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1. Introduction 

The problem of determining the asymptot ic  behaviour,  as x --> oo, of the divisor sum 

S(x) = ~ d ( n S + a ) ,  
n ~ x  

where d(#) denotes the number  of (positive) divisors of /~, has been ment ioned by  a 

number  of writers [1], [2], [5], [8]. When  we consider this problem it is not  difficult to  

see tha t  the case where - a  is a perfect square k s, say, is exceptional, since then  

n2+  a can be factorized as ( n -  k ) ( n +  k). I n  this case the sum is a lmost  identical  

with the sum 

d(n) d(n + 2k), 
n ~ X  

which has been considered by  Ingham [7]; in fact  a slight adap ta t ion  of I n g h a m ' s  

method  shews here tha t  

S(x)  = A t ( a  ) x log s x + O ( x  log x) (a = - k2). 

We shall not,  therefore, refer to this case again. I n  the case when - a  is no t  a perfect 

square for some considerable t ime it has been commonly  realized (see, for example, the 

remarks by  Bellman [1] and the au thor  [5]) t h a t  it is possible to deduce an asymp-  

totic formula 

S(x)  = As(a  ) x log x + O (x) 

by  a familiar e lementary method;  a proof of such a formula (with a less precise error 

term) has recently been supplied by  Scourfield [8]. 
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In  this paper we shall examine the behaviour of S(x) in more detail. Our pri- 

mary object will be to replace the elementary formula for S(x) by the formula 

8 
S(x) = As(a ) x log x + A3(a ) x § 0 (x~ log 3 x). 

We begin by transforming S(x) so that  it is expressed in terms of three sums ~3, ~4, 

and ~5. A fairly straightforward estimation then shews that  ~3 and ~4 give rise to 

the explicit terms in the formula. The main difficulties are encountered in the estima- 

tion of ~5, which ultimately will be seen to be of a lower order of magnitude than 

~3 and ~a. The sum ~5 is expressed in terms of a new type of exponential sum, 

which is defined in terms of a quadratic congruence. The theory of binary quadratic 

forms is used to obtain a non-trivial estimate for this exponential sum. 

Similar but more complicated methods enable us to prove corresponding asymp- 

totic formulae for the sums 
d(an ~ + bn + c), 

n ~ x  

r(an2 + bn + c), 
n ~ X  

where r(#) denotes the number of representations of /~ as the sum of two integral 

squares. The method, however, fails in more than one respect when applied to the 

conjugate sum 
d(n - v2). 

The behaviour of the latter sum has in fact been determined by the author in a 

previous paper [5]. 

The theory of the exponential sums occurring in ~s is related to another prob- 

lem, which has been thought to be of sufficient interest to merit discussion here. 

The estimate obtained for these sums shews that  there is a certain regularity in the 

distribution of the roots of the congruence 

~*-  D(mod k) 

for fixed D and variable k. At the end it is shewn that  the ratio v / k  is distributed 

uniformly in the sense of Weyl. 

2. Notat ion and convent ions  

The following notation and conventions will be adopted throughout. 

Except in Sections 6 and 9, a denotes a non-zero integer such that  - a  is not 

a perfect square. In Sections 6 and 9 the letter a is replaced by - D ,  where D is 
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not  a perfect square. I n  Section 6, in accordance with the classical notat ion,  (a, b, c) 

denotes a b inary  quadrat ic  form ix2+ 2bxy § cy 2 with integral coefficients. 

The letters d, ]c, l, m, n, t, ~, and ~Y are positive integers; h, r, s,/z, ~, Q, and ~ are in- 
tegers. 

The meaning of x and y, when not  occurring as indeterminates in a quadrat ic  

form, is as follows; x is a continuous real variable, which is to be regarded as tending 

to infinity; y is a real number  no t  less t han  1. 

