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1. Introduction

Let G be a connected semisimple Lie group with finite center and let K be a maxi-
mal compact subgroup of ¢. We assume that rank(@) =rank(K) and that rank(G/K)=1.
Let T be a Cartan subgroup of G contained in K. We write & for the Lie algebra of ¢
and G¢ for the complexification of &. If G¢ is the simply connected, complex analytic
group corresponding to &¢, we assume that @ is the real analytic subgroup of G¢ corre-
sponding to &.

(1) Research of both authors supported by the National Science Foundation.
1732906 Acta mathematica 131. Imprimé le 18 Octobre 1973
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Let y be a semisimple element in G and let G, denote the centralizer of y in G. Then
G, is unimodular, and we denote by dg/¢, (£) a G-invariant measure on G/G,. If we write

sy=agyz ', x€Q, then the map
i=f iendaa, 1ecz
66,

defines an invariant distribution A, on @ which is actually a tempered distribution.
In this paper, we give explicit formulas for the Fourier transform of A,, that is, we

determine a linear functional &, such that
A, (N=A, (), tECR(G).

Here, we regard f as being defined on the space of tempered invariant eigendistributions
on (. This space contains the characters of the principal series and the discrete series for
G along with some ‘“‘singular” invariant eigendistributions whose character theoretic na-
ture has not yet been completely determined (see 2. C).

Apart from the intrinsic interest of our results relative to harmonic analysis on @,
the Fourier transforms of the invariant distributions A, arise naturally in the context of
Selberg’s trace formula. Thus, let I be a discrete subgroup of @ such that G/T" is compact.
Let A be the (left) regular representation of G on L*G/T"). Then A can be decomposed as
the direct sum of irreducible unitary representations of @, and each irreducible unitary
representation zz of G oceurs in A with finite multiplicity m,,.

We write
A= 2 ®@mgmw,
neG
where G denotes the set of equivalence classes of irreducible unitary representations of G-
The basic problem here is the determination of those z€@ for which m, >0 and, more-
over, the determination of an explicit formula for m,,.
Let dg(x) denote a Haar measure on @. For f in a suitable class of complex valued

functions on @, the operator A(f) = [sf(z) A(z) d¢(x) is of the trace class and

trA(f)= 2 maf(m) (fim)=tr a(f)). (1.1)

neG

On the other hand ([2], Ch. 1), we can write

tr A(f) = 3 w(G,/T}) f 1) doren @), 1.2)
{v} GlGy

where {y} runs through the conjugacy classes in I and u(G,/T,) is the volume of G,/T,.
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Now, the idea is to get information about the multiplicities m, by equating (1.1) and
(1.2). The first step ‘in this program is the computation of the Fourier transform of the
terms which occur in (1.2), that is, the computation of K,, for y€T. Since G/I' is compact,
every element of I' is semisimple so that the formulas in the present paper provide the
necessary information. Some aspects of the above program have been carried out for
G=8L{2, R) in [2], Ch. 1, and, in somewhat more detail, by R. Langlands in a course
given at Princeton in 1966. In particular, Langlands shows that the multiplicity of those
members of the discrete series of SL(2, R) which do not have L' matrix coefficients is not
given by an analogue of the multiplicity formula for those discrete series which have L'
matrix coefficients. The multiplicity formula for the non-L* discrete series contains an
additional term of —1. It is our intention to use the formulas in this paper and methods
similar to those of Langlands to obtain multiplicity information for real rank one groups.

We now outline the contents of the paper. In §2, we summarize some results of
Harish-Chandra. The entire paper relies heavily on the work of Harish-Chandra, an ac-
count of which may be found in [11]. In general, we adopt the notation of [11]. In §3,
we consider the case when ¥ is a regular element in G. The basic case is when y€ 7. All
the remaining results in the paper stem from this case. The Plancherel formula for @,
first given by Harish-Chandra [4 f)] and Okamoto [6], is derived in §4 by a simple appli-
cation of Harish-Chandra’s limit formula [4 a)], [4¢)]). Our method differs from that of
the authors cited above. In §5, we take y to be a semisimple, non-regular element in G.
The formula for ;Xy (/) can again be computed from the results of §3 by applying a
theorem of Harish-Chandra ([4 )], p. 33). We mention, in passing, that the case when y is
a unipotent element may also be treated by our methods, that is, by applying an ap-
propriate differential operator to a regular orbit and then taking a limit. Unfortunately,
the explicit form of the differential operator is unknown to us at this writing. (1)

Some of the results of this paper were announced in [8 a)], and some examples are
discussed in [8b)]. For SL(2, R), our formulas may be found in [1], [2], [4b)]. Similar
results for SL(2, k), k a non-archimedean local field appear in [7]. We would like to ex-
press our appreciation to J. Arthur, C. Rader and N. Wallach for their helpful comments.

2. Some results of Harish-Chandra
2. A, The structure of & and G

We retain the notation of the Introduction. Let t be the Lie algebra of 7' and {¢ the
complexification of t. Then t (resp. i¢) is a Cartan subalgebra of & (resp. &¢). Proceeding

(*) Results in this direction have been obtained recently by Ranga Rao.
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ag in [4f)], § 24, we fix a singular imaginary root «; of the pair (8¢, tc) and a pointI'in t
such that +a; are the only roots of the pair (&, tc) which vanish at I'. Denote by Gr
the centralizer of I' in &, and let ¢r and I be the center of @ and the derived algebra
of &y respectively.

The subalgebra [ is isomorphic over R to 3[ (2, R), and we may select a basis H*,
X*, Y* for Ir over R such that [H* X*|=2X* [H*, Y*]= —27*,[X* Y*]=H*. Then
t=R(X*—~ Y*)+ ¢r and a=RH*+ ¢p form a complete set of non-conjugate Cartan subal-
gebras of . Put y=exp [V_—T (w/4) (X* 4+ Y*)]€G¢. Then (i¢)* = a¢, the complexification
of o and, if oy = (ots)* is the y-transform of o, we have o, (H*)=2 and a, vanishes identi-
cally on ¢p. We order the space of real linear functions 4 on RH* + V=1¢p by stipulating
that 4 >0 whenever A(H*) >0. We then obtain a set of positive roots for the pair (§¢, tc)
by demanding that the u-transform of such a root be positive when considered as a root
of (B¢, ag).

