ADDITIVE SET FUNCTIONS IN EUCLIDEAN SPACE. II

BY

C. A, ROGERS and S. J. TAYLOR

London

1. Introduction

In our previous paper [11], we discussed various decompositions of additive set
functions in Euclidean space. Our main object was to show how a system of Haus-
dorff measures could be used to analyse a given set function, as far as is possible,
into components, which were uniform in a certain sense. In the present work, we use
the results of a series of papers [5, 8, 9, 12, 13] to correct and extend some of the
results obtained in [11].

We continue to restrict our attention to the system F of those continuous com-
pletely additive set functions F, having a finite value F(E) for every set E in the
field B of all Borel subsets of a fixed closed rectangle I, in k-space. It is clear that
the analysis extends immediately to o-finite set functions, defined for Borel sets in
Euclidean k-space.

In the first three sections of [11], we worked with a single Hausdorff measure
function A(f), and we obtained a unique decomposition of a set function F of F into
three components, one strongly continuous with respect to h-measure, one, not only
absolutely continuous with respect to %-measure, but also concentrated on a set of
g-finite h-measure, and one concentrated on a set of zero h-measure. The extensions
and refinements of this work, which we made in [13] will be vital for the sequel.

In the last three sections of [11] we introduced a system £ of Hausdorff measure
functions f(t), which was totally ordered by the relation <, defined by:

f<g, it g(t)/f(£)~0, as t—+0.
We first studied the special case, when £ is the system of functions

 0<a<k),
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and then turned to the case when L is maximal. In these studies, we analysed a set-
function F of F into a sequence of components, corresponding to certain sections of
L, and a residual component with a ‘“‘continuous L-dimension spectrum”. While our
main theorems (Theorems 3 and 6) are correct, the second of them (Theorem 6) cannot
be regarded as satisfactory. Unfortunately, there is an error in the proof, that F{” is
continuous on the right, given in Lemma 10. The faulty lemma led to our introducing
an unsatisfactory definition for a set-function with a “continuous L-dimension spec-
trum”; a set-function satisfying our conditions would not, as far as we know, neces-
sarily have the essential property of having no component which should naturally be
associated with a section of (.

In this paper, we correct and extend the analysis we made previously. The re-
sults we obtain are rather more complicated than those they replace. We find that
they depend essentially on the various properties of the system L, and on the nature
of the sections of £ considered. We defer any detailed description, until after we
have introduced the necessary concepts. The results may be described, in general
terms, by saying that, provided that the system £ has appropriate density properties,

we can analyse a set function F of F into:

(a) a sequence of isolated components corresponding to functions % of C;

(b) a sequence of isolated components corresponding to sections of £ having no
countable basis;

(c) a residual set function having no component belonging to any function or

section of L.

We give an example to show that the components corresponding to sections of L
having no countable basis may be non-zero; but we have to leave unanswered some

interesting questions concerning these components.

2. Scales of functions

Let # be the system of all positive functions A(¢), defined for ¢>0, continuous

monotonic increasing, and with lim;,.¢A(t)=0. When % and g belong to H, we write

h~g,
if 0 < lim inf g(¢)/R(t) < litm sup g(¢)/h(t) < + oo;
t—=>+0 ->+0
and h<g,

if tlimo g(t)/h(t) =0.
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We say that 2 and g in H are comparable, if
h<g, or h~g, or g<h;

and that they are monotonically comparable if, in addition, the ratio A(f)/g(t) is
monotonic for all sufficiently small positive ¢.

We list some properties, introduced in [5] and [8], which may hold for a subset
C of N

(Py) If g,h€L, then ¢ and » are comparable,

(PY) If g,heL, then g and h are monotonically comparable,

(P,) The function ¥ is in L.

(P,) If g,heL and «, B are real numbers, and g*h*€H, then ¢g*r°€L.

(P) If g,hel and g+h, then ¢ is not equivalent to A.

(P;) If heH and F is comparable with each element of L, then A is equivalent
to at least one element of L.

(Pg) If hE€N, there is at least one g in £ with g<h.

(P;) If e and h<{*, there is at least one g in £ with A<g<{~.

(Pyg) T 1, 1y, oo, Uy, 4y, ... €L and [ <[,<... <[, <...... <Up<...<u,<u,, there is
a g in £ with [,<,<...<[,<...<¢g< ... <y, < ... <uy<u,.

(Pyy) I heH and [, 1,...€ £ and ,<,<...<1,<...<h, there is a g in £ with
L<1,<... <1, <...<g=<h.

These conditions do not correspond exactly with those given in [5] and [8], since
there we were concerned with functions which might tend to 0 or to + co or to a
finite limit as the variable tended to + oo; but the differences are trivial.

A set £ of functions of H will be called a monotone scale of functions, if it
satisfies (P,), (P{), (P,) and (P,). A scale with property (P,) is irreducible; one with
(P5) is maximal; one with (Pg) and (P,) is dense; and one with (Pg), (P,), (P,,) and
(Py,) is strongly dense.

The main result which we obtained with the help of P. Erdés in [5] and [8] is:

TusoREM A. The continuum hypothesis implies the existence of a monotone scale

L which is irreducible, mazimal and strongly dense.

Bemark. It is also shown in [8] that every maximal scale £ has the property
(Py), and the same simple proof shows that such a scale £ has the property obtained
from (P,)) by replacing one or both of the sequences , I, ..., or u,, 4, ... by a single
element of L. 7
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At this stage we require one further definition. Two subsets L, B of an irreduc-
ible scale £ are said to form a section of L, if:

L has no maximal element,
LNR=9, LUR=CL,
and h,€L, h,€R implies h <h,.

We return to study and classify the sections of strongly dense irreducible monotone

scales in §5.

3. Bands associated with a section in a scale of measure functions

Let £ be an irreducible maximal scale of functions of . Let s be a section of
L into two sets L,, B,. In [11] we associated two pairs of complementary bands ()
in F with the section s. Let R; denote the set obtained by removing from R, its

least element, if it has one. Then as in [11] we introduce:

1. C, is the class of set functions F of F, which are s-continuous; that is, those
set functions such that F(E)=0, for any E€B, for which there is at least
one h€L, with h —m(E)=0;

2. §, is the class of set functions F of F, which are s-singular; that is, those

set functions, for which there is some E, in B, such that
F(E)=F(E n E,), (1)

and E,= U2, E;, where, for each E;, there is some A; in L, for which A, —
m(E;) =0;

3. Ci is the class of set functions F of F, which are strongly s-continuous; that
is, those set functions such that, if E€B, and »—m(E)=0, for every h€R;,
then F(E)=0;

4, 8% is the class of set functions F of F, which are almost s-singular; that is,
those set functions, for which there is some E, in B, such that (1) holds,
and h—m(E,) =0, for every h in R;.

