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1. Introduction
The problem of determining the asymptotic behaviour, as x — oo, of the divisor sum

S(x)= 2 d(n®+a),
n<e
where d(u) denotes the number of (positive) divisors of u, has been mentioned by a
number of writers [1], [2], [5], [8]. When we consider this problem it is not difficult to
see that the case where —a is a perfect square k%, say, is exceptional, since then
n®+a can be factorized as (n—k)(n+k). In this case the sum is almost identical

with the sum

> d(n) d(n + 2k),

n<T
which has been considered by Ingham [7]; in fact a slight adaptation of Ingham’s
method shews here that

S(x)= A,(a) x log® z+ O(x log x) {a= — k).

We shall not, therefore, refer to this case again. In the case when —a is not a perfect
square for some considerable time it has been commonly realized (see, for example, the
remarks by Bellman [1] and the author [5]) that it is possible to deduce an asymp-
totic formula

S(x) = Ay(a) x log -+ O (x)

by a familiar elementary method; a proof of such a formula (with a less precise error

term) has recently been supplied by Scourfield [8].
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In this paper we shall examine the behaviour of S(x) in more detail. Our pri-

mary object will be to replace the elementary formula for S(z) by the formula
S(z) = A,(a) x log + Ay(a)x + O(CE% log® x).

We begin by transforming S(x) so that it is expressed in terms of three sums >3, >,
and D5. A fairly straightforward estimation then shews that >, and >, give rise to
the explicit terms in the formula. The main difficulties are encountered in the estima-
tion of D>, which ultimately will be seen to be of a lower order of magnitude than
>s and >,. The sum 2, is expressed in terms of a new type of exponential sum,
which is defined in terms of a quadratic congruence. The theory of binary quadratic
forms is used to obtain a non-trivial estimate for this exponential sum.

Similar but more complicated methods enable us to prove corresponding asymp-
totic formulae for the sums

> d(an®+bn +¢),

nLr

> r(an®+bn +c),

n<r

where 7(u) denotes the number of representations of y as the sum of two integral
squares. The method, however, fails in more than one respect when applied to the

conjugate sum
> d(n—?).
v<yV R

The behaviour of the latter sum has in fact been determined by the author in a
previous paper [5].

The theory of the exponential sums occurring in »; is related to another prob-
lem, which has been thought to be of sufficient interest to merit discussion here.
The estimate obtained for these sums shews that there is a certain regularity in the

distribution of the roots of the congruence
v = D(mod k)

for fixed D and variable k. At the end it is shewn that the ratio »/k is distributed

uniformly in the sense of Weyl.

2. Notation and conventions

The following notation and conventions will be adopted throughout.
Except in Sections 6 and 9, @ denotes a non-zero integer such that —a is not

a perfect square. In Sections 6 and 9 the letter a is replaced by —D, where D is
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not a perfect square. In Section 6, in accordance with the classical notation, (a,b,c)
denotes a binary quadratic form ax®+ 2bxy +cy? with integral coefficients.

The letters d,k,I,m,n,t, A, and N are positive integers; &, 7, s, u, v, g, and ¢ are in-
tegers.

The meaning of # and y, when not occurring as indeterminates in a quadratic
form, is as follows; z is a continuous real variable, which is to be regarded as tending
to infinity; % is a real number not less than 1. 4

The positive highest common factor of r and s is denoted by (r, s); d(h) is the
number of positive divisors of A; os(h) is the sum of the Sth powers of the positive
divisors of h; moduli of congruences may be either positive or negative; [u] is the
greatest integer not exceeding w; [lu| is the function of period 1 which equals |u|
for —i<u<i.

The letters A, A4,, 4,, etc., are positive constants (not necessarily the same on
each occurrence) that depend at most on a (or D); A(h), 4,(h), 4, (h), etc., are constants
that depend at most on A and a (or D). The equation f=0(|g|) denotes an inequa-
lity of the type |f|<A4]|g|, true for all values of the variables consistent with stated
conditions.

The symbol >* denotes a summation in which » is restricted to values for which

n*+a is positive.