Let A be the Cartan subgroup of & associated with a, and let A° be the identity
component of A. Then, setting Ax=4N K, A%=A4°n K and A, = {exp (tH*):tER}, we

have
A=AKAp and A.0=A(}{Ap

Put Z(Ap)=K nexp{/—LRH*}. Then Z(4,)={l,y} is a group of order two with
y=exp [n(X*— Y*)]=exp (/= L nH*)+ 1. We have Ag=Z(4,) 4%.

Set t,=cp, t,=R(X*— Y*) and let 7', and 7'; be the analytic subgroups of 7' corre-
sponding to t, and t, respectively. T; and T, are compact and T, N Ty = Z(dy). Since
Ag=T, U yT,(T,= A4%), it follows that 4, has one or two connected components accord-
ing to whether v lies in 7', N T, or not. Now, if M is the centralizer of A, in K and M°
is the identity component of M, then M = M° U yM°.

If no simple factor of & is isomorphic to SL(2. R), it follows from the classification
of real rank one groups [9] that M is connected or, equivalently 7' N Ty,={1,y}. In this
case T; = A, a maximal torus in M.

For the group SL(2,R), our results are well-known and may be found in [8 b)].
Throughout the remainder of this paper, we assume that M is connected.

Write G=KA,N*, the Iwasawa decomposition of @, and set P=MA,N*. Then P

is a minimal (and maximal) parabolic subgroup of G.

2. B. The invariant integral on G

We first establish a normalization of certain invariant measures. Let z = &, 2€@,

denote the canonical projection of G on G/T (or G/A). We take a G-invariant measure
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dgr(#) on G/T which is normalized as in [11], v. II, Ch. 8. If we choose a Haar measure
dr(t) on-T normalized so that the volume of 7' is one, then a Haar measure dg(2) on G is

fixed by the formula

f Ha) d (&) = f f fat) i (8) dgrr (4,
G GITJT

for f€C,(G).

Let dj,(hy) be the Haar measure on A, which is the transport via the exponential
map of the canonical Haar measure on the Lie algebra of 4, associated with the Euclidean
structure derived from the Killing form of ®. Since 4,={exp tH*:t€ER}, we have

day () = e, @.1)

where ¢4 is a positive constant and dt is normalized Lebesgue measure on R. We nor-
malize Haar measure d,_(hg) on Ag so that the volume of A is one. Now a Haar mea-
sure d,(h) on A is fixed by the formula d,(k)=d, (hg) dAp(hp) where h=hghy. A G-in-

variant measure dg , (%) on G/A is then determined by the formula

[ rerde=[ | 1ahdat dota
@ ¢4 Ja
for f€C(G).

Let @ be the set of regular elements in G and set 7'=TNG", A’'=AnG. Put
G = U, cezT'z7', the elliptic set in @, and Q"= U,oxA 'z}, the hyperbolic set in G.
Then G = G* U G* (disjoint union) and

f f(x) dg () = f J@)dg(x)+ f J@) dg(2), (2.2)
G G G
for fEC(G). Let A, Ay, 6}, 65, W(G, T) and W (G, A) be defined as in [4 d)] (in particular,

W(G, T) is the Weyl group of K). For x€Q, write #t=atz™',4€T, and ih=xhz™, hEA.
If f€CZ (@) and t€T" the invariant integral of | (relative to T') is defined by

OF (1) = Ar(t) LIT/(”"?) der (£). (2.3)
Similarly, if A€ .4’, the invariant integral of f (relative to A) is
OF )= ok (B Aalh) [ 168) ) 24)
G

From Weyl’s formula ([4 g)], p. 110), and (2.2), it follows that
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[ 10w -twa.nr [ Bwer0 o,
25
[ rorde@=me. an- [ Eadesn oz m du.

It is known [4 d)] that ®F €0 (") (in general, @] does not extend to a C* function
on all of 7). Relative to the operation of W(G,T) on T, we have

®F (wt) = det (w) DF (1) (2.6)

for wE W(G, T), t€T'. The function @} is in C°(4’) and extends to a compactly suppor-
ted C* function on all of 4 since the pair (8¢, a¢) has no singular imaginary roots [see
[4d)], §22). The general formula for the transformation of ®/ relative to the action of

W(@, A) is given in [41)], p. 103. We are interested in two special cases.
D (hhy) = OF (hehy?), he€ A, hy€ 4, (2.7)

If wEW(M, Ag), the Weyl group of M, then w may be considered as an element of
W(G, A), and we have

®F (wh) = det (w) DF (h), hEA, wEW (M, Ay). (2.8)

2. C. The characters of the discrete series

The unitary character group 7' of 7' may be identified with a lattice Ly in the dual
space of V' —1t, and, for 7€ Ly, the corresponding character &.€T is given by

£ (exp H)=e™™, HEL. (2.9)
The Weyl group W(®¢, t¢) acts on Ly and hence on 7' by the prescription
wr(H) = (w2 H), &, (exp H) = "™ Het, 7€ L. (1) (2.10)

We say that tv€Ly is regular if wr =+ for all w=+1 in W (¢, ¢); otherwise 7 is said
to be singular. The set of regular 7 will be denoted by L7 and the set of singular 7 by L.
The character &, is called regular or singular accordingly.

To each TEL,, there is associated a central eigendistribution @, on G characterized
uniquely by certain properties ([4e)], p. 281, [41)], p. 90). ©; is locally summable on &
and analytic on . We have

(1) For convenience, we write wt for w-7.
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O.0)=A0"1 > det(w)é&, (), t€T". (2.11)
weW(G, T)

Note that, if T€L% and, moreover, 7 is fixed by a non-trivial element of W(@G, T'), then
0. is identically zero on 7".

On A’, the behavior of ©, is slightly more complicated. Set
Ay ={hy€Ay: aa(log hy) >0} = {exp (tH*):t >0},

Ay = {hy€ Ay: aq(log hy) < 0} = {exp (tH*): t< 0},
and define
A+=AKA;nA" A" =AgA, n4’'.
For z€L;, put __
~1 if 7(/=L(X*—Y*)>0
e(r:AT)=3+1 if z(/-1(X*—Y*)<0
0 if () =1(X*-T*)=0.

c(r:A7)= —¢(r: 47).
Then, we have

Ol = AaB) S det (1) Eye(be) clwr: A exp (= |wrp(log b)), (213)

where h=hgzhy and the sign in c(wr: A*) is chosen to correspond to R€AT or hEA™.
Again, it is easy to see that @,=0 on 4’ if 7 is fixed by a non-trivial element of W(G, T').