In [11], we showed that C,, S, and C¥, S§F are pairs of complementary bands

in F. In order to obtain a more complete analysis, we now define two further classes:

5. C¥* is the class of set functions F of F, which are hyper s-continuous; that
is, those set functions which can be expressed as F = > F;, with 22| F|(Z,)

convergent, and each F; being A;-continuous, for some 5; in R;;

(*) This concept is explained later in this section.
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6. S¥* is the class of set functions F of F, which are hypo s-singular; that is,
for each b in R;, there is a set E, in B, such that h—m(E,) =0, and (1) is
satisfied.

The system J of sections s of £ is ordered in a natural way; we write s<{, if
the corresponding left-hand sets L, and L; satisfy L,< L;, the inclusion being proper.
It is clear, from the definitions, that, for any sections u, s, ¢, of J, with t<s<u,
we have

C.eCi*eCleCeCt; } @)

S, o8P o8 o8, o 8.

Our first object is to prove that C;* and $3* form a pair of complementary
bands in F. This could be done directly for the space F, but we prefer to prove a
more general theorem about collections of bands in a UMB-lattice, and then obtain
our results as a particular case. To this end, we recall the concept of a Banach
lattice, with a uniformly monotone norm, and show that F is such a lattice.

As explained in [11], F is a vector lattice, that is a partially ordered linear
space with a lattice structure. Further, F is conditionally complete: that is, every
subset U< F, which is bounded above, has a least upper bound F,in F. If R is any

conditionally complete vector lattice, we call a subset U of R a band, if:

(i) U is a vector subspace of R;
(ii) if GEU, then every F of R with |F|<|G| is also in U;
(i) U is a sublattice of R, which is conditionally complete; that is, every subset
V of U, which is bounded above in R, has its least upper bound in R
lying in U.
Here, in (ii), the element |F| is defined(!) by
|F|=Fu{~F}.
In a slightly more general context, Birkhoff ([1] p. 232) calls such a set a closed l-ideal.

If a vector lattice is also a Banach space, with the same vector structure, and
with a norm related to the lattice structure by the condition that,

if |F|<|@|, then |F|<||G|l. (3)

it is called a Banach lattice (see [1]). It is easy to verify that F is a Banach lattice,

under the norm
| Fll=|F| (Ly). (4)

(1) Note added to proof. The same symbols have been used for the lattice operations of join and
meet for as the set operations of union and intersection; but this should cause no confusion.
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Following Birkhoff [1], we call a norm in a Banach lattice uniformly monotone
when, given £>0, one can find 6>0, so that if F>0, @3>0, and ||F||=1, then
|#+@||<|F||+06 implies |G| <e. It is clear that F satisfies this condition, for, in
F, if F>0,@>0, then

|F+ @l =Fdy)+ 6y = || Fl|+]||&.

Any Banach lattice, which is a conditionally complete lattice, and which has a uni-
formly monotone norm, will be called a UMB-lattice.

In [11] we used some general theorems about conditionally complete lattices,
which we now repeat for reference purposes. We recall that two elements F, G in a

vector lattice are said to be complementary, if
|F|n|¢]=0.

TaeorEM B. If R is a conditionally complete vector lattice, and U is a subset
of R, the set U of all elements of R, which are complementary to every element of U,
is a band in R. If U is also a band, then U consists of all the elements of R which

are complementary to every element of V.

This theorem follows almost immediately from the definitions; see N. Bourbaki [3],
or S. Bochner and R. S. Phillips [2]. If U and ¥ are bands in R, each consisting
of all the elements in R complementary to all the elements of the other, we say
that they are complementary bands in R. The following fundamental decomposition

theorem follows:

TarEorREM C. Given two complementary bands Uy, U, in a conditionally complete

vector lattice R, each element F of R can be expressed unmiquely as

F=F,+F,
where F.eU, and F,eU,.
Further |F|=|F,|+|F,|.

The existence and uniqueness of the decomposition is essentially due to Riesz [7].

If F,, F, are complementary elements of any vector lattice, then
|F1+F2]=|F1|+|le~

(This result is well known: a proof can be easily constructed using the identities on
page 19 of Bourbaki [3].)
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THEOREM D. Any band in a conditionally complete Banach lattice is closed under
the metric.

Proof. Suppose that U is a band and that U is the complementary band. Let F
be any limit point of U. Then there is a sequence F,, F,, ... in U converging in
norm to F. Let G belong to ¥. Then as G, F; belong to complementary bands,

|G| n|F|=]1GI n|1F|—\G|n|Fl|
<||F|—|F||<|F—F],
so that e niFil|<||F-F.,

for all i. Hence |G|Nn|F|=0 and F is complementary to (. Thus F belongs to the
band complementary to U, i.e., to U. Thus U is closed under the metric.
We also need

TaEOREM E. If a set U in a UMB-lattice R satisfies the conditions:

(1) U 1s a vector subspace of R, which is closed under the metric;
(i) if GEU, then every F of R with |F|<|G| also belongs to U;

then it is a band in R.

Remark. In Birkhoff’s terminology, this says that an l-ideal in a UMB-lattice,

which is closed under the metric, is a closed [-ideal.

Proof. It suffices to prove that U is conditionally complete. Now, by (i), the
set U is a sub-Banach space of R. Further, if F and G belong to U, then, by (ii),
we have |F| and |G| in U. Thus |F|+|G|€U by (i). But
|Fn@|<|F|+]|6],

IFuG|<|F|+|dl,
so that by (ii) we have
FnGeU and FUGeU.

Thus U is a sub-lattice of R.
Now suppose that ¥ is a subset of U which is bounded above by an element
R, of R. Let Vo€V and consider the system U of finite joins

VoUV,U...UV, (k>0).
W is a directed set contained in U with

V,< W<R,,
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for all WelW. Hence, by [1], Theorem 11, page 249, the directed set U converges
metrically to some element, U, say, of R. As W< U, and U is closed under the metric,
U,€U. Further U, is the least upper bound of ¥ in R. Consequently U is condi-
tionally complete, as required.

These two results enable us to prove

THEOREM F. Suppose R is a UMB-lattice and U, is a band in R for each a in

an index set J. Then
n u.

a€d

ts a band in R. Further, the closure under the metric of the vector space genmerated by

the union

U U

xEeF

is a band in R, and is the least band in R containing this union.

Remark. We shall only need the special case when the bands U, with «€J are
nested (i.e., are totally ordered by the relation of set inclusion). In this case, the
result follows almost immediately from Theorems B, D and E; but the general result

seems to be sufficiently interesting to justify its special proof.
Proof. It follows immediately from the definitions that

nu.
x€y
is a band in R
Let Q be the closure under the metric of the vector space generated by the union

U U.

x€F

It follows, from Theorem D, that any band in R, containing this union, must also
contain Q. Hence it suffices to prove that Q is a band in R. But Q satisfies the
condition (i) of Theorem E. So it suffices to prove that Q satisfies the condition (ii)
of Theorem E.