3. Initial transformation of sum

We have Stdmi+a)= > 1.
nLr Iclznzﬂ;ra

It is clear that in the right-hand sum not more than one of k£ and ! can exceed
(#*+a)t =X, say. Hence

DHdmPta)=2>"+>"— >t=2>"—- 3T =23 —>,, say. 1)

n<z <X ISX  kIZX k<X k<X

Next, let a,=max (0, —a), and let Ty,(y) and Ti(y) be defined for any y=>1 by

Tuy)= 2 1, Tiyy= 2" 1,
nﬁz—:gr;lod k) n*zvnaézlod k)

so that, since —a is not a perfect square, we have

<af, if k<a,

Tu(y) - Ti
) =T ly) {=0, it k>a,
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Then we have o= kZXT; ()= kZXTk(z) +0(1), 2)
and Zzzk;XT;c'(Yk) =k<ZX T(Yy) +0(1), (3)

where Y, = (kX —a)}. Furthermore we have
— -
r-, 5 oos 0= s (2-132)
v?=—a(mod k) n=y(mod k) vt=—a(mod k) ’C k
O<rgk n<y O<v<k

- e () - (D)

vi=—a(
O0<r<k

where, for any real u, p(u) denotes [u]—u-+ 3. Let po(k) be the number of roots of

the congruence »*= —a(mod k), let

Y= 2 ¥ ( k )

0<vgk
-
d let = 7).
and fe Duly) v’z—<(zv§(1:<nodk)w( k )
Th -y v -0 4
en Tey)=y T‘*‘ K(y) — Duly). (4)
Now, since to every root of »*= —a (mod k) there corresponds a root k—y, it is

evident that ®,(y) vanishes unless the congruence has a root congruent to 0 (mod k).

Hence
0oQ), if kla,
<1>k(y)={0‘ . ,'rz )
We deduce from (1), (2), (3), (4), and (5)
Stdntta)=22 > ok)_ < ek Te
n<y k<X ]C k<X ]C
+kZX{2‘Ifk(x)~—‘I"k(Yk)}+0(1)=2xZ3~Z4+ >s+0(1), say. (6)

4. The estimation of 3, and >,

The estimation of >, and >, is effected by considering the Dirichlet series

< eld)
2 7
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An identity for this series has already been obtained by the author in Section 4 of [5].
Modifying slightly the notation of this paper, we write

_ 1 -1 co 9(2a)_ =] "
k- (1ry) 54555
d 2 (—a/d)\1 d
- v 2 —%en i \
M(S) dﬁ'a a2 lgl ( 1 )ls diz[a dZs L(~ald)(8):
(2,2)=1 @2)=1 4,2)=1 )
and sy =K UE) _ S wlm)

) w v

S i ). (8)

S
-

Certain properties of the coefficients of the Dirichlet series defining f_.(s) will be
needed, and are easily verified from [5]. Firstly, there is an identity of the form

Z (2% A A, A4 1 1
02:0 9% =1+—2?1+”'+é_6:_1%+§[: 1+—2_3+ﬁ+
A Al A 1\ !
=1+—2§+...+2(H}3+27§(1——2—8) )
where ¢{=#(a) is bounded. Hence
ba=0(1). 9

Secondly, it is plain from a consideration of the Euler product for

1

a2-s) L gia5(9)
1

{(2s)

that the coefficients of M (s)

are bounded. A straight forward argument then gives
7(m)=0(1). (10)
A subsidiary lemma is required.

Lemma 1. For y=1, we have

> z(m)=0y)

m<y

8 — 632932 Acta mathematica. 110. Imprimé le 16 octobre 1963.
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It follows from (7), (8), and (9) that

—a/d? —a/d?
> T(m)= > bypuit)d- (——all—) = > b u(t)d > (—l—/)
m<y 2%2dt Iy 2% i digy 1<y /2% tr d2
s a;(d,2)=(,2)=1 d3|a;(d,2)=1 d,2)=1
=0( > b,d)"——O( > 1)
2% 2 g2y 2%ty
dzla
(Zlog{ }) O(V
tagy
Starting with >, we have from (7) and (8)
So= 3 MU S 4 S =S+ S sy an
mi<x lm mg XY m>xb
Then s,= 35 W™ s 1y ’(m){ g(X)+ +o( )}
m<Xx} m 'gx”"l m< X} m
m 7(m) log m
(logX+y) z T( ) z __(__)_g_
m<X§ m<X§ m
vo(x 3 lemi).
m<Xxt

Hence, by (10),

26=aogX+y>f_a<1)+f'.a<1>+0(logX "m)|

m>x}

> z%n—)logml)%—O(-zl? > 1),

m>Xx% m<x}

+o

and then, by Lemma 1 and partial summation,

Do=(log X +9) f-a(1)+f_a(1) + 0 (X~ log X)

