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1. Introduction

The cohomology theory of associative linear algebras over an arbitrary field was ini-
tiated and developed by Hochschild [5, 6, 7). With [ an algebra and M a two-sided -
module, the linear space O™, M) of n-cochains consists of all n-linear mappings from
A XA x... xA into M. The coboundary operator A maps O3, M) linearly into C™*(3A, M)
for each =0, 1, 2, ..., and satisfies A2=0. With Z*3, M) the null-space of Ain C*Y, M),
and B"*1(3, M) the range of A in C" "}, M), we have B, M)<Z*U, M) (n=1,2, ...).
The quotient space Z™3(, M) is called the n-dimensional cohomology group of A, with
coefficients in N, and is denoted by H™II, ).

The present paper is concerned with cohomology groups of operator algebras. For
such algebras there are several possible cohomology theories, closely analogous to the
Hochschild theory in algebraic structure, but differing from one another in the nature and
extent of the topological properties required of the module M, the action of % on M,
and the n-linear mappings which are admitted as n-cochains. The Hochschild theory itself
is available but, with one important exception, the problem of computing the (purely
algebraic) cohomology groups H*3(, ), with 9 a C*-algebra and M a two-sided Y-module,
seems intractable. The exceptional case, which has provided much of the motivation for the
work in this paper, arises from the fact that a von Neumann algebra R has no outer deriva-
tions ([10, 13]; for a later proof see [9]). This result can easily be reformulated, in terms of
the Hochschild cobomology theory, as the assertion that HY(R, R) =0. A number of other
problems concerning derivations of operator algebras can be expressed in cohomological
terms. The present paper treats the case in which the module M is the dual space of some
Banach space, and the bilinear mappings (4, m)—>Am and (4, m)—>mA (from A x M into
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M) which arise from the left and right action of 9 on M are required to be norm continuous
in both variables and weak * continuous in the second. Only bounded n-linear mappings
are admitted, in this theory, as n-cochains. The cohomology groups which arise in this
setting are denoted by HZ(2, ), n=1, 2, ... Preparatory results concerning the centre-
adjustment of norm continuous cocycles are proved in § 3, and in Theorem 4.4 we show
that HZ(R, R)=0 (n=1,2,...) when R is a type I von Neumann algebra. Further results
concerning more general von Neumann algebras will be published subsequently.

We consider briefly another (normal) cohomology theory applicable to a C*-algebra
U represented as operators acting on a Hilbert space H. In this theory, in addition to the
conditions outlined above, we require ultraweak continuity properties of both the action
of A on the module M and also the n-linear mappings which are admitted as n-cochains.
The cohomology groups which arise in this context are denoted by H%(U, M), n=1,2, ..;;
in Corollary 4.6 we show that H%,(R, R)=0 when R is a type I factor.

Cohomology groups of commutative Banach algebras have previously been studied
by Kamowitz [11]; more recently, Johnson [8] has considered the cohomology theory of
general Banach algebras, and (by methods quite different from ours) has obtained a num-
ber of results including a proof of our Theorem 4.4.

Both authors are indebted to the National Science Foundation for partial support, and
to Professor I. Kastler for his hospitality at the Centre de Physique Théorique, C.N.R.S.,
Marseille, and at Institut d’Etudes Scientifiques de Cargése, Corsica, during one stage of
this investigation. The first-named author acknowledges with gratitude the support of
the Guggenheim Foundation.

2. Terminology and notation

Throughout this paper, the term algebra is understood to refer to an associative linear
algebra over the complex field, and vector spaces always have complex scalars. We recall
that a left module for a unital algebra 9[ is a vector space PN equipped with a bilinear
mapping (4, m)—~Am: Ax N~ M such that Im=m, A,(4d,m)=(A4,4,)m whenever 4,,
A,€U and mE€M; the concept of right module is defined similarly. A two-sided A-module
is a vector space PN which is both a left Y-module and a right A-module, the left and right
actions of Y on M being related by the condition (4,m)A4,=4,(md,).

By a two-sided Banach module for a Banach algebra U we mean a Banach space T
which is a two-sided Y-module for Which the bilinear mappings (4, m)—~Am, (4, m)—>md
from A x M into M are bounded. If, further, M is (isometrically isomorphic to) the dual
space of a Banach space M, and, for each A in U, the mappings m—~A4m and m—>mA:

W~ are weak * eontinuous, we refer to M as a two-sided dual H-module.
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With 9 a Banach algebra, M a two-sided Banach ¥(-module and n a positive integer,
we denote by C2(2, ) the linear space of all bounded n-linear mappings from A x Y x
.. xqU into M, and refer to these mappings as (continuous) n-cochains. The coboundary
operator A, from O, M) into CF YA, M), is defined by

(AQ) (A07 cney An) = AOQ(AI’ os 3An) + jz-=1( i l)jQ(Ao, cee ,A]_g, AJ—IAh Aj+1, e 9An)

+(—1)""0(4g, ..., An_1)4,. (1)

By convention, C%, M) is M, and A: CYU, M)—~CXYU, M) is defined by (Am)(4)=
Am—mA, for A in ¥ and m in M. For n=0, 1, 2, ..., the range of A in CF*'(U, M) is a
linear space denoted by B2*}Q, 1), the space of (n+1)-coboundaries; and the nullspace
of Ain C%El, ) is denoted by Z%(A, M), the space of n-cocycles. It is only the continuity
conditions which distinguish these concepts from the analogous ones introduced by Hoch-
schild [5] in the purely algebraic context; and, just as in the algebraic case, it can be shown
that A2=0. From this, it follows that B3, M<Z2(A, M) (n=1, 2, ...); the quotient space
ZHU, M)/ B2, M) is denoted by HZ3[, M) and called the n-dimensional (continuous)
cohomology group (of Y, with coefficients in ).

