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1. Introduction and summary* 

Let f2 be an open connected set in R", which is contained in the half space 
n R + = { x .  x l~0} ,  and let an open connected subset co of  the boundary of  f2 be 

situated in the hyperplane Xl=0. Then Ouco is open in R+. A p-harmonic func- 
tion in f2 is a 2p times differentiable solution of the equation 

APu = 0, uEC2P(f2), (1.1) 
03 

where A = ~ , ~ 1  0x~ is the Laplace operator. We denote the set of all such func- 

tions by HP(I2). It  will be seen that if u~HP(f2), u is in fact analytic in f2. We 
shall consider functions uCHP(O) which also satisfy a set of  p boundary con- 
ditions 

iim q~(D1)u(xx, x') = O, (0, x')Eco, i = 1,. p, (1.2) 
X l ~ +  0 " '~  

0 
where qi(DO are linearly independent polynomials in Dl=-~-~-r, with constant 

coefficients and x" denotes (x2 . . . . .  x,). In (1.2) we do not suppose x" to be fixed 
as x l ~ + 0 .  We shall also use the notation qi(Dx)u(x)=o(1) as x x ~ + 0 .  It will 
be shown that these functions can be continued as polyharmonic functions across 
co into the half space R L =  {x: x~<0}. Very general theorems of  this type have 
been given by H6rmander in [7], where he considers solutions of  general elliptic 
and hypoelliptic differential equations with constant coefficients. 

* The main part of this work constituted a PH.D. thesis accepted at Stockholm Univer- 
sity 1973. 
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His results, however, do not tell anything about the extent of the domain into 
which the continuation is possible. An example of  the type of  theorems we are 
aiming at, is the Schwarz' reflection principle, stating that a harmonic function 
defined in g2, satisfying the single condition 

lim u(x) = O, xEl2 
XI~+O 

can be analytically continued by the formula 

U(--X1,  X t) ----- --/~/(X1, X t) (X1, X')E ~'] 

into the whole of  the domain ~l=~'~t.J(.Ok.J._~, 
f2 geometrically in the plane x~= O, (fig. 1). 

where t2 is obtained by reflecting 

X r 

o 

/ /~/ Z 

I : X l  

t2~ 

Fig. 1 

It was proved by Almansi [1] that, under certain conditions on f2, a function 
uEHP(f2) can be represented by p functions vj, j = 0 ,  1, . . . , p - l ,  each of which 
is simply harmonic in f2, in the following way (Theorem 2.2) 

. (x)  = 2L--  vj(x). (1.3) 

In a closed sphere SR(Xo)C t2 with center x 0 and radius R, we can also represent u 
as (Theorem 2.4) 

u ( x )  , -  1 ~j = ~.j=o r wj(x) r <= R (1.4) 
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where wj, j = 0 ,  1, . . . , p - 1  also are harmonic and r denotes the distance from x 
to x0. Formulas (1.3) and (1.4) are usually called Almansi representations. 

The representation (1.4) can be used to prove a mean value theorem for poly- 
harmonic functions. Let MR( f ,  x0) denote the arithmetical mean value o f f  over 
the boundary of  the sphere SR(Xo). 

Then we get (Theorem 2.4) 

M,(u, Xo) ~ - ~  = ~ / = 0  A,,ir2JAJu(xo) r <:- R, 

where A,,j are constants which depend only on j and the dimension n. We use 
this to show that if u, given by (1.3), has the property 

then 
u(xl, x ' )=o(1)  as x l ~ + 0  x'Eco 

VO(X1,X')=O(1 ) a s  x ~ + 0  x'Eo~ (Theorem2.5) 

This was proved in the biharmonic case by Duflin [5]. 
With help of  these theorems, we shall prove in section 3 (Theorem 3.1), that a 

p-harmonic function satisfying the p conditions (1.2) can be analytically continued 
into the domain t2~, defined as follows. Let f 2 ' c  O have the property 

(Xx, x2, ..., x,)~f2' =~ (q,  x2 . . . . .  x,)Ef2 all q such that 0 < tl <- Xl. (1.5) 

Then 02=  Owo~wO', 
(fig. 2). 

where f2" is obtained by reflecting f2" geometrically in xx=0,  

x r 

~2 

Fig. 2 
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Such theorems have already been given when the boundary conditions (1.2) 
are those of Dirichlet: 

qv(Dl) ~ D~ -1, v = 1 . . . .  , p, 

namely for p = 2  by Poritsky [13] and Duffin [5], and for general p by Huber [6]. 
Huber proved that the continuation in this case is given by the formula 

u( - x l ,  x') = (-1) p Z~-ol(-1)'(i,)-"x~+'A'lU(X~'_x')l. (1.6) 

Here the continuation is possible into D1. 
Some authors have also studied the problem of the continuation of the solu- 

tions of other partial differential equations than (1.1), when the boundary condi- 
tions are those of Dirichlet. See Canavan [2], John [9] and Lewy [11]. 

In the sequel Q(D) (and Q(x, D)) denotes a differential polynomial in all 
0 

D,=-~--x., t = l ,  2 . . . . .  n. We shall also use the notation Q(D') for a differential 

polynomial in the "boundary" differentials D,, t= 2, 3, ..., n, only. 
In section 4---7, we study such boundary conditions (1.2), for which a reflec- 

tion formula of the form 

u ( - x l ,  x') = a(x ,D)u(xl ,x ' ) ,  xEl2 (1.7) 

exists, where Q is some differential operator, and we also study the form of the 
corresponding operator Q(x, D). In doing so, we assume that the p polynomials 
qv are homogeneous, that is of the simple form 

qi(D1)u(O, x3 .~ D~u(O, x') = 0 0 ~ V 1 < •2 < ' ' ' <  ~p" (1 .8 )  

first, in section 4, we prove two auxiliary theorems which are, however, inter- 
esting in themselves. Let HP(R ") denote the set of all functions which are p-har- 
monic in the whole of R". Let Q (D) be a differential operator with constant coeffi- 
cients and such that for a certain point Y=(Yl, Y'), 