For 7€L7, puts=(}) dim (G/K) and &(v) =sgn {[Lsep, (7, ®)} where P denotes the
set of positive roots of (&¢, t¢). Then ([4 g)], p. 96)

Tr=(-1)&(r)O, (2.14)

is the character of a representation in the discrete series for ¢ and all discrete series
characters are obtained in this way. Moreover, 7', =T, if and only if 7, and <, are con-
jugate under W(G, T). ) ‘

Even though the invariant eigendistribﬁtions 0., 7€ L%, do not correspond to charac-
ters of the discrete series for @, these eigendistributions do appear discretely in the Four-
ier transform of the invariant integral. The need for these @, arises from the fact that
Fourier analysis on T requires the use of the full character group of 7. The character
theoretic nature of ®,, v€L%, has been settled in only a few special cases.

2. D. The characters of the principal series

For x€ Ay, the unitary character group of A, denote by log X the linear function

on-t, defined by
Z(exp H) =162 HE€t,. (2.15)
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Let P} be the set of positive imaginary roots of the pair (8¢, a¢), and let W; be the sub-
group of W(@, A) which is generated by the Weyl reflections associated with the elements
of P{. W, may be identified with the Weyl group W(M, A) in a natural way. An ele-
ment X €A, is called regular if wy =+ X for all w1 in W,. Otherwise, X is called singular.
If x is a regular character in A, we set

e(x)=sgn { [1 (log 2, )}. (2.16)

aeP}
The unitary character group A, of A4, is isomorphic to R and, for v€R, we define

the corresponding unitary character on Ay by

hl;-_lv — oY —1v(log "’p), hpeAp.

Let f€C® (). The Fourier transform ® of the invariant integral ®/ is defined on
A‘ g X AAp by

A (2, v) = (@n) f fx(hx)hfl’cl)f(hxhp)dAK(hx)d,,p(h,,), 2€Ag,vER. (217)
g Jay

If % is singular, it follows immediately from (2.8) that ) 2%, »)=0 for all » in R.
Now suppose that X is a regular element in Ay and » is an arbitrary element of 4.
Then, if r,=[Pf], the distribution

T (f)= @2m)t(— 1)1 e(x) DA, »), FECT (), (2.18)

is the character of a representation of the principal series for G and, moreover all principal
series characters have this form for suitable (regular) ¥ € A, » € 4, (see [11], v. IT, Epilogue).
If x is singular, we set &(X)=1 and define T*” by (2.18). Of course, T***' =0 for singu-
lar %, but, as is the case for ©,, v€L%, we need the formal expression for 7'** for all
(X, 7)€Ax x A, when we work with the Fourier transform on Ay x Aj.

Finally, it follows from (2.7) that

TN = Px-»  yedg, veER. (2.19)

3. The Fourier transform of a regular orbit

3. A. The Fourier transform of a regular elliptic orbit
Fix f€C= (@). Then @7 €L'(T) and, as pointed out above, ®f €C*(T"). For €L’
we denote by ®7 () the Fourier coefficient of ®f at 7.
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LeEmMA 3.1. Let t€Ly. Then

®F (1) =(~1y (G)‘t(f) - f f(z) Oz (x) da(x))
ah
where r=2"" (dim (@) — rank (G)).
Proof. We have

0.()= | 1) 0. @) do)+ f ) @ (2) do (2).
Ge Gh
From (2.3), (2.5) and (2.11), we obtain

f Hz) Oz (2) dg (@) = (= 1V [W(G, T)]7* > det (w)f ®F () £,z () db = (— 1) ®F (z).]
Ge weW(G,T) T
Remark. The next step in our development is the consideration of the Fourier series
of ®f. For this, we must give explicit form to the type of convergence we use relative to
the lattice L. Let {ay,..., o} be the set of simple roots for the pair (S¢, tc) relative to
the given ordering. Adopting the customary notation, we let
2
H=——1H,,i=1,..,L
H o (Hz‘) ag ? H ’
If {A,,...,A;} is the dual basis to {H,,..., H}, then Ly={>}_1m;A;: m;€Z}. For any
positive integer m, define L7 = {Di_1m,A;: — m<m;<m}. Summability relative to Ly is

then defined by
> =1lim Y.

TeLp m—>o0 1EL'; (32)

For the remainder of this section, we fix an element ¢,€7".

LzmMma 3.3. o
DF ()= (— 1)'16%(910) Er (o) + I, (ty),
where Lt =(~1" 3 () f 1(2) O () do (@),
Telr Gk

Proof. From the properties of @], it follows that the Fourier series of ® converges
to ®F (t,) at t, (see [5]). Thus, ®F (t,) = z,eL,(Bfr (%) &-(%,), and, from [4 e)], p. 316, we con-
clude that the series 2.1, 0. (f) £, (£;) converges absolutely. The assertion of the lemma

is now clear. ||
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Remarks. (i) Since ®f is, in general, only piecewise smooth, we cannot assert that
the series for @ (f,) converges absolutely.

(ii) The results of Lemma 3.1 and Lemma 3.3 obviously are valid for groups G having
split rank greater than one if we interpret G* to be the complement of G® in G'. For groups
of split rank one, there is exactly one non-compact Cartan subgroup (up to conjugacy).
Thus, to complete the inversion formula, we must express I,(f,) in terms of the principal
series associated to this non-compact Cartan subgroup or, more precisely, the invariant
distributions 7"** introduced in 2. D.

