8, k) n D}. (2.27)

122—2:1<26, 7(22)

Since r is uniformly continuous on the compact set S, and since P {E%, 8)}—>0 as =0 (by
(2.19)) it follows that for every ¢ >0 and €S we can choose 6 >0, §; >0 such that for all
y €S with |y—x| <d,6

P {E(=, )} = lim P {E(z,d,k); > (1 —¢) P{E(z,9);

and P{E(x, 6)} <¢+P{Ex, 8)} <2e. (2.28)
Estimates similar to (2.27) and (2.28) show that for |y —x| <6, also

B, 0, (11", log |«I1, |, ...); E(z, )}
SE AP Xy, Vo, -..); B(®, 8)} +e E{| Xy, Ve, ---)|; B, 8)}
S EfXy, Vo, Xy, Vi, ..) + (e +P{E(=, 6)} sup |f|. (2.29)
(2.26), (2.28) and (2.29) together imply the second inequality of 1.4 and the first one is
proved in the same way.

Next we prove 1.1. For fixed m the map x— (xm)” is continuous from S-S at every
with am = 0. It follows easily from this fact, (2.18) and (2.21) that

2 B, f(X,) = f Pz, dy) 1(y)

is bounded and continuous whenever f: §—S is bounded and continuous. But then one
easily proves (see [18], theorem IV.3.1) that for any y,€S any accumulation point of the

sequence of measures
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S~

2 P(yy, ") (2.30)
k=1

is an invariant measure for P. In order to satisfy the recurrence condition in 1.1 we choose
Yo in a special way. Let @ be a feasible matrix with feasible right and left eigenvectors
@' =d'(n), respectively b(xr). By bringing z into its Jordan canonical form it is easy to see
(compare [12], pp. 1466-7) that we can then find a multiple a of @ such that ba’ =1 and that

with this normalization
k
lim {i} =a'b.
ko0 |Q(7T)

Since 7 is feasible, m=m, ... m, for some n and m,€ supp (u). Thus also #* is a product

of mis, m,€ supp (u) and for any z

xn® -
lim ——— =(xa')b. 231
o e &) (
If now d(x) is such that
min |ya’ (z)| >0, (2.32)

then za’ 0 for 2€8 and it follows that

klim (xn¥)” =b. (2.33)
Moreover, by (2.18) (x7*)” € closure of §=.8, so that &(x)€S whenever (2.32) holds. One
easily checks that in this case the convergence in (2.31) and (2.33) is uniform in z€.8, and
consequently, for any neighborhood U <8 of b there exists a k=k(U), neighborhoods U,
of m; and a §=06(U)>0 (k, U, and & depend on 7z as well, but = is fixed for the moment)
such that for all €S8

P{X,,eU}

>PAM,,, €U, 1<i<n, 0<r<k}>8(U)>0. (2.34)

rn4

This, together with the extended Borel-Cantelli Lemma ([1], exercise 5.6.9), shows
P{X,€eU forsome it}=1, x€8S. (2.35)

We now fix a specific feasible 7z such that @(n,) satisfies (2.32) (such 7, exist because (2.20)
generates R) and take y, in (2.30) equal to b, = b(s,). For ¢ we take now any weak accumula-
tion point of (2.30) (with y,=b,). As remarked we then have ¢P =@ and by definition of
@ P'(by, A)>0 for some ! whenever A4 is open and ¢(4)>0. It is not hard to see from 1.4
that for such A4 there even exists a neighborhood Uy,< 8 of b, such that

inf P'(y, 4) >0.

YeU,
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(Apply 1.4 to f(X,, Vo, -..) =ga(X;) where g,: S—[0, 1] is a sequence of continuous functions
which increases to I, and such that (1) g/™(X;) <1,(X;).) The strong Markov property then
shows that for any x
P,{X,€ A for some t} > P,{X,€ U, for some t} inf P'(y, A)= inf P'(y, 4) >0
veU, yeU,

(by (2.35)). Again the extended Borel-Cantelli Lemmma shows that P{X,€A for somet}=1,
2 €8, thus proving I.1.

The same sort of arguments establish 1.3. To see this, let 7z be a feasible matrix for
which (2.32) holds, and let >0 be given. Again using the uniformity of the convergence in
(2.31) in (2.33) we can find an I=I(x) such that

@) =B <5, |~ b <3 (2:36)
for all €S, and (because ba’=1)
[log| 6| — 1 log o(m)| < g llog| B+ | — (1 + 1) log o()] <§.
Then we can find a neighborhood U < § of b such that for j=1 or (!+1) and €U
llog| 2| -  log ()| < o2 (2.37)

_3—.
If w=m,,..., m, with m,;€ supp (u) then (2.34) again holds for this U and suitable & and
8(U). Thus, also for any ¢=0

P by, T) = f P (bo, dy) P, {Xn €U} > 6(T7) >0

and consequently also PUY=6(U)>0. (2.38)

Moreover, as in (2.34), we deduce from (2.36) and (2.37) that there exist neighborhoods U,
of m,, 1<4<n such that for €U, j=1 or (I+1) one has

P{|X;,,—bx)| <e¢ and |V, —jloge(m)| <e}
2P, {M,, €U, 1<i<n,0<r<I[}>0. (2.39)
(2.38) and (2.39) give us (2.8) and (2.9) if {,=log o(7), y=">b(x), and A="TU, m,=In, my=

(+1)n and 7 =1log g(7). The , which can occur in this way run through the set (2.20) so
that 1.3 has been proved.

(*) In accordance with the definition of f¢ we mean by g},/"(X 1) sup {gp(): d(x, X;) <n~1}.
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Lastly we prove (2.22) and (2.23). The measure £ on F defined by
&(X, €4, uw,€B,0<1<k)

=f @(dx) P,{X,€ 4,, w,€ B,0<i<k}
N
is invariant under the shift. Moreover, by (2.21),

f ug dé = f p(da) B,ug = f pldz) r(ix) fu(dM) |zM [* (M) ") log* |2 M|

< f o(dz) max ) [ yann) | log* |1 M < oo
21,2368 7(22)
This is (2.22); but more importantly it allows us to apply Birkhoff’s ergodic theorem ([8],

p. 18) (after a truncation argument as in [1], p. 116) to give us

1 1 n-1
lim = V,=lim = > u, exists a.e. [&],
n—>0 n n-—>00 n i=0
oV, 1 .
and hence, P.{lim o= lim ;log | XoII,| exists;=1 (2.40)

for almost all z w.r.t. ¢. We do not yet know that (2.40) holds with z= b, but assume

Py, {]jm inf Y < lim sup l;l‘} >0.

n—so0 N n—o0

Then there exist r and & >0 and for each !, an 1, >, with

P, {Z—"‘< r—2e<r+2e< I;"’ for some n, 7, € [I,, lz]} =2¢. (2.41)
1 2

Let f: R x R—[0, 1] be defined by

1 if ¢<r—2¢ and d>r+2¢,

0 otherwise.

