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A continuous convex function of one real variable is differentiable, except perhaps at  

a countable subset of its interval of continuity.  The present paper  deals with generaliza- 

t ions of this e lementary s ta tement  to convex functions which are defined on some Banach  

space E,  and continuous in the norm topology, with "differentiable" replaced either by  

"Frdchet  differentiable" or "Gateaux  differentiable". Since for E = L ~ ( 0 , 1 )  the very  norm 

funct ion/ (x)  = Ilxll for  x in E, which is convex and continuous on all of E, is nowhere even 

G~teaux differentiable (Mazur [13]), this amounts  to a classification of the category of all 

Banach spaces depending upon whether  certain differentiability s ta tements  hold. Therefore 

we say tha t  a Banach space is a strong di//erentiability space (SDS) if the following theorem 

holds for it. 

T ~  o ~  M. (Strong Differentiability Theorem.) Every continuous convex/unction is 

Frdchet di//erentiable on a dense G~ subset o/its domain o/continuity. 

I f  the following s ta tement  holds for a Banach space, we call it a weak di//erentiability 

space (WDS): 

T ~ E  OR~ M. (Weak Differentiabili ty Theorem.) Every continuous convex /unction is 

Gdteaux di//erentiable on a dense G~ subset o/ its domain o/ continuity. 

Some general remarks  on these definitions are in order here. First, by  a continuous 

convex function / on the Banach space E, we mean  a funct ion which is defined and convex 

on all of E,  with values in ( - c~, co ], and finite valued and continuous at  least at  some point  

of E. Then the set of all points of E where / is finite valued and  continuous is a non-empty,  

open, and convex subset of E which we call the domain o/ continuity of / .  I t  is equal to the  

interior of d o m / ,  the e//ective domain of / ,  defined by  

d o m / =  {x E E:/ (x)  < ~ }. 
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For convenience, we assume that the values of / on the boundary of dom/(which does not 

concern us here) are defined so that  / is lower semicontinuons on all of E. 

A second (and obvious) remark is that  every SDS is a WDS. The converse is false: 

Phelps [16] has shown that  l 1 is not an SDS, but it follows from Mazur [13] (cf. Theorem 2: l 1 

is separable) that  it is a WDS. Also, it is clear that  a space that is isomorphic to an SDS 

(WDS) is itself an SDS (WDS). Actually, if E is an SDS (WDS) and ~' = T (E)  for some 

continuous linear transformation T (alternatively: F is isomorphic to a quotient space of 

E), then F is also an SDS (WDS), cf. Proposition 4. 

Our third remark concerns the character of the exceptional set, on which the continuous 

convex function / does not have to be differentiable. In  the elementary case E = R this set is 

characterized by the word "countable", whereas in the strong and weak differentiability 

theorems stated it is a "meager (i.e. first Baire category): Fr  set. "Countable" implies 

"meager Fr and the converse is false even for E = R  as shown by the Cantor set. Thus 

there is undoubtedly room for some improvement in the statements of the strong and weak 

differentiability theorems. On the other hand, they have the functorial property expressed 

by Proposition 4 and quoted above, and in the case of the strong differentiability theorem 

there is also the fact that  if a convex function is Frgchet differentiable on a dense subset of 

some open set, then the set of all points in this open set where the function is Fr~chet dif- 

ferentiable, is a Go set (Lemma 6). 

After these general remarks we are now ready to present the main results of this paper. 

TH ]~ o R E ~I 1. I / E  is a Banach space which can be given an equivalent norm, such that the 

corresponding dual norm in E *  is locally uni]ormly rotund, then E is a strong di/]erentiability 

space. I n  particular, every Banach space which has a separable dual space, and every reflexive 

Banach space admitting an equivalent Fr~chet di]/erentiable norm, is a strong di//erentiability 

space. 

T~EOREM 2. I / E  is a Banach space which can be given an equivalent norm, such that the 

corresponding dual norm in E* is rotund, then E is a weak di//erentiability space. I n  par- 

ticular, every separable and every reflexive Banach s p a c e - i n  ]act, every weakly compactly 

generated Banach s p a c e -  is a weak di//erentiability space. 

The first parts of both these theorems are proved in Section 2, after some introductory 

material (which has been considerably generalized in [5]) is presented in Section 1. The 

second parts of the two theorems are renorming statements, which in the case of our Theo- 

rem 2 is due to Amir and Lindenstrauss [1, Thm. 3]. The second part of Theorem 1 is proved 

in Section 3 of this paper. 

Historically, the first result of the above kind for infinite dimensional spaces was the 
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"smoothness theorem,' of Mazur [13], which states essentially that  every separable Banaeh 

space is a WDS. Lindenstrauss [11] prayed t h a t  a reflexive Banach space admitting an 

equivalent Frdchet differentiable norm is an SDS. Actually, in  his formulation "dense G~" 

is replaced by "dense", which in view of Lemma 6 below.is no restriction. Lindenstrauss' 

methods are rather different from ours. 

