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1. Introduction 

I n  this paper  we present a complete solution to the following problem: if G is an 

arbi trary bounded open set in the complex plane, characterize those functions in G that  

can be obtained as the bounded pointwise limits of polynomials in G. Roughly speaking, 

the answer is that  a function is such a limit if and only if it has a bounded analytic con- 

tinuation throughout a certain bounded open set G* tha t  contains G. This set G* is the in- 

side of the "outer boundary" of G. More precisely, if G is a bounded open set and if H is 

the unbounded component of the complement of G- (the closure of G), then G* denotes the 

complement of H- .  

A sequence of polynomials {Pn} is said to converge boundedly to a function ] in an 

open set G if the polynomials are uniformly bounded in G, and if p~(z) converges to ](z) 

at  each point z E G. I t  follows tha t  ] is bounded in G. Also, by the Stieltjes-0sgood theorem 

(see [8], Chapter I I ,  w 7) the convergence is uniform on compact subsets of G and thus / 

is analytic in G. 

MAI~r THEOREM. Let G be a bounded open set in the plane and let / be a bounded analytic 

]unction in G. I/there is a ]unction F, analytic in G* and agreeing with / in G, with [F(z)[ ~< 

M in G*, then there is a sequence o/polynomials {pn} such that 

(i) limp~(z) = F(z) (zEG*), 

(ii) ]pn(z)l ~ < i  (zEG*; n = l , 2  .... ). 

Conversely, i/there is a sequence o/polynomials converging to / at each point o/G, and 

uni/ormly bounded in G, then there is a bounded analytic ]unction F in G* that agrees with / in G. 

(1) T he  research  of bo t h  a u t h o r s  was  s u p p o r t e d  in pa r t  b y  t he  Na t iona l  Science F o u n d a t i o n ,  

and  t h e  research  of t he  f irst  a u t h o r  was  also suppo r t ed  in p a r t  b y  t he  Air  Force  Office of Scien- 
tific Research .  
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F i g .  1. 

I t  is possible for a bounded function / to have a continuation F tha t  is unbounded in 

G*, even when both G and G* are connected and simply connected (see w 4). 

To illustrate the theorem, let G be the open set consisting of the open unit disc with a 

ribbon winding around it infinitely often (see Fig. 1). Thus G has two components G 1 

and G 2. Le t /1  and /2  be any  two bounded analytic functions in G 1 and G2, respectively. 

Then there is a single sequence of polynomials converging boundedly t o /1  in G 1 and to 

/2 in G 2. 

I t  is a classical result (see [5], Chapter I, w 1) tha t  if G is the open unit  disc, then every 

bounded analytic function in G can be boundedly approximated by  polynomials. This result 

was extended to general Jordan  domains by  Carleman [3, pp. 3-5]. The next  result, a 

corollary to the main theorem, is the most general result in this direction. The sufficiency, 

in the special case where G is connected, was proved by  Farrell [4]. 

COROLLARY. Let G be a simply connected (but not necessarily connected) bounded 

open set. The necessary and su//icient condition that every bounded analytic/unction in G 

be the bounded limit o/ a sequence o/polynomials is that G and H have the same boundary. 

Bounded open sets G whose boundary coincides with the boundary of H will be called 

Carathdodory sets, following the terminology in the book of Markushevitch [6, Chapter V, 

4.7]. E. Bishop [1] gives an equivalent definition and calls them "balanced" open sets. 

We shall see tha t  Carathdodory sets are simply connected. See w 2.2 and w 2.8 for a more 

detailed discussion. 

More generally, in case G is not simply connected, the necessary and sufficient condi- 

tion tha t  every bounded analytic function in G be boundedly approximable by  a sequence 

of polynomials is tha t  the "inner boundary"  of G should form a set of removable singulari- 

ties for bounded analytic functions. The inner boundary is the set of those boundary points 

of G tha t  are not boundary points of H. 

I t  is interesting to compare these results with those obtained for other methods of 

approximation. For example, Runge's theorem may  be thought  of as answering the follow- 

ing question: if G is an open set, characterize those analytic functions in G tha t  can be 
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approximated, uniformly on compact subsets of G, by  polynomials. One version of Runge's 

theorem is the following. 

R v N G v.' S T H E 0 R ~ M. Let G be an open set and let G " be the complement o/the unbounded 

component o/ the complement o/ G. Then a/unction / can be approximated, uni/ormly on com- 

pact subsets o/ G, by a sequence o/ polynomials i/ and only i/ / has an analytic continuation 

throughout G ̂ . 

(In this statement, if G is not a bounded set, then the complements must be taken 

with respect to the  extended plane.) 

In  the proof of our main theorem we shall use the following form of Runge's theorem 

(see [8], Chapter IV, w 1): if G is a simply connected open set (not necessarily connected), 

if / is holomorphic in G, and if K is a compact subset of G, then for each ~ > 0 there is a 

polynomial p such that  I P - [ ]  < e on K. We do not use Mergelyan's theorem on uniform 

approximation by  polynomials, but  we state one version of it for comparison (see [7], 

Chapter I, w 4). 