[Q(D)u(x)lx=r = 0 

for all uCHP(R ") satisfying (1.8). If y l#0 ,  then Q(D) contains the factor A p, 
that is: 

Q(D) = P(D)A p, (Theorem 4.1). 
If y l=0,  then 

Q ( D) = .~f= I Pv, ( D')D[, + P (D) A p, 

where the P~,(D') are operators in the boundary differentials only, (Theorem 4.2 
and Corollary 4.1). Both theorems are stated for more general boundary condi- 
tions than (1.8). 
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In section 5 we first prove that if there is a differential operator Q(D) with 
constant coefficients and such that (1.7) is valid for a single point x=y with y l # 0  
and all u satisfying (1.8) which are p-harmonic in R", then there is an operator 
Ql(x, D) of  the form 

QI(X, 1)) ~ ~ae .~#<pA~,#X~+~#D~ Zip (1.9) 

such that (1.7) is valid with Q-= Qx and for every x (Lemma 5.1). Since 

(Q(D)- Q~(x, D))u(y) : 0 

for all uEHP(R ") it follows that Q(D):QI(y, D)+p(y, D)A p. Hence Q and Q1 
differ only by terms containing the factor A p. After proving that Q (or equivalently 
Q0 must map the set H p of  all p-harmonic functions in itself we prove that the set 
of  operators of  the form (1.9) mapping H e into itself is p-dimensional. Because 
of  this, we can prove (Lemma 5.3), that such a Q1 can be brought into the form 

v,-1Bx,+,A,f Ql(x,D)u- ~ i = 0  , 1 tx~_~) ( 1 . 1 0 )  

Since Qx(x, D) in (1.10) is invariant if we replace x 1 by - x l  we get using (1.7) 
twice that 

Q~u-u = 0 (1.11) 

for all u~H p satisfying (1.8). Having proved in section 4 that (1.11) must in fact 
be valid for all u6H p, if  it is valid for all u6H p satisfying (1.8), we prove (Theo- 
rem 5.2), that precisely 2 p of the operators Qa(x, D) of  the form (1.10) have the 
property (1.11), and denote this last set of  operators by T p. 

Hitherto we have supposed that a set of boundary conditions (1.8) is given, 
and have obtained necessary conditions on the operator Q1 in order that Qa be a 
reflection operator in the sense that (1.7) holds for all u satisfying (1.8). These con- 
ditions may be summarized: Q1 must belong to T p. 

In order to obtain sufficient conditions, we reverse the reasoning in the fol- 
lowing way. Let ~ be as defined above and let Q be an arbitrary operator such 
that Qu~HP(O) if uEHP(O). For a given uCHP(O), define a continuation of 
u into ~2 by means of (1.7). A necessary and sufficient condition for u thus defined 
in ~2~3f2 to bep-harmonic in ~1 = f2~o~w~ is that u is continuous over co together 
with its 2 p - 1  first derivatives. This furnishes 2p boundary conditions on the 
function u to be continued by Q. Analytically expressed, these conditions are 

qj(D)u(O, x') = 0, j = 0, 1, ..., 2 p - l ,  (1.12) 
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where qj(D) is defined by 

qi(D)u(O, x') = lira [Diu(x,  x')-(-1)SD-~Qu(xl, x')l. 
Xl~0 

We shall call them the boundary conditions corresponding to Q. 
For some operators Q, the corresponding boundary conditions may be reduced 

in number. We define two sets of operators, S p and M p. QET 1" is said to belong 
to S p if out of the 2p corresponding boundary conditions (1.12) we can find p con- 
ditions such that if they are satisfied by u, then the remaining p conditions are auto- 
matically satisfied. 

QE T p is said to be in M p, if there is a set of p boundary conditions of the 
special type (1.8), such that if they are satisfied, then the 2p boundary conditions 
corresponding to Q are also satisfied. 

The first main result of section 7 is that M p contains p +  1 elements. All 
operators Q in M p and their corresponding boundary conditions are listed, (Theo- 
rem 7.1). The second main result is that S p and T p are equal, (Theorem 7.3). The 
vital idea in the proofs of sections 6 and 7 is to proceed by induction in the order 
of harmonicity. To each operator QET p written in the form (1.10) we define an 
operator Q* by (Definition 6.3). 

Q*(x,D)u p_2BxP_l+,Ai ( u = -  Z , : o  ' '  "= 

It is shown that Q*ET p-1. We then define the boundary conditions qJ.(D) 
corresponding to Q* by 

q~(D)v = lirn [Div(xl, x')-(--1)iQ* v(xl, x')]. 
XI~II 

It turns out that, apart from a term containing A p-l, 

q~(D) = j .  q*_~(D), j = 1 . . . .  , 2 p -  1, 

where q~.(~) denotes 9qs/9r (Lemma 6.8). This observation is the main point in the 
induction step. 