The simplest example of a two-sided Banach module for a Banach algebra ¥ is obtained
by taking M=%, with Am and mA interpreted as products in ¥ when 4, m €Y. The
coboundary of an element B of A(=C%, A)) is the inner derivation A~AB— B4 of ¥,
while Z}(9l, Y) consists of all continuous derivations of A; thus HXA, A) =0 if and only if
9 has no continuous outer derivations.

If 9 is a Banach algebra with centre C, M is a two-sided Banach 9-module and n>1,
we denote by NC, M) the class of all cochains g in CH(U, M) which satisfy

o(dy, o, 4,4, CA;, A1y, ooy A) =Co(4y, ..., A,) =p(4,, ..., 4,)C
whenever 1<j<n, C€C and 4,, ..., A,€Y. By convention,
NCOXN, M) = {mEM: Om =mC for each C in C}.

With NZ2(¥, M) defined to be Z2(3, M) N NCA, M), it follows at once from the co-
boundary formula that A maps NCZQI, M) into NZ7*{ U, M) (n=0, 1, 2, ...). We provein
Corollary 3.5 that, if I is a two-sided dual module for a C*-algebra ¥, then each g in
Z2(N, M) is cohomologous to (that is, differs by a coboundary from) an element of
NZH U, M). It turns out that, for C*-algebras, elements of NZ72 (U, A) are in some respects



230 R. V. KADISON AND J. R. RINGROSE

more easily handled than general norm-continuous cocycles—a point that is illustrated by
our proof, in section 4, that H*(R, R)=0 (rn=1, 2, ...) when R is a type I von Neumann
algebra.

We denote by B(H) the algebra of all bounded linear operators acting on the Hilbert
space H. If U is a C*algebra acting on H and M is a normed closed subspace of B(H),
then M is a two-sided Banach 9-module (with Am and mA the usual operator products)
provided Am€ M and mA €M whenever A€Y and m€M. The cases in which =1,
M=~ (the weak operator closure of A), W =B(H), or M is an ideal in 9, are of particu-
lar interest. If M is an ultraweakly closed subspace of B(H) such that Am€ M, mAd €M
whenever 4 €Y and m€ I, then M is a two-sided dual Y-module: for I} can be identified
with the dual space of the Banach space M of all ultraweakly continuous linear functio-
nals on 1 [3: p. 38, Théoréme 1], with the weak * topology corresponding to the ultraweak
topology, and the mappings m—Am, m—md: M- are ultraweakly continuous, for
each 4 in 9.

With 9 a C*-algebra acting on a Hilbert space 3 and M a two-sided dual9(-module,
we describe M as a two-sided dual normal -module if, for each m in M, the mappings
A—~Am, A-mA are continuous from ¥ (with the ultraweak topology) into 7 (with the
weak * topology). Since operator multiplication is separately continuous in the ultraweak
topology, the examples described at the end of the preceding paragraph are of this type.
Given such a module, and a positive integer n, we denote by C7 (U, M) the linear space of
all n-linear mappings from Y x U x... xA into M which are continuous in each variable
(separately) from ¥ (with the ultraweak topology) into M (with the weak * topology).
We refer to elements of Cp(, M) as normal n-cochains. Bearing in mind the ultraweak-
weak * continuity of the mappings 4—A4m, A-mAd, it is apparent that the coboundary
operator A (again defined by (1)) carries Op(¥, M) into O, M) forn=1,2, ..., and,
as before, A2=0. The same is true when n =0, with the convention that C% (2, M) is M
and (Am)(A)=Am —mAd, for A in Y and m in M. With Z}(H, M) the nullspace of A
in O%L(U, M), and B, M)(=C%* (A, M)) the image under A of Cy(U, M), we have
BLA, My<ZrU, M) (n=1,2,...); the quotient space HL(YU, M)=Z1N M)/BsA, M)
is the n-dimensional normal cohomology group (of U, with coefficients in ).

We observe that Ch(U, M= CHA, M). With ¢ in CLE, M) and A4, ..., 4; 3, A;1,
vy A, in U, the mapping 4,~p(4y, ..., 4,) from Y into I is ultraweak-weak * continuous;
s0 it carries the (ultraweakly bounded) unit ball 9, of 9 onto a subset of 71 which is weak *
bounded, hence norm bounded. Thus g is norm continuous in each of its variables (separately)
and, from [4: p. 70, Exercise 4] (essentially the uniform boundedness principle), g is a
bounded n-linear mapping; so o €CHU, M).
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3. Centre normalisation of cocycles

The main result of this section, Theorem 3.4, is concerned with norm continuous
cocycles with coefficients in a dual module. The first two lemxmas, although stated here in

terms of norm continuous cocycles, are valid in a purely algebraic context.