We first prove that, if U and V¥ are two vector spaces in R satisfying condi-
tion (ii) of Theorem E, then the vector space U generated by the union of U and Y
also satisfies this condition. Suppose that W €W and F in R satisfies | F|<|W|. Then
W=U,+V, with U;€U and V,€V. Further

Fr<|F|<|Uy+ V| <|T |+ (74,
and U,=|U,|eU, V,=|V,|e¥.
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Fr=F*n(Uy+ V) =U,+(F" —U,)nV,

U3={(F+—U2)n V2}00
V:a:{(FH‘Uz) n Vz}U 0.

Fr=U,+ U+ V,.
0< —U,={(Uy—F*)YU (= V,)} U0 U,,
o< V3={(F+_U2) N Vz}U 0<V,,

U,elU, V,€V and F" e

Similarly F~ €U and so does F=F*+ F~.
Applying this result inductively we see that the vector space generated by the

union of any finite collection of the sets U, with x€J satisfies the condition (ii) of

Theorem E.

215

Now suppose that GE€Q, and that F in R satisfies |F |<|G| As GeQ, we have

where for each ¢,

G :hm Gi’
i)

G;= Z G
k=1

Gikeua(i-k) (k=192: ---77-(7:))3

ai, k)€T  (k=1,2,...,7()).

Since 0< F*<|@|, 0< — F~<|@|, we have

[F—F"0iG)+(—F)niGl|=|F n1G—F n|Q—(—F)n|Gi—(—F)n|Gi]

So

<2161-1G;||<2|G—-@Gi.

WF—F" n|1G+(-F)niGil|<2]|lad-6.

Thus F is the limit in norm of the sequence

H=F'n|G|-(-F)n|G| (=1,2,..).

But, for each 7, the vector space generated by the sets

uoc(i.k) (k: l’ 2’ sres 7(7’))’

satisfies condition (ii) of Theorem E.
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So F+nIGi’ and (—F_)HIG,I

lie in this vector space and thus belong to Q. Consequently H;, i=1,2,... anc
F=1lim,, H; belong to the closed vector space Q. This completes the proof.
We now return to the study of the space F of additive set functions. We prove

TaeorEM G. For any section s of L, the sets C* and S$3* are complementar
bands in F.

Proof. Suppose s is the section L,, B, of H. For each & in R;, the class C(k) o
h-continuous set functions, and the class S(h) of h-singular set functions form com.
plementary bands in F. So, by Theorem F, the set

=N Sk
heRg
is a band in F.
Let Q be the closure under the norm of the vector space generated by the union

U C(h).

heRg

Now every element in this union is complementary to each element of $3*. It follows
that each element of Q is also complementary to each element of $i*. But each
element of F, which is complementary to each element of Q, lies in §(h) for all
hER;, and so lies in S¥*. Thus $¥* is the band complementary to the set Q. But,
by Theorem F, the set Q is a band in F. Hence §;* and Q are complementary
bands in ¥, and it remains to identify Q and C;*.

Since every F of F of the form
with 252, || F;|| convergent, and with F;€C(k,), for some h; in R, is clearly in Q, we
have CH* < Q.

Now, if F€EQ, we have

F=lim G,
i>o0
for some sequence G, G,, ... of set functions in the vector space generated by the
union
U C(). (5)
heRy

Replacing G, G,, ... by a suitable sub-sequence H,, H,, ..., and writing H,= 0, we have
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=
F= _Zl(Hi - Hi—l):
<

with ,-ZINH‘_ Hi ||
convergent. Now, for each ¢,
Fi;=H,—H; ,

lies in the vector space generated by the union (5), and so has a representation as

a finite sum
oY

F;= Z Fy,,
with FueClhy) (k=1,2,...,7(),
and hi€Ri  (k=1,2, ..., (i)

Thus Q>C*, and the theorem is proved.

4. The first decomposition theorems

As in section 3, let £ be an irreducible maximal scale of functions of . In
this section, we show how a function F of F can be expressed as a sum of compo-
nents, associated with sections s of the system J consisting of all sections of L, and

a residual component having what we shall call a continuous dimension spectrum.
We first prove

THEOREM 1. Given any set function FE€F and any section s of L, there is a
unique decomposition
F=FP+FQ+FP+FP,
where F¥ is hyper s-continuous, FS is strongly s-continuous and hypo s-singular, FS is

s-continuous and almost s-singular, and F$ is s-singular. Further
|F|=|FO|+|F9| + | FO| + | FL).

Remark. The decomposition of this theorem is apparently finer than that of
Theorem 5 of [11]; the set function F{¥+ F§ above corresponds to the first compo-
nent of the decomposition given in [11]; but we know of no example with F$’ 0.
Thus we have been unable to decide whether or not the class C¥ N S is always void.

Note that, if #€L,, then necessarily

F=FP, FP=FP=FP=0.

See also the remark at the end of section 8.

15 — 632918 Acta mathematica 109. Tmprimé le 14 juin 1963.
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Proof. By the definitions, the results of [1], and Theorem G, the pairs {C,, .},
{C?, 8¢} and {C¥*, $7*}, are pairs of complementary bands in F, and satisfy

sfelieC,,

S:*Dss*:)ss-

The result now follows, on applying Theorem C three times.

We now need to know how the decomposition of Theorem 1 depends on the
section s of L. We can define left and right continuity in the norm topology of F
relative to the order topology of J. If F(s) is a set function of F defined for s in 7,
we say that F(s) is continuous on the right at s, if, for each £>0, there is a
in J, such that

|F(s)— F#t)||<s, for all tin T with s<t<u.

Continuity on the left is defined similarly, and the discontinuities on the left and

right of a function with a simple jump discontinuity are defined in the natural way.

TEEOREM 2. In the decomposition of Theorem 1,
=~ 72 and ||F2||

are monotonic increasing functions of s, the function F{® is continuous on the right, and
FP is continuous on the left. The sections s, where —F{ and FP are discontinuous
coincide, and at such a section —F has a stmple jump discontinuity on the left and
FP has a simple jump discontinuity on the right, these discontinuities being equal and
having the value

FO+FQ.

Remark 1. This result, as Lemma 10 of [11] was alleged to, follows from use of
the methods of §4 of [11], but, in view of the lacuna we have found in the proof

of Lemma 10, it seems best to give the proof in some detail.