In the final section 8 we deal with sets of boundary conditions (1.8) for which 
there do not exist reflection operators Q of purely differential type. A p-harmonic 
function satisfying such boundary conditions is continued by an operator con- 
taining integrations, and the continuation is therefore only proved up to O3 (fig. 2). 
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2. Integration and representation of polyharmonic functions 

Let f2 be an open set defined as in the introduction and let u be harmonic in f2. 
Since a harmonic function u in ~2 is analytic, see Courant - -Hi lber t  [3] p. 269, it 
is clear that  any derivative of  u is harmonic in the whole of  f2. We shall now study 
the existence of a harmonic primitive function to u. Such a function does not nec- 
essarily exist in the whole of  f2 for all f2, and we must  therefore impose some restric- 
tion on ~2. With future application in mind, we choose to assume that u is defined 
in an open set O~c f2 with the property (see fig. 3) 

/ 
/ 

\ 

X I 

Xl~-- 8 

o4 m+ ~ 

/ , 
%"~, / 

t ::~ X 1 ~2 
Fig. 3 

(x l ,  x2, . . . , x , )E f2~=~(q ,x2  . . . . .  x,)~f2 all tl, 0 < t l ~ T a  (2.1) 

where ~ is a positive number sufficiently small so that  f2, is not void, and 
T l = m a x  (e, x0. Later, in section 3, we shall let ~ +0 .  I t  is seen from (1.5) that  
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lim f2,= f2'. The intersection of f2, and the hyperplane xs=e  is called co s. Since 
~ 0  

I2~=f2, it is clear that any u harmonic in f2 is also harmonic in f2,. 

Theorem 2.1. Let u be a harmonic function in f2~, where f2, hag the properties 

(2.1). Then there is a harmonic function U in f2 e such that 

O 1 U ~--- U. (2.2) 
See Duffin [5]. 

Proof. We shall prove that there is a function g(x'), x '=  (x~, ..., x,) in the 
hyperplane xs=e  such that 

v(xs, x') = f [ '  u(t, x') dt+g(x'), x = (Xl, xt)~Q,, (2.3) 

has the required properties. That (2.2) is fulfilled is obvious. Furthermore, 

AU (xs, x') = Dsu(xs, x')+ f :  1 A' u(t, x') dt + A' g(x'), (2.4) 

where A' is the Laplace operator in the boundary variables x'. Since u is harmonic, 
we have A'u=-D~u .  Hence (2.4) becomes if we write Dsu=us 

U ( x .  x') = us(e, x ' )+  A" g(x'). 

Since Ul(e, x') is in C~176 there is a solution g in C~(~o~) of the Poisson equa- 
tion A'g(x ')=-us(e,  x'). See Courant--Hilbert [3] p. 246. This completes the 
proof. 

Remark. In special cases the result may be valid under much weaker hypoth- 
esis concerning f2~. When n = 2 in particular, the result holds for any simply con- 
nected f2,. To see this, we note that there is an analytic function f(z), Z=Xl+ix2 
in f2~ such that U(Xs, x~)=Ref(z). Since there exists a primitive analytic function 
F(z) tof(z)  in the whole of f2, for any simply connected f2,, it follows that U(xs, x2) = 
Re F(z) satisfies (2.2) in the whole of such a f2,. 

That the restriction (2.1) is rather natural when n>2 ,  is seen by considering 
the harmonic function u(x)=]x-yo] ~-". For n=3 ,  u(x) has the only singularity 

~2=R~,,,yo. Choose Yo to be origo. Then a primitive function U x=y0.  Hence 
will be 

U(x) : - log Ix1 - 1 / ~  + x~] + g (x2, xa). 

I f  we choose g(x2, x3)-~0, then U(x) will be defined for x l<0 ,  all x2 and x3. 
On the other hand U(x) will not exist on the half line x , = x a = 0 ,  Xs=>0. See also 
Diaz and Ludford [4]. 

This remark also applies to the next theorem. 
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Theorem 2.2. (Almansi Representation Theorem). Let f2~ be the same set as in 
Theorem 2.1. Then every p-harmonic function u in f2~ can be written 

~,p- -Z  Xj  . 
u = ~--,j=o -~-.~ uj, xEf2,, (2.5) 

where each vj is harmonic in f2~. Conversely, every such function is p-harmonic, and 

AP-lu = 2P-lDf-%p_l .  (2.6) 

Proof. We shall make a proof by induction over p. Assume the theorem to 
be true when p is replaced by 1, 2 . . . . .  p - 1 .  We start by proving that u defined 
by (2.5) is p-harmonic. 

Since each vj is analytic in O,, it is clear that u is also analytic in [2~, and hence 
differentiable. Direct computation gives the formula 

A ( f .  g) =fAg+2(grad f ,  grad g}+ gzlf (2.7) 
where 

Of Og 
(g rad f  grad g} = ~'~'=~ Ox---~" Ox," 

It follows from (2.7), if u is defined by (2.5) with vj harmonic, that 

p--1 x J - 2  X i  - 1  

Z~=~ (j-l)! Au = Zj=2  ( j - 2 ) !  vj+2 ~,-1 D~vj. (2.8) 

By the induction hypothesis the first sum in (2.8) is (p-2)-harmonic,  the 
second (p-1)-harmonic.  Hence AP-IAu=O, which proves that u is p-harmonic. 

Now apply A p-2 to the (p-1)-harmonic function Au in (2.8). Since we sup- 
pose (2.6) to be true when p - 1  is replaced by p - 2 ,  we obtain 

AP-lu AP-2Au A~-22 p - ~  X j - 1  OlVj = 2P-lDf-lv~_l,  
= = Z j = I  ( j - - l ) !  

i.e. (2.6) holds also for p - 1 .  
Now assume that u is a p-harmonic function. Repeated use of Theorem 2.1 

shows that we can find a harmonic function v~-i in f2~, such that 

2P-ID~-lvp_a = AP-lu, 

for A'-~u is harmonic. Then the difference 

U 1 : U ( p - l ) !  v , - i  
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is (p-1)-harmonic,  since by (2.6) 

AP-lUl = An- lu -2P- tD[- tV~_l  = O. 

Since the theorem is trivial when p = 1, the proof is complete. 

Corollary 2,1. Let I2~ be defined as before and let uEHP(f2~). Then there is 
one function ulE Hk(t2~), O<=k<=p, and one function u2E Hn-k(f2~) such that 

u = ul+-~.u2 x~t2~. 

Conversely, every such function is p-harmonic. 

Proof. Dropping, as we may, the numerical factors k! above and j !  in (2.5), 
which are there for computational purpose only, we obtain from Theorem 2.2. 