From [4e)], p. 309, we have A, =(—1)"*'A, (r as in Lemma 3.1). Since ¢A=1 on
‘A" and e¢f= ~1 on 4, it follows from (2.5) and (2.13) that

f f(x) O (@) de(z)=(— 1) [W(G, 4™ D> det(w)
Gh weW(G.T)
X {fﬁ c(wr: A*) &4 (hg) exp (— | (wr)#(log hy)|) OF (k) dy (k)
- fd_c(wr: A7) Eye () exp (— | (wr)* (log ky)|) D (h) dy (h)}-
Now, using (2.7) and (2.12), we obtain

f f@) O (%) dg(x) = (— 1) [W(G, A)]"lwev;(:G T)det (w)

(3.4)
<2 [ olwe: 4%) Euulbe) exp (=] (0r) g o)) ©F (9 (4
Denote the integral over A" in (3.4) by I} (z: w). Then
Lt)=20W(G A" 3 &) 5 det ()} (z:w). (3.5)

For m a fixed positive integer, we consider the partial sum

Dt > det()If(miw)= > det (w) 3 &(t) I (v:w).
m weW(G.T)‘ weW(G,T)

vel? vel®

The lattice Ly is W(G, T') stable, and, if w€ W(@G, T'), we define
wL={wr:7ELF}.

Setting I} (z:1)=I}(7), we can then write the last sum as

> det(w) 2 &ulte) If (). (3.6)

weW(G,T 1™
) vew—1L7y
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For further analysis, it is necessary to decompose the lattice L, as in [4 )], § 24.
Let L= {v€Ly: 7(/ — 1 (X*— ¥*))=0}, a sublattice of Ly, and let L, be the lattice gene-
rated by L7 and o, that is Ly=Zoy+ L}. Then L;/L, is a group of order two, and there
exists an element 7, in Ly \ Ly(!) such that»ro(l/———l (X*— Y*))=1. Observe that L} may
be identified with the (unitary) character group of T,/Z(4y). In particular, &,|,, =1 for
T€L%. We also note that &,, |, =1.

Fix we€ W(G, T'). The inner sum in (3.6) may be written

Z we (fo) I}L (¥)+ Z Euirimo (to)I;(T+ Tp)- (3.7)
reLgnw"lL? "ELo_l "
T+re€w “Lp

We shall treat each of the last two sums separately.

If T€L,, we write T=noy+1*, t*€L}. Then, with the understanding that the sums
are over L, N w™' L}, we have

St f@)= > Epnry (o) Euon (o)

1=nat+1‘

X fA .L (nor : A%) Epay s on () €Xp (— | (nex,)# (log hp)l)(I)fA (hrhy) day (hg) da, (Ry).
K P

At this point, we write log hy=tH* and use the measure given by (2.1). Since
-1 if »>0
eng: AT)=1 0 if n=0
1 if »n<O,
a’nd Endt (hK) = 1: hKe-AK= T]_,‘ we see that

2 Eur(te) If (T)=cy4 {gomf e 12ntl gy

0

X 2, &on (b (w)) fA Eze(hg) Df (hg exp (tH*)) da (hg)— ngo‘fnazt(tz (w)b) fo e 2t dt
X S Erl0) [ o) O e exp (CH) d i) (3.8)
where we have written |
Wty =1 (w) ty(w), ty (w) €Ty, ty(w) €T, (3.9)

This last decomposition is unique up to Z(4p)=T, N T, ={1,y}.

(1) We denote by 4\ B the set theoretic difference of sets 4 and B.
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Define
Flhg; by; 71) = &r, (h) o7 (hghy) + &, (Vh) (DIA (Yhghy), hz€Ag, hbeA; ,711€L7. (3.10)

LeMma 3.11. For hy and , fixed, the function hgv—F(hg; hy; T,) may be regarded as
a function on Ty/Z(Ay), and, for any element by in Ag,

S B0 [ Enlbe) 60 (he) O hshe) o, () =} Plbi o).

Telp
Moreover, the series converges absolutely and uniformly in kY.

Proof. Since @/ €C®(A), the lemma follows from elementary Fourier analysis on
T,/Z(4y). |

Note that the sum Zﬁ L in the lemma may be taken as the limit of any sequence

of partial sums due to the absolute convergence.

LEMma 3.12.

2 (g-2V=160 — 2/~ 10w ]
2

lim 2. Eor(t) I7 (1) = (cal2) 2 @ (aty (w) hy) [le_ %2¢ % 008 20, +e %

M=% reLNw— 1LY aeZ(4p Jo

where h,=exp (tH*) and 0, is determined by the equation t,(w)=exp (0,(X*— Y*)).

(As indicated after (3.9), the value of 6, is unique only up to {1, y}. However, the
expression above is independent of the choice of 0,,.)

Proof. We have &,,,(fs(w)) = ¢2V-1%, and 6,%0 (mod z) since {,€7". From (3.8),
we consider the partial sums

n<0 [} 7*

cy D €W -1nbw j’“’ e BrGLS £ty (w))f Een (hg) @F (hghy) dyy (he)
Ag

and

a2, ezv'_l"o”f e 2t > Exe (b (w)) L Eve (hg) OF (hxhe) dy (hr),

n>0 o z*
where no,+7*€Ly N w LY. From lemma 3.11, we see that the partial sums 2 ;. are uni-
formly bounded in ¢ and are supported in a fixed compact set relative to 4y. Moreover,

for any positive integer x,

x
z ei2V:'in0.. e—2ﬂt
ne=l

2

<——.
1— cos 26,
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Thus, it follows from the bounded convergence theorem ([10], p. 345) that we may com-
pute the limit as m— oo for each of the above sums by taking

CAfw [hm z e2V— 1"%3"2"“ Zf (tl w))f ]

0 Lm—oon<o
and

o m—o0 n>0

cAf [hm > e 1""we"'2"”25 tl(w))f ]
With the help of Lemma 3.11, this leads to

lim 3 &(f) I} (z)
M= reL, Ny~ 1LY
o0 B e-2=10, -2t
=(c4/2) J; Lez%p)d)f (aty (w) ht)] (m_—w—Te_a) di

0 p 2V ~10,0-2t
—(caf2) . [EZZ(A p)d)f (atl(w)ht)] (T_Wt) dé.