Remark 2. Since ||F||=|F|(I,) and |F| is non-negative for all F€J, the fact
that — || F{”|| and ||F§’|| are monotonic increasing implies that —|F{®| (E) and |FP|(E)

are monotonic increasing for all £ €B.
Proof. Suppose that s and ¢ are sections of £ with s<t. Let

|FI=|FP |+ | PP+ | B9+ R,
|F|=|FP|+|FP|+ | FP|+ | FP],
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be the corresponding decompositions of |F|, provided by Theorem 1. Now, by the
inclusion relations (2), the function |F{’|is hyper s-continuous. Further, by Theorem 1,

we have a decomposition
|F|+|FO|+|FP| = 69 + 69+ 6 + 69,

where G, i=1,2,3,4, are all non-negative, and where G{” is hyper s-continuous,
Gy is strongly s-continuous and hypo s-singular, G is s-continuous and almost
s-singular, and Gf° is s-singular. Since the decomposition of |F| with respect to the

section s is unique, we have the identification
| FO = |FP|+ 69,
|FP|=6f (i=2,3,4).
Since G§” is non-negative, we have
| FON =B (L) = | FP| (2) + 65 (L)
> |FP| (Ty) = | FP.
Thus —||F$|| is monotonic increasing. Similarly || F$|| is monotonic decreasing.

Now we study the behaviour of F{, for ¢ in J to the right of a section s€J.

The function F{¥ itself is hyper s-continuous and so has a representation
o
F 55) = Z Gi’
=1

with 221||G|| convergent, and with each G, being &;-continuous, for some %; in the
class R; associated with the section s. For each £>0, we can choose a positive in-
teger k, so that

2 lled<e.

i=k+1
Let h=min{h,, h,, ..., by}.
Then %€ R;.

If R, has no minimal element, then R;= R, has no minimal element. On the
other hand, if R, has a minimal element, then R; was formed by removing it, and
it follows from the maximality of £ that R; has no minimal element.

Thus we can choose g in R;, with g<h, and we shall still have elements r in E;,
with r<g. Let u be the section of £ formed by taking the left class to be all the
functions r of £ with r<g. Then s<u, and g belongs to the right class of w.
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Consider any section ¢ in 7', with
s<t<u.
As g belongs to the right class of ¢, and

g<h (=12, ...,k),
k
the set function > G
=1

is hyper i-continuous. The set function

has a decomposition in the canonical form
H=HP+HY+HY +HY.
The set function K=F+FQ+ FY

is hypo s-singular and so lsingular for any ! in the modified right class R of s.
Taking I to be in R; and also in the modified left class of ¢ we see that K is

t-singular. Thus comparing the decomposition
k
F= { > G+ H‘f’} +HY +HY + {HP + K}, (6)
i1

with the decomposition with respect to the section ¢ provided by Theorem 1, we have

k

F(It) = Z Gi + H(lt).
i=1

Hence | F©~FP||=||HY + HY + HY||<||H]| < &

This proves the continuity of F{® on the right at t=s.
But it also follows from the decomposition (6) that
FP=HY +K.
Hence 1F¢— FP — Fo— FP|| = || BL] < || H]| <.

This proves that F{ has a simple discontinuity F$’+ F§ on the right at ¢=s, oris
continuous on the right at {=s in the case when F§’+ F§’=0.

We remark that, if it is possible to choose % in R; so that

h<h (i=1,2,3,...),
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then the above proof shows that

t) _ Zus) 1) _ D) —
F(l)'—F(ly F(Z)_O: F%)'—O’

FO=FP+ FP+ PP,

for all ¢ with s<¢<w. Thus, in this case, F{ and F{ are constant and FY and F§’
vanish in an open interval to the right of ¢=s.

We now study the behaviour of F, for ¢ in J. The function F{® is itself s-sin-
gular. So F{’ is concentrated on a set E, in B and

where, for each 7 there is some h; in L, for which h;—m(E;)=0. Without loss of
generality we may assume that the sets E; are disjoint Borel sets. Now, writing

G{(E)=FP(E n Ky,
we have FQ = i G,
i1
wnd 2l6i= 2RI E) = | PP < + oo,

The argument now parallels that used in the discussion of F{’. For each &>0,
we can choose a positive integer k so that

+1

3 ledl<e.

Then h=max {hy, hy, ..., by}

belongs to L,. Further L, has no maximal element. So we can construct a section u
in J with u<s having a function ¢ with h<g in its left class.
Consider any ¢ in J with

u<<tb<s.
As g belongs to the left class of ¢, and

h<g (@=1,2,..., k),
k
the set function > G
=
is t-singular. The set function
H= 3 G

-
i

=
+
-
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has a canonical decomposition, say
H=HP+HY+HY + HY
with respect to the section ¢. The set function
K=FP+FP+FP

is s-continuous. So K is Il-continuous for each 1€ L,. Since f<s, K is l-continuous for

at least one ! in R;. Hence K is hyper f-continuous. Comparing the decomposition
k
F={H§‘>+K}+H§"+H§”+{Hff’+ > G,}
-1

with the decomposition of Theorem 1, we obtain the identification
FP=HP+K,
Y- HY,
- Y,

k
FP=HP+ 3 G;.
i=1

It now follows, as above, that F¢ is continuous on the left at =s, and that F{’ has
a simple discontinuity — F$ — F§ on the left at t=s, or is continuous on the left
at t=s in the case when F$ + F{ =0.

Further, if it is possible to choose A in L, so that

<k (:=1,2,3,..))
then Fit)= Fis) + F(28) + ng),

FP=0, F{=0, FP=FP,
for all ¢ with u<t<s.
Combining the above results we see that we have completed the proof of
Theorem 2.

Two new concepts are now necessary.

DEFINITION. If s€T and F€F, then F is said to have the exact L-dimension s,
if F is s-continuous and hypo s-singular.

DEFINITION. A set function F of F is said to have a diffuse L-dimension spec-
trum, if there is mo set function @ of F with 0<|G|<|F| having an exact L-dimension.
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These definitions are intended to supersede the definitions given in section 6
of [1], which we now regard as being inappropriate. But the examples of section 5
of 1] are still relevant, and provide examples of set functions having exact L-dimen-
sion s, and of a set function having a diffuse L-dimension spectrum, on taking £ to
be any irreducible maximal scale of functions.

The following theorem characterizes the set functions, with a diffuse C-dimension

spectrum, in terms of their behaviour under decomposition.

THEOREM 3. A set function F of F has a diffuse L-dimension spectrum, if, and
only if, its decomposition

F=FP+FP+FQ+FP,

for t in T, satisfies one of the following equivalent conditions:

(1) FP is continuous for all ¢t in T:

(2) FO=FP=0 for all ¢t in T;

(8) FP is continuous for all t in J.

Proof. It follows immediately, from Theorem 2, that the three conditions are
equivalent.

If the condition (2) fails, there is a ¢ in J, with, either

FP+0, or FP=+0.