~ V - - l ~ j  v = "r j ' X~ ~ P - l ~ . j - - k , ,  = Ul_~_~lkU2 U~-~'~_tj=0"~l j ~ j = o X l V j  -[- J ,~J j=k '~ l  '-'j 

where, by the same theorem u1~Hk(~'~) and u2~HP-k(~'28). The second statement 
is proved in the same way. 

Because of  the Almansi representation, the analogue of Theorem 2.1 can now 
be proved for polyharmonic functions. 

Theorem 2.3. Let uEHP(O~), Q8 being the same set as in Theorem 2.1. Then 
there is a function UCHP(f2~) such that 

D1U = u 

Proof. We proceed by induction. The case p--1 was proved in Theorem 2.1. 
Assume the result to be known when p is replaced by p -  1. Corollary 2.1 shows 
with k =  1 that 

U : OO--~X l u l ,  (2.9) 

where v0 is harmonic and u~ is ( p -  1)-harmonic. By assumption there is a harmonic 
function 110 and a (p-1)-harmonic function U~ in [2, such that D~ V0=v0 and 
D1 Ul=Ul. There is also a ( p -  D-harmonic function U2 in f2, such that D1 Us= U~. 
Then by Corollary 2.1 the function 

U : Vo--~x 1 U 1 -  U 2 

is p-harmonic. Since u satisfies (2.9), U satisfies the requirements of the theorem. 
We shall now give another representation theorem which is also a mean value 

theorem for polyharmonic functions. Let [2 be as before and xoC f2. For a point 
x, let ~ denote the vector from x0 to x and let r---I~l. Also, let SR(xo) o r simply 
S R denote the solid, closed n-sphere with center in x0 and radius R. R is chosen so 
that S a c f L  Let MR(u, xo) denote the mean value of u over the boundary OSR 
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of  SR. It is well known that if v is harmonic in f2, then 

MR (v, x0) = v (x0). 

Theorem 2.4. Let SR be as above, and let uEHP(f2). Then there are p func- 
tions wi, j = 0 ,  1, . . . , p - l ,  each harmonic in SR such that for r<-R we have 

u (x) = Z~2~ r21 wj (x). (2.10) 

Conversely, every such function is p-harmonic in SR, and finally we have the following 
mean value relation for u(x): 

M,(u, Xo) 9-1 �9 ~-1 ( n - 2 ) ! !  r"J AJu(Xo) (2.11) = Z j=0 r2Jwj(Xo) = ~ j = 0  2j!!(2j+n--2)!! 

where n, as before, is the dimensional number. 

Proof. The proof  is again carried out by induction over p. The result is trivial 
for p =  1. We begin by showing that every function given by (2.10) is p-harmonic. 
Formula (2.7) shows that for w harmonic 

= w Ar2J+4jr2J-2(~, grad w) = w Ar2J+4jr2j-2r ~rr" Ar2~w 

Now, i f f  is a function of  r alone, we have in R ~ 

A f =  d 2 f '  (n-- l)  d f  
-aTCr = "* 7 dr"  

so that 

Ar2Jw = 2j(2j+n-2)r2J-2w+4jr2~-l-~r. (2.12) 

0w 
Since Ar--~-r=O for w harmonic, it follows from the induction hypothesis that 

Ar2Jw is j-harmonic for j<=p-1, and hence r2~w is j +  l-harmonic. Since each 
term in (2.10) is of  this type, u is p-harmonic. 

We shall now prove that for uCHP(f2) we can find p harmonic functions wj, 
such that (2.10) is true in SR. The induction step will be to show that we can find 
wp_ 1 such that u--r2P-2Wp_l is p - l - h a r m o n i c .  Assume by induction that we 
can express Au by p "  1 harmonic functions V~ i,  O~-j=p-2 by means of  

A u = Z ~-~ r ~j Wj. 
J =  

Let (r, 0) denote the "spherical" coordinates in R n, and define a function w by 

1 r 
1 w(r, O) = ~.~f  t~-x~p_z(t, O)dt r <= R, 

2 p - 2  r J0 
1 

where ~=-f(2p+n-4)>=n/2~l ,  since p > l .  A direct computation shows that 
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w solves the equation 

and 

1 
2p-2 

so that w is harmonic. 

OW 
(2p -  2) ( r - ~ + ~ w )  = ~p_~ 

~ A w  1 f ,  t~+lA~v_2d t = 0 
= r ~+2 JO 

(2.13) 

In view of  (2.12) and (2.13) we get 

A ( u -  r2"-2w) = Au-- r~'-'(2p-- 2) [(2p + n--4)w + 2r-~rr ] = 

= Au-r2P-4Wp_ 2 = ~p-ar2Jw,. 
l - ~ j = 0  " ' J  " 

This shows that A(u-r2p-2w) is p-2-harmonic ,  and that (u-r2P-2w) is 
p - l -ha rmon ic .  Hence we can find harmonic functions wj, O<=j<=p-1, with 
wp_l=w such that (2.10) holds. 

To see the mean value relation, we first note that 

M,(u. xo) M,(Z~. -} r2Jwj, xo) , -1  2j = , ,=o = Z j = o r  M,(wj.  Xo)= 

p--1 = ~ j = 0  rZJwj(Xo) for r <= R. (2.14) 

Since all wj are harmonic in SR which is compact, they are continuous and uniformly 
bounded there together with their derivatives of order <=2p. Hence 

(2k)!!(2k +n-2) ! !  
(Aku)(x~ = fi~moAk(Z~'-~r2Jw')= (n--2)!! w,(xo). 

since all other terms disappear as r~0 .  The coefficient in this fornmla comes from 
repeated application of (2.12). Together with (2.14) this gives the desired m e a n  
value relation. 