f(c’ d) = {
Then by (2.41) and 1.4 there exists an ry=ry(by, &) such that
E’yfe( min Kl’, max L’) > —£+E,,°f( min Z’-‘, max Zl') > (2.42)
Lsng, ° L<ngl n LEngl, n oLgngly M

whenever |y — by| < 7,. Because



222 HARRY KESTEN

fs( min Zl‘, max L‘)=0

Lngly, M Lgngl, N

4 Vv
when min —">r—¢ or max —<<r+g,

Lgngly N L<ngly,

(2.42) yields for each I, and |y —by|< r,

Py{infl/—n<r—s<r+e<sup Yi‘}) lim E'yje( min L‘, max &‘)23,

nx, N n>l I—>e0 Lsngly B Lgngl, N
R 14
Thus, P,ilim inf—" < lim sup—"; > ¢
n—ow N n—o0 n

whenever |y —b,| <r,. Since (see (2.38))

o{y: |y —bo| <re}>0, (2.43)

this contradicts the validity of (2.40) for almost all z. Thus (2.40) holds with z=5b,. Now
assume that lim »—1 ¥V, is not a constant a.e. [P,,]. As before we can then find r, ¢>0 and

I, such that for I, >1,,
P,,u{%<'r—2£ for all ll<n<l2}>2a,
Va
P, - Zr+2¢ forall [ <n<l;>2e.
As above this will imply for all y with |y — by|< r,

P,,{L‘sr—s for all n>l1}>a,
n

P, {L zr+¢g forall n> ll} >e. (2.44)
”n

This implies for any z€S

n—o00

...V
Pz{hm 1nf7”<r—e|X0,...,Xk,uo,...,uk_l,Ml,...,Mk =e

a.e. [P,] on the set where | X, —b,| <r,. From the martingale convergence theorem (see
Cor. 5.22 in [1]) and the fact that (see 1.1 and (2.43))

P, {| X, —by| <r, infinitely often}=1,
it now follows that
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N
Piliminf 2<r—gr=1, z€S.
n

Similarly P, {lim sup %’ =r-— s} =1, z€S8.
These equations again contradict (2.40). Thus for some «,

Pbo{lim&‘=¢x}=l.

n—oQ

Once again this shows for all £ >0 and |y — by| < 7y (by, €)

Py{oz—g<liminf5<limsupﬁ<a+s}>1~e

n—se0 N n—soo N

and a repetition of the argument following (2.44) gives for all €S

P, ia—e<lim infL‘ < lim sup5<ac+£ =1,
n—eo N n—soo N
Since £>0 is arbitrary this finally proves (2.23) except for the identification of «. However,

we already know from the ergodic theorem (see [8], p. 18) that
.V
hm—n— dé= (ugdé= | p(dx) E, uy,

which completes the proof of Proposition 1. : n

Proposition 1 now leads quickly to the next two theorems for positive matrices which
constitute the main results of this section. We precede these theorems with some notation.
Throughout all vectors are d-vectors and matrices of size d xd. For a vector x =(z(¢), ...,
x(d)) we write >0 and x>0 when (i) >0 respectively z(i) >0 for all i€[1, d]. Similarly
for a matrix zz,77>0 and >0 mean 7(s, ) >0 respectively 7(¢, j) >0 for all 1<i,j<d.
If #>0, then we know from the Perron-Frobenius theorem (see [6], vol. 2, p. 53) that there
exists an (algebraically) simple eigenvalue () of  such that g(r) >0, and right and left
eigenvectors a respectively b of & corresponding to g(sr) can be chosen such that >0 and
b>0. p(7) exceeds all other eigenvalues of  in absolute value, and if @ and b are normalized
such that ba’ =3Xb(s) a(¢) =1 then (2.31) holds for all row vectors z. As before we consider
the process (X, Up)n>q Of (2.12), (2.13) and define V, by (2.14). In the present situation it is
somewhat neater to view the N(t), Z(t), W(t) of (2.3)—(2.5) as functions of M, ..., M, with

the initial point as a parameter. Thus we put (%)

(%) The definition (2.45) for N, (#) is the most natural one in the framework of Proposition 1. One
should note, however, that it is the first time |zII, | exceeds ¢!, rather than ¢. This is why there is a
factor ¢”1? in (2.62), rather than £! as in (2.63).
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N, (t)=min {n>0:log|aM, ... M,,| >t} =min {n>0: |xM, ... M,| >ef}, (2.45)
W.(t)=log|«M, ... M N,<t>| —t, (2.46)
Z,(t)=(xM; ... My )" (2.47)

In the next theorem we use P without subscript for the measure governing the sequence
{M,}n51, ie., the product measure I1{°u; E is expectation w.r.t. P. These should not be
confused with the P, and E, of (2.17).

TrEOREM 2. Let M,, M,, ... be a sequence of independent d x d matrices, each distrib-
uted according to the same probability measure u. Assume that

P{M,>0}=1, (2.48)
P{M, has a zero row}=0, (2.49)
Blog|| M| <o, (2.50)
and that the group generated by
{log o(®): w=m, ... m, for some n and m,€ supp (u), and x>0} (2.51)

18 dense in R. Then there exists a constant o« << + oo such that a.e. [P]
o1 1
lim —log | M, ... M,||= lim =log|aM,... M,|=«
n—oo T n—sco N

for all z€8, ={x=(2(1), ..., 2(d)): |x] =1, z>0}.
If >0 then for every bounded and jointly continuous function g: 8, x (0, ©)—~>R

lim Eg(Z,(t), W_(1)) exists for all €8, and is independent of . (2.52)

n—>o0

Also if a>0 there exists a probability measure ¢ on S, such that for every jointly continuous
function g: 8, x R~>R which satisfies

+o0

> sup {|g(y, t)|: y€8., I<t<I+1}< oo (2.53)
Im—c0
one has lim E 3 {g((=I1,)", t~log |11, |)}
t—>o0 n=0

+00
=a_1f (p(dy)J gy, s)ds, t€ES,. (2.54)
S ~o0
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In particular for x€8,,h>1,
lim B #{n: tSIle...M,,|<th}=i]ogh. (2.55)
{~>o0

Proof: We merely check that the conditions of Proposition 1 hold and that (2.53) implies
direct Riemann integrability of g. The theorem is then immediate from Proposition 1 and
Theorem 1. For S we take S, and in this theorem %=0, r(z)=1 for all z€S,. Clearly
xM(j) =20 when 2€8, and M(l, j) >0 for 1 <1 <d, and even 2 (j) >0 for some j when no row
of M is zero. Thus (2.18) is immediate from (2.48), (2.49). As we pointed out already, if
7>0, then we may take a right eigenvector @’ corresponding to g(z) such that a’>0. For

any such a’,
d

min xa' > min min a (3) D, 2(j) >0
zeS ¢ zeS, i i=1

so that the set (2.51) is contained in (2.20) and the group generated by (2.20) is indeed

dense in R. (2.21) reduces to (2.50) and finally (2.19) is proved as follows: Firstly, for any
2€8, and matrix 7 >0

d
|2m|=d ™% 3 an(i) > d~t min x(l) 3 n(j, 5) > d~ ¥ min z(0) [|n]].
i=1 ! 7. !