Then 0<|FQ| +|FP|<|FP)+|FQ|+ | FQ|+ | FP|=|F|,
while |F{|+|F§| is t-continuous and hypo #-singular. Hence F does not have a diffuse
L-dimension spectrum,

On the other hand, if F does not have a diffuse L£-dimension spectrum, there

isatin J and a @ in F with
0<|G[<|F|,

G being t-continuous and hypo #-singular. Now we can write
\Fl=|6l+|H]|,
where H=|F|~|@|. Decomposing |F|, |G| and |H| with respect to the section ¢,
and comparing the two resulting decompositions of |F|, we have
QL+ PP 160 |+ |09+ B+ )
=|GP|+ |69 |=|G|>0.
Thus the condition (2) fails. This completes the proof.

We are now in a position to state the main theorem of this section.
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THEOREM 4. Given any irreducible mazimal scale L of functions of # and any
set function F in F, there is a finile or enumerable sequence s,, s,, ... of distinct sec-

tions of L, and a decomposition
F=F9+ F§>+ F§ + F§P + F§2 + ..., (7)

where F® has a diffuse C-dimension spectrum, F$0 is strongly s;-continuous and hypo
si-singular, and F§P is si-continuous and almost s;-singular, for i=1,2,.... The set of
the sections s;, and the decomposition (apart from the order of its terms) are uniquely

determined by F.

Proof. The result follows, mutatis mutandis, from the proof of Theorem 3 of [11].
The changes required are clear; in particular, it is necessary to work with the funec-
tion ||FQ||+ || F$|| of the section ¢ in J in place of the function |F§°|(I,) of the real
variable a.

This theorem should be regarded as a more appropriate version of Theorem 6
of section 6 of [11]. In the earlier version, the components F$” were lumped together
with the component F°, with the result that the component, said to have a diffuse
L-dimension spectrum, did not deserve this deseription.

The remainder of this paper will be concerned with the further study of the
decomposition of (7). We shall investigate the types of sections s, for which the
components F$¥ and F{’ can be non-zero; we shall also show that, in certain circum-

stances, components of the decomposition are isolated in a certain sense.

5. Sections in a scale of functions

Let £ be an irreducible maximal scale of functions of H. Let J be the system
of sections of L. A set Q of functions of £ will be said to form a right basis for
a section s in J, if L, is precisely the set of functions 2 of £, which satisfy A<gq
for all ¢ in Q. Note that every section s has the corresponding set R, as a right
basis. Also, if a finite set of functions is a right basis for a section s, then the
smallest of the functions of the set is the minimal element of E,, and the set con-
taining just this one function is a right basis for s. Further, if a countable set, say
I, 0, ..., of functions of £ forms a right basis for a section s with no finite right

basis, the sequence u,,u,, ..., given by

wy=min{l, b, ...} (=12, ..),
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has no minimal element, and has a subsequence, v,, v,, ... say, with
V3>V >,

forming a right basis for s. Thus there are three mutually exclusive possibilities:

(F) the section s has a right basis consisting of a single function;
(E) the section s does not have a finite right basis, but does have an enumerable
right basis whose elements form a strictly monotonic sequence;

(N) the section s has no enumerable right basis, but does have a non-denumerable

right basis.

We can introduce a similar definition for a left basis, and make a similar classi-
fication, but, as L; has no maximal element, only the two cases (E) and (N) occur.

We say that a section s is of type (AB), if its left hand bases fall under type
(A) with 4=FE or N, and its right hand bases fall under type (B) with B=F, F or N.
So @ priori a section s belongs to one of six types. But we shall soon eliminate two
of these types.

First suppose that s were a section of type (EF). Let & be the minimal element
of Ry and let v, v,,... be a left basis for s with

v, <v,<...<h.
By the remark after Theorem A, there is an element k of £ with
0, <0y,< ... <Ek<h.

But now k can belong neither to L, nor to R,. This contradiction proves that there
is no section of type (EF).

A precisely similar argument shows that there is no section of type (EE).

We are left with the sections of types (NF), (EN), (NE) and (NN); it is easy
to construet examples of sections of each of these types. We now go on to discuss
each of these types separately. However the types (NF) and (NN) have a property
in common which has important consequences, and we consider this first. In both
cases the section has no enumerable left basis and further R; has no countable co-

final sequence in L, i.e. there is no countable sequence ry,7,,... in £ with
X< <1y, <7y,

such that the members of R; are those r in £ such that r,<r for some integer m.
This last property follows, in the case of a section of type (NF), by the argument
used above to exclude sections of type (EF).
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We formulate the results for sections of these two types in terms of ‘isolated
components’.

DEFINITION. For any s€T, the component F + F§ is said to be isolated, when
there are sections u, t of T with u<s<t such that, if G is any set function of F, which
is u-continuous and t-singular and satisfies |G|<|F|, then @ is of exact C-dimension s
and satisfies |G|<|F+ FP|.

Lemma 1. Suppose s is a section of £ of type (NF) or (NN). Then the component
FP + F is isolated.

Proof. If s is such a section, then we know there is no sequence 7y, 7,, ..., in
R;, such that any kb in L satisfying h<r,, i=1,2,... cannot be in R;; and there is
no countable sequence I, l,, ... in L,, such that any A in L satisfying [;<h, t=1,2,...
cannot be in L,. Under these circumstances, the remarks made in the proof of Theo-

rem 2 apply, and there will be sections I, r in J with

I<s<r
such that FP=FP+ F + FP,

F$=0, FP=0, FP=FP for I<t<s,
and FP=FP, FP=0, FPY =0,

FP=FO+FP+FP for s<it<r.

Consider any & in F, which is l-continuous and r-singular, and which satisfies
|G|<|F|. Since |@| is l-continuous, and

|G|<|F|=|F¢+FP + FQ|+|F{],
where |F{| is l-singular, it follows that
|G| [P+ B+ FP| = | B+ | B + B, ®)
Further, since |G| is r-singular, and
|GI<|F|=|FQ+FQ+FQ|+|FP|,
where |F{’+ F$’+ F{’| is r-continuous, it follows that

|G| <|FQ| = |F® + FP|+ | FP). (9)
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Since |F{P| and |F{| are complementary it follows from (8) and (9) that
|G|<|F‘§)+F§s’|.

This implies that @ is of exact £-dimension s. Consequently the component F$ + F§ is

isolated.

6. Sections of type (NF)

Let £ be an irreducible maximal scale of functions of H# and let s be a section
of L of type (NF). Let A be the minimal element of R,. Then s is uniquely deter-
mined by %, and we write s=s(h). We recall the definitions of the sets C(k), C*(h),
S(k) and $*(h) given in [1].

1. C(k) is the class of set functions F' of F, which are h-continuous; that is,
those set functions such that F(E)=0, for any E in B of zero h-measure.