The conclusion of the lemma follows by addition. ||

We next consider the second sum in (3.7). Observe that, for t*€ L7,

-1 if »n=0

c(nact+'z:*+ro:A+)=c(noct+ro:A+)={ 1 it <0
I ,

and that &, (y)=e V" 17= —1,
Lemma 3.13.

lim Z Euirrra (f) If+ (T+ 1)

m-—>e0 T€L,
1+1oew—1L';

o0 =2 (ot 1 p=t) (e—V~10y — oV 16w
= (e[ [0t b= 0t 1| [ e g

Proof. Proceeding as above, we obtain

Z é‘w('ﬂrn) (to) I; (T + To)

T€L,

r+ruew“1

Iy
=Cy4 Ew'ro to){ Z fnat t2 w))J € I2n+l”dt§:§t' t1 W))f ft'+1« K) (I)f (h ht) dAK(hK)

- néo Snat (t2 (w))f

0

"'““”dtZE (t,(w )J‘ Evnir, (hx) D (Kht)dAK(hK)}
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where 7=no,+1*€L, and 7+ ro€w 'L7. Now the result is obtained with the use of
Lemma 3.11 and the same techniques that were employed in the proof of Lemma 3.12. ||

The results of Lemma 3.12 and Lemma 3.13 may be combined to yield the following

proposition.

ProrosiTioN 3.14.

It = (=)™ 3 &:(t) f @ 0@ ds(@)

(WG A e, S det(w) {J‘w O ) [et(e—V—lﬂw_ ey_ww)] dt
0

: 2t
weW(G.T) 1—2¢ cos 0,+¢

0 LoV —1(0p+7) _ oV —1(0pt+m)
4 e(e e )
+ fo O7 (vt () ) [ 1—2¢t cos (6, + ) + e ] dt}'

We emphasize once more that, for each w€ W(@, T'), 0,, is determined only modulo 7,
or, in other terms, we may choose 0, so that —n<6,<0 or 0<0,< 7. The formula for
1,(t,) is, of course, independent of the choice of 8, since ¢, (w) must be replaced by yt, (w)
if 0,, is replaced by 0, + &.

The Fourier transform of ®# is given by (2.17). Since ®f€CY (4), we have

Of (hxh)=c3' 2n)F 2 1 K)f eV DA (1, v) dy, (3.15)
zeAx
where dv is normalized Lebesgue measure on R.
ProrosiTIioN 3.16.

I{t)=[W(G A" 5 det(w)

weW(G.T)

V=1t et
x J(e VT _ /Ty (9 7y~ €
{( e ) (27)~ szAxx t1(w)) (Df X V)f 1—2¢cos 0, T+ et didv

e~V—1st gt
+ V=10 +n) _ oV —1(8y+m) 3 .
(e” € ) (22) ?;KX vh( w))f (D’ (&, v)f 1+ 2e¢* cos 6, + e* dt dv}

Proof. Since all the series and integrals involved converge absolutely, the proof follows
from Proposition 3.14, (3.15) and the fact that y€Ag. ||

Now, using the fact that (I‘;;4 X, v»)= (f)fA X, —») (see (2.7) and (2.18)), we can write

@ eVlvtt d 1 W@A ZV 1y l 317
f ;(x,v)f 1F 2¢ cos b, +e2‘dt V-EJ_M f(X,v)f 1¥22cosf,+2* (3.17)

where d] is normalized Lebesgue measure on R.
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The inner integrals in (3.17) can be evaluated using the formulas in [3], p. 297. This

yields the following proposition.

ProrositioxN 3.18. Suppose 0<8,<m, w€W(G, T). Then

Lt)=[W(G A" > det(w)

weW(G, T)

e
{V Lw/2)* 3 Xt1(W))f DA, )[ﬁ‘—;gé@(";—m””] dv

xeAK

+V=1(@/2)t 3 % ( w))f 41,y )[M] dv}.

iy sinh (vx)

If —n<6,<0, then sinh (v(0,,— 7)) must be replaced by sinh (v(0,, + 7)) in the first integral.

We are now in a position to state the final inversion formula for @7 (%,).

TaEOREM 3.19. Suppose that t,€T'. For wEW(G, T), we write w'by=1t; (w) 1ty (w)
where t, (w)€T, and ty(w)=exp (0, (X*— Y*))€T,. Then, if fECT (G) and 0< 0,<x for all
wEW(G, T), we have

OF (t) = (— 1) 3 0:(f) &:(to)

TelT

+(V=1/2) (- L1 [W(G, A)]™* WZG det (w) 3 &(%)

eW(G, xEAK

— o0 h
X {x(tl(w))f_ %D () [Slnsél”}g (Wt)n))] d

sinh (w@w)] dv}

+ Xyt () f T (f) [Sinh o)

If —n<0,<0, then sinh (»(0,, — 7)) must be replaced by sinh (v(0,,+ x)) in the first integral.

Proof. This follows from (2.18), Lemma 3.3 and Proposition 3.18. ||

The first sum can be formulated in a more representation theoretic way. Denote by

G, the set of equivalence classes of rjtapresentations in the discrete series for G. If w€G,,

we write f(w) for T.(f)=T,(f) where T€L7 corresponds to w and 7',=T,, is given by
(2.14). Then

> 0:(f) Eo(ty) = > 0( 1) E(ty) + Arlty) 3, How) Talto). (3.20)

relr 1eLT weGq

Remark. Suitably interpreted, Theorem 3.19 can be applied to SL (2, R) (see [8 b)]).
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3. B. The Fourier transform of a regular hyperbolic orbit

The analysis involved in this section is completely elementary and has already been
indicated in 3. A. We isolate the result here for future reference.
Let h="hgh,€A’. Then, from (2.17), (2.18) and (3.15), we have

OF (h)=c3' 2m) (= 1) 3, &(x) X(hg) f T e () dy, fECT().  (321)

xeAK -

4. The Plancherel formula for G

In this section, we derive the Plancherel formula for G from the inversion formula
for ®] (Theorem 3.19). The derivation is quite simple. As in 2. C, let Py denote the set
of positive roots of the pair (&¢, tc) and set I17=]Trers H,. We regard II” as a differen-
tial operator on 7'. Then, if fECY (G), the function I1¥ ®} extends to a continuous func-

tion on 7'. With the measures normalized as in 2. B, we have
f1)= M3 OF (1; TI7), @)
where M;=(27)" (—1)° (see [4 a)], [4 ¢)]; the constant M is determined in [11], Ch. VIII).
Thus, we apply II” to ®f at a point £,€ 7" and compute the limit of T17 ®f () as #,

approaches 1 through the regular elements in 7.
THEOREM 4.2. (The Plancherel formula). Let f€CT (G) and denote by P, the set posi-
tive roots of the pair (B¢, ac). Set Ax={X€Ax: x(y)= +1}. Then

f)=Mg S [ 11 Gz, a>] O.(f)+ M (V—=1/2) (W(G, T)) | [W(G, 4)])

' | aePr
1&L,

x{ > e(x)fw 7% (f) coth (ﬂ) [ T (logx+ V.— 1y g, oc)] dy
Xe“i; — o0 2 a€P4 2

" (f) tanh (EQZ) [ [I (logx+ V= 1v a, oc)] dv}.