Thus (2.19) holds for any 23>0 with C =d-* min z(l). Now, since (2.51) generates a dense
group in R there is an n, such that

P{I1,,>0}>0. (2.56)
Thus T=min {n>ny M, _p 1My pers ... M,>0}

is finite with probability 1. Moreover, 2I1,>0 for all €S, when T <oo, Thus, for any
z€8, and n=>T

| 2T, | = |(@M; ... My) Mrsr... M)

>d'*mlin @My ... Mp) () (| Mrer... M,
>d 4 (| M. M) min @M ... M) () (ITL-
Since also (by (2.18)) for any fixed €8,
P {min |21, | (IT,[)™* >0} =1,

(2.19) holds for any 2 €S,. Thus all hypotheses of Proposition 1 have been checked. (2.52)
15—-732907 Acta mathematica 131. Imprimé le 11 Décembre 1973
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now follows from Theorem 1. Lastly we deduce the direct Riemann integrability of g from
(2.53). We already know from Proposition 1 that for each €8,

P{ lim %loglxﬂn|=a}=l. (2.57)

Since we assumed « >0 we can find a &, such that for the coordinate vectors |
e=1{0,0,...,1,0,...,0)€8,,1<i<d,
(the non zero component of ¢, is fhe i*® one)
P{log|e,I1,,| > mk;* +3logd for all m>k, and 1<i<d}>}.

Also for x€8,
|I1,,| > max z(l) min |e,I1,,| >d~* min |¢,I1,,|. (2.58)
! i i

We conclude from this that Cy is all of S, as soon as k >k, (see (2.6) for the definition of C};).
Thus (2.53) implies (2.7) and the ordinary Riemann integrability of g(x, - ) on finite intervals
for fixed @ is implied by the continuity of ¢g. Again (2.54) follows from Theorem 1. (2.55) is
obtained if one takes g(y, s)=1 for —log 2 <s<0 and 0 otherwise.(*)

We add one comment as to why
.1 .1
lim —1log | M;... M,||= lim —log |eM;...M,|, z€S,.
Clearly the left hand side is no less than the right hand side in this equation. On the other
hand, ‘
|My... M,|| <d*max|e, M,... M,|
jt

which together with (2.57) and (2.58) yields the desired equality. ' n

TrEOREM 3. Let M, M,, ... be a sequence of independent d x d matrices, each distrib-
uted according to the same probability measure u which is such that the group generated by
(2.51) is dense in R. Assume also that (2.48)—(2.50) are satisfied, but this time

fim %log 1, ... M, = lim  log |2, ... M, | =< 0
n—co n—>o00

a.e. [P]. Assume in addition that there exists a »y >0 for which

(1) This g is not continuous so that strictly speaking this coice is not allowed for g in (2.54). However,
following a common technique, we apply (2.54) to increasing and decreasing sequences of continuous
functions which converge to the present g.
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E{min (3 M, (i, )} > d*", (2.59)
i 7

and E||M,||* log™ || M,]| < oo. (2.60)

Then there exists a x,€(0, %] and a continuous, strictly positive function r on 8. such that

r(x) = f‘u(dM) |M [ r((xM)") = E|xM, | r((xM,)"), z€S,. (2.61)

In addition, for any bounded and jointly continuous function g: S, x (0, ©)—>R there is a
finite constant K = K(g) such that for t->co(1) and £ €S, fized

e B{Q(Z,(8), W,(1)); N (t)< oo}~ K(g)r(»). (2.62

When g(z, s)>0 for all (2, 8)€ES, xR then K(g) >0 and in particular there extsts a 0 <K, < oo
such that for all x€8, (2)

t* P{max |xM,... M,| >t} K r(x), t—>oco. (2.63)
n
Remark 2. As the proof will show it suffices to take e~1*g(x, ) bounded, instead of
g(x, t) itself.

Proof: Again this theorem will follow easily from Proposition 1 and Theorem 1 once we
have found the desired », and function r. This, however, is complicated and will be done

in a number of separate steps.
Step 1. Define the linear operator T', on C, the space of continuous functionson S, , by
T.f(x)=E|xM,|* f((xM,)~), [€C,z€S,.

Its adjoint T7 is a linear operator on the signed measures on S, and is determined by
f T5v(de) {(z) = fv(dx) T, fix) = fv(dx) BlaM, |[*f((xMy)")-

We show that for 0<»x<x, there exists a probability measure », on S, and a number
Qx> such that
0< Bld™* min (3 M, (i, §))J* < 0, < B || M, ]|* (2.64)
i 7

and Trvy=0xVx (2.65)

The existence of v, follows from Theorem 3.3 of [14] or Theorem 7 of [10]. We repeat the
short proof, which will at the same time give us the estimate (2.64). We already showed in
Theorem 2 that (2.48) and (2.49) imply (2.18). Moreover for any matrix m, the maps z—>am

(1) See footnote p. 223.
(?) E. Arjas, Adv. Appl. Prob. £ (1973) 258-270 can be used to obtain an expression for the
Laplace transform of max |xM1 M,,I but it does not seem easy to obtain (2.63) from this.
n
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and z—>(¥m)” are continuous at each point where xm=0. Thus z->(xM,)” is continuous
with probability one, and from this one easily sees that 7', takes C into C. As a matter of

fact, if we put
Il =sup|f(=)], feC,
TES 4.

then even 7.l = sup |T.fll <sup E|=M,|*< E | M, ||*
lIrfl=1 zeSy
feC
SEQ+||M,y|*), 0<x<n,

so that 7', is a continuous operator on C. It is also a positive operator, and if we put e(x)=1
on 8, then by (2.18) T',e(x)>0 for all x€S,. It follows that

To= [fT:v(dx)] - TFy = [fv (dx) T e (x)] - Ty

defines a continuous map from the set C of probability measures on 8 into itself, when C

is given the weak topology, i.e., v, converges to » if and only if

f Ha) v (d) > f H) v(de)
sp St

for every f€ C. C is a compact convex set (see [14], [3], Sect. V.4 or [16], Sect. I1.6) and by
the Schauder-Tychonoff fixed point theorem ([3], Theorem V.10.5), 7', has a fixed point
v, in C. This proves (2.65) with

0x= fv,, (dz) T'we(x) = fv,, (dz) E |z M, |".

Clearly k min B |aM, |* < g, < E || M,||*.

zeSy
This proves (2.64) since with probability 1 (see (2.49))
|22, >d_*;xM1(j)>d"*le(l) m%n;Ml(i, j)=d? miin;Ml(i, i) >0.
We note that (2.64) and (2.59) imply
g0=1 o0,=1 (2.66)
Step 2. With p=p, as in Step 1, define
r(z, n)=r,(x,n)=p0; "B |l [*=0x " The(x), n=>0,z€S,.