B y  duality, the differentiability theorems for a Banach space E correspond to "varia- 

tional" theorems on the dual space E*. We state here just the one corresponding to the 

strong differentiability theorem, because it seems more interesting with regard to applica- 

tions. 

THEOREM 3. I]  E is an SDS and F. is a norm lower semicontinuons (but not necessarily 

convex)/unctional on the dual space E*, with values in ( - c~ , c~], such that 

inf($'(y) - ( x , y )  : y e E*} > - ~ (1) 

/or all x in some open neighborhood U o / 0  in E,  then there is a dense G~ subset G c  U such that 

to each x in G there is a unique solution y(x) in E* to the variational problem 

inf (F(y)  - (x ,  y )  :y e E*} = F(y(x))  - (x ,  y(x)~. (2) 

Moreover, y(x) has the property that i / t he  sequence (y~} c E satisfies 

lim (F(yn) - (x ,  y~) } = F ( y ( x ) ) -  (x,  y(x))  

then y ~ y ( x )  in norm. Also, x ~ y ( x )  is a norm to norm continuous/unction on G, and i/  H is a 

dense subset o/ U on which it is possible to define a norm to norm cont inuous/unct ion y(x) 

satis/ying (2), then H c  G. 

This result is proved in Section 4, and applications are given to generalize certain kinds 

of variational problem s in Hilbert space introduced by Moreau [14] and called "proximal  

mappings" by him. These include as special cases the problems of finding nearest and far- 

thest points in closed, generally non-convex subsets of a Hflbert space. In a different setting, 

using rather unrelated methods, the farthest point problem has been treated by Edelstein 

[8], and with methods more related to those of this paper, by the author [2]. 

Many functionals F encountered in classical variational calculus are of the form 

F(y) = f :  fit, y(t), ~(t)) dr, 

where ] is a positive valued function, and in  such case the lower semicontinuity of F follows, 

generally speaking, from Fatou's lemma. We will not elaborate here on the significance of 

3 -  682903 Acta mathematica. 121. Imprim4 le 17 septembre 1968. 
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Theorem 3 for the problems of classical variational calculus, but let us just say tha t  it is a 

s ta tement  of an unconventional kind insofar as it does not say anything about necessary 

or sufficient conditions for the existence of solutions of the "individual variational problem" 

inf (F(y):yEE*} =F(y(O)) but  is a s ta tement  on a whole family of "linearly per turbed" 

problems (2), with x as a perturbation parameter .  I t  says then, tha t  if the variational 

question is meaningful in the sense of (1) for all x in some neighborhood of 0 in E, then for 

many  such x a solution of (2) does indeed exist, in a strong sense. 

1. Fr~chet differentiability and duality 

We will use the notations and concepts introduced by  Fenchel for convex functions. 

For  statements not proved here we refer in general to Brondsted [6] or Moreau [15]. 

Given a function / on a Banach space E (or E*), with values in ( -  co, ~ ] ,  we will 

always assume that  it is lower semieontinuous in the norm topology. The function /* 

defined on E* by  

/*(y) =sup  ((x, y~-/(x):xEE} for all y in E*, 

i s  called the dual/unction of/ .  The function/* is lower semicontinuous in the weak* as well 

as in the norm topology, convex, and with values in ( - ~ ,  col if / ~ + co, which we will also 

a s s u m e .  

I f  / is defined on E* with values in ( - ~ ,  ~ ] ,  then/*  is defined correspondingly on E, 

and in either case/** = (/*)* is the largest weak (resp. weak*) lower semicontinuous convex 

minorant  of /. Hence/** =/in the important  ease when / itself is convex (and, if defined 

on E*, weak* lower semicontinuous). I f  / =/** and g =g**, then obviously /~<g if and only 

i f /* ~>g*. 
The above concepts and statements are appropriate generalizations of counterparts in 

a more primitive theory of convex functions on the positive hairline. We state and prove 

here one result from this theory. Let  1 ~ denote the class of convex and lower semicontinuous 

(i.e.: left continuous) functions 7 from [0, ~ )  to [0, ~ ] ,  with ~(0) =0.  The operation ~ y *  

defined by  
r* (x)=sup  (tx-r(t):t>~O) for all x~>0 

is an order-inverting involution on F. Put  

F v = ( ~ E F :  ~(t) > 0  if t>0},  

We then have the following lemma. 
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LEM~tA 1. y is in Fv i /and only q y* is in rL. 