+ 2 e(X)J' 3

iy - «€Py
Our proof of the Plancherel formula differs from that of Harish-Chandra [4f)],
and avoids the use of the principal value integral ([4e)], p. 308). The remainder of this
section is devoted to proving Theorem 4.2.
Fix an element £,€7" and consider the series Mg (— 1) Srerr 17 £, (f) O+ (f). From
[4 e)], it follows that this series converges absolutely and uniformly in a neighborhood of
i, in 7’. We conclude that
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lim Mg (— 1)’HT<1§T%Z(T.,) O () =Mz (—1y 3 [ (-1 a)] 0.(f)

te—1 rEL;. aePp

=M 3 [H (t, ac)] 0:(f). (4.3)

’ LxePr
€Ly

This is the contribution of the discrete series to the Plancherel formula.
Next, assume that ¥€A% and extend % trivially to all of 7. We must consider the
application of I17 to

- . sinh (»(0,, F 7)) + sinh (»0,,)]
x(t (w))fth(" )(f)[ sinh (777) | dy
” sinh (v (0,,, F g)) ]
= 2(t, (w)) f %" (f) d, (4.4)
e sinh (%t)

where, as in Theorem 3.19, wE€W(G, T), t,€T', wit,=t,(w) ty(w), t, (W) ETy, ty(w)ET,;
and ¢, (w)=exp (0,(X*— Y*). In (4.4), we take sinh (»(0,—(n/2))) if 0<6,<x and
sinh (»(0,+ (7/2))) if —7<0,<0. Since we are interested in ¢, only in a neighborhood of
1, we may assume that —n/2<0,< /2 for all wE W(G, T).

Since X|7T,=1 and «,|t; =0, we can write

X(t, (w)) = wix(ty)
and

sinh ('V(Gw + g)) = (B) [ (i, (£)) T2 — €27 (wisy, (1))~ 1712].

In the last expression, we work with principal branch of the argument, and our restric-
tion on 0, eliminates any ambiguity
Now set

Fi(w:v:tg) = wi (ty) [T (wky, (o) 71772 — €272 (wéy (8)) 7V ~1"2]. (4.5)
From the properties of 7'*» ([11], v. I, Ch. 5), it is clear that II” applied to (4.4) is
equal to

() J‘w T () [IITF§ (w: v: t;)/sinh (v7/2)] dv, k (4.6)

and if we consider the sum of the terms (4.6) over A}, it is also clear that the resulting
series converges absolutely and uniformly in a neighborhood of ¢, in 7. We conclude,
from Theorem 3.19 and (4.1), that

2 — 732906 Acta mathematica 131. Imprimé le 18 Octobre 1973
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M3V -1/2)(— 1)*'[W(G,A>]-‘we WZ(G ,det () > &)

vead
- :
X (%)f T (f)[im IIT F§ (w: v: t,)/sinh (vn/2)] dv 4.7)
—00 te—1
represents the contribution to the Plancherel formula of the principal series indexed by
x€A4A%. Note that #, runs through a sequence of elements in 7", and, for each t, and
wEW(G,T), we take Fy or Fj according to whether 0<8,<%/2 or —n/2<0,<0 re-

spectively.
If we work in a sufficiently small neighborhood of 0 in &, we can write

(Eay (B ©XP 8Ho))*V =172 = (£, (£)) £V 12 (£q, (exp sH,))*V 172,
a€P,, sER, and then
Fiw:v:ity: IIT)=TI"Ff (w:v:4,)

= det (w) wx(t) {e”’lg (W4, (to)y 12 [ [1 (logz-l- V_"'2_1_’l’ % “)]

aePr

— oEt2 (wéat(to))—ijlz [ II (logz ——V;—% o, a)} . (4.8)

w€Pr

Note that the factor det (w) in (4.8) cancels with det (w) in (4.7).
Evidently

V1 V4
I1 (logxiV lvoc,,oc)= II (logXiV 5 vaa,oc),

«€EPT 2 aePq

and we claim that

11 (logiq-l/;lﬁ‘xa, oc) = - I] (10g7- V—21 voca, oc) . (4.9)

a€P4 2 (13

This claim is substantiated by the following observations.

(i) If « is compact, then (e, &) =0.
(ii) If & = a,, the unique positive real root of the pair (8¢, ac), then (log 7, a,) =0.

(iii) If & is a positive complex root, then

_ V=1 _ V=1
(logx-l— ) 1Joca,oc) (logx+V ) vaa,&)

_ V=1 !
~(log=15  npe) (a5 ).
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& the conjugate of «. This last equality follows from the fact that (« , @)= («,, &) since
«, is real, and the fact that (log ¥, &)+ (log X, &) = 0.

From (4.8) and (4.9), we have

F}(w:v:1; I17) =2 det (w) cosh (y7/2) [ I (log7+ V—_-}loca, oc)] . (4.10)

«€PA 2

Since log ¥ = —log %, we have

11 (1og';z+ Vt;”aa,a)= I (—1ogx+ V:—”aa,a)

a€Py a€P4 2

=(-1)"T] (log){—l/—h{oca,oz)=(—1)’+1 II (logx+V—1vcxa,oc)

a€P4 2 «w€Py 2

—1
=(-1)TI (logx+-l—/——1a ,ac).
®eP4 2 ¢
the last equality following from the fact that the number of positive complex roots of the
pair (8¢, ag) is even. Thus
V-1
Fiw:v:1;117) =2 det (w) cos (va/2) (— 1) LQA (log X+ ——2—2 a,, oc)] . (411)
An entirely analogous procedure can be followed for ¥ € A% (see (5.15) ff.) to complete
the derivation of the Plancherel formula.