Lemwma 3.1. If A s @ Banach algebra with centre C, M is a two-sided Banach A-module,
1<k<n and ¢ in Z; (N, M) vanishes whenever any of its first k arguments lies in C, then

o(Ay, oy Ay g, CAy, Agey, ooy A) = Co(Ay, ..y Ay)
whenever 1 <j<k, CEC and A, ..., A, €.
Proof. Since
0=(Ag)(C, 4y, ..., 4,) =Cp(4y, ..., 4,) —p(CA4y, Ay, ..., 4,) +0(C, A, 4, A, ..., 4,)
et 0(Cy Ay, ooy Ay g Ay A)TFo(C, Ay, ey Ay ) A,
= Co(Ay, -, Ay) —0(CAy, 4y, ..., A,),

we have g(C4,, 4,, ..., 4,)=Cp(4,, ..., 4,) whenever C€ C and 4, ..., 4, €Y. In addition,
if 1<j<k,

0 =(Ag)(Ay, ., 4,1, C, 4, ..., 4,)
= Ayo(Ag, oy Ay g, O, A,y oy A)—0(Ay Agy Ay, ooy A, 1, C A, ..y A,)
o To(Ayy ooy Ay gy Ay 1Oy Ay oy A F0(Ay, s Ay 1, OAy, Agygy oy Ay)
t ot (1) oAy, oy Ay, C Ay ey Ay ) Ay

=4{o(dq, ..., 4;_ 4, CA, , 4;, ..., A)—0(4y, ..., A;, CA4, Ay, ooy 4)]

Thus
oAy, o, A; 3,04, A1y, ooy Ay =0(4y, ...y A5, CA; 4, 4, ..., Ay)

=..=p(C4,, 4,, ..., 4,;) = Cg(44, ..., 4,).

Levma 3.2. I A is @ Banach algebra with centre C, M is a two-sided Banach H-module,
n>1 and o tn Z2(U, M) vanishes whenever any of its arguments lies in C,then o ENZL(, M).
Proof. By Lemma 3.1,

Q(AI: ARA] A;‘—p OA;’: Aj+1> s An) = OQ(AIJ veey An)

whenever 1<j<n, CEC and A4,,..., 4,€9. Furthermore, the first » terms in the ex-

pansion of (Ag)(4y, ..., 4,, C) are zero, so
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0=(Ap)(4y, ..., 4, C) =p(4;, ..., Ay, 4,0)—p(4,, ..., 4,)C
=0(Ay, vy Ay_y, C4,)—p(4y4, ..., 4,)C
=Co(4,, ..., 4,;)—p(4;, ..., 4,)C.

Suppose that ¥ is a discrete group and () is the Banach space of all bounded com-
plex-valued functions on Y. We recall [1: p. 515] that U is said to be amenable if it has
a two-sided invariant mean, that is, a linear functional g on (1) such that

(i) u(f)=0 if f€I,(W) and f(V)=>0 for each V in U;

(i) p(fw)=p(wf) =p(f) whenever W€ ¥ and f€ly(Y), where fy(V) =f(VW), wf(V) =
WV

(i) p(f) =1 it f(V)=1 for all ¥ in .

Conditions (i) and (iii) imply that u is a bounded linear functional, with ||u| =1.
For completeness, we give a proof of the following lemma, which is of familiar type.

Lremma 3.3. Suppose that M is a two-sided dual module for a unital Banach algebra
A, G is the multiplicative group of all invertible elements of A, V is a subgroup of G with an
tnvariant mean p, and l,(W, M) ts the Banach space of all bounded M-valued functions ¢
on Y, with |p|| =sup {||p(V)||: VEW}. Then there is a norm-decreasing linear mapping
i from 1.(W, M) into M such that

(i) if 4, BEY, p€l (Y, M) and ¢(V)=Ap(V)B for all V in U, then ji(p,) = Aji(p) B;

(i) if WEY, p€l(V, M) and py(V)=@(VW) for all V in Y, then ji(py)=4A(p);

(iil) g@(p) =m if p(V)=m(EM) for each V in .

Proof. We can identify M with the dual of a Banach space M,, denoting by {m, my)
the canonical bilinear form on M x M,. For each ¢ in I(¥, M) and m, in Mm,, the
mapping V—{@(V), my) is in I,,(‘Y), with norm not exceeding [|@]|||7.]|. Its mean, f(p, my),
satisfies |f(p, my)| <||@||||m«]]; so, for each fixed ¢ in I.(¥, M), the mapping a(p):
m4—>f(g, M) is a bounded linear functional on My, with [|@(g)|| <[l¢||- Thus & is a norm-
decreasing mapping from I(¥, M) into M, and is clearly linear. Since the mean of the
constant mapping V—{(m, my> is {m, my>, (@), myy ={m, m,) for each m, in M, (and
thus fi(p)=m) when ¢(V)=m for every V in Y. From invariance of u, the mean
{gw), my> of the mapping V> (gy(V), my> =(P(VI), my) i Calg), my; 50 Algw) —H(p)-