The positive highest common factor  of r and s is denoted by  (r, s); d(h) is the 

number  of positive divisors of h; a~(h) is the sum of the flth powers of the positive 

divisors of h; moduli  of congruences m a y  be either positive or negative; [u] is the 

greatest  integer no t  exceeding u; [[u[[ is the function of period 1 which equals [u] 

for - 1 < u < 1 .  

The letters A, A1, A2, etc., are positive constants  (not necessarily the same on 

each occurrence) t ha t  depend at  most  on a (or D); A(h), Al(h), A 2 (h), etc., are constants  

t ha t  depend at most  on h and a (or D). The equat ion /=O(Ig[) denotes an inequa- 

lity of the type  [/I ~< A I g[, t rue for all values of the variables consistent with s ta ted  

conditions. 

The symbol ~+ denotes a summat ion  in which n is restricted to values for which 

n 2 + a is positive. 

3 .  Initial transformation of  sum 

We have ~+ d(n 2+a)= ~+ 1. 
n ~ x  k l = n a + a  

n ~ x  

I t  is clear tha t  in the r ight -hand sum not  more than  one of /c and l can exceed 

(x 2 + a )  � 8 9  say. Hence 

~+d(n2+a)=~++~+- ~ + = 2 ~ + -  ~+ = 2 ~ l - ~ 2 ,  say. (1) 
n<~x k<<X l ~ X  k,l<~X k<~X k,l<~X 

Next,  let a 1 = m a x  (0, - a), and let Tk(y) and Tk + (y) be defined for any  y >~ 1 by  

so that ,  since 

Tk(y) = ~ 1, T i  (y) = ~ + 1, 
n * ~ -  a(mod k) n * ~ -  a(mod k) 

n ~ y  n<~y 

r 

- a  is no t  a perfect square, we have 

Tk(y) - T + { < a~' if k~<a 1, 
k(y) = 0 ,  if k > a  1. 
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Then we have ~1 = ~ T~-(x)= ~ Tk(x)+O(1), 
k<.X k<~X 

(2) 

and ~2 = ~. T~(Yk) = ~ Tk(Yk)+O(1), 
k<~X k<<.X 

(3) 

where Yk = (kX-a)�89 Furthermore we have 

u S ~ - a ( m o d k )  n ~ ( m o d k )  v _ - - - - - a ( m o d k ) \ L  ~ J 
0 < ~ < k  n<~y 0 < ~ < k  

Y 

where, for any real u, y~(u) denotes [ u ] -  u + 1. Let  o(k) be the number of roots of 

the congruence v ~ -  - a ( m o d  k), let 

ws-- -- - a ( m o d  k) 
0<v~<k  

and let 
v 2 -  = -  a ( m o d  k) 

0<v~<k  

Then Tk (y) = y ~ ~ )  + tFk(y) - (I)~(y). (4) 

Now, since to every root of v 2 ~ - - a ( m o d k )  there corresponds a root k - v ,  it is 

evident that  (I)k(y) vanishes unless the congruence has a root congruent to 0 (rood k). 

Hence 
=/O(1),  if k[a, 

Ok(y) [0, if kXa. (5) 

We deduce from (1), (2), (3), (4), and (5) 

~+d(n~+a)=2x ~ ~(k~) ~ ~(k)Yk 
n<.~ k<x ]c k<x k 

+~. {2~Fk(x)--tFk(Yk)}+O(1)=2xE3--E4+ ~5+O(1), say. (6) 
k<~X 

4. The estimation of ~3 and ~4 

The estimation of ~3 and ~4 is effected by considering the Dirichlet series 

) .=1 
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An identity for this series has already been obtained by the author in Section 4 of [5]. 