In the next theorem the notation x'~co" means that the point (e, x')~co~ (fig. 3) 

Theorem 2.5. Let vj, O<-j<=p- 1, be harmonic in f2~, and let 

u ( x )  , - 1  , , = ~j=oxlvj(x)  = o(1) as x l - ~ + 0 ,  x~co,.  

Then %(x)=o(1) as Xl-~+0, x'Ec%.' 

Proof. The theorem is trivial for u simply harmonic. Suppose by induction 
that the theorem is proved for p -  1-harmonic functions. It is then enough to show 
that x~-%p_l(x)=o(1). 
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The condition on u means that for every el>0,  there is a 6>0 ,  such that 

lu(xl ,  x')] <= el for 0 < Xl -< 36, x'E~o~, (2.15) 

and this holds uniformly in every compact of o~'. 
Take a x~ such that the sphere S~(xo), where xo=(26, x0), lies entirely in a 

compact of  f2~. The mean value relation (2.11) used for p different values of r<-_6, 
e.g. r~= i6/p, i = 1, 2 . . . . .  p, gives a system ofp  equations in the p unknowns AJu(xo), 
j - -  0, 1 . . . . .  p -  l, namely 

.~ . -~oA, , jr~iAJu(xo)  = M,,(u,  Xo), i = 1, 2, ..., p, 

where A, j = ( n -  2) ! ! 
�9 ( 2 j ) ! ! ( 2 j + n - - 2 ) ! !  " 

The determinant, Det, of this system is of the form 

Det=K.6hdet l iz~] ,  i = 1 , 2  . . . .  , p, j = O, 1, ..., p - 1 ,  K # O, 

and h =  n-1 ~ j = 0  2j. Hence Det=K16 h, where KI#0 .  We solve this system by means 
of Cramer's rule, and obtain for Ap- lu(xo)  

A p- lu(XO) ~- Deh/Det. 

Deh is obtained by substituting M,,(u,  Xo) for A,.,_l(i6/p)~n-2AP-~U(Xo) i=  1 . . . . .  p, 
in the last column of Det. Now expand Detl by means of this last column, and 
note that, because of (2.15), the mean value of u over the sphere S,,(x0) also sat- 
isfies ]M,,(u, Xo)l <51, i=  1, 2 . . . . .  p - 1 .  This gives the following estimate for Deh: 

[Detll ~-- ~x ~ = x  tKi 6n'} 
where h" =- h - (2p - 2). 

This implies that 

[AP-lu(xo)[ ~_ K2e16 -<2p-2) = 0(3 2-2p) as 6 ~ + 0 ,  

since K~. is independent of 51 and 6. Since by Theorem 2.2 

a "-a u(x)  = 2P-~D~-%p_x(x) ,  

it is clear that a-p % _ x ( x ) = o ( x l  ) and hence 

x { - 1 % _ l = o ( 1 )  as  Xx ---~ ~- 0. 

This completes the proof. 
Remark.  Let %=1,  and v ~ = - l / r  in R 3. Then U=Vo+Xlv~=O on the line 

x~=x3=0,  but % + 0  as x~-~0 on this line. This shows that it is essential that 
~o~ does not degenerate in Theorem 2.5. 
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We shall now give some examples of polyharmonic functions. Let 

= ( ~ ,  4~ . . . . .  4.)  = (~1, ~ ')  

be a fixed vector in an n-dimensional complex space, and such that the scalar product 

while 

({, 4)  = " z ~ , = ,  4, = O, 

S,n 4~, <{', 4 3  = ~ , = ~  , # 0. 

Denote 4 " = ( - r  42 . . . . .  4,)- Then (~*, ~*)=0. For  later use (section 4), we 
also introduce a complex parameter z. As in the introduction, x = ( x l ,  x=, ..., x~) 
is a vector in R". 

Define 

then 

Hence vE HI(R") .  
rem 2.2, u(x)  defined by 

x j x j u(x)  p-1 -~1 e,(e,x) + y p . - ,  B. ,~.  e,(e,,x) = ~ ' j = o a i  j !  ~--,j=0 J j !  

v(x) = e'<e,x), (2.16) 

Av = Ae*<r = e*<r z z �9 Y~'~=t ~ = O. 

We get the same result if 4 is replaced by 4*. Hence, by Theo- 

(2.17) 

where Aj and Bj are arbitrary constants, belongs to HP(R"), and hence to HP(I2) 
for any open faER". 

The functions (2.17) are called "exponential solutions", and since any statement 
about the set HP(~2) must take such exponential solutions into account, they furnish 
necessary conditions on such statements, and it will be seen that very often these 
conditions are also sufficient. This is very natural in view of  the fact that the set 
of exponential solutions is dense in HP(R"). See Ht rmander  [8] p. 76 ft. 

Another example of functions in HP(R ") is given by u=x~,  0<=k<2p. These 
functions will be used since their and their derivatives behaviour on the boundary 
x l = 0  is easily determined. A straightforward application of  the proof  of  the Almansi 
representation gives for the biharmonic function u=2x~ the following as a possible 
representation among others. 

u = 2x~ a = v0 + xx vl = ( -  x~ a + 3XlX~ + Axl)  + x l  (3x~-  3x~-  A) 

where i #  1 and A is arbitrary. It is seen that the Almansi representation is by 
no means unique. It  is easy to find still more representations. 

Remark. As a final remark to this section, we observe that the function 

U = Xf-1 / )  
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where v is defined by (2.16) is an example of  a function in H p such that 

DIu(~H p-1 j --- 1,2, ... 
and 

x~uEH p+l but ~ H  p+l-1 I = 1 , 2 , . . . .  