For 4, B in U and m, in M,, the mappings m~Am, m—>mB from N into JN are
weak * continuous, so m—{AmB, m,) is a weak * continuous linear functional on M.
By Phillips’ theorem [4: Theorem 9, p. 421] there is an element n, of M, such that
{AmB, m,>={m, n,) for every m in . With @ and ¢, as in (i), (f(@), m4) is the mean of
the mapping
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V= Lpy(V), my> = CA@(V) B, my> = {g( V), ny;
80 {fi@1), My = i), ny) = {Afa(g) B, my), for each m, in M,. Thus ji(p,) =Af(p) B.
THEOREM 3.4. If U is a unital C*-algebra with centre C, M is a two-sided dual -

module, n>1 and g €ZL(A, M), thereis a & in C2~YA, M) such that (9 —A&)(4y, ..., 4,) =0
of some 4,€C.

Proof. We shall prove by induction on % that, for k=1, ..., n, there is a & in C7~ X, M)

such that (o —Aé&,)(4q,...,4,)=0 if any one of A,,...,4, lies in C. The theorem then
follows, with £=§,,

With ¥ the unitary group of C, the linear span of ¥ is C; and, since ¥ is abelian,
it has a two-sided invariant mean g [12; p. 79: see also 2; p. 406]. We introduce the norm-

decreasing mapping @, from I,(¥, M) into M, as in Lemma 3.3, and refer to ji(p) as
the mean of p(€l (Y, M)).

With 4,,..., 4,4 in U, the mapping V—>V*(V, 44, ..., 4,,) from ¥ into M is an
element of I,(¥, M), with norm not exceeding K||o]|||4,|)--- | 45-.]|, where K is the bound
of the bilinear mapping (4, m)->Am: A x M- M. Its mean &(A4,, ..., 4,_,) is in M, and

1624y, .., A )| <K o[ Aul--- || Analls
it is clear that &, is multilinear, so & €07 (%, M). Furthermore, since
n-1
(Agl) (Al: ey An) = Al 51(‘421 vees An) + ,-21 ( - l)j §1(A1, oo Aj—-ly A} A§+Iy A7+2: very An)
+(—-1"E (44, ..., 40-1)4,,

it follows from Lemma 3.3 (i) and the definition of £, that (A&)(4,, ..., 4,) is the mean
of the mapping

n-1
I/__)‘41 V*Q(V, A2’ 7An)+ 121 (’_ l)j V*Q(V’Ala :AJ—I; AjAJ-H’ AI+2: ees ,An)

(=1 V*(V, 4y, ..., 4, 1)A, = A, Vo(V, A, ..., 4,)
—~V*AQ)(V, Ay, ..., A)+ V¥Vo(4,y,..., 4,) —o(VA, Ay, ..., 4,)]
=0(dy, ..., 4,)+ A, V¥(V, Ay, ..., 4,) — V*o(VAL Ay, ..., 4,).
When 4, €Y, this mapping is
V—>o0(dy, ..., 4,) + A, V*(V, 4y, ..., 4,) — Ay(VA)*o(VAy, 4o, -y 4y).
By Lemma 3.3 (iii) and (ii) (with W = 4,), its mean (A£,)(4y, ..., 4,) isp(4y, ..., 4,). Thus

(o—A&) (4, ..., 4,) =0 whenever 4, € U; by linearity, the same is true for all 4, in C. This
proves the existence of a suitable cochain &, in C7"XY, M).
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To continue the inductive process, suppose that 1<k<n and a suitable cochain &,
has been constructed. With ¢ the element g — A&, of Z; (3, M),

o(dy, ..., 4,) =0 if any one of 4, ..., 4, lies in C. (2)
By Lemma 3.1,

o(4y, ..., 4,4, CA4;, Ay, .., 4,)=Co(4,, ..., 4,) i 1<j<kand C€C. (3)
With 4, ..., 4,_; in U, the mapping
V—>V*(dy, ... Ay V, Apiys oo Any) 4)

from Y into M is an element of I,(Y, M), with norm not exceeding K ||o|}||4,..-||4n-1l]-
Its mean #(4,, ..., 4,.;) is in T, and

(4, - AnD | <Kllo][[ Aal]--- | 4nsl-
It is clear that % is multilinear, so y€C?~ 1Y, M).
We assert that

(44, ..., A,y) = 0 if any one of 4,, ..., 4, lies in C, (5)
and that

WAy oy Ay, CApy Ay, oy Ay )= On(dy, ...y A, ) if1<j<kand CEC. (6)

For this, note that 7(4,, ..., 4,_;) is the mean of the mapping (4), which by (2) is the zero
mapping under the conditions specified in (5). Furthermore, if 1 <j<k and C€C, the
left-hand side of (6) is the mean of the mapping

V- V*O'(A]_,..., Aj_l, OA]-, Aj+1,..., Ak’ V, Ak+1,..., An—l);
which, by (3), is the mapping
V—=>CV*(Ayq, ., A, V, Apiqy ooy Ay y)-
This last has mean Cy(A4,, ..., 4, ;) by Lemma 3.3 (i).