!~r THEOREM. Let K be a compact set and let K ^ be the complement o/the 

unbounded component o/ the complement of K. Then a/unction / can be approximated uni- 

]ormly on K by a sequence o/polynomials i~ and only i / / h a s  an extension that is continuous 

on K ^ and analytic in the interior o/ K " .  

A slight modification of our main theorem can be stated in a similar form. 

THEORWM. Let G be a bounded open set and let G* be the complement o/ the closure of 

the unbounded component o/ the complement o/ the closure ol G. Then a/unct ion / can be 

approximated pointwise on G by a uni/ormly bounded (on G) sequence o/ polynomials i / a n d  

only i~ / has a bounded analytic continuation throughout G*. 

One might think that  our theorem describes the closure of the set of polynomials in 

some reasonable topology. There are locally convex topologies on B~(G) (the bounded holo- 

morphic functions on G) in which a sequence is convergent if and only if it converges 

boundedly, and our theorem implies that  in such a topology the closure of the set of poly- 

nomials coincides with the closure of B~(G*:G) (those bounded functions / in G that  have 

bounded analytic extensions throughout G*). However, we do not know any simple con- 

crete description of the closure of BH(G*:G). In  many cases BH(G* :G) is already closed, 

but  this is not always the case (see w 4); it seems to depend in part  on questions about the~ 

harmonic measure of subsets of the boundary. In  short, the best formulation of our theorem_ 

appears to be in terms of sequences rather than of topological closure. 
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The proof of the theorem is long. We sketch here an argument due to Farrell [4], for 

the case where G* is connected. The proof for the general case requires additional techni- 

ques. P(G) denotes the set of all those / in G that are bounded limits of polynomials in G. 

Thus P(G) ~ B~(G). We wish to show that  P(G) = BH(G*: G). 

First, P(G) ~ BH(G*: G), since if Pn --> / then the p ,  are uniformly bounded on the outer 

boundary of G, hence on the boundary of G*, and consequently the p= are uniformly bounded 

in G*. Hence, some subsequence converges on G* to a function which must be an extension 

of / .  In the other direction, there exist simply connected regions G=, with G* ~ G~ c G; ~ Gn-1 

( n = 2 , 3  .... ) that  "squeeze down" onto G* in the sense that  G* is the largest connected 

open set that  contains G and is contained in all the G~. The sets Gn can be constructed 

metrically, or they can also be obtained as the inside of a sequence of equipotential curves 

of the equilibrium potential on G. By a theorem of Carath6odory, if (I) n is the normalized 

mapping function of G~ onto the unit disc, then r --> (P, where r is the normalized mapping 

function of G*. Given / in BH(G*), the functions/n(z) =/(~P-I((P~(z))) converge boundedly 

on G* to/ .  By Runge's theorem, since G*- is a compact subset of Gn,/n can be approximated 

on G* by a polynomial pn with a uniform error at  most l/n, and hence the Pn converge 

boundedly to / in G*. 

2. Topological preliminaries 

Throughout this paper G will be a bounded open set in the plane and H will be the 

-unbounded component of the complement of the closure of G. For any set A in the plane 

we use the following notations. 

~A = boundary of A. 

A - =  closure of A. 

DEFINITION 2.1. G* is the complement of H-.  

Clearly G c  G*; we shall see that  (G*)*= G*. 

DEFINITION 2.2. If  ~G = ~H, then G is called a Carathdodory set. If  in addition 

is connected, then it is called a Carathdodory domain. 

Corollary 2.8 says that  G* is always a Carath~odory set. I t  can be shown that  G is a 

~arath~odory set if and only if G is the union of some of the components of G*. 

We state the following facts without proof. 

2.3. If B is any plane set and C is its complement, then aB = ~C. 
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2.4. If  B is open and A is the union of some of the components of B, then aA ~ ~B. 

2.5. ~(A-) c ~A for all sets A. 

LEMMA 2.6. ~ G * = ~ H - = ~ H c ~ G .  

Proo[. The first equality is 2.3. From 2.3-5 we have 

~ H - ~  ~H~ ~(compl G-) = ~G-~ ~G. 

Thus it only remains to prove that  ~ H c  ~(H-). 

Let J be the complement of G-. Since ~J = J - n  G-, every neighborhood of every 

boundary point of J contains points of G. 

H is a component of J and so ~ H c  ~J. Let p E~H and let U be any neighborhood of p .  

Then U contains points of G. Thus every neighborhood of p contains points of H -  and  

points of the complement of H- ,  and so p is a boundary point of H- .  Q.E.D. 

LEMMA 2.7. H is the complement o/ (G*)-. 

Proo/. Clearly G*ccompl H, but this is a closed set and so (G*)-~ compl H. 