Let ny and 70 be such that



RANDOM DIFFERENCE EQUATIONS AND RENEWAL THEORY 229
p=P{Il, (5,5)=7 forall 1<4,j<d}>0; (2.67)
such an n, and 7 exist because the set (2.51) is not empty. Then for all z,y€S,,n>n,
0 pd P <r (x, n) < plp i d¥ip* (2.68)
and for x,y€8,,n>0,

|7e(@, 1) — 1y, 2)| < (e + 1) gRop~ d*2p % |2 — y[min 9, (2.69)

To prove these estimates observe first that
Tif(2) = E{|«IL, [*{(=I1,)")}, 2€8,,[€C (2.70)

(use induction on %) so that

0z = f((T,T)”vn) (dz) = J.”n (d2) E |11, |*

>min E{|2I1,)%; I1,,(5,) =7 forall 1<i,j<d}. (2.71)

2e8.4
But if I, (7)) =7 forall 1<4,5<d,

then for n>n,
#1027 3 20, ) Mppes ... M6, )

> d-*r; Myir... M, (5, 5)=d ¥ || M, .y... M, (2.72)
¥
By means of the independence of II,, and M, .,... M, and (2.67) we conclude from

(2.71) and (2.72) that
0i=pd P E|| M, sy ... M,|* (2.73)

or ot = pd R E||IL,*, n=0. (2.74)
This implies the right hand inequality in (2.68), because

E |1, |*< E||IL,]|*
If 0<% <1 (2.69) follows from the inequality

lle|*— |B]*] <|a—B|*, o« BER,0<x<1,
which implies
| BloTL, [~ BlyIl, |*| <E|(w—9) |+ < |2~y |*E| L
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Similarly, for 1 < <x; (2.69) follows from
llocl = [B]| <] & — B max (|, |B]+).
As for the left hand inequality in (2.68), we have as in (2.71)-(2.73)
E |21, |*>pd—*2r* B||1,_,,||*
and clearly (see (2.71)

ol = gl f W(d2) B |21, [ < g2 B || T, o[ 2.75)

Step 3. There exists a sequence n, 1 °© such that

nl

1) Ezl_iglo e ].jgo r.(x, §) exists, x€S,. (2.76)

r,(+) also satisfies (2.68) and (2.69) (with r,(x, n) replaced by r,(z)) as well as
Q”T”(Z) =T,,r,,(x) =E‘xM1|”rx((xM1)N)' (277)

The existence of the limit in (2.76) for suitable », follows from the Arzela-Ascoli theorem
([3], Theorem 1V.6.7) because the family of functions

n

x> r(x,7), n=0,

n+155%

on 8, is equicontinuous (see (2.69)). In fact, we see that the convergence in (2.76) is uniform

because 8, is compact; consequently

n
T,o=T,11 ‘ij‘e)
<" * (122 n+1 ;go Ox
g i-1mj+1
i Il e = 0,1
-Qu]ili.:(l) n,+1,~§00 ile=0urs

which is just (2.77). Clearly r,(-) also satisfies (2.68) and (2.69).

Step 4. Here we find our desired 7(-) by showing that g, =1 for some 5, €(0, x%]. 7.,
then has all the desired properties. More precisely, we show that log g, is a convex function
of % on [0, %,], which is continuous on (0, »,] and such that log g, <0 on (0, é,) for some
0, >0. In view of (2.66) this will be more than sufficient.

We start with the formula

1
log ¢, = lim —log & ||IL,,||*
n—so0 N
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which is immediate from (2.74) and (2.75). But one easily checks (by differentiating twice
and appealing to Schwarz’s inequality) that n—log E||IL,||* is a convex function of » on
[0, 4], and hence, so is its limit log g,. This already shows that log g, is a continuous funec-
tion of % on (0, %,) and that there can only be a discontinuity at #q if limu4x, 0, <@x- TO

show that this is impossible we use (2.73). For any £ >0 we can first pick an n >n,such that

{pd—“olz runE ” Hﬂ—no"uo}lln 2 g"o (1 - 8)
and then x so close to x, that for this n

pd P B, _,|[* = (1 — &) pd 224 E |1, _, ||

For such a » one has g, > g,,(1 —¢)® so that g, is indeed continuous at .

Lastly, we observe that by Theorem 2
.1
P{hm = log || TT,|| =oc}= 1,

n—oo N

and that » ! log*||I1,| is uniformly integrable. Indeed,

1. 12 +

0<—log*||IL,|| < 2, log*|| 2|
=1
while by the L, form of the strong law of large numbers (see [8], p. 22)

1 n
E;Ellog‘L"l]{[,"—Elog+ [l >0 (n— o0).

Thus, by Fatou’s lemma

1
lim £ ~log ||| <«<0.
n»o N
Now fix n, such that E log ||II,,|| < 0. Another applictaion of Fatou’s lemma shows that

x__
M%L_}gElog I, <o0.

d
iy > % =X
[d% I, ] lm

Since E ||I1,,][°=1 this shows that for some 6; >0 and 0 < % <4d;,

B||,J*<1 and log gu=lim - log B|Il,s "< - log B|IL, <0 (2.79)
l—>o00 1 1

as desired.
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Step 5. In this step we complete the proof of Theorem 3 by showing that Proposition 1
applies with P, defined by (2.16) and (2.17) with », for » and r,, for r. We already showed
that (2.18) holds and that (2.20) generates a dense group in R in the proof of Theorem 2,
and (2.21) is implied by (2.60). r,,(-) is continuous and bounded away from 0 and < and
satisfies (2.15) by step 3. Finally the proof of (2.19) given in Theorem 2 still goes through,
provided we can show

P{T<oo}=1. (2.80)

(7 is defined just below (2.56).) For this purpose we introduce the events
E={My,, .. My, (i,75)=t forall 1<i,j<d},
for the 7 of (2.67). Let €S8, and m,>0 positive matrices, and use the abbreviation
r(x, my, My)=r,((@mq ... My oo Mippn, My nerq oo M) ™)

We claim that for k<n —n,

J‘ fy(de+1) eoe @M ) (@, myy M) |2my oy My oo Mo My gy -« M |
By

= pd 2y {B||I1,,|[*} ! min r,, (y) {max r,, (z)} "
yeS, zeSy
X f .. f,u(dM,ﬁl) coe (@M1 y) (@, My, ML) |2omy ooy My Mg o g [ (2.81)

To see this, observe that the integrand in the right hand side of (2.81) is at most

mg,x Ty, () l-’”ml cee mklm ”-Mk+1 cee Mk+nn”"1 ”mk+no+1 vee mn“m’
RE€ES

whereas the integrand on the left hand side is at least

m;n T () {d 2 amy o My oo Migsng My - M (81
yesS i

> min r,, (y) d"*/27" {El:xml e my (l)jzi My pot1 - My (7, 1) P2

veSy

>min r,, (y)d 72 |2my ..o 1 [ || Mg gy - .- ][
vesy

Thus (2.81) follows from P{E,}=p (see (2.67)). Now put

g=1-pd 2 {E||IL,,[*} min r,,(y) { max r, ()}
yeSt zeSy

Then, one easily sees from (2.17) and (2.81) that
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P{E, does not occur |M;, i<k and k+mny<¢<n}<q. Consequently
P{T>Ing} <P{E;, doesnotoccur for any 0<j<l}<¢,

which implies (2.80).