It results from (5) and (6) that (An)(4,, ..., 4,)=0 if 4,€C for some j such that
1<j<k; for all terms except the jth and (j+1)st in the expansion of (An)(4,, ..., 4,)
are zero by (5), while (6) implies that the two remaining terms are equal to (—1)"'7,
(—1YT, where T = Ay(Ay, ..., A;_4, Ajiq, -, 4,). This, together with (2), shows that

(o+An)(4,, ..., 4,) = 0 if any one of 4, ..., 4; lies in C. (7

We prove next that

(0—(=1*An)(4y, ..., 4,) =0 if A, €C. (8)
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By linearity, it suffices to consider the case in which A4,,, € Y. Now the first £ terms in the
expansion of (An)(4y, ..., 4,) are zero by (5), since 4;.,€C; so

n-1 .
(A"]) (A1> :An) = jZIc ( - 1)"’}7(4‘11, ---:Aj—l: AI AI+15 Aj+2, cres An) + ( - l)nn(Aly -~-7An—1)An'

By Lemma 3.3 (i) and the definition of 5, (An)(4,, ..., 4,) is the mean of the mapping ¢
from U into M which is defined by

QJ(V) = ( - ]')k V*G(Al) ren 7Ak—1’ Achk+1; V’Ak+27 ey An)
n-1

+j=%+1( - 1)] V*O'(Al’ ey Ak;; V, Alc+1, ene ,Aj-1ijAI+1: Ai+23 LEEN) An)

(= 1) V*(Ay, oo A V, Asy oo, Ant) A, 9)
In the expansion of (Ag) (4, ..., Ay, V, Ayiq, ..., 4,), the first k terms are zero, for all Vin
V(=) by (2): s0

0= V*(AO') (Al’ ey Ak! V, Ak+1’ oo ,An)
= ( -— l)k V*O'(.Al, cee ;Ak—l}Ak V,Ak+1, ves ’An)
+ ( - l)k+1 V*G(Ab [RE ] Ak7 VAIC+1;AIC+2: ey An)

n-1

+ Z ( - 1)j+1 V*G(Aly e 7Ak, V: Ak+17 ses 7Af—1’AjAj+l; A7+2’ vee :An)

=k+1
(=) Vo Ay, e Ay V, Agsrs -en s An_1) 4,
This, together with (9), gives
(V) =(=1YV*s(Ay, ..., Ayq, AxAiir, Vs Apas ooes Ay)
+ (= 1Y V*o(dy, ..., iy, AV, Agrqy oy 43)
+ (= 1)1 V*0(Ay, ..., Ay, VA Agrgs s Ay).
Since A, VEV(=(C), it follows from (3) that
Q(V) = (—=1Y{dps, V¥6(Ay, ..., A1, V, Apis, ..., A3y +0(4y, ..., 4,)
—Apir(VAg)*o(dy, oony Ay VApir, Agros o A2)}

By Lemma 3.3 (iii) and (ii) (with W=4,.;), the mean (An)(4,,..,4,) of ¢ is
(—1Ya6(4y, ..., 4,); so (8) is proved.

With &, the element & +(—1)y of CF YA, M), 0 —A&, i =0~AE—(—1)An~=
o—(—1)FAn; thus (o —A&+1)(4,, ..., 4,)=0 if any one of A4,, ..., A;y, lies in C, by (7)
and (8). This completes the inductive construction of &, ..., &,, and so proves the theorem.
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CoROLLARY 3.5. If U is a unital C*-algebra, M is a two-sided dual A-module and n>1,
then Zg(U, M) = Bz(A, M) +NZ: (U, ™).

Proof. With g in ZZ(%, M), let & in C?~1 (A, M) satisfy the conclusion of Theorem 3.4.
By Lemma 3.2, p—AEENZ}N, M), so

o= A&+ (p—ALEBI (A, M)+ NZT AU, M).

This shows that ZZ(U, M)< BX, M)+ NZ2N, M). The reverse inclusion is apparent.

4. Cohomology of type I von Neuman algebras

This section is devoted primarily to a proof that HZ(R, R)=0 (n=1,2,..) when R
is a type I von Neumann algebra. We employ an idea used by Hochschild in showing that
the cohomology groups (with coefficients in any module ) of a full matrix ring M(I")
are all zero. With {e,:j, k=1, ..., ¢} the usual matrix units in My T), and ¢ in
ZMM (T}, M), it can be shown that o =Ag&, where & in C" Y (M (T'), M) is defined by

a
&@y, ..., 8no1) =,§1 €10(€1j,8y, ..., @n_1) (10)

[6: see p. 61 for the case n=1; the general case then follows from Theorem 3.1 and the
preceding discussion]. A similar construction of £ is possible when R is a type I von Neu-
mann algebra and g € NZZ(R, R); but in this context, (10) is replaced by an infinite series,
and suitable convergence has to be established.