In the other direction, if p is not in H, then either p is not in H-,  in which case p E G*~ 

or pE~H.  In  this case, from Lemma 2.6 we know that  every neighborhood of p contains 

points of G*, and thus p is in the closure of G*. In  short, compl H c  (G*)-. Q.E.D. 

COROLLARY 2.8. G* is a Carathgodory set and (G*)*=G *. 

This is immediate from the two preceding lemmas and the definition. 

2.9. Of the many equivalent definitions of simple connectedness we shall use the  

following: an open set, connected or not, will he said to be simply connected if its complement. 

(on the Riemann sphere) is connected. A bounded disconnected open set is simply connecte4 

if each of its components is simply connected. 

We require three more topological facts, the first two of which we state without proof. 

2.10. If  A and B are connected and if A n B-~:  O, then A U B is connected. 

2.11. If  B1c B2c ... and if each Bn is connected, then the union of all the sets Bn is 

also connected. 

2.12. If  A = A  o U A 1 U ... where each set An is connected and A 0 n A ;  ~: ~0 for all n, 

then A is connected. 

Proo/. Let B n = A  o O A 1 O . . .  O An. I t  follows inductively from 2.10 that  each Bn is 

connected, and the result now follows from 2.11. 
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LEMMA 2.13. Each component o/G* is simply connected. 

Proo/. Let B be a component of G*. We must  show tha t  the complement of B is con- 

nected. Indeed, the complement of B consists of the union of H -  and all the other compo- 

nents of G*. By 2.11 it will be sufficient to show tha t  the closure of each component of 

G* meets H - .  

Let  C be a component of G*. By  2.3 and 2.4, OCc~G*=~H-cH-,  and the result 

~ollows. 

Carathdodory kernels. We recall a special case of Carath~odory's theorem on the con- 

vergence of regions and mapping functions (see [2], Chapter 5, pp. 120-123). 

D~.FINITIO~ 2.14. Let  (D,} be a sequence of bounded, simply connected regions 

and let D be a region with D c D , + I c D  n (all n). Then ker[Dn:D] denotes the union of 

all the connected open sets tha t  contain D and are contained in 17 Dn. 

I t  is easy to see tha t  ker[Dn :D] is connected and simply connected. 

THEOREM 2.15 (Carath6odory). Let B=ker[Dn:D] and let zoED. I/(~n are the nor- 

"realized mapping/unctions o/the domains D, onto the unit disc, then ~Pn -~ (I) uni/ormly on 

compact subsets o /B ,  where r is the normalized mapping/unction o / B  onto the unit disc. 

Consequently, 
( I ) - l ( ( I )n(Z))  ---> Z 

uni/ormly on compact subsets o] B. 

(By normalized mapping functions, we mean tha t  z 0 is taken into zero, and the deriva- 

t ive a t  z 0 is positive.) 

Our main topological result is the construction, in case G is a Carath~odory set, of 

suitable open sets G, tha t  "squeeze down" on G. The construction given here is similar 

to tha t  given by  Markushevitch for the case where G is a Carath~odory region (see [6], 

Chapter V, w 4.2, 4.7). 

According to a private communication f rom Morton Brown, it is possible to choose 

the  numbers e n of our construction in such a way tha t  each G n has only finitely many  

components, each of which is bounded by  a Jordan curve. In  the appendix, we give a 

different construction, using potential  theory, in which the boundary of each component 

is actually an analytic Jordan  curve. 

THEOREM 2.16. Let the bounded open set G be a Carathdodory set. Then there exists a 

sequence o/bounded, simply connec2ed open sets Gn with the/oUowing properties: 
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(i):O-cO, cOg~G,_l ( u=2 , 3  .... ); 

(ii) i / B  is any component o/G and i / B ,  is the component o/G, containing B, then 

B - ~ B ,  cB;CBn_ i  (n=2 ,3  .... ) 

and B = ker [Bn: B]. 

The converse to this theorem is true but  will not be proved here: if the sets G. exist 

with the properties (i) and (ii), then G is a Carath~odory set. 

Proo/. Let Fn=(zldist(z,G)<e,} ( n = l , 2  .... ), where e~ decreases to 0. Then F ,  is 

open, and 

G-cFnCFnCFn_l  ( n=2 , 3  .... ). 

2.17. Let  Jn be the complement of F ; .  Then JncJ~cJ~+i. Indeed, F ~ + i ~ E n c F ~  

and so J ~ c c o m p l F ~ c  Jn+l. But  complFn is closed. 

2.18. Let  H~ be the unbounded component of J~. Then H~ is open and connected 

and H~ ~ H ;  c Hn+ 1 ~ H. 

Indeed, Hn is a connected subset of Jn+l and therefore lies in one component, which 

must  be Hn+r 

2.19. Let  Gn be the complement of H ; .  Then Gn is open and 

G- c G~c G; ~ G,_ i 

just as in 2.17. Also, each component of Ga is simply connected by  Lemma 2.13. 

Let  B be a component of G and let B~ be the component of Gn tha t  contains B. 