Proo/. Suppose that  y is in F\Fu. Then y(e) =0  for some e >0.  Define the function Yr 

in F by 

71(x)=0 if 0<x~<e, yi(x)= +oo if x>e. 

Clearly y*(x) =$x for all x>~0. 

Now 7<F~, so that  7*~>y~. But  this means that  F* is in r\rL. Hence y is in ru if y* is ir~ 

FL, and the converse follows by reversing the argument. 

Lemma 1 is used together with the following consequence of H61der's inequality. 

L~,MMA 2. For any 7 in F, the/unction 7(llxll) ge/ined on E and the/unction r*(llyll  
de/ined on E with the corresponding norm,/orm a pair o/mutually dual/unctions. 

We can now state and prove the main result of this section. 

PROPOSITION 1. The/oUowing three statements about a/unction / (norm lower sera~o~r~. 

tinuoua, but not necessarily convex) and its dual/un,~tion/*, relative to an element b o / E  and an 

element a o/E*, are equivalent. 

(i) /or some rErv ,  t(x)>~/(b)+(x-b, a)+•(Hx-b]t ) /or all xEE. 

(ii) /or some ~* eF~, /*(y) <./*(a) + (b, y - a )  + ~,*(lly-a]]) /or all yE E*. 

(iii) dom ]*= {y E E* :/*(y)< oo) is radial at a; and i / l im ( ( x~, a)-](x~))=/*(a) then 

x , ~ b  in norm. 

In all three cases the relation/*(a) =(b, a) - /(b) holds. The roles o / E  and E* in these state- 

ments may be reversed. 

Proo/. In  view of Lemma 1 and Lemma 2, it is a straightforward application of the  

definition of the dual function (cf. Brondsted [6], Theorem 4.1) to check that  (i) implies 

(ii). Applying the same argument to (ii), one gets 

/**(x) >~(b, a)- /*(a)  + ( x - b ,  a)+7(l[x-bi]) for all xE E. (3) 

Since /~>/**, (i) would follow if one could show that /*(a)  =(b, a) -/(b). We will do so, but~ 

first we show that  (iii) follows. If {xn}c E satisfies 

]*(a) - ((x,, a) -](x,)) =en, lim en =0  

then /**(xn) <. <b, a) -/*(a) + <x~-b, a) +e~, 

and hence by (3) I]x~-bl] ~<7-1(r,)-~0 as n-~ oo, 
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since en ~>0 for all n and 7 is in F U. This proves that  (fi)implies (iii), because the first par t  of 

(iii) is a consequence of (ii) and the definition of Ft.. Also, we have shown that,  supposing 

that  any  one of (i), (ii), or (iii) holds, then there exists a sequence {xn}c E tending to b in 

norm such tha t  

lim ((xn, a)-[(xn))=/*(a). 

Using the lower semicontinuity of ], we deduce 

(b, a) -](b) >~]*(a). 

But the opposite inequality follows by  the definition of f, hence 

/*(a) = (b, a~ -/(b) (4) 

is a consequence of any  one of (i), (ii), or (iii). Thus (i) follows from (ii), as asserted. I t  re- 

mains to prove that  (iii) implies (ii). By  the first s ta tement  of (iii), the set 

D ={yeE*:/*(y) <l*(a) + 1} 
is radial a t  a, i.e. 

5 n ( D -  a) = E. 
n = l  

Since D is also closed and convex, it follows from Baire's category theorem tha t  D is in fact 

a neighborhood of a. Consider the function 7" defined by  

7*(0 =sup  {/*(a+tz)-l*(a)-(b, tz): zEE*, [[zt[ =1}, for t>~0. 

Because /* is bounded on a neighborhood of a, 7* is bounded near t=0 .  Furthermore,  

7*(0) = 0  and, nsing (4), 

7*(0 =sup  {/(b)+/*(a +tz)-(b,  a+tz>:llzll =l}~>0 for all t~>0: 

As 7* is obviously a convex and lower semicontinuous function, it follows tha t  7* is in F, 

and, except for the  fact tha t  we have still to prove tha t  7* EFL, (ii) holds for this function. 

.We know tha t  for some s > 0 and M < co 

7* <~Tx + M, or, equivalently 7(x) >~ex-M for  all x~>~0, 

where 71 is the function used in the proof of Lemma 1. Assume now that  ?* ~FL, i.e. that  

for some sequence {yn} c E* such tha t  y , ~ a  in norm, and some ($ > 0 we have (with Yn +- a for 

all n) 

l(b) + l*(y.)-(b, y.~ ~> ~ l l y . - a l l '  

B y  definition, we may  then find a sequence {bn} c E such that  

<b., y.> -l(b.) >~ I*(Y.) - 51IY. - a l l / 2 .  
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Hence (bn, a) - /(bn) ~ (b, a)  - l(b) + < b n - b ,  a -  yn) +allY~-all/2. 