Thus Proposition 1 applies and we shall be able to use Theorem 1 once we show that
the « in (2.23) is strictly positive, or that for some z lim n~1V,>0 a.e. [P;]. But by (2.79)
there exist some 0 <d <1, >0 and constant K, < o for which

B||IL,J° < {E || IL, |23 B|| Tagan s [|° < Koo 73",
Consequently, for any €8

P{lzIL,| = e "} < P{IL |} = e "} < Kpe 2" (2.82)
and also

P {|oIL,| <er "}
- B{JaTL, [ 7, (@11,)7); | 211, | < 75 "}

rﬂx (x)

< max r,, (y) [e™"" + E{|2II,|*; e ?" <|all,| < e "]
r"; (x) Yy

< max 7, (y) [e 7"+ " K, e 27"].
y

1
rxx (x )

It now follows from the Borel-Cantelli lemma that V, =log |#II,,| > ny»;* eventually, a.e.
[P,], so that 1.2 holds as well. We may now apply (2.10) to the function

g* (@, 8) =1y, (x)] " e ™ g(a, 1),
which is bounded and continuous in (z,#). This yields the existence of

K(g)= lim E{[r(Z@)]) e " g(Z(t), W)}

for some K(g), independent of z. Because

EA[r(Z@)] e VO (Z(2), W(t)}

1 < ~ ~“Ww—-1,-x F28 M
=Fx_),ZOE{IxH”I r((#I1,)") (r((2]],) 7))~ g xalios =Tl =0
Xg((xH1;)~? loglxnnl_’t):Nz(t):n}
e%ll

iy Flo 20, W.0); N, ()< o},
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this proves (2.62). (2.63) is obtained by specializing g to g(z, t)=1 (and replacing ¢ by
log t). The explicit formula (see (2.10))
K(g)= ac‘lftp(dy)fs P {Xyy€dz,VyEdA} g*(z, 8) ds
x{(0,00)

0<sgA

immediately shows K(g) >0 whenever g(z, s) >0 for all (z, s), so that the proof is complete. W

ExTENSION OF THEOREM 3. Assume that the hypotheses of Theorem 3 are satisfied
and that g: S;_; X {0, =)—>R is bounded and (jointly) continuous. Then for each x€8,_,

Lim et B{g(Z,(t), W, (£)); N ()< oo} exists and is finite. (2.83)
t—c0

(Note that the definitions (2.45)-(2.47) for N,, W, and Z, need no change for x€8, ,/8,.
Of course (2.83) is already asserted by Theorem 3 if 2€8S,.)

We shall not prove this extension. It is proved by a reduction of (2.83) for general
2€8,_; to (2.62) for €S8, This is done by means of a generalization of Lemma 3 in [5].
This lemma states that the directions of the rows of II, for large n differ very little (with
high probability). If all rows of IT, had exactly the same direction for some »,, then II,,
would be of the form II, (¢, j) =a{s) b(j) for some d-vectors @ >0, b >0. But then also, for
any €8, ; and n=>n,,

xll, = (;x(l) a) 6|6 M, y... M,

Thus, after time n, the sequence «I1,, is a constant multiple of 6 M,,_,, ... M. If the factor
Sz o) 1] (2.84)

is zero, then |2II,| will not exceed large values of ¢ at all. If, however, (2.84) is not zero,

then given n,, a, b, the conditional probability of max |«II,| >exp ¢ equals for large ¢
P{max|B[1,| > | Zz@a(l)| ~*|b] 7},

whose asymptotic behavior we know from (2.63), because & €83,. Similarly the conditional
expectation of g(Z(t), W,(t)) over N,(t) <o would reduce to

E{g(+Z;(8*), Wi(t*); Ny (t*) < oo}, (2.85)
where t*=t—log (| Zz() a(l)| b)),

and the sign in front of Z; (t*) in (2.85) is the sign of (2.84). The burden of the proof is to
estimate the errors which arise because the rows of II,, only have approximately the same

direction for large n,, rather than exactly the same direction.
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3. Solutions of random difference equations; positive coefficients

In this section we study the limit distribution of the solution Y, of the difference

equation
Y, =M, Y, ,+Q,, n=>1, (3.1)

where the M, are positive d xd matrices and the Y, and @, are d dimensional column
vectors. For given Y, the solution of (3.1) is of course

Yi=Qut MuQua+ .. +(My ... M) @+ (M ... My) X,

We assume throughout that the {M,, @,},>; are independent, identically distributed.
In this situation Y, — (M, ... M;) Y, has the same distribution as
RnE Z Ml"' .Mk_le

k=1

(the term corresponding to k=1 is Q,). If

%log |,... M,}|>a<0 w.pl,

and E|Q,[?"< oo for some y>0,
then P{|Q,| <e *" eventually} =1
and R, converges w.p.l to R=>M,..M; 0,

¥<1

Therefore, under the conditions of the theorem below the distribution of ¥, in (3.1) con
verges to that of R for every fixed Y, The burden of Theorem 4 is that if the M, are
positive matrices, then this limit distribution is in the domain of attraction of a stable law.

TarorEM 4. Let {M,, Q,},>, be independent identically distributed, and assume that
the distribution p of M, satisfies the conditions of Theorem 3 (including the condition o <0).
It in addition

P{Q,=0}<1, (3.2)
E|@y|<co, (3.3)
and(?)
P{Q,>0}=1, (3.4)
then for each row vector x€8,_;
lim ¢ P{xR >t} exists and is finite. (3.5)

t—o0

(*) For column vectors g, the notation ¢ > 0 again means that all components of ¢ are positive.
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There exists a 0 <Ky < oo such that the limit in (3.5) equals Kyr(x) for all €8.. In particular,
the limit in (3.5) 4s strictly positive for x€8S..

CoRrROLLARY. If the conditions of Theorem 4 hold with », =2, then R is tn the domain of
normal attraction of a (d-dimensional) stable law of index min (3¢, 2). If %, =2 and Ry, R, ...
are independent random vectors each with the distribution of R, then

1

. R,—ER
anogng( ' )

converges in law to a normal distribution with zero mean on R°.

Remark 3. Even though we insist here on positive M, (see (2.48)), it is not necessary to
have @, positive. (3.5) and the corollary remain valid if (3.4) is replaced by the condition
that there exist possible points (m, ¢') and (m, ¢") for (M,, @,), and m;€Esupp y, i<n,,
such that w=m, ... m,, >0 and such that b(z) (¢’ —q") + 0, where b(x) is the left eigenvector
of ;v corresponding to its Frobenius eigenvalue o(z). In this situation the limit in (3.5) will

still be strictly positive for some x€8,_,, but not necessarily for all z€8,.