Modifying slightly the notation of this paper, we write 

1 ) _ 1  ~= K(s)= 1 + ~  ~ ~(2~) ~ b~ 
cr a~=O 

M ( s ) =  
d~ l a Cb /=1 

(d,2)=1 (/,2)=1 (d,2)=l 

K(s)M(8) ~ ~(m) 
and /-a(S)- ~(28) m=i -- - - ~ ,  say. (7) 

Then the following identity holds for s > 1; 

2=1 

Certain properties of the coefficients of the Dirichlet series defining / - a ( 8 )  will be 

needed, and are easily verified from [5]. Firstly, there is an identity of the form 

~ if(2 ~) A 1 At_l A~( 1 1 ) 
~ = o - ~ =  1 § 2 4 7  § 2 4 7  1 + ~ §  

A 1 At-1 A t (  1 )  -1 
-- 1 + - / ~ + . . .  + ~ + ~ ,  1 -  , 

where t=t(a) is bounded. Hence 
b~=O(U. (o) 

Secondly, it is plain from a consideration of the Euler product for 

1 
- -  L<-a/a,)(s) 
~(2s) 

1 
that the coefficients of $(2si M(s) 

are bounded. A straight forward argument then gives 

~(m) = o (1). (10) 

A subsidiary lemma is required. 

LEMlVIA 1. For y>~ 1, we have 

T(m) = O0/y).  
m<~y 

8--632932 A c t a  mathemat ica .  110. Impr im6  le 16 oetobre 1963. 



102 

Then 

C .  H O O L E Y  

It  follows from (7), (8), and (9) that  

m ~ y  2~tZd I l ~ y  
d~ ] a ;  (d, 2)=(/,  2)=1 

\ dala 

Starting with ~a we have from (7) and (8) 

b~#(t)d 
2 ~ t* d ~ y  I~y /2  ~ t 2 d s 

d s [ a ;  ( d , 2 ) = l  (/, 2 )=1 

v/~)= + ~ = ~ + ~ 7 ,  say. 

~=m~ ~ ,~,m~- 

= (log X + 7) 

Hence, by (10), 

+ 0  

z(m) ~ T(m) log m 

/ 
~6 = (log X + 7 ) / -  ~ (1) + 1: .(1 ) + 0 (log 

and then, by Lemma 1 and partial summation, 

m<<.x�89 I 

~6 = (log X + 7 ) / - a  (1) +/'_ a (1) + 0 (X - t  log X)  

=(logx +7)/-a(1)+f-~(1)+O(x -~ 1ogx). 

1 
Z7 l ~ - X ~ .o(x-~) ,  

l ~x �89  X�89 m l ~ X ~  ~ 

Next 

by Lemma 1 and partial summation. Therefore 

~ = O(x-~ log x). 

Therefore, finally, by (11), (12), and (13), 

(n) 

02) 

03) 
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~3 = (log x + 7 ) / - a  (1) + 1'_ ~(1) + O(X -�89 log X). 

The treatment of ~4 is very similar. We have 

yk= k�89 X�89 + O(k-�89 X-�89 
and hence 

o(k)+o(x�89 x Q(kq=x' X ,) 

e(k) ~(ra) Next ~ ~ =  Y~ t�89189 ~ + ~ =58+Eg, say. 
k<~X lrn<X m~X~ re>X�89 

We have 
1 (1) 

58-  v ~(~) E t~= ~ _~_ 2 +~ 
re<x�89 m�89 l~<x/ra rn~X�89 

, ~ � 8 9  ~ \-~/,.<~x�89 + o(1) 

\[m<~X�89 m 

= 2X�89 (1) + O(X �89 + 0 (log X) + 0 (1), 

by Lemma 1 and partial summation. Hence 

+o{(;)},] 

Zs = 2x�89 (1) + O(x~) 

Also 
lSX�89 Zt<m<~gfl 

by Lemma 1 and partial summation. 

m-- Y- = 0 log 

Hence 
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(14) 

(15) 

(16) 

(17) 

~9 = 0 ( ~ ) .  (18) 

We have, finally, by (15), (16), (17), and (18), 

~a = 2x/_a (1) + O(x~). (19) 

I t  is convenient at  this point to state a lemma, which will be required later. 