I f  we knew tha t  {bn} were bounded, this would imply a contradiction proving tha t  ~* is in 

FT., because the above relation would then imply that  {bn} satisfies the conditions of case 

(iii), and b ~ b  in norm would follow. Then for some n one would get IIb~ -b l l  <~[2 implying 

(bn, a~ - /(bn) > (b, a~ - /(b ) = /*(a) 

which is impossible. What  we know now about ~ enables us to use (i) in the form 

/(bn) >~ /(b) § ( b n - b ,  a~ +ellbn-bll  - M .  

Together with the relation defining {b~} this yields 

ellb~-b]l <~M-(](b) + /*(y~)- (b ,  Yn) ) + ( b ~ - b ,  y , - a )  §  all/2, 

proving that  {b~} is bounded, for 

Hbn-bll <.2(M+he/4)/e if Ily~-all ~<e/2. 

Here ends the proof of Proposition 1. 

Sta tement  (ii) in Proposition 1 is usually formulated as "/* is Frdchet (or stronqly) 

di//erentiable at  a in E* with Frdchet di//erential b in E*. Correspondingly, we will reformu- 

late (i) as " / i s  strongly rotund at  b in E with respect t o a  in E*". 

Clearly, Proposition 1 contains all tha t  is needed to deduce Theorem 3, except for its 

last sentence, from Theorem 1. Proposition 1 can be considered as a careful reformulation 

of certain older statements by  ~mulyan [17], and it will also be used in the next  section to  

derive the first par t  of Theorem 1. We note here the following Corollary of Proposition 1. 

COROLLARY 1. I / / *  de/ined on E* is Frdchet di//erentiable at a with Frdchet di//erential 

b in E**, then b is actually in E.  

Proo/. The funct ion/ ,  initially defined only on E, is extended to all of E** by / (x)  = oo 

if x E E**~E,  and Propogition 1 is applied to E** and E*. Since by  (iii) b is the limit in norm 

of a sequence of elements in d o m / c  E, and E is norm closed in E**, it follows tha t  b is in E.  

2. Proof of  the differentlability statements 

We assume tha t  the convex function / is defined on the Banach space E and tha t  the 

domain of continuity of ]"is ~ non-empty open convex subset C c  E. We will see tha t  we 

m a y  restrict ourselves to  consider ~such functions / tha t  in addition satisfy a Lipschitz 

condition, and C = E. Let  the convex functions gn be defined on E by  
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and ~he functions In by 

gn(~) =nll~ll + n  for all x in E, 

In=tAg. n = l , 2  . . . .  

meaning the greatest convex minorant of the functions I and gn. The relation between / and 

the [ ,  is given by this lemma. 

L~. M M A 3. For each x in C there is a number ~ > 0 and an integer 2V such that 

/.(y) =l(y) lot IlY-~II <~ and n >  N. 

Proot. By continuity, there is a ($ > 0 such that  

f ( ~ ) -  1 <1(~) <1(~) + 1 for Ilz-~ll <2~. (5) 

Suppose that  y satisfies I ly-xll  ~<~. There is then (at least) one exact affine minorant 

of I at y, 

~(z) = / (y )+  ( z - y ,  a )</ ( z )  for all z in E. 

:Here a is an element of E*, and the continuity relation (5) together with Ily-xll  ~<($ shows 

tha t  Ila[[ ~<2/~. Consider the following upper estimate for V(z). 

90(z) =/(y) + < x - y ,  a> - [ (x )  + [ (x ) -<x ,  a) + <z, a)  <~[(x) + 21[xll/($ + 2HzH/($. 

:Let h r be an integer greater than both 2/($ and [(x)+211xll/~. Then 

~0~<g n for n ~>N. 

:In this case, 90 is a convex minorant of both / and gn, thus 

In(y) <<- l(y) = qp(y) <-< In(y), 
proving Lemma 3. 

The functions/n are defined on all of E, and it follows from their definition that  

IIl~(~)-l~(y)ll < ~ l l ~ - y l l  for an �9 and y in E, 

i.e. 1~ satisfies a Lipschitz condition. I f  we can prove the first part  of Theorem 1 (Theorem 

2) for such functions, then we can get a sequence of dense G0 subsets of E, and the intersec- 

t ion of all of these is by the Baire category theorem still a dense G~ subset of E. Finally, 

take the intersection of C with this last dense Go set; the result is a dense Go subset of C, 

and by Lemma 31 is Frdchet (GAteaux) differentiable at all points of this subset. Thus 

there is no loss of generality to assume that  / is Lipschitz, hence continuous on all of E. 