=(logx +y)f-a()+fa(l)+ 0z log x). (12)
Next S=3i s M5 loxy,
1<x} l xb<amgxnl m i<xt l

by Lemma 1 and partial summation. Therefore
>:=0(z"* log ). (13)

Therefore, finally, by (11), (12), and (13},
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Ss=(og z+y)foa(1)+ 1 2(1) + O ("1 log 2).
The treatment of 2, is very similar. We have

=X+ Ok XY,

and hence
-xr3 €0 ( -+ 3 6By e(k) -3
24 X2 S FO\XT ) =X 2 S o
eth)_ < T(m)_
We have
= T(m) 1_ T(m)[ ({)% (1) {(ﬁ)}j
ZS m;d‘ m? igX/mlt mszX’} 3 2 m +C 2 +0 X

;2]

m>Xx% m

=2X¥ ,(1)+0 (X%
> *) o

" o(
m<x¥

=2X*¥f_,(1)+0(X})+0(log X)+0(1),

by Lemma 1 and partial summation. Hence

Ds=2af ,(1)+0(z?)

1 T(m 2X3
Ao 29215?% —;xk%gxﬂ 72}) 0 (z<§(1} i tog {T}),
by Lemma 1 and partial summation. Hence
Zo=0(at).
We have, finally, by (15), (16), (17), and (18),

Z4= 2xf_q(1)+ O(x?).

103

(14)

(17)

(18)

(19)

It is convenient at this point to state a lemma, which will be required later.

It may be proved by methods similar to those used above.

LEMMa 2. For y=1, we have

Z o(k)=yf_o(1)+O0(y?).
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5. Estimation of > first stage

We begin by considering the representation of the function y(u) by the Fourier

series

*® sm 2nhu
Yo (u) = Z

We have the properties

(i) p(u)=1yaq(u), unless # is an integer,

(ii) pay(w) is boundedly convergent,

iy s SR 2w sin 2nhu 0( )forw>l,
P el
from which it follows that, for all real values of u,
1 i .
plwy=— > sin 2zhu +0 {mln ( )} = yo(u) + O {f.(u)}, say. (20)
T igh<o h "u“

The Fourier development of 8,(u) will also be needed. Since 6,(u) is an even

function of u, we have for w >2,

6., (u) =13 Oy(w) +hz Ch(w) cos 2mhu, (21)
™1
;3
where Cr(w)=4 f 0, (u) cos 2mhu du.
0
1/w Iy
Hence C, () =4f du+4f dl:o(l"g “’), (22)
o e OU ®
and so, for h>0, Culw)=0 (l"—iﬁ’) (22)

Also, for >0,

(e 4 (% 2abuduy 4 [* sin 2zhud
Ch(w)=4j cosz,ﬂmdw_f wa sin 27thu du
0 0 Jie U o Jie 2xhu

4 *[cos?nhu:l 4J* cos 2mhudu (w)

R e o) R B e v A

(23)

@ 1w

We use (20) and (21) to put Wi(y) into a form suitable for the estimation of 2.

We first introduce a notation for an important exponential sum. We denote
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2ol _ 2nhy
v2=—a (mod k) v¥=-a(mod k) k
<<k O<v<k

by o(h, k), where evidently (0, k)= p(k). Next(l) we define ¥y (y) and @ .(y) by

- Yy—v _ y—v
lP.k’w (y) v‘z—a%:nod k) ";Uw ( IC )’ ®kw(y) v’s—gmod k) Bw ( ’C ) ’
0 k O<vk

<rg

so that ‘Fk(?/) =1Fk,w(y) + O(ka(y))’ (24)

by (20). Now

(y—v) _1 1 (sin 25thy cos 2nhy cos 27hy sin 2nhv)
Yol'% ) macin® E Tk k k)

Therefore Wi oly)= 1 19 (h, k) sin 2—@, (25)
Tichcn b k
since > sin 2ahy _ 0,
v2=—a (mod k) Ic
O<v<k
and similarly, by (21),
1 & 2nh
Our (1) =5 Cofw) k) + X Cu(w) g(h, ) cos =7, (26)

The treatment of > through this form of ¥, (y) requires estimates for sums of

the type > o(h, k). These sums are considered in the next section.
k

6. The sum > o(h, k)
k
We write R(h,z)= > o(h, k).
k<

In this Section, as stated in Section 2, it is convenient to replace @ by —D in the
definition of g(A, k).