Lemma 4.1. Suppose that R is a von Newmann algebra of type 1, (where the cardinal
m need not be finite), C is the centre of R, {E,: j, k€ J} is a self-adjoint system of matriz units
in R with each projection E,; abelian and >;c;E,; =1, and ¢ in Cx(R, R) satisfies o(CA)=
Co(A) for all C in C and A in R. Then, for each b in J and A in R,

’%Eihe(EMA)' (11)

converges in the ultrastrong topology to an element o(A4) of R, and ||o(4A)|| <|lell|4]]-

Proof. Since * isomorphisms between von Neumann algebras are ultrastrongly bi-
continuous, it is sufficient to prove the result for some von Neumann algebra which
is * isomorphic to R; accordingly, we assume that R has an abelian commutant, whence
R'=C. The abelian von Neumann algebra E,,RE,,(=CE,,) has abelian commutant
R'Ey.( = CE,,) and is therefore maximal abelian as an algebra of operators acting on the
range space of E,,.
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We shall show that, if 2 is a unit vector and 4 € R, then

2 Zne@u A<l 4 (12)

From this, it follows that the series >, E,,0(E,;4)x, which consists of pairwise ortho-
gonal vectors, converges strongly to a vector o(4)z such that ||o(4)z| <||¢|||| 4| Thisin
turn establishes the ultrastrong convergence of (11) to a bounded operator a(4), in R, satis-
tying [lo()] < e} 4],

In order to prove (12), let T;=9(E,;4) and z;=E,,T;x. Note that, since E,, is a
partial isometry,

”EJ'hQ(Eth)x” = ”E,,, Tix” =”E,,h Tix” = ”x,” (13)

With F a finite subset of J, the positive normal functional (2ser @, )| Epn RE, has the form
@y| Epy REy, for some y in the range of E,, [3: p. 223, Corollaire). Since, for each j in F,

wz,l E\, RE <wy| B, RE,

it follows that z,~8,y for some §; in the commutant CEy, of E,, RE,,; thus x;=C,y for
some C; in C. With K in R and H in C defined by

K= ZO;:Eh]; H=(ZC’.TO})%;
jeF jeF
we have KK*= 3 C} E,;B; C;=H*E,,,
jeF

and so K has polar decomposition K =HE,,V for some partial isometry V in R. Since
x;=E,, T,x=C,y for each j in F,

]EEFH x,' ”2 :jeZF Bu T2, Cry> =}EZF By 0;‘ (B A} 2, y) =By 9(’%}0‘: By Ay, y)

=By, oKA)z,y> = <Eth(HEhh VA)yz,y) =< Byno(Ew VA)z, Hy)
<llell I 4l Hyl,

since ||z|| =1. Now
| Byl =<B?y,9> = 2 LCF Cyy.p = 3 [ Cyl*= Z [l %|%
jeF jeF jeF

and this, with the preceding inequality, gives

2Nl <lell* 14l
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Since F is an arbitrary finite subset of J,
2=l <lel*ll4l?
which, in view of (13), completes the proof of (12).

LemMma 4.2. Under the conditions of Lemma 4.1, 6(4d)=Ac(I) for each A in R.

Proof. With # the Hilbert space on which R acts, and ¥, the everywhere dense
subspace defined by

Ho={v€W: u=72,rE,;u for some finite subset F of J}, (14)
it is sufficient to prove that

Ko(d)z, yp = {do(I)x, y) (18)

whenever z, y€W, and A€R. Since B, AE,€E,, RE,,= CE,;, there exists C) in C
such that E,,AE,;, =C 4 By, Thus

Ethz Z EhiAEkhEhk= Z lethlm (16)
kel kel
AEy, = jEZ,E"" E;AE,, ZE; E;, Oy, (17)

with convergence in the strong * topology. Formal manipulation gives
lo(ddw,y) = g] {EBpolliyd)x,y) = jeZJ <Ep Q(’Z]Oﬂc B, y)

= Z Z <E7n9(0ﬂcEnk)z:?/> =1§ k%<E,~h Oy 0(B ) x, 4> (18)

jel kel

= kZH EJ(E}h Cu Q(Enk) x,y> = kZEJ<AEkh Q(Ehk) z,y) (19)
=doI)x,y>.

This heuristic argument needs justification in two places; it is necessary to validate
the equality
<Enof ,Z] CnBnz,y) = IZ:J CEme(CiuEn)x,y> (20)

used at stage (18), and the change in order of summation at (19). Since y € H,, there is a
finite subset ¥ of J such that E,;y =0 for all j in J — F;so all termsin whichj €J — F,in (19)
and the preceding line, are zero. Thus j can be restricted to the finite set F, and the change

in order of summation is permissible. It remains to prove (20).
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Let F denote the class of all finite subsets F of J. From (16) and the continuity on
bounded sets of the mapping 7-T7T* in the strong * topology,

( Z OjkEhk)( Z CjkEhk)*': Z Ojkoj*kEhh' (21)
keJ ket kel
Similarly, if E€ F, then

( Z OjkEhk)( Z OjkEhk)*z Z Ojko;;CEhh‘ (22)
kel-F keT-F kET~F

Since K, has central carrier I, the mapping C—~CE,, is a *-isomorphism from C onto
CE},, and is therefore bicontinuous on bounded sets in the strong * topology. This, with
(21), implies the strong * convergence of 3,0, C; to an element C of C.