Proof: Again we shall break up the proof into a number of steps. The first 5 steps show
in essence that xR >¢ for large ¢ occurs only if |«M, ... M,|>dt for some n and suitable
small 4 >0. This will allow us to apply Theorem 3 in step 6. We repeat some of the most

frequent conventions from section 2.
m,=M,..M,,
Z=|x|-'z for O+=z€RY,

eo=(d"%, ...,d~?) (note ¢,€S.).

Note that for any column vector ¢ with components ¢(s) >0

d H
Dleot| = Sl >l - | 5, 20} > ena.

In addition we introduce
00

R = 3 an+1...-Mk—1Qk

k=n+
(the term corresponding to k=n+1 is @,,,). We often use the relation
R=R,+II,R™ (3.6)

and the fact that R" is independent of (R,, II,) and has the same distribution as R itself.
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Step 1. There exists a K,>0 such that
P{|R|>t}=K,t™™, t>1. (3.7

This will be immediate from Theorem 3 because all the @, and M, are positive {see (3.4)
and (2.48)). Moreover, for suitable v>0 and n, (2.67) holds. whereas for some 7, >0 and
iy by (3.2),

P{Q, (%) 27,} >0.

If |eIl,| >(vry) "t and M, ... M, (3, §) =7 for all 4, j and @, pn,41(%9) =71, then

IRI > IeORI > 'eonnMn+1 Mn+nan+no+1| > IeoHnIn1>t
so that
P{|R| >t} >P {there is an n with |e,II,| > (r7,)¢,

My oo My (3, 7) 27 forall 4, j, Qnyngia(to) >'51}

> P{max |e,I1,,| > (r71) 7't} p P{Q, () > 7.} > K, t ™ (3.8)

for some K, >0 (see (2.63) and (2.67)).

Step 2. For some K ;>0 one has
P{|R|>2t}>K,P{|R| >1}. (3.9)
This is almost immediate from (3.7) and the positivity of R,, because, essentially as in

(3.8)
P{|R| >2t}>P{e,1,,,, R"™>2t for some n}

>P {for some n|e,l,| >2v"Y, M, ... M, (3, §) =7
for all ¢, j, | R™™| >t} > K, P{| R| >t}
with K;>0.
Step 3. Define the ladder indices &, by
&=0, &,,=min{n>§&; "Mg‘+1 o M| >13.
We take £, ;=0o0, when &,=c0 or when no n exist which satisfies the condition in the
definition of &,,,, and we put
{=max {i: £, <oo},
Then, for every £ >0 there exists a k=k(¢) such that for all z€S,_; and t>0
P{{>k and |«xR,|>&t forsome n<& ,}<eP{|R|>t}. (3.10)
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To prove (3.10), let
T(x,s)=min {n>1: |xR,| >s} (=oc if no such n exists). (3.11)

Then the left hand side of (3.10) is at most

0

2. | Pia<T(x, ety <& =1} P{&< 0 |& =1} (3.12)

i1=1

But P{§,, . < oo|& =1} =P{there are at least k finite ladder
indices in the sequence | M,,, ... M,||, n>1}

<P{||l1,]|>1 for some n>k},
and consequently the left hand side of (3.10) is at most
P{T(x, gty <oo} P{||I1,]| >1 for some n >k}
<P{|R,| >¢t for some n}P{||Il,|>1 for some n>k}. (3.13)

Since | R| > |R,| the first factor in the right hand side of (3.13) is at most
RLTY
P{|R|>et}<(Kj;) “e2 P{|R|>t} (see (3.9))
and the second factor can be made arbitrarily small by taking k large, because
1
~log |I,]|>«<0 wp.l (3.14)

(see Theorems 2 and 3). (3.10) is immediate from this.

Step 4. For every ¢>0 there exists a Jy(e) >0 and #y(¢) < oo such that for all x€S,_;,
8<8y(e), t>to(e)

P {there exists an n with |zR,| >¢ but max|2Il,| <0t} <eP{|R|>t}. (3.15)
Ign-1
To prove (3.15) we note first that by (3.10)

P{C?Ic and |zR,| >% for some n<§;_k}<§P{|R| >t}
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for a suitable £ =k(e). Therefore it suffices to prove that for any fixed k and 6, =6(¢) >0
sufficiently small and #,(¢) sufficiently large

P{t<k, Tz, t)< oo}<§P{|R] S8}, t214(e), (3.16)
t
as well as P{T(x, )< oo, max |2Il,|<é,t, (>k, max |:cRn|<-2—}
I<T(z,t) n<p g
<§P{|R|>t}, £>1,(e). (3.17)

Let us fix # and k and abbreviate & _, to merely & for the remainder of this step. Then, when

the event between braces in the left hand side of (3.17) occurs one has

T(x,t)>¢ (see (3.11))
and hence necessarily

| o

|1‘H§| <61 t, I:Z:Rgl <

2’

T(z, 1) PR

ng z Mg+1 M1_1Q1= |xRT(“, e Z.Rgl >t—§=§ (318)
1=+1
In turn, (3.18) is only possible if
il t
|2Tle| | RE|=|2Ilg|sup| 5 Mgy,... M, 1@, g (3.19)
n>E|1=£+1
Thus, the left hand side of (3.17) is bounded by

P{0<|xIl;| <é;¢ and (3.19) occurs}, (3.20)

and we shall show that (3.20) is at most 3-¢ P{| R| >t}. The same method which estimates
(3.20) will handle (3.16) (actually (3.16) follows from (3.22)) so that we concentrate on
(3.20). We break up (3.20) according to the value, ¢ say, of {—%. This shows that (3.20)
equals

=]

2 f P {£,< oo, there are exactly k ladder indices in the sequence
i=0 J0<sgoyt

t
[Meyy... M, |, n>E, |2l €ds and s|RE| > 5}

i

M8

0

f P{£,<oo,|ng|€ds}Ps|R|>£,Z_,‘=k}. (3.21)
0<sgdit 1 2
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To estimate the sum of the measures appearing in the right hand side of (3.21) we pick

n, such that
2, =P{IIL]<1 forall n>ny}>0;

this is possible by virtue of (3.14). Clearly, if ;< oobut

Mgy .. Mgin]| <1 forall n>m,

then &;,,,+.7=900 or {<i+mn, Therefore
-]
£ 3 PAi< o0, o1 >3}

P{&< oo, || Mgiy... Mgynll< 1 for n>mny, |2l | > s}

M8

i

0

M8

<
i

<(ny+1) > P{&=7, max |2II,|> s} = (ny+ 1) P{max |«II,| >s}
i=0 n n

P{§ < o0, <i+mny max |xIl,|>s}
0 n

< (ny+1) P{max|e I, |>d " ts} < Kgs™™
for some Kg¢< oo, independent of = (see (2.63)). Therefore, if we replace