The method depends on the theory of representation of numbers by binary
quadratic forms. A very clear description of this theory in a form suitable for our
purpose is to be found in either the ‘“‘Disquisitiones Arithmeticae’ [3] or in H. J. S. Smith’s
“Report on the Theory of Numbers” (incorporated in [9]).

We start from the fact that every primitive representation of ¥ by a quadratic

(1) It is important to remember that 0,(u) and hence O, (y) are positive functions.
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form of determinant D appertains to a residue class of solutions (which, for brevity,

we refer to as a root) of the congruence
»*= D (mod k),

two different representations which appertain to the same root being said to belong
to the same set. Representations of k£ by non-equivalent forms cannot belong to the
same set. Conversely, to every root of the congruence there corresponds a set of
representations of k. There is thus a bi-unique correspondence between the roots of
the congruence and the sets of representations of k£ by a system of representative
forms of determinant D.

Let ax®+ 2bxy -+ cy® be a form of determinant D. Then, if

k=ar?+2brs-+cs®

is a primitive representation of k& by the form, the root of the congruence apper-

taining to this representation is given by ([9], page 172)

y=arp + b(ra + sp) + cso,
where g, ¢ satisfy
ro—sp=1.

Hence a typical value of v/k in g(h, k) is given by

v :ar@+b(m+sg) +cso

k ar® + 2brs + cs®

This gives, for r=0,

v g(ar2+2brs+csz)+br+cs__‘_§+4 br+cs @7)
k riar? + 2brs + cs?) r r{ar®+ 2brs + cs?)’

where 5 is defined (modulo ) by the congruence si=1(mod r). It gives, similarly,
for s+0,

y 7 ar+ bs
LA , 2
k s s(ar’+2brs+cs) (28)
where r7=1 (mod s).
Let 9, denote the value of »/k as given by (27) or (28). Then we have
R, )= > > 2 hons (29)
a,b,c 0<ar'+r2§r:i+cs'<:
Can

where a,b,¢ indicates summation over a set of representative forms of determinant
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D (positive forms, if D<0), and (M) indicates that only one representation from each
possible set of representations is to be included. We formulate condition (M) by
using the property that all representations in a set can be obtained from any one
such representation by means of the proper automorphs of (a,b,¢). The mode of for-
mulation depends on whether (a,b,c) be definite or indefinite. We consider first the
definite case in detail, and then indicate the modifications that are necessary in the
argument for the indefinite case.

If D is negative, then the forms are positive. Here the number of representa-
tions in a set is constant for a given form. The number is in general two, but may
in special cases be four or six. Hence

R(h, z) = chaa,b,c > 27 hors (30)

ar+2brs+esigy
,8)=1

where &g, is either 1, 1, or ;. Plainly we may take a, b, and ¢ as bounded by choosing
the representative forms appropriately (as reduced forms, say). The inner sum may
then be split up thus:

et hone — Z + Z + Z =210+211+0(1): say. (31)
ar’+%rb1‘;.§:§si<r Isl<|zl fri<isi |rl=Is]=1

We must consider D, and Y,;. The following lemmata will be required.

LeMMA 3. If h,r+0, and 0<B—a<2|r|, we have

2 exp
ass<f
,8)=1

27ihs
(_ 77 )=0[l’|§{(h, r)}td(r) log 2|r|].

This result on an “incomplete’” Kloosterman sum may be deduced by a well-
known method from Lemma 2 of the author’s paper [6]. It depends on Weil’s esti-
mate for the Kloosterman sum.

Lemma 4. If %0 and y=>1, we have

KZy {(h, )} d(l) = 0{y log 2y - o*, (B)}.
We have b

b = 1 = 1
Z 000 =3 3 (0.0} =0{Z 1), 3 d)

d(A
=0(y log 2yz§|:n %) =0{y log 2y -0, (h)}.
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The conditions of summation in ), imply, firstly, that

|r| < A=t, (32)
and, secondly, that for given 7
F (r)<s< F,(r),

where F,(r) and F,(r) are defined by
F,(r)=min (lrl, f‘b—c’.+}é (cx+Dr2)*),
F, (r)=max(— 7], —-l::—r——lc (cx+Dr2)*>.