2.20. B - c  Bnc Bn ~ Bn-i. (The proof is similar to 2.18.) 

2.21. Let  C=ker[Bn:B]. Then B=C. 

Indeed, clearly B c C. I f  B # C, then, since C is connected, there is a point p E 8B fl C. 

But  G is a Carath6odory set and thus by  2.4 a B ~  8G~ ~H. Since C is open, some neighbor- 

hood of p lies in C. But  every neighborhood of p contains points of H, and so there is a point 

qEC f~ H. Let  D be an arc in H joining q to the point z = oo, and let d be the distance from 

D to G-. When r holds, this arc is disjoint from Fn and therefore lies in Hn. But  this 

is impossible, for if qEH~ then q cannot lie in B= and hence cannot be in C. This completes 

the proof of the theorem. 

DEFINITION 2.22. Let  G be a Carath~odory set and let B be a component of G. 

By the cluster at B, denoted by  K(B), we mean the union of all those components of G 

tha t  arc contained in the component of G- tha t  contains B. 
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2.23. With the hypotheses and notations of Theorem 2.16 and Definition 2.22 we have 

K ( B ) c B ,  ( n = l , 2  .... ). 

Here B~ is the component of G~ containing B. 

Indeed, G - c  G~ and hence each component of G- is contained in some component of Gn. 

3. The main  theorem 

We come now to the proof of the main theorem stated in the introduction. The second 

half of the theorem is easy to prove. 

LEMMA 3.1. Let / be analytic in G. I/ there is a sequence o/polynomial8 {p,}, uni/ormly 

bounded in G and converging to / at each point o/ G, then there is a bounded analytic/unction 

F in G*, agreeing with / in G. 

Proo/. Since IPnl ~<M in G we have IPnl ~<M on ~G; hence by Lemma 2.6 and  the 

maximum modulus theorem, this holds throughout G*. Therefore some subsequenee of 

{pn} converges throughout G* to an analytic function F, which furnishes the desired exten- 

sion o f / .  Q.E.D. 

The other half of the theorem states tha t  every bounded analytic function in G* is 

the bounded limit of polynomials (with the same bound). Since G* is a Carath~odory set 

(Corollary 2.8) it will be sufficient to prove the following result. 

THEOREM 3.2. Let the bounded open set G be a Carathdodory set. Let / be analytic in G 

with ]/I <~ 1 there. Then there is a sequence o/polynomials, uni/ormly bounded by 1 in G, 

converging to / at each point o/G. 

The proof will require a series of lemmas; we use the notations of w 2. 

LEMMA 3.3. Let E be a finite subseto/ G and let B be a component o/G. Assume that/(z) = 1 

in all the other components o/ G. Let e > 0 be given. Then there is a polynomial p(z) such that 

(i) [ / ( z ) -p(z ) l  <~  (zeE), 
(ii) ]p(z)l ~<1 (zeG). 

The proof of this lemma will be given later; we first show how the lemma can be used 

to prove the theorem. 

Let  C1, C2 .... be an enumeration of all the components of G. H ] is any  bounded analytic 

function in G (] 11 ~< 1 ), then ]n will be defined by 
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/n(z)=/(z) (z~ck; k = 1 , 2  ..... n), 

In(z) = 1 (z ~ Ck; k > n). 

Let zi, z 2 .... be a countable dense subset of G and let E n = {z 1 ..... zn}. 

L EMMA 3.4. Let n be a given positive integer and let e > 0 be given. Then there is a poly- 

nomial p(z) such that 

(i) I /n(z)-p(z)]  < e ( ~ E n ) ,  
(ii) Ip(z)] ~< 1 (zEG). 

Proo/. Let gi(z)=/(z) in Ci and let g~(z)= 1 in all the other components of G. By the 

previous lemma, for each i ~<n there is a polynomial p~ such that  

lg,(z)-p~(z) I <~ /n  (z~En), 

Ip,(z)l < l  (z~G). 

Let p =PlP2...Pn. Clearly p is a polynomial bounded by 1, and on En we have 

I fn -P l  ~ [gl""gn--Plg2""gnl + [Plg2""gn--PlP2""gnl 

-p -,gn-pl <t/n+ 

3.5. The theorem follows easily from this lemma. Indeed, choose en->0. By the previous 

lemma there is a sequence of polynomials {Pn}, uniformly bounded by 1 in G, with 

/ In--Phi  <~n o n  E n. But then p~ converges to [ on the dense subset {Zn} and hence at all 

points of G by the Stieltjes-Osgood theorem ([8], Chapter II ,  w 7). 

Thus it remains to prove Lemma 3.3. To do this it will be sufficient to prove the 

following lemma. 

LEMMA 3.6. Let E be a finite subset o/G, let e >0 be given, let B be a component o/G and 

assume that /=  1 in all the other components. Then there is a simply connected open set Q 

containing G-, and an analytic/unction g, I g I <~ 1 in Q, such that I / -  g I < e on E. 