P{s|R|>%, ¢=k}

by f P{|R|€du, L=k}
2su>t
and integrate over w first in the right hand side of (3.21) we get at most

f P{|R|€du, .=k} 3 P{£,< oo, |2Il¢|>(2u) 7't}
u>@8y~1 i=0
<pzlKe2%t = E{|R[*;{=F, |R|>(26,) 7"}
This bound for the left hand side of (3.17) can be made small w.r.t. £ and hence w.r.t.
P{|R| >t} (see (8.7)) by choosing &, small, provided
E{|R|*; L=k} < oo. (3.22)

The last task is therefore to prove (3.22) for any finite k. Now, on {{ =k}, &x41= oo and
thus

ok
|B|< > IHl_lQ;KgoIIHg,.IIEKgE [Mgr ... Mool Q-

1< <&j+1
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It follows that
k

B{BP L=k} <(b+ 1 3 B g B0, .. Mol @ IR<&2y (3.23)
Furthermore, :
B Mg f=<{ n;in r(y)} ¥ E e I g [ 7((eg Tg)"),

yeSg—y
and by (2.61) the sequence
|eo Hnlmr((eo Hll)~)’ n= O’

is a positive martingale, so that for any stopping time N (and in particular for N = &)

Eleo sz|"l (e I1y)7) < lim E|e° Hinin.m I“‘f((eo Minnm) )= 7(ey)

(compare [15], V.T28 and its proof). Thus
B[ < o

The expectation of the sum over ! in the right hand side of (3.23) has to be treated dif-
ferently for %, >1 and x, <1. We only do the case »,>1 in detail; when x,< 1 the esti-

mates are similar (but somewhat simpler) and based on the inequality

la+bpe<|afe+|bf, x <.
For x, >1,

EE ol @ IR < 131 < STE{|TL -yl | @] I1E < &)1V
=2[E|Q 1™ (BT 1< 1™ (3.24)
By definition of &, ||II,_,|| <1 for I<£, so that for the y and K, of (2.82)
E{|I,|; 1< &} <e 7t 41 Ple vV I, || <1}
e vl K, e 2701, (3.25)

Since y >0 in (2.82) and E|Q|* < co (see (3.3)) the expression in (3.24) is finite. This proves
(3.22) and completes step 4.

Step 5. As in (2.45) let
N (s) =min {n >0: log | «II,| >s}.

Then for every £>0 there exists a §,=d,(¢)>0 and t,(¢) <o such that for all 2€S,_,,
0<8<8,, t=>1,(e)
16 — 732907 Acta mathematica 131. Imprimé le 11 Décembre 1973
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P{N =N,(log (6t)) <ocand zI1y R¥>#(1+¢)} — eP {|R| >t} < P{xR>1}

<eP{|R| >t} + P{N=N,(log (3t)) <oo and I, R¥>H1—¢)}. (3.26)

We shall only prove the second inequality in (3.26), leaving the first one to the reader.
By step 4, if >0, de=2 <dy(n), et =1y(7), then

P {T(x, et) <N, (log (3))}
< P{there exists an n with [xR,| >& but max |2II,| <de(et)}
lgn-1

<nP{|R| >et}. (3.27)
Now choose 7 =7(¢) so small that
nP{|R|>et}<eP{|R| >}

(this can be done by (3.9)) and take J,=&dy(n). Then, since R>¢ implies Tz, &) <
T(x, t) < oo for ¢ <1, we have for 6 <d,, t =£14,(n)

P{zR>t}=P {zR>t, T(x, &)< oo}
<P{N, (log (6t)) <T(x, et) < oo, R>t} +eP {| R| >t}. (3.28)

But when N =N, (log (6¢)) < T'(z, et) and R >t then

|xBy|<et and xR=2Ry+allyRY>1,
hence
2II,R¥>(1—¢) t.

Thus the first term in the right hand side of (3.28) is at most
P{N=N,(log (6f)) <oo and =2[IyR">(1-¢)t}
which, together with (3.28) proves the second inequality of (3.26).

Step 6. We now complete the proof of Theorem 4, by an application of Theorem 3.
Firstly, by (3.26) and (3.9)

logd
P{|R|>dt} <P{e,R >t} <} K 262" P{|R| >t}

+ P{N,,(log (85t)) < o} <} P{| R| >d*t} + P{max | e, IL,,| > d;¢}

for some d3 >0. It now follows from (2.63) and (3.7) that for suitable K;< oo
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K, i< P{|R| >t} <Kt ™. (3.29)

Next fix ¢>0 and let % be a positive continuous function with support in {1 —¢, 1+¢£]
and such that

f MA)ydA=1.
Then clearly fh(l) dAP{zR>A(1—¢) 't} <P{zR >t}

< J'h(l) dAP{xR>A(1+¢&) '8} (3.30)
and we now use (3.26) and (3.29) to estimate the extreme members of (3.30). E.g. to obtain
an upper bound for sufficiently large ¢ we apply (3.26) with ¢ replaced by A(1 +¢)~! tand § by

A7Y(1+¢)d,, where (1 — )™ (1+&)8,<ds(e).
This yields the bound

P{aR >} <sfk(l) dAP{|R| > 11+ )-8}
+ fh(l)d/lP{N= N, (log 8,¢)< oo, allyRY > A1 —¢) (1 +¢) 7t} (3.31)
‘The first term in the right hand side of (3.31) is at most
eP{R|>(1—¢e)(1+e) 't} <ell+ey*(1—g) Kyt (see (3.29)).
Now in the notation of section 2 (see (2.46), (2.47))
log |«IIy| —log (8,¢) = W (log d,¢)
and (xI1y)" = Z,(log (d,1)).
The second term in the right hand side of (3.31) can therefore be written as
fh(l) dAP{N =N,(log 8,8) < oo, (zI1y) " R¥ >16:*(1 — &) (1 + &)~ 8¢ | y|"}
= fh(/l) dAE{P{Z, (log 6,t) R* > A6; (1 —‘s) (1+¢&) texp —‘W, (ibg 6,1)}; N (log é,t)< oo}
= E{g(Z,(log 8,t), W,(log ,¢t); N, (log §,¢)< ==}, (3.32)

‘where R* has the distribution of R, but is independent of all {},,Q,}%>1,4nd

9(y,8) = f MA)dAP{yR>25;" (1—¢) (1 + &) 'e°}.
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Since 4 is continuous with compact support it is not hard to see that g(-,+) is bounded

and continuous on 8;_, X R. Therefore by Theorem 3 and its extension

lim ¢4 B{g(Z, (s), W,(5); N, () < oo} = K(x,9) (3.33)

for some finite K(x, g), x€S,_,. It follows from the above estimates that

lim sup # P{xR >t} <&(l + &) (1 — &) K+ 8;" K(z, g). (3.35)
i—o0

In exactly the same way, using the left hand rather than right hand inequalities in (3.30)
and (3.26) (now replace ¢ by (1 —&)-1¢ and 6 by A-1(1 +¢)%(1 —&)~14,) in (3.26)), we obtain