Let £=£(x,h) be a suitable positive number to be chosen explicitly later. Then

210= m2<5+ MZE = lrlzs +0(E) =23+ 0(&), say. (33)
. B 2 7ih(br + cs)
Next, if @(r, ) = exp (r(ow2 +2brs+ 682)) ’

we have, by (27), (32), and (33),

2mihs
Sa= 35 e (<)), (34)
E<lri<Azd Fimi<s<Fyn r _
FinN<Fyn . 9H=1

where the outer summation is interpreted so that 2, is zero when £ Ax!. The

inner sum in (34) is transformed by partial summation into

gwip(r, p) e p+1)} + g{{F (N} {r, [Fo (1] +1}, (35)

Fyn<pu<Fon

where for any integer u (with r fixed)

2 mhs
glpy= > exp(—— )
Fym<s<u
(r, $)=1
. . h
Since in (35) @, ) —@(r,u+1)=0 (l%’) ; (36)

we have, by Lemma 3, that expression (35) is

h
O({H 1t npac g 21 1) 0l e Tog 21

Fi(ngusFy(r)

= O(|1] || 2 {(h, N}¥d (r) log 2|r|)+ O(|7|t {(h, )} d (1) log 2]r]).
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Hence, whatever the value of & we have from (34)

212=0(|h| logz S '{U’—’”——W)Jro(xi logz S {(h,l)}%d(l)),
1> 2

1<Azt
from which we deduce, by Lemma 4,
S12=0{|h| 6 (h) &t log® x} + O{0®, (h) x* log® «}.
Therefore from this and (33)
10=01{1h] 6% (k) £~ ¥ log® x} + O(£%) + O{d®; (k) 2? log® «}. (37)

If & is chosen so that |h| & ¥=¢% then £=|h|% and the first inequality in

210
Zn

must hold. The second inequality can be proved similarly by starting from (28).
We deduce from (30), (31), and (38) that, if D is negative, then

} =O{lh|%02,k(h) log? «} + O{o%; (k) z? log® «} (38)

R(h, z)=0{ ‘ki% 6% 4 (h) log® =} + 0{d®, (h)x? log® x}. (3%

We pass on to the case where D is positive and the forms are indefinite. We
must consider condition (M) for each form (a,b,c) that appears in (29). We take,
for simplicity, the case when the form appearing is primitive, since the derived forms
that may appear can be considered similarly. It is plain that we may take a to be
positive and ¢ to be negative by choosing an appropriate representative form. Let
m be the highest common factor of a,b,c; let also T, U be the least positive solution

of the Pellian equation
T%— DU =m’.

Then (see [9], page 213) each set of representations of a positive number k by

ax® +2bxy + cy® contains one and only one representation which satisfies the inequalities

alU

>0 > < .
w20 =0 YSp T

Moreover, when these inequalities hold, the form takes positive values only. Hence
any inner sum in (29) corresponding to a primitive form (a@,b,¢) may be expressed

in the form
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2ihor,,

ari+2brs+csig x
7,8>0,85<aUT(T-bU)
. H=1

This may be considered in a somewhat similar way to (31), since it may be verified

that the conditions of summation imply, firstly,
s<(x/m}U, 0<ar+bs<(z/m)tT,

m2s?/U*?

and, secondly, 2 4L 2brs + cs?) =
Y alar rates) {m2(ar+bs)2/T2.

In particular the treatment of the function corresponding to ¢(r,s) will not present

any difficulty. Finally, we obtain the same estimate for R(h,z) as in (39). We thus have
THEOREM 1. Let D be any fixed integer that is not a perfect square, and let

Rh2)= 3 3 &
k< v*:=D (mod k)
<P

Then, for h=£0,
R(h, x)=0{|h|t o>, (k) log® x} + O{c”  (B)x? log® z},
and, in particular,
| R(h, )| < A(R) xt log? =.
Theorem 1 will be used for the proof of Theorem 3. It cannot, however, be
applied directly in an advantageous manner to the estimation of >, since here the
sums g(h, k) appear with trigonometrical factors depending on k. It is better to con-

sider sums of the form
Rf(h, X)= 3 o(hk)e**""",
k<X

R3(h, X) =kgx@(h, k) e2minwk

where we recall that Y, is defined as in (3). These can be estimated exactly as
R(h,X), except that it is necessary to modify the definitions of 0, ; and g@(r, s), with

a consequent change in the value of £, as follows:

(i) include the additional term

2 ihx 2mih Y,

__Lmhr o _ amity
—ar®+ 2brs + cs? —ar®*+ 2brs + cs*
in 6, ,:

(ii) include the factor
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oxp |+ 2aihx b ex , 2mih Yy
_ emiar 4o Gl
PAT o obrs+est) © PAL o+ 2brs + o8

in @(r,s). Then, now, instead of (36), we have

x
3

g(r, ) = plr, u+1)= 0 (||}:||3)
which gives O{|h| o® 4(h) £tz log? o} + P(£%) + Of{c> , (k) x? log® x}
in place of the estimate (37). We then obtain the following lemma after choosing
£=|h[saF.
LeMMmaA 5. We have, for h=+0,

Ri(h, X)

= 2 2
Rzi(h,X)} O{0%, (#) | [tat log® =}.