I t  may be proved by methods similar to those used above. 

LV.MMA 2. For y>~l, we have 

Z e(k) = y/_a(1) + O(y~). 
k~y 
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5. Estimation of ~5; first stage 

We begin by considering the representation of the function ~o(u) by the Fourier 

series 
= ~  sin 2 ~ h u  

~/)(1) (U) h = 1 zh  

We have the properties 

(i) ~0(u)=~)(1)(U), unless u is an integer, 

(ii) ~/)(1)(u) is boundedly convergent, 

s in2~hu 0 [ 1 \ 
(iii) h ~  ~h = t ~ o ] ~ )  for tn > 1, 

from which it follows that,  for all real values of u, 

1 ~ s in2~hu { ( w~u[[)} 
~(u)=~l<h<~ h + 0  min 1, = ~p,(u) + o {0.(u)}, say. (20) 

The Fourier development of O~(u) will also be needed. 

function of u, we have for o)> 2, 

O~(u) = �89 Co(w ) + ~ CA(w) cos 2~hu ,  
h=l  

Since O~,(u) is an even 

(21) 

where L Ch(oJ) =4  O~(u) cos 2 n h u d u .  

Hence r fl, U C o (e)) = 4 du + 4 - -  = 0 , 
d 0 / ~  O J U  

(22) 

and so, for h >~ O, (22) 

Also, for h > 0, 

Ch(w)=4 cos 2 7 r h u d u +  4- �89 cos 2 x e h u d u = 4  �89 sin 2 ~ h u d u  
�9 ,o oJ a 11~, u co i,~ 2~hu2 

o., , , , , , [ ~ - ~ - ~ / - ~  ,,,,, 2~2A~u 3 
(23) 

We use (20) and (21) to put ~Fk(y) into a form suitable for the estimation of ~5- 

We first introduce a notation for an important exponential sum. We denote 
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2 ~hv y e2~thv/k 
= ~ C O S  

v2~ - a (rood k) v ~  - a'-'(mod k) ]r 
O<v<k O<v<~k 

by ~(h,k), where evidently ~(0, k)=~(k). Next(1) we define ~Fk, o(y) and Ok, o(y) by 

vz= a (rood k) v z ~ -  a (rood k) 
O<v<~k O<v~k 

so that  ~Fk (y) = ~Fk. ~ (y) + 0 (Ok. ~ (y)), (24) 

by (20). Now 

1( 
= 1  X i s in cos - - - c o s  2~hy sin 2~h~). 

1 ~ 1 2xehy (25) Therefore ~Fk,~(y)=~l<h<~ ~ ( h , k )  sin k ' 

2 ~hv 
since ~ sin ~ -  = O, 

vz~- a (rood k) 
O<v~k 

and similarly, by (21), 

1 
| (y) = ~ C0(o) ~(k) 27ehy (26) + Ch(o~) ~(h,k) cos- k 

h = l  

The treatment of ~5 through this form of ~Fk(y) requires estimates for sums of 

the type ~ Q(h, ]c). These sums are considered in the next section. 
k 

6. The s u m  ~] Q(h, k) 
k 

We write R(h, x) = ~ ~(h, k). 
k~x 

In this Section, as stated in Section 2, it is convenient to replace a by - D  in the 

definition of ~(h, k). 

The method depends on the theory of representation of numbers by binary 

quadratic forms. A very clear description of this theory in a form suitable for our 

purpose is to be found in either the "Disquisitiones Arithmeticae" [3] or in H. J. S. Smith's 

"Report on the Theory of Numbers" (incorporated in [9]). 