With ¢ a preassigned positive number, and F in F, let P be the largest projection in
C for which

( 2 CpnCh)Pr=(C— 3 CpnC})Pp> &Py (23)
keJ—F keF .

(so that Py is a spectral projection of >4, r C;Ch). Note that, by maximality of Pp,

(.3 CuOf) (I~ Pp) <&¥I ~Pp);

keJ—~

whence, by (22),

I3 OnBull~Pl=I( 5 Cpubu)( 3 CpBul*(I—Ppl

keJ-F
=1l 2, OOl = Pr)Ep|* <. (24)
It is clear that P, decreases when F increases, so limp s P, (F directed by <) exists in
the strong topology, and is a projection P in C such that P <P, for each F in F. From (23),

multiplying by P,
c- > Ojko;:k) P>gP
keF

for each F in F; whence
0=(C— 3 0 Ch)P =P,
kel

and so limpey Pp=P=0.
By (24),

I KBy Q(k% Co B) %, 9> — k§F<EﬂL o(CuBEy) 2, 4> ' = | (B Q(k e;_F Co B,y |

gl <Eth(kE;_FOjkEhk (I —Pp))z, o> l + l <Ejh9(ke;_F C By, Pr) 2, ?/>I

16 — 712905 Acta mathematica 126. Imprimé le 13 Avril 1971
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< ”9" ”}CEZF CpEne (I — Py) " ”x” ".’/" + | <Ejh9(kezl:_F01kEhk)x: PF?/>[
<elelll=ll Iyl +lelll = CuBulll=llPryli<lel Il tellyll + 140 | Pry ]

for each F in J (at the last step we have used theequality Dy - Cp B =Ep; A2 ke - Brges

which results from (16)). Since limy.;Pr=0, there is an F, in J such that |P,y| <e
whenever F 2 Fy; and

| <E, Q(kgl ConBne) %, y> —keZF $Bin0(Con Bri) %,y |< g 9” "x" ["y” +[1 4l
whenever F = F,. This completes the proof of (20).

Lrmma 4.3. Suppose that R is a von Newmann algebra of type I, (where the cardinal
m need not be finite), C is the centre of R, {E: j, k€J} is a self-adjoint system of matrix units
in R with each projection E; abelian and D e; E,;=1I, n>1 and ¢ in C7(R, R) satisfies

o(CA4,, Ay, ..., 4,) = Cp(4,, ..., 4,)
whenever CEC and A, ..., A,€R. Then, for each h in J and A, ..., 4, in R,

Z jEe.jrh o(Ey; A4y, 4y, ..., 4y) (25)

converges in the ultrastrong topology to an element o(4y, ..., A,) of R. Moreover,c €C7(R, R),
ol <llell, and

0(Ay, ., A) = Ayo(I, Ay, ..., 4,). (26)

If the mapping A,~p(4,, ..., A,) is ultraweakly continuous, for some fixed j and all
Ay oy Ajy, Ajryy oo, Ay, in R, then 4;~0(4,, ..., A,) has the same continuity property.

Proof. For each 4,, ..., 4, in R the mapping 4->p(4, 4,, ..., 4,) is an element g, of
CHR, R), with [lgo|| <|le||||4z]|--|4.]|- By applying Lemmas 4.1 and 4.2 to g,, it follows
that, for all A4;,..,4, in R, the series (25) converges ultrastrongly to an element
o(dy, ..., 4,) of R such that

llotd s, -wes Al < llell[[4sl--- | 4]

and 6(4,, ..., A,)=4,0(1, 4,, ..., 4,). The multilinearity of ¢ is clear, so ¢ €C?(R, R) and
ol <lell-

Suppose that 4;—~p(4,, ..., 4,) is ultraweakly continuous, for some fixed j and all
Ay, oy Ay g, Ajey, o, A, in B, With z and y in the everywhere dense subspace 3, intro-
duced in (14) there is a finite set ¥ (S J) such that y=>;.r B, y, and
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Oy, ), 9> = 5 BBy s, Agr .. 4,) 2,95

so A;,~>{o(4y, ..., 4,)2, y> is ultraweakly continuous. Since the ultraweakly continuous
linear functionals on R form a norm closed subspace Ry of the Banach dual space of R,
and finite linear combinations of functionals w,,: T->{Tz,y>, with , y in H,, form an
everywhere dense subspace of R, [3: p. 38, Théoréme 1], it now follows that 4,~
flo(4y, ..., 4,)) is ultraweakly continuous for each f in R,; that is, 4,~0(4;, ..., 4,) is
ultraweakly continuous.

TEHEOREM 4.4. If R is a type I von Newmann algebra,then HX(R, R)=0(n=1, 2, ...).

Proof. By Corollary 3.5, each element of Z%(R, R) is cohomologous to some ¢ in
NZZ(R, R); and it suffices to prove that p € BHR, R).