Suppose now that  ]]xlll, for x in E, is an equivalent norm on E, whose corresponding 
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dual norm we denote by IIyH1, for y in E*. By Lemma 2 we can define a pair of mutually 

dual functions h and h* by 

h(x)= �89 for all x in E, h*(y)= �89 for all y in E*. (6) 

Since / is Lipschitz, the open sets Fn defined by 

Fn= { x : /(x) - l ( h(p( x + y) ) - 1 )  > sup Q(z) , l h(p(z + y) ) : z E E)  for some y E E and p > O} 

are dense in E, thus by Baire's theorem 

F = N  F~ 
rt=l 

is a dense G~ subset of E. We will show that  under suitable hypotheses on h (or rather: on 

h*) the function / is Frdchet (G~teaux) differentiable at each point of F. 

By translation, it suffices to prove that  / is Frdchet (G&teaux) differentiable at 0, 

assuming this point to be in F. Furthermore, we may assume that  

/(0)~=0, /(x)>~<x, a> for all x in E, with some fixed a in E*. 

By duality, this is equivalent with 

/*(a) =0, /*(y) >~0 for all y in E. 

Considering this, the statement 0 E F shows that  there is a sequence {Yn} c E and a sequence 

{p=}c (0, r162 such that  

/ ( z ) < l  (h(p~(z+y~))-h(p~yn)+ 1) 

By duality this implies, denoting pn y~ by b~, 

pj*(x)  >7 - <b~, x> + h*(x) + h(b~) - 1 
n 

In particular, for x = a, 

for all z in E. 

for all x in E*. 

1 
0 ~ - <b,, a> + h*(a) + h(bn) - - .  

n 

Adding the last two inequalities to the inequality 

0 >~ 2((bn,(x + a)/2> - h(bn) - h*((x -4- a)/2)) 
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which derives from the definition of a dual function, we get 

pn/*(x) >~h*(x) +h*(a) -2h*((x+a)]2)-  2 for all x in E*. (7) 
n 

Up till now we have not used any  special properties of the equivalent norm HY]]I on E*. 

Suppose now tha t  this norm is rotund. Then it follows from (6) and (7) tha t  if x # a,/*(x) > O. 

But  for / not to be G~teaux differentiable at  0 in E means tha t  for some x # a, 

/(z) >~ <z, x> for all z in E 

which by  duality implies/*(x) =0.  Hence we have proved the first par t  of Theorem 2. 

In  the corresponding par t  of Theorem 1 we may  assume that  IlyH1 is a locally uniformly 

rotund norm on E*. We will see tha t  the conditions of case (iii) in Proposition 1 are satis- 

fied, w i t h / ,  E interchanged with [*, E* respect ively--a  permissible arrangement  since / is 

convex- -and  with 0 in E, a in E* instead of a in E*, b in E respectively. Thus, suppose 

tha t  

lira/*(xk) = - / ( 0 ) = 0  

for some sequence {xk}c E*. Given e > 0 ,  choose first n so large tha t  2In <e/2, and after- 

wards choose N so tha t  

/*(xk)<~/2pn if k>--N 

Together with (6) and (7) this shows tha t  

�89189 i fk~>N.  

Since the equivalent norm is locally uniformly rotund it follows in a straightforward w a y - -  

the details are in [3] that  x, ,~a in norm. This, by  Proposition 1, proves that  / is Fr6ehet 

differentiable at  0 in E, because dom / =  E as / is supposed to be Lipschitz. Thus the first 

par t  of Theorem 1 is established. 

3. Proof of the renorming statements of Theorem 1 

The following result was communicated orally by  Professor R. R. Phelps to the author. 

With his permission, we reproduce it here. 

PROrOSITIO~r 2. Let E be a reflexive Banach space which has an equivalent Frdchet 

di//erentiable norm. Then there exists another equivalent norm/or E, such that the corre- 

sponding dual norm on E* is locally uni/ormly rotund. 

Proof. Let  Ilxlll be the equivalent, Fr6chet differentiable norm on E and define g by  

g(~) =�89 for all x in E. (8) 
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By the deep Theorem 1 of Lindenstrauss [12], there is a continuous linear injection T of E* 

into co(I ), where I is some index set, uncountable if E isnonseparable.  On c0(I), Day  [7] 

has constructed a functional 1o, which is well known to be an equivalent, locally uniformly 

rotund norm. We now define the convex function h* on E* by  

h*(y) =g*(y) +p2(Ty) for all y in E*, (9) 

and we will show tha t  I/~7(y) is an equivalent, locally uniformly rotund norm for E*. This 

proves Proposition 2, for ]/~7(y) is the dual norm corresponding to the equivalent norm 

V~(x)  on E,  where h = (h*)*. I t  is evident tha t  2V~7(y) is norm equivalent, since T is 

continuous. Therefore, it remains to show tha t  if a is a fixed element of E* and {xn} c E is 

such tha t  

lira {h*(xn) +h*(a)-2h*((xn+a)/2)} = 0  (10) 

then xn-->a in norm. 