We start from the fact that  every primitive representation of k by a quadratic 

(1) I t  i s  i m p o r t a n t  t o  r e m e m b e r  t h a t  O~(u) a n d  h e n c e  ~ ) k . ~ ( y )  a r e  p o s i t i v e  f u n c t i o n s ,  
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form of determinant D appertains  to a residue class of solutions (which, for brevity,  

we refer to as a root) of the congruence 

v e -- D (rood k), 

two different representations which appertain to the same root being said to belong 

to the same set. Representations of k by  non-equivalent forms cannot belong to the 

same set. Conversely, to every root of the congruence there corresponds a set of 

representations of k. There is thus a bi-unique correspondence between the roots of 

the congruence and the sets of representations of k by a system of representative 

forms of determinant  D. 

Let  a x 2 + 2 b x y §  ~ be a form of determinant D. Then, if 

k = ar 2 + 2 brs + cs u 

is a primitive representation of k by the form, the root of the congruence apper- 

taining to this representation is given by  ([9], page 172) 

where ~, a satisfy 

v = a r Q + b ( r a + s Q ) + c s a ,  

r a - s ~ = l .  

Hence a typical value of v / k  in Q(h, k) is given by  

_ a r Q + b ( r a + s ~ ) + c s a  

k ar 2 + 2 brs + cs 2 

This gives, for r 4  0, 

~(ar  2 + 2brs + cs 2) + br § cs $ 

k r(ar ~ + 2 brs + cs ~) r 

br + cs 

r(ar 2 + 2 brs + cs~) ' 
(27) 

where g is defined (modulo r) by the congruence e ~ -  = 1 (mod r). 

for s=~0, 
~ ar  + bs 

]c=s  s(ar2 + 2brs + c~2) ' 

where rf~- 1 (mod 8). 

Let  v~r.s denote the value of u / k  as given by  (27) or (28). 

I t  gives, similarly, 

(28) 

Then we have 

R(h,  x) = ~ ~ e~'dh~ ,, (29) 
a ,b ,  c 0 < a r S + 2  brs+cs~<~x 

(r, s)= 1 
(M) 

where a,b,  c indicates summation over a set of representative forms of determinant  
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D (positive forms, if D< 0), and (M) indicates that only one representation from each 

possible set of representations is to be included. We formulate condition (M) by 

using the property that all representations in a set can be obtained from any one 

such representation by means of the proper automorphs of (a,b, c). The mode of for- 

mulation depends on whether (a, b,c) be definite or indefinite. We consider first the 

definite case in detail, and then indicate the modifications that are necessary in the 

argument for the indefinite case. 

If D is negative, then the forms are positive. Here the number of representa- 

tions in a set is constant for a given form. The number is in general two, but may 

in special cases be four or six. Hence 

t ~ ( h , X )  = ~ ~a.b.c ~ e 2zthOr's, (30)  
a. b. c ar2+2 brs+cs2<~x 

(r.s)ffil 

where e~,b,c is either 1, 1, or ~. Plainly we may take a, b, and c as bounded by choosing 

the representative forms appropriately (as reduced forms, say). The inner sum may 

then be split up thus: 

/3 2 ~ihr . . . .  ~ + ~ + ~ = ~10 + ~11+ 0(1), say. (31) 
ar2+2brs+cs2<~x ]s]<lr[ Irl<lsl Irl=lsl=l 

(r, s)=l 

We must consider ~10 and ~n .  The following lemmata will be required. 

LEMMA 3. I /  h,r=VO, and 0~</~-:r we have 

~<s~ ex p (  2 ~ h g ) = O [ [ r l  �89189 
(r,s)=l 

This result on an "incomplete" Kloosterman sum may be deduced by a well- 

known method from Lemma 2 of the author's paper [6]. I t  depends on Weil's esti- 

mate for the Kloosterman sum. 

LEMMA 4. 

We have 

I /  h:~O and y>~l, we have 

z~u {(h, 1)} �89  = O{y log 2y .  a~_�89 (h)}. 