Indeed, suppose that this lemma has been established. Since G- is a compact subset 

of the simply connected set Q, we may apply Runge's theorem to obtain a polynomial p 

such that  IPl < 1 and ] p - g l  < e on G-, and hence ] p - [ I  < 2e on E. 

The proof of Lemma 3.6 will be given in several steps. 

3.7. From Theorem 2.16 we have a sequence of sets {Gn} "squeezing down" on G. Let 

us fix an integer n for the moment. We shall see later that  for a suitable choice of n, the 

set G~ will serve as the set Q called for in Lemma 3.6. 
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Let Bn be the component of G, containing B. We wish to define a function g in all of 

G~ as called for in the lemma. We begin by  putt ing g = 1 in all the components of G, other 

than  B~. In  Section 3.14 we shall show tha t  if n is large enough, then g can be defined in 

B ,  so as to satisfy the conditions of the lemma. 

3.8. Let  z 0 be a point in B, and let q)~ and (I) be the normalized mapping functions from 

Bn and B, respectively, onto the unit disc D ( I w] < 1). As n--> r162 we have, by  Theorems 2.15 

and 2.16, 
r162 (zeB). 

3.9. As in 2.22, the duster  a t  B, denoted by  K(B) ,  means the union of all those com- 

ponents of G tha t  are contained in the  component of G-  tha t  contains B. Let  B, A 1, A s . . . .  

be an enumeration of these components. Since the mapping functions ((I),} are uniformly 

bounded on K(B), some subsequence, which we continue to denote by  {(I)n}, will converge 

on all of K(B)  to a function s(z). We already know tha t  s(z) = ~P(z) on B. 

3.10. In  each of the components A1,A ~,... s(z) is a constant of modulus 1: 

s(z)=--~ (zEAl), I~,1 =1" 

By the maximum modulus theorem, it  is sufficient to show tha t  in each component 

A~ there is a t  least one point where Is I = 1. Actually we shall show tha t  Is(z) l - - 1  in each 

A~. Indeed, assume tha t  a t  some point z' in one of the components we had (Pn(z')--->w' and 

[w' I < 1. By  3.8, there is a point z" in B at  which ~Pn(z")--->w'. But  by  Hurwitz '  theorem, 

this would mean tha t  for all sufficiently large n the function (I), would take the value w' 

in a neighborhood of z' and also in a neighborhood of z", contradicting the fact tha t  (O n 

is one-to-one in B n. 

Next, we require some results on functions analytic in the unit  disc. 

L E M ~IA 3.11. Given e > O, Q < 1, and a/ ini te  set o/points {~,}, I~'~ I = 1, there is a/unction 

h(w), continuous in Iwl < 1 and analytic in the open disc, such that Ih(w)l < 1 (Iwl < 1) and 

Ih(w)-ll  <e (lwl <e), 

h(~,) = 0  (all i). 

Proo]. I t  is sufficient to prove this result in case there is just a single point ~t on the 

boundary; the general case follows by  forming a product. We take ~t = - 1 .  

Let  g(w)=(1 +w)[2, and let 

w + r  
h,(w) l + r w  ( O < r < l ) .  
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Thus h r ( -1 )  = - 1 ,  and for r sufficiently close to 1 we have hr(w) close to 1 uniformly on 

]w I ~<9. Fix r sufficiently close to 1 and for this r let h(w)=g(hr(w)). Since g is uniformly 

continuous:and g(1) = 1 and g ( - 1 )  =0,  this h will be the required function. 

L w'MMA 3.12. Given a finite set of points ~, ]~tl = 1 (i = 1 ..... m), and disjoint neighbor- 

hoods Us of these points, and e >O,:there are neighborhoods V~ o/the points ~s with V tc  U~, 

and there is a polynomial p such that 

(a) Ip(w)l< 1 (Iwl 
(b) Ip(w)] < e  ([wI<~I,w~UxUU~U...OU~) 

(e) ( [wI<l ,  weLuv u...uv ). 

Proof. I t  will be sufficient to take the points one at  a time: for each i we find a poly- 

nomial pi(z) tha t  is bounded by  one, takes the value 1 a t  $~ and is small everywhere in the 

unit disc outside of Us. The function p is then obtained by  adding the p~ and dividing by  

a suitable constant to achieve the estimate (a). 

I f  k is sufficiently large, then the functions 

(~ + w) ~ 
p~ (w) = 2 (i = 1 . . . . .  m) 

will satisfy our requirements. Q.E.D. 

L~MMA 3.13. Given a finite subset E' of the open disc I w ] < 1, and a finite number of 

boundary points ~s, and a/unction F(w) analytic in ]w I < 1 with ] F] < ], and given ~ > o, 

then there is a function q(w) analytic in the open disc with I q] <<" 1, and there are neighborhoods 

V~ of the points ~ such that, 

(i) Iq- l on E', 
(if) ]q(w)-l l  <e /orwf iV xU...U Vm. 