In the first place we suppose that R is of type I,,, for some cardinal m, and we select
a self-adjoint system {E,: 4, k€J} of matrix units in R, in which each projection ,; is
abelian and J;.; B, =I. With ¢ in NZ*(R, R) and 4 in J, it follows from Lemma 4.3 that
there is a ¢ in CZ(R, R), with ||o]| <]lo]|, defined by

o4y, ..., 4,) = Z E; Q(Ethn 4;,...,4,). (27)
jeJ

With & in C¢~YR, R) defined by

E(A,, ..., A) =0o(I, 4,, ..., 4,), (28)
&l < o]l <|l¢]|- Furthermore,
(AE) (A, ..., A)= A E(Ay, ..., A,) —E(A, Ay, A5, A,) + E(Ay, Ay A5, Ay, ..., A,) — ...
(1) E(Ay, ., Ay A1 A+ (1) EA,, ..., Ay _1)A,
:]-EZJ {4, E;,0B, Ay, ..., A,) — B o(Byy Ay Ay, Ag, ..., A,)
+Epo(Bry Ay, Ay Ag, Ay, ..., Ay) — ...
(=" B, 0(Brp Ars e, Ang, A1 4,)
(1) Epo(Bryp Ay, ..., An_1)A4,}
= ,-ez, {4, B 0By Ay, ..., A,) = Ep(Ao) (Bry Ay, ..., 4)
+E,0(d4y, ..., 4,)~ By o(Br Ay, Ay, ..., 4,)}

=A10-(I:A2?"'1An)+0(A1:'-':An)—O'(AI’“':An):Q(Al’---’An);
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by Lemma 4.3. We have proved that, if R is of type I, and p ENZZ(R, R), then there is a
& in C?"YR, R) satisfying EN <lle]l, A&=¢.

With R now a general type I von Neumann algebra, and g in NZZ(R, R), let {Q,} be
a family of central projections in R, with sum I, such that each RQ, is of type I, for
some cardinal m(e). With 44, ..., 4, in R,

QaQ(Al’ resy An) =Q(A1Qa5 weey AchL);

from this, it follows that the restriction o| RQ, is an element g, of NZ}(RQ,, RQ,), with
lleall <llell- By the result of the preceding paragraph, there is a &, in C7 " (RQ,, RQ.)
such that ||&,|| <|les||(<[le|) and A&, =g,. With 4,, ..., 4, , in R, define

§(A11 ery An—l) =g Sa(AIQw () An—lQa);

the series converges in strong operator topology, and ||£(4,, ..., 4, )| <|le]||41]]--[|4n=l-
since ||£4(41Qu +-r An1@u)|| <Gl [ 4]l [ An-all <llel | A1ll--[[An-s]]- It is clear that &
is multilinear, so £€C? (R, R). For each o,

Qu E(Al’ aAn-l) =§a(A1 R Q.);

from this, and the coboundary formula, it follows easily that

Qa(AS) (A17 b ,An) = (Afa) (Al ch e ’An Qa) =Qa(A1 Qau e :An Qa) = Q(Al Qa’ e 7An Qcc)
=Q“Q(A1’ 7An)’

for all 4,, ..., 4, in R. Summation with respect to « gives (A£)(4,, ..., 4,)=p(4,, ..., 4,),
so o=Af€BI(R, R)-

THEOREM 4.5. If R is a type I von Neumann algebra, then NZHR, R)< BL(R, R)
(n=12..).

Proof. If 9g€NZ}(R, R), then p€NZZ(R, R), so the arguments used in proving
Theorem 4.4 remain valid. We indicate the minor modifications needed to prove the
present theorem.

If R is of type I, for some cardinal m, p =A& where & in C? (R, R) is defined by (28)
and (27). Since g is ultraweakly continuous in each of its arguments (separately), it
follows from Lemma 4.3 that the same is true of o and hence, also, of £&. Thus £€C% YR, R)
and g =AZ€B(R, R).

With R a general type I von Neumann algebra, we can select the central projections
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Q,, and construct gy, &,, &, just as in the proof of Theorem 4.4. Since g, =p| RQ, 04 is ultra-
weakly continuous in each of its arguments (separately); and it follows from the preceding
paragraph that £, has the same continuity property. With 3 the Hilbert space on which
R acts, let I, be the everywhere dense subspace of vectors # such that @,x =0 for all but
a finite set of a’s. When z, y €,

<§(A1: zAn-l)x;y> = Z“: <§(A1: see ’An—l) an:ZD =g<§a(A1’ Qay v dpg Qa) .Y,

and the summation can be restricted to the finite set {o: Q,2+0}. For j=1, .., n-1,
the mappings
Aj_)AjQu "’Ea(AlQm sy An—lQa)

are ultraweakly continuous; so the linear functional 4,~><{&(4,, ..., 4,.4) %, ¥) is ultra-
weakly continuous on R, whenever z, y€ H,. By the argument used at the end of the
proof of Lemma 4.3, A,~&(4,, ..., 4,_;) is ultraweakly continuous; so €05 (R, R) and
0 =ALEBL(R, R).

CoROLLARY 4.6. If R is a type I factor, Hi(R, R)=0(n=1,2, ...).

Proof. When R is a factor, Z%(R, R)=NZ}(R, R), so the result follows from Theo-
rem 4.5.
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