{(h, 1)}�89 = ~ (h ~ a{(h, 1)}�89 = O{ ~ 2�89 ~ .d(/1) } 
l~y  ~1 ~ , = ~lh l~<~y/x 

l<~y 

= o  y log 2y~h ~-/=O{u log 2y..~_~(h)}. 
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The conditions of summation in ~10 imply, firstly, that  

and, secondly, that  for given r 
I r l  < Ax �89 

F 1 (r) ~< s ~< F 2 (r), 

where Fl(r ) and F2(r ) are defined by 

br 1 ) F2(r)=min [r], , c + c  (CX+ Dr2) �89 , 

_~l(r)=max(_lr[, _b._r c (cx+Dr2)�89 

Let ~= ~(x,h) be a suitable positive number to be chosen explicitly later. 

~10 = ~. + ~ = ~. " ~ O ( ~ 2 ) = ~ 1 2 + 0 ( ~ 2 ) ,  say. 
Irl~<~ Irl>~ Irl>~ 

Then 

Next, if 
2~ih(br + cs) 

r s) = exp \r(~r~ ~ r s  +-cs2)] ' 

(32) 

(33) 

g(#)= ~ exp ( - ~ - ~ .  
Fl(r)~<s~ 

(r, s)=l 

Since in (35) ~(r,#)-q~(r,/~+ 1)=0 (~a),  (36) 

we have, by Lemma 3, that  expression (35) is 

o{ Ihl\lrl 3 [rl~{(h,r)}~'d(r) log 21rl 1) +O(Irlt{(h,r))~d(r) log 21rl) 
F,(r)<~p<~ F2(r) 

= O( Ihl Irl -~ {(h, r)}�89 log 2 Irl) + O(Irl �89 {(h, r)}�89 log 2 Irl ). 

where for any integer /~ (with r fixed) 

we have, by (27), (32), and (33), 

~12= ~ ~ exp ( - ~ ) . c p ( r , s ) ,  (34) 
~<lrl<Ax~ Ft(r)~s<~F~(r) 
Fl(r)~<F2(r) (r,s)=l 

where the outer summation is interpreted so that  ~12 is zero when ~>~Ax�89 The 

inner sum in (34) is transformed by partial summation into 

v ~" g(l~){cP(r'#)-cf(r'/a-t-1)} + g{[F2(r)l)q){r'[F2(r)]+l}' (35) 
l(r)~<p~< F~(r) 
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Hence, whatever the value of ~, we have from (34) 

~ s  = o (l hi log {(h, l) }�89 d (1) ) , 

from which we deduce, by Lemma 4, 

~lS = O{Ih[ 62-�89 (h) ~-�89 log 2 x} § 0{62_�89 (h)x ~ log s x}. 

Therefore from this and (33) 

~10 = 0 {] hi 6 ~- ~ (h) ~- �89 log ~ x} + 0 (~s) § 0 {6 ~_ �89 (h) x~ log s ~}. (37) 

If  ~ is chosen so that  Ihl ~- �89  then ~=lhl~- and the first inequality in 

~101  : s ,1 ~ = o { I hi 5 6 �89 (h) log' x} + 0 { 6 ~  (h) x~ log s x} (38) 

must hold. The second inequality can be proved similarly by starting from (28). 

We deduce from (30), (31), and (38) that,  if D is negative, then 

R(h, x) = 0 { ]hi ~ a2- �89 (h) log s x} + O {a2- �89 (h) x ~ log ~ x). (39) 

We pass on to the case where D is positive and the forms are indefinite. We 

must consider condition (M) for each form (a,b,c) tha t  appears  in (29). We take, 

for simplicity, the case when the form appearing is primitive, since the derived forms 

that  may appear can be considered similarly. I t  is plain that  we may take a to be 

positive and c to be negative by choosing an appropriate representative form. Let  

m be the highest common factor of a, b, c; let also T, U be the least positive solution 

of the Pellian equation 
T z _ DU s = m 2. 

Then (see [9], page 213) each set of representations of a positive number k by 

axS§ 2bxy § cy s contains one and only one representation which satisfies the inequalities 

aU 
x>O,  y>O,  y ~ x .  