2. §(h) is the class of set functions F of F, which are h-singular; that is, those

set functions, for which there is some E, in B with zero h-measure, such that
FEY=FEnE,) forall E in B. (10)

3. C*(h) is the class of set functions F of F, which are strongly A-continuous;
that is, those set functions such that F(E)=0, for any E in B of o¢-finite h-measure.

4. $*(h) is the class of set functions F of F, which are almost h-singular; that
is, those set functions, for which there is some E, in B with o-finite h-measure, such
that (10) holds for all £ in B.

In [11] we proved that C(k) and S(h) and C*(k) and $*() are pairs of com-
plementary bands in F. We remark here that the results could have been obtained
a bit more directly, by use of results of Hahn and Rosenthal [6], rather than by use
of the theory of bands.

In the special case, when L is dense, we can establish connections between the
four bands associated with A and the six bands associated with s(k), by using the
results of [13].

Lemma 2. If £ is dense, h€ L and s(h) is the section of L of type (NF) associated
with h, we have
C(h) = CS(h) s S(h) = ss(h) s

C*(h) = C:(h) = :(70’

st (h)= s:(h) = :(’;)-
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Proof. Comparing the definitions of C,, and C(h), we see immediately that
Cs(h)DC(h)-

So consider any F in Csu). Let E be any set of B with zero h-measure. Then, by
a result of Besicovitch {see Lemma 6 of [13]}, there is a function j of H with j<hA
and j—m(E)=0.

Since £ is dense, it follows from (Pg) that there is a g in £ with g<Aj~". Then,
by (P,), the function I=hg™! is in £ and satisfies

j<1<h.

Thus we must have [ in Ly, and
l—m(E)=0.

As F is in Cyn), this implies that F(E)=0. Hence F is in C(k). Consequently
Csmy=C(h).

It follows that the complementary bands Six, and $(h) must coincide.
Comparing the definitions of Cix), Cik and C*(k), we see immediately that

CinycCin < C*(h).

Now consider any F of C*(h). By Theorem 5 of [13], there is a function g of ¥
with h<g and F€C*(g). Since £ is dense, it follows that there is an I in £ with

r<1<g.
Then 1€ Ri), and FeC*()=Cih=Cim-
Thus C* (k) = Cihy < Csony = C* (B).
Hence C*(h)=Cin =Ci-
Consequently S*(h) = Ssn, = Sinys

as well. This completes the proof.
The following theorem provides considerable information about the components

in Theorem 4 corresponding to sections of type (NF) in a dense scale.

THEOREM 5. Let s be a section of type (NF) in a dense irreducible maximal
scale L, and let b be the minimal element in R,. Then, in the decomposition of a func-
tion F of F, provided by Theorem 4,

FP =0,
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FY is h-continuous and almost h-singular, and has a representation

F{(B)= f

En

) dh —m(z),
S

where f(x) s a Borel-measurable point function which does not vanish on S, and 8 is

a Borel set of o-finite h-measure. Further the component FY is isolated.

Proof. Using Lemma 2, we have

FPeCi=Cy and FPe S
Hence F$=0.

Using Lemma 2 repeatedly, we have
FP+FPeCs=C"(h),
FPeC,n 85 =C(h) n §*(R),
FPeS,=S(h).
So F§ is h-continuous and almost A-singular. Further, comparing the decomposition
F=FP+FY+FQ+FP

with that of Theorem 7 of [13], we identify F$ with the second component of that
theorem, so that it has a representation of the required form. Alternatively the
representation may be obtained (as in Theorem 7 of [13]) by a direct application of
the Radon-Nikodym theorem.

The fact that FY is isolated follows from Lemma 1.

7. Section of type (NE)

Let £ be an irreducible maximal scale of functions and let s be a section of L
of type (NE). In order to obtain significant results for sections of this type we shall

have to assume that L is strongly dense. But first we prove a lemma.

LemmaA 3. Let hy, hy, ... be a sequence of functions of W with
hy>hy>...,

and let E be a F,-set with h;—m(E)=0, i=1,2,.... Then there is a function g of H
with g<bh;, 1=1,2, ..., and g—m(E)=0.
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Proof. We first consider the case of a bounded closed set E. Since £ is compact,
each covering of E by open sets contains a finite covering of E. Since h; —m(E)=0,
for ©=1,2,..., it follows that for each pair of positive integers i, j we can choose a

finite system of open convex sets
4,7) g .9)
Cg ])5 Cé )7 LRRE] OL ’

where w=pu(i,§), covering E, and such that

3 W) <1/j,

and max d(C&?) < 1/4.
1<r<p
Write d(‘-f)= min d(C,(»i'i)).
1<r<p
We now choose inductively a sequence of functions k,, k,, ..., a sequence of in-

tegers j,, s, ..., and two sequences of real numbers &,, &, ..., and #,, #,, ..., so that:

(1) ky(x)=h () for all £>0, and j,=3j(1)=1;

(2) when r>1 and k.(x) and j,=j(r) have been chosen, & is chosen so that
hriy () >h,(x) for all z with O<x<£,, and also &, <d™;

(3) when r>1 and k,(z), j, and & have been chosen, , is chosen, with 0 <%, <§,,
so that h,.1(n,)=h(&);

(4) when r>1 and k,(x), j,, & and 7, have been chosen, kyii(x) is defined by

ki1 (x)=Fk,(x) for &<z,
kria(@) =Ky (&) =Rria(n,) for n,<z<§,
ki1 ()= bria(x) for 0<z<n;

(5) when r>1 and k, (), §,=4(r), &, n, and k.1 (x) have been chosen, §;,;=j(r +1)

is chosen to be an integer so large that

1 <min 1
jra )

Consider the measure function g(z) defined by

g(z) = lim k, (x).

It is clear that gx)= b1 (x) for O<ax<éyig.
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As by 1<h,, it follows that g<h, for r=1,2, .... Further, for each integer r>2, the

Set' Of Open convex Sebs
7,5 (T, F (T (¥ )]
0( O ( O(

with g =u(r, j(r)), forms a covering of £ with

; 1
ACT' )< — <y,
1127??14 ( ) i(r) =t

min d(C«nr,i‘(r))) — d(r.i(f)) > 51_

iy
Thus S g @@ ) = S ke @E8 ™) = S b (@(CE) < 1/jir) < 1/r.
n=1 n=1 n=1

Hence E is of zero g-measure.

Now suppose that E is a F,-set. Then we have

E= Z U E;
i=1
for some sequence E,, E,,... of bounded closed sets.
As hl_m(Ej)<hg"m(E) =O,

we can, for each j, choose a function ¢, of ¥ with
g;<hk; for ¢,5=1,2,...
and g;i—m(E;)=0 for j=1,2,....
Then, because H is strongly dense, we can choose a function g of ¥ with

9,<g=<h;, for i,j=1,2,....