Proof. (We wish to thank Norman Hamil ton for suggesting this line of proof.) Choose 

e < l  so tha t  E ' c ( I w  [ <~e). Let h be the function of Lemma 3.11, using a smaller e, and 

let Us be neighborhoods of the points ~ in which h is small. Now let p be the function 

of Lemma 3.12, using a smaller e. 

Pu t  ql =hF +p. This function is close to F on (1 w[ <e),  and is close to 1 near the points 

~t- I t  will be bounded in the whole disc by  a number  only slightly larger than  1. Dividing 

by  this bound we obtain the desired q. Q.E.D. 

3.14. We are now able to complete the proof of Lemma 3.6. We use the notations 

and results of the preceding sections. In  Section 3.7 we showed tha t  the chief problem was 

to define the function g in the component B n. 
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The finite set E meets only a finite number of the components A~ in the cluster K(B): 

say that  it meets A 1 ..... Am. Let $1 ..... ~m be the points on the boundary of the unit disc 

that  were described in 3.10, and let E' =dp(E N B). Then E' is a finite set of points in the 

open unit disc. 

Let F(w) =/(r Then F is analytic and bounded by 1 in the disc. We may apply 

Lemma 3.13 to obtain a function q(w) that  is close to F on E' and close to 1 near the 

points ~ (i= l ..... m). 

Fix n sufficiently large and let 

g(z)-~q(~Pn(z)) (zEB~). 

Since On is close to (I) on compact subsets of B, and q is close to F on E', g will be close to 

/ o n  E;1 B. 

Also, (I)~ is close to ~ on compact subsets of A ~ (i = 1,..., m), and q is close to 1 in a neigh- 

borhood of $~. Thus g is close to 1 on E f)A i. This completes the proof of Lemma 3.6; 

therefore Theorem 3.2 and the main theorem are established. 

3.15. We turn now to the proof of the corollary stated in the introduction. We have 

already shown in Theorem 3.2 that  if G is a Carath~odory set, then every bounded analytic 

function in G is the bounded limit of a sequence of polynomials. 

In  the other direction, let G be a bounded simply connected open set that  is not a Cara- 

th~odory set, and let z 0 be a boundary point of G that  is not a boundary point of H. We 

claim that  z 0 is in G*. Indeed, if not, then zoEH-. But H - = H  U ~H. By assumption, z o 

is not in ~H, and so z 0 E H. But this is impossible since z 0 E G-, the complement of H. 

Since G is simply connected, there is a single-valued function / such t h a t / 2 - - z - z  0 in 

G. This function is not the bounded limit of polynomials in G. Indeed, if it were, then by 

the easy half of the main theorem, / could be extended to be analytic in G*; in particular, 

] would be analytic at %, which is impossible. 

4. Further remarks 

The correct formulation of the main theorem is in terms of sequences, and not of topo- 

logical closure. The next result supports this assertion. 

THEOREM 4.1. There exists a bounded, connected, simply connected open set G and 

/unctions/,/1,/2 .... analytic and uni/ormly bounded in G such that 

(i) each/n is the bounded limit o/a sequence o/polynomials, 

(ii) / is the bounded limit o/the sequence/n, 

(iii) / is not the bounded limit o/any sequence o/polynomials. 
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G G* 
Fig. 2. 

Proo/. The region G and the associated G* are shown in Fig. 2. 

1 
Let / (z) (z E G), 

1 +l/;  

where the square root is defined in the plane slit along the positive real axis, with the 

branch chosen so that  (-1)1/~=i. Then / is bounded in G, since in G the point z = l  can 

only be approached from above, so that  as z approaches 1 within G,/(z)-+1/2. Also , /has  

an analytic continuation throughout G*, but the continuation is unbounded since now the 

point z = 1 can be approached from below. Since G* is connected, the continuation of / 

is unique, and so / does not have a bounded continuation. By the main theorem, / is not 

the bounded limit of any sequence of polynomials in G. 

Let z~ be a sequence of points in the upper half plane that  approach 1. Let 

I 
/ n ( ~ ) = - -  z~+ t~' 

where the same branch of the square root is chosen as before. These functions/n are uni- 

formly bounded in G, and each has a bounded continuation throughout G* (the continua- 

tions are not uniformly bounded in G*). Indeed, z �89 lies in the upper half plane for all z 

in G*, whereas - z  n is in the lower half plane. By the main theorem, each/~ is the bounded 

limit of a sequence of polynomials. Finally, the /~  converge boundedly to / in G. Q.E.D. 

Instead of bounded approximation by polynomials, one could consider bounded 

approximation by rational functions with assigned poles. This seems to lead to new diffi- 

culties. 

Consider, for example, the case of two poles, at  0 and cr and let G be an open set such 

that neither 0 nor ~ is in G-. If  R(z) is a rational function with poles at 0 and co, then 

R(z) =p(z) +q(1/z) where p and q are polynomials. By analogy with the polynomial case, 

one might conjecture that  a bounded / in G is the bounded limit of a sequence of such 

rational functions if and only if / has a bounded continuation throughout a larger open set 

G*, where G* is now defined as follows. Let J be the complement of G-. Let H = H  1 U H 2 
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where/ /1,  H 2 are the components of J containing 0 and c~, respectively. Then 6(* is the 

complement of H- .  