Because of (9) and convexity, the relation (10) splits into two: 

lim {g*(x~) § -2g*((Xn § = 0  (11) 

and lim ~10~(Txn) § -210~((Txn § Ta)/2)} =0.  (12) 

In  fact, the contents  of each curly bracket  a re  nolmegative. Since 10 is locally uniformly 

rotund, (12) implies tha t  Tx,~--> Ta in the norm of co(1 ). As a preliminary, we claim tha t  

xn--)'a in the weak topology of E*. Since (10) shows tha t  {xn} is bounded, this amounts to 

showing tha t  if a subsequence is weakly convergent to an element b in E*,  then b =a .  

Reindexing if necessary, we may  suppose tha t  xn--+b, weakly. By the  continuity of T one 

gets Tb = Ta, hence b =a from the fact that  T is one to one. 

Having established the weak convergence of x~ to a, we now use relation (11) together 

with the strong rotundi ty  of g* at  a to deduce tha t  

lim sup {2g*(a) § x n - a )  + y(]]x, -al l  ) -2g*((x~ § <~0 

with some c in E (the existence of c follows from reflexivity) and some ~ in Fv. Now g* is, 

by  its definition, weakly lower semicontinuous, therefore 

lim r(ll x" - a l l ) < 0  

follows, and from it tha t  xn~a  in norm, since ~ is in Fv. Proposition 2 is proved. 

To complete the proof of Theorem 1 it remains to prove the following statement.  

PROPOSITION 3. Let E be a separable Banach space whose dual space E* is also separ- 

able Then there exists an equivalent norm/or E such that the corres10ondinfl dual norm on 

E* is locally uni/ormly rotund. 
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Proo/. We will use the following lemma, proved by  Klee [10] as a quite nontrivial 

extension of results of Kade6 [9] that  are in themselves rather  deep. 

LEMMA 4. (Klee [10], Corollary 1.5.) I / E  is as in Proposition 3, then there exists in 

equivalent norm ]lxlll /or x in E, such that the corresponding dual norm [lYH1/or y in E* is 

strictly convex and has the property that {Yn} c E*, y e E*, [[YnH ~ IlY]], and yn--->y in the weak* 

topology implies y,-~y in norm. 

We use Klee's norm to define g by  (8) and h* by  (9). Note tha t  in this case there 

is an elementary continuous linear injection T of E* into c 0, given by  

Ty = {(x~, y)}, 

where (x~} is a sequenee with a dense span in E, such tha t  Ilx~[I-~0. Clearly, T is also eontin- 

uous from the weak* toplogy of E* to the weak topology of c 0, for if ~ = (~n} is a eontinuous 

linear functional on c o (i.e.Y.[~n[ < oo) then 

is a weak* continuous linear functional on E*. Therefore, h* is weak* lower semicon- 

tinuous, so tha t  it is the dual of the function h =h**, defined on E (this was obvious in 

the ease Of Proposition 2). 

Suppose now that  a sequence {xn}~ E* satisfies (10). Then (11) and (12) follows, and 

as before tha t  xn-~a, this t ime in the weak* topology on E*. But  then we can apply Lemma 

4, because (11) gives 

(1/4) (llxnlll-][a][1) ~ <g*(xn)+g*(a) - 2g*((x n §  

in view of the fact that  

1 r E * ~  g*(Y)=2 [lYI[~ for all y in 

Hence Xn-+a in Klee's norm, and of course in any  equivalent norm on E*. Thus the norm 

Ilxl12 = ~ defined for x in E satisfies the conditions of Proposition 3. 

4. Variational results 

We begin this section by  completing the proof of Theorem 3. As remarked before, 

Theorem 1 and Proposition 1 together prove all except the last paragraph of Theorem 3. 

Throughout the proof we suppose that  / is a convex function with a non-empty domain of 

continuity C c  E, and tha t  G c  C is the set of all points at  which / is Frdchet differentiable. 
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The Frdchet differential (an element of E*) of / at  x in G will be denoted by  D/(x). The 

following three lemmas complete the proof of Theorem 3 and clarify other parts  of the situa- 

t ion as well. 

LEMMA 5. The mapping x ~  D/(x) o /G into E* is norm to norm continuous. 

LEMMA 6. I / G  is dense in C, then G is a dense Go set. 

LEMMA 7. I] it is possible to define a norm to norm continuous/unction x-~y(x) /rom a 

dense subset H c C into E*, satis/ying 

](x) +/*(y(x))=(x,  y(x)) /or all x in H, 

then H c G and y(x) = D/(x) /or all x in H. 