Then g—m(E)< ]_Zlg —-m(E) < ]Zlg,- ~m(E,;)=0.
This completes the proof.

Remark. The problem of extending this lemma to cover any Borel set E seems

to us to be open and interesting.
We can now easily prove
Lemma 4. If L is strongly dense, and s is a section of L of lype (NE), then

C.=C=C", §,=8§=8"
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Proof. It suffices to prove that

S.=8=8%
indeed, since S, §5 < 85,
it suffices to prove that §$*cs,.

Consider then any function F of F in $i*. Let v;, v,, ... be a right basis for s with
V>V >
As FEeS:*, we can choose sets E,, E,, ... of B, such that
FE)=FENE,) for all E of B.
v,—m(E;)=0,
for i=1,2,.... Then Ey= N2, E; is a set of B with
F(E)=F(ENE, for all E of B,
and v—m(E)=0 (i=1,2,...).

Since F is an additive set function of F, there is an F,-set G, contained in

E,, with
|F|(G)=|F|(E,).

Since v, —m(@ =0 (¢=1,2,...),
it follows from Lemma 3, that there is a function g of ¥, with
g<v; (=1,2,...),
and g—m(G)=0.
Since £ is strongly dense, there is an I of £ with
g<Il<v; (1=1,2,...).
Sinee v, v,, ... is a right basis for s, it follows that 1€ L,. Now, we have l€L,,

I—-m(GY<g—m(@)=0,
and, for each E of B,

|F(E nG)—F(E)|<|F(ENE,)—FE)|+|F(EnE)—FEnG|
<|F(E 0 Ey) — F(B)|+||F|(Ey) — | F|(&)|=0.
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Thus F is concentrated on the set G of B, with zero l-measure, with [ in L, and

so Fe€S§,. Consequently

and the required result follows.

As an immediate corollary of this lemma, we have

THEOREM 6. Let s be a section of type (NE) in a strongly dense irreducible maximal
scale L. Then, in the decomposition of a function F of F, provided by Theorem 4,

F =FP =0.

8. Sections of type (EN)

Let £ be an irreducible maximal scale of functions and let s be a section of £
of type (EN). In order to obtain significant results for sections of this type, as for
sections of type (NE) we shall have to assume that the scale £ is strongly dense.
But first we need two lemmas.

Our first lemma is a result which was proved, but not explicitly stated in [13]
it introduces the concept of a set function @, which is uniformly Lip A{f), i.e. a set

function @ of F, such that, for some constants K and 6 >0, we have
|Gl (1)< KR(d(I)),
for all sub-intervals I of I, with d(I)<d.

LemMA 5. If heH and F in F is h-continuous, then there is a sequence E;,i=1,2,...,
of disjoint sets of B, such that the set functions

GE)=FENE) (=1,2,...),

are each uniformly Lip h(t), and

F=i§10i’
I7)= 3 Nl

Proof. The result follow immediately, from part (d) of the proof of Theorem 1
of [13], on taking
EizKi_Ki—l (7:=1,2, ...).

LEMMA 6. Let hy, by, ... be a sequence of functions of H with

hy<hy< ...,
16 — 632918 Acta mathematica. 109, Imprimé 17 juin 1963.
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and let F be a set function of F, which vs hy-continuous for i=1,2,.... Then there is
a function g of M, with h<g for 1=1,2, ..., such that F is still g-continuous.

Proof. Let & be given with 0<e<1. By Lemma 5, for each j, we can choose a
sequence E{”, i=1,2, ... of disjoint sets of B, such that the set functions

GP(E)y=FENE?) (=1,2,..)),

are each uniformly Lip A,(¢), and
F=367 ||F|l=Z el
=1 5
for j=1,2,.... For each j, we choose an integer k(j), such that
> flefli<é,
i=k@+1
k) o
and then write Q= _l:‘IE?), H j=iZIG§J)-

Then H; belongs to F, and is uniformly Lip A(t). Further

|F-H|[=| 2 6&P|<e
i=k@)+1
and |Hi— H|=|l > 69— 3 G/*P|<d+e,
i=k(H+1 i=k(f+D+1
for j=1,2,....
0 oo
Write K= _ﬂl Q, H=H,+ ZI{H”“—H?'}‘
j= i=

Then H belongs to F, and satisfies
H(E)=F(E N K),
for all £ in B. As Kc ¢, it follows that H is uniformly Lip #;(t), for j=1, 2, .... Also

z 2
| P Bl< | P~ Byl + 3 18— B <1

Since H is uniformly Lip k), for j=1,2,..., and
h<h,<...,
we can use the usual technique to form a function g of H, with
by <hy<...<g,

such that H is still uniformly Lip g(t).
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Repeating this construction, for different values of ¢, we can choose a sequence
H,, H,, ... of functions of F, with

|F-H;||<27 (=1,2,...),
and a sequence of functions g, g,, ... of H, vﬁth
hi<g; for 4,j=1,2, ...,
such that H, is uniformly Lipg,(f), for =1, 2, .... Now choose ¢ in H, with
h<g<g; for 4,j=1,2,....

Each function H; is uniformly Lip g(¢). Further

F=H, +j=21 {H,-+1 - H,»},
with ]_;”HHI _Hi”

convergent. Hence, by Theorem 1 of [13], F is g-continuous, as required.

LemMa 7. If £ is sirongly dense, and s 1s a section of L of type (EN), then
C ZC*___ *% s :S*: ;‘*
S s s 9 8 8 .
Proof. As C.oCia i,

it suffices to prove that C:*>C,. Suppose then that F is any set function of C;.

Let v, v,, ... be a left basis for s with
1 <v,<...

Then F is v;-continuous, for ¢=1,2,.... So, by Lemma 6, there is a function g of
H, with
v<g (t=1,2,...),

such that F is g-continuous. Since L is strongly dense, there is a function I of £ with
vl<l<g ('L=l, 2, ...).

As s is of type (EN), the function ! belongs to R;. Further F is l-continuous. Thus
F is hyper s-continuous. This shows that C,< C{*, and the proof is complete.



236 C. A. ROGERS AND 8. J. TAYLOR

Lemma 7 immediately gives

THEOREM 7. Let s be a section of type (EN) in a strongly dense irreducible maaxi-
mal scale L. Then, in the decomposition of a function F of F, provided by Theorem 4,

FP=FP=0.

This seems the most appropriate place to add a remark concerning the decom-
position of Theorem 1, when the section s corresponds to a small generalized dimen-
sion. Since we have restricted our considerations to completely additive set functions

on I, which are continuous, each F of F is uniformly continuous in the sense that
|F|(I)—>0 as d(I)—0,

where I runs over all sub-intervals of I,. Hence there is some function % of ¥,
depending of F, such that F is uniformly lip k(!). Hence F is h-continuous. So, if £

is dense, there is a section ! of £ such that F is l.continuous. Now we have
FP=F FP=FP=FP=0,

for all sections ¢ of £ with t<1l.