The simplest example is the annulus: G = {z:r 1 <lz l  < r2}. This presents no difficulty, 

since if ] is bounded and analytic in G then, by the Laurent  expansion, ]=]1 +]~. where 

]1 is bounded and analytic for [z I < r2, and ]~. is bounded and analytic for [z [ > r 1. 

This method does not work in general. For  example, let G be a lune: G=G1 N G~, 

where G 1 is the disc I z I < 1 and G2 is the set I z - ~:] > ~. What  we show is tha t  the function 

] =log z (defined in the plane slit along the positive real axis, with l o g ( - 1 )  =in) admits no 

decomposition ] =]1 +]2, with ]1 bounded in G1 and ]2 bounded in G2. 

Assume such a decomposition exists. Then ]1 has an analytic continuation (which 

we still call ]1) throughout the complement of the ray L = [1, c~), and ]1 is bounded except 

near z = c~. Indeed, ]1 is already bounded and analytic in I zl < 1, by  assumption. Also 

]1 = ] - ] 2  in G, and both ] and ]2 are analytic in G 2 - L ,  and bounded except near z = vo. 

Note that  as z crosses L from below, ]1 jumps by 2hi. 

Now let 9 ( z ) = ] l ( z ) - l o g ( z -  1), where the logarithm is a translation of the one previ- 

ously chosen and thus is defined on the complement of L. Also, 9 is continuous across L, 

except possibly at  z = l,  since both ]i and the logarithm jump by 2~zi as z crosses L from 

below. Thus g is analytic except possibly at  z = 1. Near z = 1 we have [g I ~< c + ]log ( z -  1) [, 

and thus g has a removable singularity at  z = l .  But ] x = g + l o g ( z - 1 )  and hence ]1 is un- 

bounded as z--> 1 in the complement of L, which is impossible. 

5. Appendix 

We present here a different proof of Theorem 2.16 based on potential theory. I t  has the 

advantage that  the sets G constructed here have extremely smooth and simple boundaries. 

We first state a number of results from classical potential theory that  will be needed; 

definitions and proofs may  be found in [9, Chapter III].  Our exposition is self-con- 

tained, in the sense that  we use only the properties and results stated below. As before, 

we assume that  G is a bounded open set and that  H is the unbounded component of the 

complement of G-. 

THEOREM 5.1. There exists a positive Bar el measure t z, o/total mass 1, supported in 

~H, and a positive number V such that i/ 

then 

P(=)  = -  ogl= - [ 
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(a) P(z) < V everywhere; 

(b) P(z) = V throughout G*; 

(e) P is h'armonic in H and P(z) < V there; 

(d) P is superharmonic everywhere; in particular, P is lower semicontinuous; 

(e) P is bounded on each compact set; 

(f) lim P(z) = - ~ (z---> co); 

(g) i / p  E bH is a regular point /or the Dirichlet problem, then lim P(z) = V 

(h) P is continuous except on the irregular points o/OH; 

(i) the set 1 o/irregular points el ~H is an F ,  set o~ capacity zero. 
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(z ---> p); 

If G has only a finite number of components then ~H will be a finite union of continua 

and by known results there are no irregular points. But if G is, for example, a union of 

disjoint discs with centers at 1/n and radii rn ( n = l , 2  .... ), then by Wiener's criterion [9, 

Theorem III.62], if rn approaches zero rapidly, then the point z = 0  will be an irregular 

point. We handle the irregular points by introducing an Evans'  function E(z) for I.  The 

next  result is a simple extension of [9, Theorem III.27]. 

T~EOREM 5.2. Given a bounded F ,  set 1 el capacity zero, there exists a positive Betel 

measure m, supported in 1% with total mass 1, such that i/ 

/~(z) = - f l o g  I z - w I dm(w), 

then 

(a) E(z) is finite and harmonic/or z ~ 1-, and E(z) = + o~/or z E 1-; 

(b) E(z) is superharmonic, and in particular is lower semicontinuous; 

(e) E(z) is everywhere continuous in the extended sense; in particular, lim E(z) = + 

as z approaches any point in I - ;  

(d) l i m E ( z ) = - ~  (z-->~).  

The remaining results that  we need from potential theory are the maximum and strong 

maximum principles. 

THEOREM 5.3. 1/ F is a superharmonic /unction in an open set W, i/ F is bounded 

below in W, i / D  is a bounded open set whose closure is contained in W, and i / F  >1 t on ~D, 

then F >~ t throughout D. 

In  addition, i / D  is connected and i/F(zo) =t /or some point z o in D, then F(z) = t 

throughout D. 