: — 21
lim inf ¢ P{xR >t} > — ¢ Ky + 6;™ (i—_}_i) K(z, g). (3.36)

t—>00

Since the bounds in (3.35) and (3.36) can be brought arbitrarily close together, (3.5) follows.
Note, however, that it is not meaningful to say the limit equals 6; K(z, g), because h(-)
and g(-) depend on &. Still, for fixed £ and A(-), we know from (2.62) that

K(z,9)=K(g)r(x) for =z€8,

from which we easily see that the limit in (3.5) is K;r(z) for €S, , and some K3< oo, K3>0
because of (3.7) and
P{e, R>t}>P{| R| =d*t}. |

The Corollary is immediate, because if %, >2 then E|R|2<co, and if %, <1 and R,, R,, ...
are independent copies of R, then (see [4], Ch. XVIL5) '
-1 n
n ™ zJ R,
1

converges in law to a (one-dimensional) stable distribution of index x, for each 2€8,_,.
For some z the limit law may be degenerate and concentrated on 0 only, but in any case,
for any y€R®

lim E exp (in_"l_lyZRj) = lim E exp (ilyln"”l_ngRj)
n-—>00 1 n—>00 1
exists and is of the form
exp (— |y O(#)) (337)

for a suitable function ® on S,_,. Thus the limit of the d-dimensional characteristic func-

tion of
_u_l n
n " 3R,
1
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exists and is clearly stable; (3.37) is even strictly stable in the terminology of [4], Def.
VI.1.1. The same argument applies to >, (R, — ER,) for 1 <x, <2, but for »; =1 we need
a special trick. Let R3, R, ... be independent, and each with the distribution

P{RI€A}=}[P{REA}+P{— REA}].
Then Ee¥ "= Re Eev®,

and again by [4], Ch. XVIL.5 we get from (3.5) with ;=1

lim E exp (myZR?) = exp(—|y| O@)

n—>00

for suitable @. Thus R§ is in the domain of normal attraction of a stable law of index 1.
By Theorem 4.2 of [19] or the multidimensional analogue of [4], Ch. XVIL.5 this implies

0 < lim ¢ P{|R| >t} < o, (3.38)
t—>00
and lim P{|Bj| >, Ri€ A} [P{|R}| >t}]" = H(4) (3.39)
t— o0

in the weak sense for a suitable finite measure H on S,_,. However, P{|R}| >t}=P{| R| >}
and, since P {R, >0} =1 under the conditions of Theorem 4, we also have

P{|R}|>t,Ri€ A} =} P{|R|>t, Re 4}

for all 4 in the positive orthant of S, ;. It follows that (3.38) and (3.39) hold with R;
replaced by B and H(4) by 2 H(4 n positive orthant). Now we can use the sufficiency part
of Theorem 4.2 in [19] to conclude that the distribution of n~1 >} R,— K, converges to a
stable law of index 1 for suitable vectors K,,.

Remark 4. The proof of the corollary in the case x; =1 used the fact that E>0 w.p.1.
It would still work if R were concentrated in an open half space, i.e., if P{zqR>0}=1 for
some x,€S, ;. However, in general one cannot conclude that n-! >} R,— K, converges in
distribution to a stable law of index 1 from the existence of lim tP{zR>t}, z€S,_, only.

t—>00

4. Solutions of random difference equations; general coefficients

As in section 3 we want to find the asymptotic distribution of Y, defined by (3.1),
but now without the restriction M,>0. Again we are interested in proving (3.5). In the
one dimensional case (d=1) there is no difficulty in generalizing Theorem 4 because the
basic results (2.62), (2.63) and (2.83) can be obtained directly from Theorem 1 or other
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renewal theorems. (S, consists only of the two points +1 and —1 and we therefore only
have to do renewal theory for functions on a finite Markov chain.) However, for d>1 the
proof of (2.62) and (2.63) breaks down in several places when we drop the condition M, >0.
(Most notably in the verification of condition (2.19) in the proof of Proposition 1.) Never-
theless it is possible to derive appropriate forms of (2.62), and (2.63) and (2.83) if we make
assumptions on the absolute continuity of the distribution y of M,. This does, however,
require an alternate form of the renewal Theorem 1. Such an alternate theorem was stated
in [11]. We state here without proof the results which can be obtained for d =1 by means

of Theorem 1 and for d>1 by means of the alternate renewal theorem.

THEOREM 5. (d=1). Let M, and Q,, n=>1, be (real valued) random variables such that
the pairs (M,, @,), n=>1, are independent and identically distributed. Assume that

E log | M,| <0, (4.1)
but that for some %, >0
E| M| =1, (4.2)
E|M,|" logt | M,| <oo, 4.3)
0<E|@Qy|*<oo. 44)

If in addition log | M| does not have a lattice distribution(l) and Q, is not a constant times

(1 —M,), i.e.,
P{Q,=(1-M)r}<1 (4.5)
for each fized r, then the series

R=k;lM1 s ‘Mk—le

converges w.p.1. and the distribution of the solution Y, of (3.1) converges to that of R, inde-
pendently of Y,, Moreover

lim #*P{R >t} and lim **P{R< —1t} (4.6)
t—>00 t—o00

exist and are finite.

At least one of the limits in (4.6) is strictly positive.
We need one further piece of notation for the general d-dimensional case. If M is any

d xd matrix and M’ its transpose, then MM’ is symmetric and positive definite. We put
A(M) = (smallest eigenvalue of M M")}.

We also remind the reader that we defined the term ““feasible” just before Proposition 1 in
section 2.

(*) In the present situation —oco may be a possible value of log |M,|. If this is so, the condition
here means that the possible values of log | M,| which are not — co generate a dense group in R.
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THEOREM 6. Let M, and Q, be d xd matrices, respectively d column vectors such that
the pairs (M,, Q,), n=>1, are independent identically distributed and assume

E log* || M,|| < oo. 4.7)

Then «=lim }Llog ITL,)| exists and is < + oo w.p.1.

If <0 and (4.9) below holds, then the series

E= le---Mn—lQn

Nl
converges w.p.1 and the distribution of the solution Y, of (3.1) converges to that of R, in-
dependently of Y. If in addition the conditions (1)—(vi) below hold, then for some s, € (0, »,)
lim # P{zR >t} {4.8)

t—o0

exists and 1s strictly vosttive for all £€8S,_;.

Here are the conditions (i)-(vi):
(i) P{M, is singular} =0.
(i) For every open Uc S, , and €8, , there exists an n with P {(zI1,)" €U} >0.
(ili) There exists an n, a cube C<R* and a >0 such that the distribution of II,
has a nonsingular (w.r.t. Lebesgue measure on R¥) component with a density at
least, yo0on C.
(iv) The group generated by {log o(7): 7 feasible} is dense in R.
(v) For every fixed column vector r P{Q, =(I —M,) r}<1.
(vi) There exists a »,>0 such that

EAMy)T>1,
E|| o™ log* | M,]| <o,

and 0<E|Q,|™<eo. (4.9)
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