Moreover, when these inequalities hold, the form takes positive values only. Hence 

any inner sum in (29) corresponding to a primitive form (a, b, c) may be expressed 

in the form 
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y 
a r 2 + 2 b r s + c s ~ < ~  x 

r, s>0, s<~a U r / ( T -  b U) 
(r, s) = 1 

e 2 z d h O r  s 

This m a y  be considered in a somewhat  similar way  to (31), since i t  m a y  be verified 

t h a t  the  conditions of s u m m a t i o n  imply,  firstly,  

s <<. (x /m)  �89 U, 0 <~ ar + bs <~ (x /m)  �89 T,  

and,  secondly, 
{m ~s2/U ~ 

a(ar 2 + 2brs + cs 2) >~ m2(ar + bs)2/T2. 

In  par t icular  the t r e a t m e n t  of the funct ion corresponding to  q~(r, s) will not  present  

any  difficulty. Final ly,  we obta in  the  same es t imate  for R(h, x) as in (39). We thus  have  

T ~ E O R E ~  1. Let D be any fixed integer that is not a per/ect square, and let 

Then, /or h # 0, 

R(h, x )=  ~ ~. e 2€ 
k<~x v2==-D (raodk) 

0<v~<k 

R(h, x) = (h) log 2 x} + O{a~�89 (h)x ~ log 2 x}, 

and, in particular, 
[R(h,x)] <.A(h)x  t log 2 x. 

Theorem 1 will be used for the  proof  of Theorem 3. I t  cannot ,  however,  be 

appl ied direct ly  in an  advan tageous  manner  to the  es t imat ion  of ~-5, since here the  

sums ~(h, k) appea r  with t r igonometr ical  factors  depending on k. I t  is be t te r  to con- 

sider sums of the  form 

R~(h, X )  =k~x~(h, k) e • 

R~ (h, X )  =k~2(h ,  k) e • Y Ck, 

where we recall t h a t  Yk is defined as in (3). These can be es t imated  exac t ly  as 

R(h ,X ) ,  except  t h a t  it is necessary to modi fy  the  definit ions of 0r.~ and q~(r,s), with 

a consequent  change in the  value of ~, as follows: 

(i) include the  addi t ional  t e rm  

in Or.s: 

2 zdhx 2 ztih Yk 
• ar 2 + 2 brs + cs ~ or • ar ~ + 2 brs + cs 2 

(ii) include the  factor  
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( ) exp • ar ~ + 2brs + cs ~ or exp +-- ar ~ + 2brs + cs ~ 

in q~(r,s). Then, now, instead of (36), we have 

which gives O{Ih[ a 2_ �89 ~-tx log 2 x} + p(~2) + O{a2_�89 (h)x ~ log 2 x} 

in place of the estimate (37). We then obtain the following lemma after choosing 

 =lhl x . 
LEMMA 5. We have, /or h # O ,  

Ri~(h, X )  
I = (h)Ihl xt log s x}. 

R~ (h, X )  J 

7. Estimation of ~s : second stage 

The estimation of ~5 can now be concluded by collecting together the results 

from previous sections. 

Firstly, now interpreting co (>  2) as a suitable real number depending only on x, 

we have, by (6), and (24), 

E s =  E {2W'k . ,o (x ) - -W'k .~ , (Yk)}+O(~ Ok.o(x))+O(E Ok.o(Yk)), 
k ~ X  k<~X k<~X 

since Ok.~(y) is positive. Therefore 

E5 = O( E ~Fk.~ (x)) + O( E ~Fk.~(Yk)) + O( E Ok.~(x)) + O( E Ok.o,(Yk)) 
k<~X k<<.X k<~X k<~X 

= 0(~13 ) 2t- 0(~.14) -4- 0(~15 ) -~ 0(~16),  say.  (40) 