Remarks. From the nature of the proofs below it is clear tha t  the roles o f / ,  E and/* ,  

E* in these three lemmas can be reversed. Lemma 5 is a special case of [5, Thm. 4]. 

Proo] o/Lemma 5. Let the sequence {x~} c G converge in norm to x in G. Because of the 

relation 
/(u)>~/(x~)+(u-x~, D/(x~)) for all u in E 

and  the continuity of / on C, the sequence {D/(xn)}c E must  be norm bounded. By the 

Fr~chet differentiability of / at  x, there is a ~ in FL such tha t  

/(xn) >>-/(~) + ( ~ - ~ ,  n/(.)) +r(]l.~-xll). 

Also, the definition of Fr~chet differentiability (cf. the remark after the proof of Proposition 

1) and tha t  of dual function show that,  for any u in G, 

/(u) =(u,  n/(u))-]*(D/(u))>~(u,  D/(z)~-/*(D/(z)) for all z in G. 

Take  the last two relations and combine them: 

/(x) >~ (x, n/(xn)) - /* (n / (x , ) )  >1 ( x - x ~ ,  D/(xn) - D / ( x ) )  +/(x) +y(l[x~- xll)- 

'The convergence x n ~ x  and the boundedness of {D/(x~)} now shows tha t  the limit of the 

second par t  above as n ~ o o  is/(x).  Thus we may  apply Proposition 1 t o / *  a n d / = / * * ,  

.concluding that  D/(xn) ~ D/(x) in norm. 

Proo/o/Lemma 6. Let Gn be the set of all x in C, such that  for some (~ > 0, the ball 

B(x, (~) with center at  x and radius ~ satisfies the relation 

sup D/(y) - D/(z)l I : y, z e G n B(x, ~) < - .  
n 
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By Lemma 5, G = N Gn = F, 
n ~ l  

and so it suffices to prove tha t  / is Frdchet differentiable for each x in F, for the sets Gn are 

obviously open. Since E* is complete, there is for each each x in F a unique element D](x) 

in E* such tha t  for each n there is a ~ > 0 with the property 

Consequently 

]] D / ( y ) -  D/(x)] 1 <~ 1_ for all y in G N B(x, ~). 
n 

 lly-xlt /(y) <~ /(x) - ( x - y ,  D/(y) > <~ /(x) + ( y - x ,  D/(x) > + n 

for all y in G N B(x, ~). This proves that  / is Frdchet differentiable at  x with Frdehet differen- 

tial D/(x), since G is dense in C by  hypothesis. 

Proo/o/Lemma 7. The following relation holds for all x, z in H: 

/(z) ~</(x) - < x - z ,  y(z)> =/(x) + < z - x ,  y(x)> + < z - x ,  y(z) -y(x)>.  

Let  x be fixed and z vary  over H. There exists then a non-decreasing function e(t)> 0 for 

t > 0, finite valued for at  least some t > 0, and with right limit zero at  0, such tha t  

y(z)-y(x)  < (llz-xll) for all z in H. 

Let  ?(t) be the largest minorant in F of the function te(t). Obviously, ~ is in FL and 

/(z) <~/(x)+(z-x,  y(x)> § for all z in H. 

But  H is dense in C, hence the above relation holds by  continuity for all z in C, proving 

tha t  / is Frdchet differentiable at  x with Frdehet differential y(x). 

The remainder of this section will be devoted to applying Theorem 3 to generalize 

Moreau's concept of proximal mapping in a Hilbert space. Thus E will be a real Hilbert, 

space, and by  "misuse of language" we put  E* = E, with (x, y> denoting the inner product, 

of x and y in E. Define h by  

h(x)=�89189 2 for all x in E. 

The function h is convex, continuous, and Frdchet differentiable, and Dh(x)=x for all x in 

E. Now let g be any  ( -  ~ ,  ~]-valued,  lower semicontinuous functional defined on E, such 

tha t  

F = h + g  
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satisfies condition (1) of Theorem 3. The resulting solution y(x) to the variational problem 

(2) is then denoted by  

proxg(x) =y(x) ( = D F * ( x ) )  for all x in G, 

and  (2) can be rewritten 

�89 l[ proxg (x) - x [[~ + g(proxg (x)) = in/{�89 l[ Y -  x II' + g(y): y 6 E}. (13) 

This corresponds to the definition given by  Moreau in the case when g is a convex function. 

I n  tha t  case, the mapping proxg is defined on all Of E and is a contraction, a/or t ior i  con- 

tinuous. In  our more general case, it need not be possible to define proxg continuously on 

all of E, and if it is, proxg does not have to be a contraction. To illustrate the last asser- 

tion, put  g = - h / 2 ;  then F* = 2 h  so tha t  proxg(x) = 2 x  for all x in E. 