This observation will be helpful in section 5. 
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3. General transversal boundary conditions 

We consider p-harmonic functions U(Xx, x') defined in an open set 12 of  the 
type considered in the introduction, satisfying in the limit on t~ the p boundary 
conditions 

lim qi(D1)u(xl, x') = O, xt f2,  i = 1, p (3.1) 
x l ~ +  0 ". ,~ 

where the ql are linearly independent differential polynomials in D 1 . Let g2~ be the 
set of all points in f2 with the property (2.1). Theorem 2.2 shows that u has an 
Almansi representation (2.5) in f2~ with vj, j = 0  . . . . .  p - 1 ,  harmonic in t2~. Let 
f2~ be the reflection of f2, in Xl=0, i.e. f2~ is the set of  all x = ( x t ,  x') such that 
( - X l ,  x')Ef2~. Also let co~ be the projection of o~ on the hyperplane xx=0. Then 
12~ defined by ~2~ = f2,wco',wf2, is an open set. (See fig. 3.) By the definition of 
f2' and f2~ in the introduction, lira (f2w~o~wf2,)= f2wo~wf~'= f22. 

Theorem 3.1. Let f~ and o~ satisfy the conditions of  the introduction. Every 
p-harmonic function u in f2 satisfying (3.1) can be extended to a p-harmonic function 

in ~2. 
The method of proof  will be to use the Almansi representation of  u to con- 

struct harmonic functions wl, i=1 ,  . . . ,p,  in f2~ in such a way that the boundary 
conditions (3.1) imply that lira wi(x~,x ' )=O,  i=1  . . . . .  p. Hence each of  the 

~1~0 
w (Xl, x') can be continued into f2~ by means of  Schwarz reflection principle. 
From the continuation of the w~ to f2~, we then conclude that u can be continued 
into f2~. 

Proof. We know already that u has an Almansi representation 

~ p - 1  X~ 
u = ~'j=o ~ vj (3.2) 

in f2~ with vj harmonic in f2~. Using this and Leibniz' formula for the k : th  deriva- 
tive of  a product  we obtain 

qi(Dx) u = ~ p - l  ~i~j X~ -k 1 ~ j = o  Z.~k=o ( j - - k ) !  k! q[k)(D1)vJ (3.3) 
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where q}k)(z) denotes dkqi(z)/dz k. When x l - * + 0  in (3.3), (3.1) and Theorem 2.5 
imply that the harmonic functions w~, defined by 

satisfy 

w, = Z~.~-~q(j)(D1)vj. i = 1 . . . . .  V 

lim w i ( x ~ , x ' ) = O ,  xEf2,, i =  l , .  p. 
X I ~ +  0 " ,~ 

Hence the w~ can be extended to harmonic functions w~ in f2~ by means of Schwarz' 
reflection principle, that is, we set 

[ w~(x~, x'), (x~, xOCO, 
w? (xl, x') = | o, (x~, xOc a', 

! - w, ( -  x~, x'), (x~, x') C a_. 

We shall now define the extensions v] of the functions vj by solving the system of  
ordinary differential equations 

~ p - 1  1 ~o) r D ~v ~ j = 0 ~ . u l  t 1, j = w ? ,  i = l  . . . . .  p xCt2" (3.4) 

with the conditions v~. =vj  when xa>0. This is a system o f p  ordinary differential 
equations in xl of  the p functions v j ,  j = 0  . . . .  , p -  1 and containing the parameters 
x2 . . . . .  Xn. The characteristic determinant of the system is the so-called Wronski 
determinant 

W(z)=de t lDJq i (~)] ,  i =  1 . . . .  ,p ,  j = 0 , . . . , p - 1 .  

Since the boundary conditions are linearly independent, W(z) does not vanish iden- 
tically. Hence we can solve the system (3.4), and since the w; are infinitely differ- 
entiable, each v; is also an infinitely differentiable function of (xl . . . .  , x,). Applying 
the Laplace operator A to (3.4), we get the system 

1, j=0 j !  ~, (D1) ~--- 0,  i . . . . .  p ,  

for w[ is harmonic in f2~. 
By solving this system for Av~, j = 0  . . . . .  p - l ,  and observing that Av~.=O 

in f2, we infer that Av~ is identically 0, that is, v~ is harmonic in f2~. If  we set 

J 
~ p - x  x l  . ( 3 . 5 )  u = ~ j = 0  j~. vj 

we have proved that u ~ is p-harmonic in I2~" and u ' -  --u in f2~. Hence u" is a 
p-harmonic extension of u into I2~'. It is trivial that u ~ is extendable to f2wog~u_O,, 
although the Almansi representation (3.5) of u ~ has only been proved to be valid 
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in f2~. Finally, letting e ~  +0 ,  we have proved that u- is extendable to f ~ =  
lim (f2uco'w t2~). 

Example 3.1. Let u be harmonic in f2, and satisfy the boundary condition 
lim (DlU+ku)=O on co, where k is a constant. Then the continuation of  u xl~+0 

to f2~ is given by 

U(--X1, X*) = U(X1, x')+2kekx, fol e-ktu(t,  X')dt, xEf2~. (3.6) 

Remark. Let f2 and co be the same sets as in the introduction. Let q~(D) be 
differential polynomials in all D,, t=  1 . . . .  , n. A set of  boundary conditions 

qi(D)u = O, xCco, i =  1, ..., p, (3.7) 

is called elliptic (see H6rmander [7]) with respect to A p if every p-harmonic func- 
tion uECk(f2uco), where k is the maximum of  2p and the degrees of  q~, satisfying 
the conditions (3.7) can be continued across co into some domain, independent 
of  u. By Theorem 3.3 in H6rmander [7], the condition for ellipticity is that the 
Wronski determinant W ~ of the principal parts q0 of the q~ has no zero r 0. Denote 
the degree of  q, by v~, and note that we may assume that all q, have different degrees. 
Then o v. q~(z)=z, ,  and with the notation R = ~ f = o v ~ - l - 2 - . . . - p - 1 ,  we get 

wo(~) : ~R H,<, (v,-vO 

which has no zero ~0 .  Hence the conditions (3.1) are elliptic with respect to A p. 
However, the theorem of  H6rmander does not tell anything about the extent 

of  the continuation, whereas our Theorem 3.1 extends u to a function in f2~. 