We are now ready to prove Theorem 2.16. Recall the hypotheses: G is a bounded open 

set and ~G = ~H. The theorem asserts the existence of open sets Gn containing G and having 

certain properties. Roughly speaking, the sets Gn are the insides of the level lines of the 
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potential  funct ion P(z) of Theorem 5.1. However,  these level lines m a y  touch ~H at  an  

irregular point,  and  to avoid this we use the Evans '  funct ion of Theorem 5.2. 

5.4. Wi thou t  loss of generality, we m a y  assume tha t  G- is contained in the  disc I z [ < �89 

A simple estimate shows t h a t  E(z) > 0 in this disc. 

5.5. For  0 < t < V let 

F(z,t)  =P(z)  + ( V - t )  E(z), 

rt  = {z I F(z,t) =t} .  

Ft is a closed set since P(z) is continuous away  f rom 1, E(z) is continuous, and  E(z) ---> 

in I - .  

5.6. There is a number  t 1 such t h a t  for t>~t I the sets Ft are all contained in the disc 

Izl<�89 
Indeed, by  5.1 (c) and 5.2 (a), there is an  e > 0  and  an M > I  such tha t  if Iz[ ~> �89 then 

P(z) < V - e  and E(z) <~M. For  such z and  all t we have 

F(z,t)  < V - e + ( V - t ) M .  

Let  t t = V - ~/2M: Then for t/> t 1 we have 

F(z, t) < V - e/2 < V - ~/2M <~ t 

and  so z is no t  in Ft. 

5.7. Choose a sequence t 1 <t~ < ...--> V, where t x is the number  f rom 5.6. Let  F s = Ftj. 

Then F~ and Fj  are disjoint for i # ?'. 

Indeed,  if zEF~ N Fj then ( t~-t j)  E(z) = t j - t ~ ,  which is impossible since E(z) > 0  by  5.4. 

D E F I N I T I O N  5.8. For  each positive integer n let G~ be the union of all the bounded 

components  of the complement  of F~. 

We shall show tha t  these sets satisfy all the conditions of Theorem 2.16. We require 

two prel iminary results. 

5.9. F(z, t~)> tn in G= and  F(z, tn)< tn in the unbounded  component  of the complement  

of F~. 

Proo/. The first s ta tement  follows f rom 5.3. The second inequali ty is t rue for large z 

since the potential  functions P(z) and E(z) tend to - ~ .  If  there were a point  in the un- 

bounded component  at  which F > tn, then by  connectedness, there would be a point  where 

F=t~ ,  which is impossible. 

LEMMA 5.10. The sets Gn are s imply connected. 
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Proo]. Fix n and let C be a component of Gn. We must show that  C is simply connected. 

We shall consider the set C* (the complement of the closure of the unbounded component 

of the complement of the closure of C). By Lemma 2.13 each component of C* is simply 

connected, so it will be sufficient to show that  C is one of the components of C*. 

Since C~  C*, C will be contained in one of the components, A, of C*. We must show 

that  C coincides with A. If not, then since A is connected, some boundary point p of C 

lies in A. 

From 2.3 and 2.4 we have 

~C c 8(compl P~) = ~F~. 

Hence F(z,t~)=t~ on ~C. In particular, F(p,t=)=tn. But by 5.9, F > t ~  throughout A, 

which is a contradiction. 

5.11. G c G~ for all n. 

Indeed, by 5.1(b) P(z )=V in G and hence tV(z, tn)>~V>t~ for all n and all z in G. 

Thus G and Fn are disjoint, and by 5.9, G must be contained in G=. 

5.12. G;cG~_ 1 (n>~2). 

Proo]. ~v(z,t) decreases monotonically as t increases; hence (by 5.9) 

F(z, t~_l) > F(z, tn) >t t~ > t=_~ (z e G;). 

Thus by 5,9, G; c Gn_ x. 

5.13. Let  B be a component of G, and let Bn be the component of G~ that  contains B. 

Then B = ker [B~: B]. 

Proo]. Let Q=ker[Bn:B]. If B were a proper subset of Q, then Q would contain a 

boundary point p of B since Q is connected. Since 

Io E ~B c ~G -- ~H, 

every neighborhood of p contains points of H. In particular, Q must contain a point q of H. 

But  by  5.1 (c), P(q) < V in H and hence, for t~ sufficiently close to V, 

F(q, tin) < t~. 

Thus by 5.9, q is not contained in Gin, contradicting the fact that  Q is contained in all the 

sets Gin. Q.E.D. 

This completes the proof of Theorem 2.16. I t  can be shown that  the boundary of each 

component of each Gn is an analytic Jordan curve since it is locally a level line of a harmonic 

function of non-vanishing gradient. Finally, each G n has only finitely many components. 

11 - 642907. Acta nmthematica.  112. I m p r i m ~  le 2 d$cembre  1964. 
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Otherwise, there would be a point p, any  neighborhood of which intersects infinitely many  

components of G,. I t  follows tha t  p EF,. But  by  Theorem 5.3, each component of Gn 

intersects the support of dp, so tha t  p is in the support  of dp and hence pE~H. But  

~H N Fn is empty,  and we are done. 
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