To give an example of an essentially non-continuous proximal mapping, let K be a 

norm closed, non-convex subset of E and define g by  

9(x) = 0 if x is in K ,  g(x) = oo otherwise. 

Since K is closed, g is lower semicontinuous. From (13) we see that  proxg(x) is in this case 

the nearest point in K to x in G, i:e. proxg is just the metric projection from G onto K. By 

Theorem 3, G is a dense G~ subset of the entire I-Iilbert space E, and by  Lemma 7, K c  G, ~ 

since the projection is obviously defined and norm to norm continuous on K. But  if it is 

possible to define the projection continuously on all of E, then by  [4], K must  be convex, 

even if continuity is interpreted in the sense "from norm to weak topology". 

Finally, we give an example of a proximal mapping which strangely enough turns out 

t o  define an antiprojection, i,e. a mapping into farthest points of a given set. Suppose tha t  

K is norm closed and bounded in E, and define g by  

g(x) = -Hx][ ~ if - x  is in K, g(x) = oo otherwise. 

Rewriting (13) for this case, we  get tha t  - p r o x g ( x ) E K  and 

�89 II - proxg (x) - x l[ ~ = sup {1 II y -  x ll2: y 6 K}, 

i.e. x-+ -proxg(x) is the mapping tha t  takes each point x in G into the unique point in K 

tha t  lies farthest from x. I t  also follows from Theorem 3 tha t  this mapping is norm to norm 

continuous, and that  if 

{y~}cK and lim [[y~-x][ =sup  { [ ]y -x  H :y6K},  

then y~-+proxg(x) in norm:  One is won t  to think of such properties as characteristic of 

nearest point mappings onto closed convex sets. We have here shown tha t  they hold much 

more generally, provided one excludes some meager F~ set depending on the case. 
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5. Additional remarks 

The following property of strong (weak) differentiability spaces was mentioned in the 

introduction. 

PROFOSITIO~ 4. I /  E is an SDS (WDS) and T is a continuous linear mapping o / E  

onto the Banach space F, then F is also an SDS (WDS). 

Proo/. Let / be a convex function with domain of continuity C c  F. T h e n / T  is convex 

on E with domain of continuity T-I(C), hence by hypothesis Frdchet (G~teaux) differen- 

tiable on some dense G~ subset of T-I(C) which we may without risk denote by T-I(G), 

with some G c  C, f o r / T  is constant on each coset x + T-l(0). By the open mapping theorem, 

G is a dense G~ subset of C, and it remains to show that / is Frdchet (Gs differentiable 

on G. Given x in T-I(G) we have in the Frdchet case 

/T(z) <~/T(x) §  a~ +r(ll z-xl[) for all z in E, (14) 

with some ~ in FL. Since/T(z) =IT(x) if z Ex + T-l(0), it follows that  a annihilates T-l(0), 

hence a = T*b for some b in F. The operator T can be regarded as an isomorphism of 

E/T-I(O) onto 2' in which sense it has an inverse T -1 with norm lIT-111 < ~ .  From (14) 

follows 

/(Tz)<~/(Tx)+ < T z - T x ,  b)+7(llT-~ll I lTz-Tx[])  for all z in E, 

proving the Frdchet differentiability of / at Tx E G, since T is onto. The completion of the 

proof in the case of Gs differentiability is obvious. 

Our second remark concerns an unpublished result of Errett  Bishop, arrived at by  

methods quite different from those in the present paper. 

PROPOSITION 5. (Bishop.) I / E  is a Banach space with a separable dual space, and K 

is a weak,* compact convex subset o/ E*, then K is the weak* closed convex hull o/ those 

o/ its points that are strongly exposed by/unctionals/rom E. 

Proo]. Let F be defined by 

F(x) = 0 if x is in K, F(x) = oo otherwise. 

Since F is convex and weak* lower semicontinuous, F =  (F*)*, with F* defined on E. 

Because K is bounded Theorem 3 shows that  there is a dense Go set G c  E such that  for 

each x in G there is a y(x) in K c  E* with the property that if a sequence (yn}c K satisfies 

lim (x, Yn) = (x, y(x)~ 

then yn-->y(x) in norm, i.e. y(x) in K is "strongly exposed" by x in E. 



I~R~CHET DI]~FERENTIABILITY OF CONVEX FUNCTIONS 47 

Since G is dense in E,  it  follows tha t  

F*(z) = s u p  {(z, y(x)):  xEG}  for all z in  E.  

The dual  of this s t a t ement  is t ha t  K is the weak* closed convex hull  of the  set {y(x) : x E G}. 

Tha t  completes the proof of Bishop's  result,  which is of course also val id if E is a n y  strong 

different iabi l i ty  space. 
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