4. Two auxiliary theorems on polyharmonie functions 

Consider a biharmonic function u satisfying on X l = 0  the boundary condi- 
tions 

Au(O, x') = D1Au(O, x') = 0, (4.1) 

which are not elliptic in the sense of the remark at the end of section 3. These con- 
ditions imply, in view of  the uniqueness of  the Cauchy problem, that the harmonic 
function v = A u  is identically zero. Hence all solutions u of  A2u=O, satisfying 
(4.1), are also solutions of the "simpler" equation Au=O. The object of the fol- 
lowing theorem 4.1 is to prove that such a case cannot happen for the boundary 
conditions (1.2). 
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Theorem 4.1. Let Q (D) be a polynomial differential operator and let y =  (Yt, Y') 
be a f ixed point with y t~O.  Assume that 

Q (D) u (y) = 0 (4.2) 

for every uE HV(R ") satisfying the p linearly independent boundary conditions 

qi(D1) u = O, xl = O, i = l, ..., p. (4.3) 

Then Q(D) contains d p as a Jactor. 

Proof. We shall prove the theorem by imposing (4.2) and (4.3) to the p-har- 
monic exponential functions (2.t7) 

x j xJ 
-:-:-. e < , ) U = ~ ; - 1  o Aj  "1 e,(r y V - l R .  1 , ,*x  

= j !  - - - z . a j = O  ~ s  j [  (4.4) 

where z is a complex parameter and, as before, Aj and Bj are constants. Also, as 
is (2.17), ~ is a fixed complex n-vector such that (~, ~)=(~*, ~*>=0 and ~1~0. 
Because of  Leibniz' rule (3.3) for the derivative of  a product, the boundary condi- 
tions (4.3) for Xl=0 applied to (4.4) give a system o f p  linear equations in the 2p 
constants Aj and Bj. 

o t -~v 1 q[j) ~Y~__- . Ajq}J)('r~O+Z~_-o~-~.~ Bj ( - z ~ O = O ,  i = 1, ..., p. (4.5) 

dJ 
Here q~J)(q)=-d--~-nj qi(q)- From section 3 we know that the determinant W ( - z ~ O  

consisting of  the coefficients of  the Bj is ~ 0. Hence we can solve the equations 
with respect to the B i for large z and obtain by Cramer's rule 

p--1 
B1 = Zk=0 Cja(Z~t)Ak, J = 0, 1, ..., p - - l ,  (4.6) 

where the Cjk are rational functions in z~l, with the denominator W ( - z ~ ) .  

Applying the operator Q to one of  the terms in the first sum in (4.4), we get 
by means of  Leibniz' formula 

where 

Q(D)(XJte~(r = ~'[=o x~-l 1 
~ j !  ( j - - l ) !  l! e~<r 

Q~O(,) = ~ Q (,7). 

j = O, 1, ..., p--1 
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Now we eliminate in (4.4) the constants Bj by means of (4.6). Then we get 
from (4.2) the somewhat cumbersome expression 

Q(D)u(y) [ v-1 s'J y{-1 ] = ~'j=o Aj Q(~ e ~<r ~-'t=o(j_l)!l! 

[ x;p_l l ~,p_l yi -t ] + t J=o Gk(  l)Ak} Zf=o = 0 (4.7) 

and the important thing is that (4.7) is linear and homogeneous in the Aj which still 
are arbitrary. Thus, the coeff• of each Aj must be zero. The coefficient of Aj 
in (4.7) is, after division of e ~<r 

P-~ Y~-' Q(Z)(z4*)] ~ 0 (4.8) [Z{=0 y{-l Q(O(z~)]e2,qh+[Zk= ~ CJk(Z41)Z{=0 ( k - , ) , l ,  ( j - l ) ] l !  

for all z such that the denominator of C~k does not vanish. 
This can be written 

K,(z)e2*r K~(~) =-- 0 

where K~(z) and K2(*) are rational functions. Since y l # 0 ,  e ~r is a transcendent 
function of z, it follows that both/(1 and /(2 must be identically zero. Hence, we 
get from (4.8) 

y~J-o 
K~(z),=~ = Z{=o ( j - l ) ! l !  Qa~(4) = O, j = O, i, ..., p - l ,  

which proves that 
Q(0(3) = 0, l = 0, ..., p -  1 (4.9) 

if 
r = ZT=  = 0 .  

Now (~, ~)n is a polynomial in 4~ of degree 2p. Hence, because of the division 
algorithm, we can write 

Q(4) = (4, ~) 'Q'(4)+R(4) 

where the degree of R(4) as a polynomial in 41 is less that 2p, and the coefficients 
are polynomials in ~'=r ..., ~,. (4.9) shows that for any fixed ~' with (4', 4') = 
t2r  the equation Q(4)=0 has the zeros 4~ = :kit, each of multiplicity p and 
so has (4, r Hence R(4) must also have the same zeros and of the same 
multiplicity, but since it is of degree less than 2p is must be identically zero and 
Q(~)=(4, r162 that is, Q(O)u=Q'(D)Avu=O for all uCH v, which was to 
be proved. 

Remark. The vital point in the proof is that we can eliminate the Bj in (4.5). 
This will be possible as long as the determinant W ( - z ~ ) ~  0. According to the 
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remark at the end of  section three, this is true for an elliptic set of  boundary con- 
ditions, since for such a set W ~  4) has no zero #0 .  Hence the theorem remains 
true for all elliptic boundary conditions. 