5. The Fourier transform of a semisimple orbit

Let y be a semisimple element in G, and let G, be the centralizer of y in &. Then
G, is unimodular, and we denote by dc;/c, (€) a G-invariant measure on G/G,. In this sec-

tion, we compute the Fourier transform of the invariant distribution

fros LG 1y) dgrey @), FEC2(). (6.1)

Since the distribution (5.1) is invariant, we may assume that y€A4 U T. The cases when
y is a regular element were treated in section 3, so we also assume that y¢A' U 7",

Let &, be the centralizer of y in &, and let j, be a Cartan subalgebra of &, which
is fundamental in ®&,. Then, j, is a Cartan subalgebra of & since rank (§) =rank (&,).
(Of course, j, need not be fundamental in &.) If J, is the Cartan subgroup of G corre-

sponding to j,, then, by conjugating (if necessary), we may assume that J,=A4 orJ,=T.
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Now denote by P; the set of positive roots of the pair (8,, {,) and set IT, = [LeertHa.
If @, f€CT (@), is the invariant integral of f relative to J,, then, according to a result of
Harish-Chandra ({4 g)], p. 33), there exists a constant M, =0 such that

f 1(7y) dgyq, (&) = M, ®F (y; I1,). (6.2)
GIGy

It is possible to combute M, for a certain normalization of the relevant invariant meas-
ures.
In the remainder of this section, we compute @} (y; Il,) for the cases J,=4 and
J,=T. In either case, we set
r,=[P;]. (53)
The idea is the same as that used in the derivation of the Plancherel formula, that is, we
compute ®f (x; I1,) at a regular element x by using the formulas of section 3 and then

let 2 approach y through a sequence of regular elements.

S.A. J,=4
We consider the differential operator II, applied to @7, where ®/ is given by (3.21).

If we write
Y=YxY, Yx€4x ¥,€ 4,
then we have

Of (y; I1,) = ©F (y; I1;)

=c2n) (1)1 3 &(x) Z@fm eV, | T] (_ logx___z_v x,, oc)] T (f) dy,

R *
XEAK EPy

where y, = exp (i, H*). The necessary facts relating to convergence have already been in-

dicated in section 4.

Thus,
Of (y; ) =c2* @) (— 1y 3 &(X) 2(yx)
X€AR
® Y=t V——_]"v (x:v)
X eV-Tuty| TT llog X+ T e T %% (f) dy. (5.4)
- _aeP:

5.B. J,=T

Here, we have ®Y(y; I1,)=®f(y; I1;). If y is central, then ®f(y; I1]) can be com-
puted by a simple variant of the derivation of the Plancherel formula as presented in sec-
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tion 4. So, we assume that y is not central and proceed in a fashion similar to that of
section 4. All the convergence arguments necessary in this section were used in the proof
of the Plancherel formula so we shall not mention them explicitly here.

We first observe that the contribution of the invariant distributions ®. (f); €L, to

the formula for ®f(y; I17) is given by

(=17 3 [ I (=, a)] O-(f) &-(9)- (5.5)

TELr | yept
¥

Now consider the contribution of the principal series. Let W, (G, T) be the subgroup
of W(G, T) generated by the compact roots in P;. If G? is the identity component of G,
then W, (@G, T) is the quotient of the normalizer of 7' in G by 7. Choose elements w, =1,
Wy, ..., Wy in W(Q, T) such that

N
WG, T)y= 1l=JlWy(G’ T)w, (disjoint union). (5.6)

It weEW(G, T), we can write w=w,w,, w,EW, (G, T), for some s, 1 < i<N. Moreover,

. we have

Wity =y, () Yo (w,), () €Ty, Yo (w)) €T, (8.7)
Since the decomposition (5.7) is unique only up to {1, y}, we may assume that
Ya(0) = exp By (X*— ¥*)), —7/2< 0y, <7/2. (5.8)

Let £, be a regular element in 7' satisfying the conditions of section 4, that is, for
wEW(G, 1),
Wty = by (w) 85 () £y (w) = exp (6, (X* — ¥*))

with 0<|6,|<n/2. If we take Y€A%, apply the differential operator T, to Fjy(w:v:ty)
(see (4.5)), and then take the limit as ¢, approaches y through a sequence of regular
elements which satisfy the conditions above, we obtain

Fi(w:v:y; 11]) = w2(®) {e*’”’z (8, <y))@'2[ I (w (log7+ V-1 at), a)]

zeP:' 2

- e:tvnl2(,w5at (y))-Y-1v2 [ I1 (w (logz— V-1 “t) , “)]} . (5.9)

aeP;' ’ 2

{(Here, as before, we have extended X trivially to all of 7.)
If w=w,w, w, €W, (G, T), then wX(y) =w; X(y), wa, (y) =w;s,(y) and
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I1 (w (logzi V?"at), tx) =det (w,) H+ (w, (log,zi V-—;i 1') , a)-

aeP:' aePy
Thus, for any fixed 4, 1 <i<N,

() 2 det (w) Fy(w:v:y; 107

weWy(G, T wg
=@ 07,6, 10 det o) ) o o] T ( tog7+ 51 ), )]
aeP:'
~ g2 o= VB, [ I (wi (logf— 4 _2 1v o ) , oc)} , (6.10)

+
1EP'

where 0, is defined by (5.8).

In the formula for ®f(y; 1)), we use F; in the case 0<6, <n/2 and F; if
—n/2<0,,<0. Although this appears to present a difficulty when 0., =0, we shall see
below that this difficulty is easily resolved. Of course, we have a similar formula if ¥ €dz.

At this point, we analyze the product

1o e 512,

+
aEP’

in some special cases.