We have, by (25), 

_ 1 1 2:~hx 1 1 2zthx 
13--~ ~ ~ ~e(h,k)  sin - -  - ~ ~ ~ e(h,k) s i n -  

k ~ X  l~h~ ta  ~ ~, l<~h<<to k ~ X  

Thus, on recalling the definition of R~(h ,X) ,  we have 

1 1 {R~(h, X) - R;(h, X)}. 
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Therefore, by Lemma 5, 

C. H O O L E Y  

o~ (h)] ~ a = O  x~log 2x ~ - ~  ] ,  
l~<h~<a~ 

which gives by a simple calculation the first part  of 

~a4~la } = O(x~eo~t log S x). (41) 

The second part  may be proved in a similar manner. 

Next, since Ch(~o) does not depend on k, we have, by {26), 

~,n = �89 Co(w) ~ e(k) + �89 ~ Ch(o~) {R~(h, X) + R[(h, X)}. 
k<~X h = l  

Therefore, by Lemmata 2 and 5, (22), and (23), 

:15=o(xl--~e~ x~ l~176176  : a2-�89176 2x : ~ I  
CA) 1<~ h <~ r h > eo h g  / 

=o(xl~ logZ x log w)+ O(x't.~ log S x). 

Therefore the first part  of the inequality 

~..xe~~s } =O(x l~ w) +O(x'w~ l~ x l~ ~) (42) 

holds; the second may be verified similarly. 

We have from (40), (41), and (42) 

~5=o(xl~ log~ x log ~o). 

1 
Hence finally choosing o) so that  xto -1 =x~ tot and thus co =x~, we deduce 

~..5 = O( xs l~ a x). (43) 

8. The asymptotic formula 

The asymptotic formula for the divisor sum is now immediate from (6), (14), 

(19), and (43). 
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T H E O R E ~  2. Let a be a non-zero integer such that - a  is not a per[ect square. 

Then, as x--> ~ ,  we have 

~+ d (n 2 + a) = 2 / -a(1)  x log x § {2 (~ - 1) / a (1) § 2 / ~ a  (1)}X § O(x 8 log 3 X), 
n~X 

g(s) 5 d 
where /:a(S) $(2s) ~*,~ d 2~'L( ala,)(s). 

(d,2)=l  

We observe t h a t  the divisor sum is in fact  asymptot ica l ly  equivalent  to  

2 /  ~(1)x log x, since it is easy to  verify from the properties of Dirichlet 's  L functions 

tha t  /_~(s) does not  vanish a t  s =  1. 

9. The distribution of the roots of the congruence 

Our result on the distr ibution of the roots of the congruence y2--~D (mod k) is a 

corollary of Theorem 1. We take all numbers  of the type  u/k ,  where v ~ - D ( m o d  k) 

and 0<v~< k ,  and arrange them as a sequence p~,p~ . . . . .  p~ , . . . ,  so t h a t  the corre- 

sponding denominators  k are in ascending order. (The ar rangement  of the numbers  

in a group corresponding to a fixed value of k is immaterial.)  

We then adopt  a method  due to Weyl  (see [4]), and  consider the sum 

~, e 2~r 
m<~N 

for each non-zero value of h, as N--->~.  I f  M is the denominator  (before caneella- 

tion) in PN, then 
N > (44) k<~M~(k ) > A M ,  

by  L e m m a  2. Nex t  

m ~ N  k< M ~2~=D(modk) 

Therefore, since ~ ( M ) =  O{d(M)},  we have, by  Theorem 1 and then by  (44), 

I Z e2n'hP'] < A1 (h) M t log 2 i 
rn4N 

< A 2 (h) N t log 2 N,  
and so, for any  h ~= 0, 

~ l ~ N e ~ t ~ m l - - > 0  as N - ~ o ~ .  

This gives our  final theorem. 

THEOREM 3. The sequence Pl, P,  . . . . .  Pm . . . . .  as de/ined above, is uni /ormly distribu- 

ted in the interval (0, 1). 
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