9. Sections of type (NN)

The components which Theorem 4 associates with a section of type (NN) are
not accessible for study, and we know little about them. We shall give an example
to show that these components can be non-zero; but first let us notice that Lemma 1
shows that such components are always isolated.

A particular example. In [9] Rogers gave an explicit construction for a set func-
tion P in the system F, obtained by taking k=1 and I, to be the unit interval,
and showed that it had certain properties which are relevant to the present work.
To state the results we need to introduce the upper and lower classes associated
with the law of the iterated logarithm.

For each z with 0<z2<1, let
0-¢¢565...

be the binary decimal expansion of z, which does not terminate with 1 recurring,
and let 8,(z) denote the number of digits 1 among c,, ¢, ... ¢,. A real-valued con-
tinuous function ¢(4) is called a function of the lower class, if, for almost all z,

we have

Sn (Z) < %n - ¢(n)7
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for infinitely many values of n. Such a function ¢(4) is said to belong to the upper

clags, if, for almost all z, we have
8a(z)<dn—d(n),

for at most a finite number of values of n. Each real-valued continuous function ¢(4)
belongs to one or other of these classes. Using results of [12], Rogers proved that
his function P satisfies

TurorREM H. Let he N, and write
$(2) = log, 2842 p(27%%). (11)

If $(d) belongs to the upper class, then P is strongly h-continuous; if ¢(A) belongs to
the lower class, then P is h-singular.

We now show that this implies

THEOREM 8. Let L be any irreducible maximal scale of functions of H. Then the
set L of functions h of £ such that ¢(4), given by (11), belongs to the upper class, and
the set R of functions b of £ such that ¢(2) belongs to the lower class form the left and
right classes of a section s of L, or this is the case after the maximal element of L has

been transferred to R, and in the decomposition of F= P, provided by Theorem 4,
P=FP+FS.
If £ is strongly dense, then s is of type (NN).

Proof. Since the question of whether ¢(1) belongs to the upper or the lower
class .depends only on the behaviour of A(f) for small positive values of £, it is easy
to verify that L and R form the left and right classes of a section of £, or that
this is the case after the maximal element of L has been transferred to R. Now

Theorem H asserts that P is s-continuous and hypo s-singular. Hence, in Theorem 4,
P=F +Fy.

Now suppose that £ is strongly dense. If s were of type (NF) corresponding to
a function » of £, then A would belong to L or R and we would have a contradic-
tion. Since P is non-zero, it follows from Theorem 9 that s cannot be of type (EN)
or (NE). Hence s is of type (NN). This can also be proved directly, by using the
results of [12].
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10. The final decomposition theorem

Combining the results of the previous sections we obtain the following decompo-

sition theorem.

THEOREM 9. Given any strongly dense irreducible maximal scale £ of functions
of H and any set function F in F, there are finite or enumerable sequences hy, by, ...

of functions of L and s, s,, ... of sections of type (NN) of £, and a decomposition
F=F@+F§+F§?+ ...+ F$+ F§2 + F§ + F§2 + .,

where F° has a diffuse C-dimension spectrum, F{ is hy-continuous and almost hi-sin-

gular, and has a representation

Fgu) (B) = f

En

fi(x) db; — m(z), (12)
S

where f(x) ts a Borel-measurable point function which does not vanish on S;, and S; is

a Borel set of o-finite hi-measure, for i=1,2, ..., and F$) is strongly s;-continuous and
hypo s;-singular, and Fésf’ s s;-continuous and almost s;-singular, for j=1,2,.... The

set of functions h;, the set of sections s;, and the decomposition (apart from the order

of its terms) are uniquely determined by F. Further, each of the components
F (i=1,2,...),

FP+FyP (5=1,2,...),
78 1solated.

We should perhaps remark at this stage that, although this theorem does not
depend on the assumption of the Continuum Hypothesis, we have only been able to
prove the existence of a strongly dense irreducible scale £ of functions of ¥, by
assuming the truth of that hypothesis. Some further remarks concerning this theorem
will be found in section 11.

We were at one stage worried because the cardinality of the set J of sections
of £ must be 2%, and yet in a certain sense it was clear that not all of J could be
relevant to the analysis of a single function F in F. Theorem 9 goes some way
towards making this phenomenon explicit. For each F in F there are “open inter-
vals” in J in which F has no contribution; these arise from each section s(h) cor-
responding to an element % in £, and also from each section of type (NN), since
even the null components F$ + F$ are isolated. Thus for any particular F in F,

not all of J is required for its complete analysis in the sense of Theorem 9.
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11. Epilogue

This investigation has suggested a number of problems to us. We have already
mentioned the problem of extending Lemma 3 to cover the case of a Borel set K.
In our study of sections of type (EN) we were for a long time held up by our lack
of a proof of a certain conjecture; eventually we found a way round the difficulty,
using the results of [13]. One of us [10] subsequently proved the conjecture in the

following form, which could be used in place of the results of [13] to prove Theorem 7.

TEEOREM. Let B be a compact set in a separable metric space €. Let hy, by, ...
be functions of H with
hy<h,<...<h,<....

Then, either (i) it is possible to express E as Ui, E, with
hy—m(E,)=0 (r=1,2,...),
or (i) there is an h in H with
h<h (r=1,2,..),

and E is of non-o-finite h-measure.

This result has been extended to amnalytic sets E by M. Sion and D. Sjerve
in [14].

Theorems 8 and 9 leave open the problem: is it possible for each of the com-
ponents F$, FY associated with a section of type (NN) to be non-zero? Theorem 8
merely tells us that in the case of the set function P, one or other or both of these
components is non-zero. We are tempted to believe that, even in the case of P, the
component which is non-zero may depend on the choice of the strongly dense scale L.

When we started this investigation, we hoped that it might lead to a decomposi-
tion of the type, provided by Theorem 9, but where each component, other than that
with a diffuse dimension spectrum, would have an integral representation of the
form (12). Now Theorem 8 shows that this is not possible, at any rate so long as
our analysis is with respect to a scale of Hausdorff measures. It seems possible that
this objective might still be reached, using an ordered system of uniform regular
metric Carathéodory outer measures. But it begins to look as if it might be necessary
to make the choice of the scale of measures dependent in some way on the func-

tion to be analysed.
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While it would be interesting to have theoretical methods of obtaining even more

refined analyses of an additive set function, the present analysis is probably more

than sufficiently refined for most particular set functions. It would be of interest to

analyse some of the singular functions arising in number theory, and in the theory

of probability, by the methods of this paper. It seems likely that in many cases it

would be possible to choose a quite simple explicit scale £, which would be suffi-

cient to give a complete resolution into discrete components and a residuum with a

diffuse dimension spectrum.
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