Lemwma 5.11. Suppose that L€ Ay and w;'y€T,= Ag for some j, L<j< N. Then

- V=1 S V=1
II (w, (logx—i-—l{-—voct), oc) =— 1] (w, (logx——-—loct), ac).
aept 2 acPt 2
v v

Proof. Suppose first that j=1, that is, w;=w,;=1. Then y€ A, and G, contains both
T and A. It follows that G, is a split rank one group and the conclusion of the lemma
may be obtained in the same fashion as (4.9). If w,=1, then ij_xy =w;'G,w, and «€P;
if and only if wj'a€P’_, . Thus

i

I1 (w, (log7+ V_—2—1v oct) , a) = JI (log7+ —V——:lzazt, oc)

aeP)} “‘Pw‘;ly

T 1 o ) o)

“ePw; 1, 2 aEP:

CororrLArY 5.12. Suppose that X€AL and wily€Ay for some j, 1<j<N. Then
0, =0 and
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() > det(w) Fy(w:v:y; 1)

weWy(G, T)wj

=[W,(G, T)] det (w;) w;X(y) cosh (vn/2) > (wj (logi + K—2_1v oct) s oc) )

+
acePy

Remark. The ambiguity in (5.10) is resolved by Corollary 5.12. If 6,, =0, then the
choice of either Fy or Fy leads to the same result just as in the proof of the Plancherel

formula.

Lemma 5.13. Suppose that wily€T,\T, and that wily =1y, (w,) (see (5.7) and (5.8))
for some §, 1<j<N. Then,

1 oo e ) 1 e o))

+ +
uEPy aePy

Proof. Assume first that §=1, that is, w,=w, = 1. Write y = exp (6, (X* — Y*)), where
~7/2<6,<0 or 0<0,<n/2. Now, G} is compact and P; is made up of compact roots.
If x€P;, we claim that x|t,=0. In fact, &,(y)=e®***~¥" =1 so that O, x(X*— Y*)=
2x )/ —1n for some integer n.

From [4f)], p. 121, we have V=1 (X*—Y*= 2Hat/(oct, o) which implies

0,0 X* y*)=% %:zn V1.

From the theory of root systems, we know that

2 (ot 04)

(ot 01)

€{0,1,2,3}.

The restrictions on 6, imply that n=0 and «(X*— Y*)=0.
Now, for any «€P;, we have

*o 0] < o8, )= (10g7—l/——1—voct, %)

log 7
(ogl-I- 5

so that

II (log7+ l/_gl_vat, oc)= 11 (logZ—V———;—Eat,ac).

o:eP;' aeP:
The remainder of the proof for w;+1 is similar to the proof of Lemma 5.11. ||

COROLLARY 5.14. Suppose that XE€Ax, wylyET,\T, and that wi'y=y,(w,) for
some §, L<j<N. Then
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3 > det(w)Fiw:v:y;II))

weW(G, TYw;

=[W,(G, T}] det (w,) sinh (v (Gw‘ig)) I1 (w,{log%), @),

+
o EPy

where we take F, and sinh (»(0,,—(n/2))) if 0<0,<=/2, and we take F, and
sinh (»(0,, + (7/2))) if —=/2<6,,<0.

In the case when Y€ Az, we must consider the application of 17 to

1(t () f () [

w + cosh (v (0,,, $g))
=X(t,{w)) f_ %" (f) dv.

cosh (v/2)

sinh (v (0, F =)) — sinh (Vew)] d
sinh (vx) ’

We extend X to a function on T as follows. For t€T, we write

t=tity, HET, 4ET,,

ty=exp (0,(X*— Y*), —m/2<6,<n/2. (5.15)
This decomposition is unique, and we set

x(@) = X(t). (5.16)
We now define, for t,€ 7,

G (w93 8g) = Tk (fp) [T (0, (b)) 172 + €42 (wE,, () V2] (5.17)

where w™'{,, as usual, decomposes according to (5.15) and v(5.16). Take a regular element
t, for which 0< |0, | < 7/2, w€ W(G, T), apply the differential operator IIj to G (w:v:4y),
and take the limit as f, approaches y. This yields

G5 (w:v:y; T3) = £ w2 (@) {e*’”’”(weat @)y [ I (w (log% WL at), oc)]

o:ePy

sty o3| I (o (osr -5 ) o)} @19

azeP”

and, as in the case of F¥ (5.10), we obtain
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@) > det(w)Gi(w:v:y;IIN)

weWy(G, T)w;

= @)W, (G, T)] det (w;) w; X(y) {[e*””ze”"‘”‘ I1 (w: (10g7+ V- lv“t); a)]

aeP;' 2

— 2
+eiﬂn/26—v0wi[ I (wi (log"i— lf._lf“t), ac)]}, (5.19)
aeP; 2

where 8, is define by (5.8).

In the formula for ®f(y;II]), we use G; when 0<6,<n/2 and G; when

—n/2<0,,<0. The ambiguity when 0, =0 is again handled by Lemma 5.11. We have
the following analogue of Corollary 5.12. '

COROLLARY 5.20. Suppose that X€Ax and w;'y€EAyx for some §, L<j<N. Then
0w7=0 and
3) 2 det(w) Gy (wiv:y; ITY)

we Wy(G, T) w;

= [W, (@, T)] det (w;) w;X(y) sinh (v7/2) [] (w, (log7+ /-1y o ) , oc) .

aeP” 2

There is also an obvious analogue for Corollary 5.14. We now give the general for-
mula for OF (y: 7).

TaEOREM 5.21. Suppose that y is a non-regular, non-central element in T and that
wly, 1<i< N, is decomposed according to (5.7) and (5.8). Then
OF (y; TE) = (~1y+" 3 [ Il @, a)] 0. (f) & ()

teLr | yep™t
¥

+ (V= 1/4) (= 1)1 ([W, (G, TN/ [W(&, 4)]) Z+8(l)

x[ 2, det (wi)fw TN (fy [F* (w;:v: y; I15)/sinh (v7/2)] dv

0< 0w, <n/2

+ > det (wi)f°° TN (f)[F~ (w;:v:y; HT)/sinh (v7/2)] dv

wi
—n/2<0w‘<0 .

+ (V=1/4) (- 1y ([W, (@, T)]/[W(&, 4)]) T ()

XA g

« [ > det (w,.)fi, T2 () [Gy (w:v:y; T1})/cosh (va/2)] dv

0 Ow‘ <nf2
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+ > det (w,)Jm T (f) (G (w:v:y; I13)/cosh (va/2)] dv|.
—n/2<:)u‘<0 -

The proof of Theorem 5.21 follows from the preceding discussion. For particular y,

the formula for ®] (y, I17) can be simplified by Corollaries 5.12, 5.14 and 5.20.
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