7. Estimation of J: second stage

The estimation of >; can now be concluded by collecting together the results

from previous sections.

Firstly, now interpreting o (>2) as a suitable real number depending only on «z,
we have, by (6), and (24),

25= 2 {2¥ia(®) = Pro(T)} +0( 3 Okau(@) +0(3 Okul(Yy),
k<X k<X k<X
since Oy, ,(y) is positive. Therefore
25=0(2 ¥io®@) T 0( 2 ¥io(Ye) +0( 2 Ok0(2) + 0 2 Ok, o(¥y)
k<X k<X k<X k<X

= 0(213) + 0(214) + 0(215) + 0(216)! say. (40)

We have, by (25),

27hx
.

_ 1 :
Su=_ % 3 <otk sin == 5 2 0k, k) sin
< k<X

k T igh<o

Thus, on recalling the definition of Rff(k,X), we have

Se=on 3 (RMM X)— Bi(h X)),

27”: 1<h <o h



112 C. HOOLEY
Therefore, by Lemma 5,
()
213=0 (x% log® » ——*u),
which gives by a simple calculation the first part of

21

s, }= O (zt w? log® z). (41)

The second part may be proved in a similar manner.

Next, since C4(w) does not depend on k, we have, by (26),
S1s=1 Co(@) 3, 00)+ } 3. Oulw) {Bi (b, X) + Bi (b, X)}.
Therefore, by Lemmata 2 and 5, (22), and (23),

2 2
zm=0(”fw)+ocihg”bgw &gmm)+o@nn%%xz“*w»

w 1<h<w

= 0(35%)) + O(zt wt log? z log w) 4 O(zt ot log? z).

Therefore the first part of the inequality

215 } = O(Z log w) + O (xt wt log? = log w) (42)
216 w

holds; the second may be verified similarly.
We have from (40), (41), and (42)

D= O(z log co) + O (2t wt log® x Tog w).
®
Hence finally choosing w so that zw ' =zt w} and thus o= x%, we deduce
8
25=0(a" log® ). (43)

8. The asymptotic formula

The asymptotic formula for the divisor sum is now immediate from (6), (14),
(19), and (43).
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THEOREM 2. Let a be a non-zero inleger such that —a is not a perfect square.

Then, as x— oo, we have

Stdm+a)=2f_o(1)z log 2+{2(y—1)f_a(1) +2f 2 (1)} z+ O (ab log® 2),

n<r

KO g 4
where f-a(s)= (29) (dd%il = L ajan(s).

We observe that the divisor sum is in fact asymptotically equivalent to
2f_o(1)x log z, since it is easy to verify from the properties of Dirichlet’s L functions
that f_,(s) does not vanish at s=1.

9. The distribution of the roots of the congruence

Our result on the distribution of the roots of the congruence »*=D (mod k) is a
corollary of Theorem 1. We take all numbers of the type v/k, where v*=D(mod k)
and O<»<¥k, and arrange them as a sequence p,, D, ..., Pm, ..., 80 that the corre-
sponding denominators k£ are in ascending order. (The arrangement of the numbers
in a group corresponding to a fixed value of % is immaterial.)

We then adopt a method due to Weyl (see [4]), and consider the sum

2nihp
e m
mZ:N
for each non-zero value of h, as N—oco. If M is the denominator (before cancella-

tion) in py, then
N> Sok)>AM, (44)

k<M

by Lemma 2. Next
mZN e2nihpm: z Z e2nihv/k + 0 {Q(M)}

k<M »t=D@mod k)
O<v<k

Therefore, since g(M)=0{d(M)}, we have, by Theorem 1 and then by (44),

| > ™| < A, (h) M¥ log® M

m<N
<A, (h) Nt log® N,
and so, for any h=+0,

%|Z E™n| >0 as N-— oo,
mgN

This gives our final theorem.

THEOREM 3. The sequence p,, Py, ..., Pm, ---, as defined above, is uniformly distribu-
ted in the interval (0, 1).
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