In the next theorem we shall for later purposes study slightly more general 
boundary conditions than in Theorem 4.1. These may contain differentials also in 
the boundary variables. Let qi(D), i= 1 . . . . .  p be p differential polynomials with 
constant coefficients, each of  degree ri<2 p (counted as a polynomial in all dif- 
ferentials D,). Suppose that ri>r j for i> j  and that the coefficient of  each D~,~O. 
We may suppose the coefficient to be 1 and write 

q,(D) r, , , (4.10) = .~l=oRn(D )D1, i = 1 . . . . .  p 

where R n are polynomials in the boundary differentials only, and R~r,(D')--1. 

Theorem 4.2. Let qi(D), i= 1 . . . . .  p be p differential polynomials as described 
above. Let y be a fixed point with y l = 0 ,  and V(D) a differential polynomial such 
that for all uE HP(R ") satisfying the p boundary conditions 

q,(D)u(O,x') = O, i =  1 . . . .  , p  (4.11) 
we have 

V(D) u(y) = 0. (4.12) 

Then V(D) can be written in the form 

V(D) = ~ = 1  P,,(D')q,(D)+ P2p(D) A,, (4.13) 

where P~, (D') are polynomials in the boundary D" only, and P2p (D) can be any operator. 

Proof. Consider a given polynomial V(D), and suppose that it cannot be 
brought into the form (4.13). The proof  will then consist of  an explicit construction 
of  a function u~HP(R ") which satisfies (4.11) but not (4.12). 

Because of  the division algorithm, any differential polynomial can be written 
in the form 

V(D) = •kP=-O x Pk(D')Dk + P2p(D)A p. (4.14) 

W e  shall now separate V(D) in two parts. One part which is of  the form (4.13), 
and one which is not. Since in each qt(D) in (4.10) the coefficient of  D~,= 1, and 
since 2p>ri>r i for i>j, we can extract first P,(D')qp(D) from the sum (4.14), 
and then the following q,,, i = p - 1  . . . . .  1 in strictly descending order, and finally 
obtain 

V(D) Z L ~  " ,~,-~ , k = P,,(D )qi(D)+ .~  k=o Pk( D )D~+P2, Ap, 

where ~ '  in the second sum indicates that k = r  i, i=p . . . . .  1 are not included in 
the summation. 
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We may assume that there is at least one k=k"  in the second sum such that 
Pk,(D') ~ O, since otherwise V(D) is of the form (4.13) and the theorem is proved. 
As before, take a fixed 4:-(~1, ~') such that (4, 4)=0,  (~', 4 ' ) # 0  and P~(4')#0. 

Let 4" be ( -41 ,  if'). Consider the p-harmonic functions (2.17) with z = l .  

J i p - - I  
u =  ~,j=o A i - ~  e(r + ~.=lo B.i Xl e(r j .  j !  �9 

For xl=O we have 

D~u = Lk(Aj,  Bj)e(e',x'), k = 0, ..., 2p-- l ,  

where L k is a linear expression in the coefficients Aj and Bj. It is well known from 
the Cauchy problem that D~u(O,x')=O, k--0 . . . .  , 2 p - l ,  implies u(x)=-O. This 
shows that the 2p equations 

Lk(Aj ,B~)=0 ,  k = 0 , . . . , 2 p - 1  

have only the trivial solution A i = B j = 0 ,  j =  1, ..., p - 1 .  Hence it follows from the 
theory of linear equations that there exists a unique solution of the following system 
of linear equations in the 2p "unknown" A~ and B j: 

/ L~ = 1 

L k = O ,  O - < k < 2 p ,  k # k "  and k # r i ,  i = 1  . . . . .  p (4.15) 
r ~ - - I  t 

[L,, = Zt=0 eit(~ )L,,  i = 1, ..., p. 

This system is constructed recursively from k = 0  to k = 2 p - 1 .  The reason 
for this is that the last set of the equations (4.15), (which comes from (4.10)), con- 
tains L~(Aj, Bj) in the right hand side also. But since the system is built up recur- 
sively and since the summation in the right hand side of L,, in (4.15) is brought 
only to l=ri--1,  we can express these/ . l ,  l ~ r ~ - l ,  by means of  4' only and not 
Aj or Bj. 

The exponential p-harmonic function u whose coefficients Aj and B~ satisfy 
(4.15), has the following property for x~--0. 

[ D~'u = e<X',~'> 
k .<:  t ~Dlu = O, O = k < 2p, k # k , k # ri, i =  1, . . . ,  p 

[q~(D)u = O, i =  1 . . . .  , p. 

Thus u satisfies the conditions of the theorem, but 

V(D)u(y)  = Pk,(D')D~'u(y) = e(",r �9 L,, # 0. 

This proves the theorem. 

Remark. It is clear that any uEH p which satisfies (4.11) also satisfies (4.12) 
if V(D) is defined by (4.13). 
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It  is also clear from the proof  of  the theorem, that the number of  boundary 
conditions (4.11) is irrelevant as long as it is less than 2p. We shall however only be 
dealing with p conditions. 

For  the special case of  Theorem 4.2 that the boundary conditions (4.10) are 
qi(D) = D'~, we state: 

Corollary 4.1. Let y be a fixed point with y l=0 ,  and V(D) a differential poly- 
nomial such that for all uE HP(R ") satisfying the p boundary conditions 

D~tu(O, x') = O, O ~ r l < r~ <.. .  < r~ < 2p 
we have 

V(D) u (y) = O. 

Then V(D) can be written in the form 

V(D) = Z L ~  e.,(D')D~, + P~. (]))a., 

where Pri (D') are polynomials in the boundary D' only, and P2p (D) can be any operator. 

5. Necessary conditions on reflection formulas of differential type 

As was seen in the proof  of  Theorem 3.1, the continuation of  a p-harmonic 
function in f2 across o~ is effected by solving a system of  differential equations (3.4). 
Hence we can expect that a continuation formula generally contains integrations 
as e.g. in formula (3.6). The example (1.6) shows, however, that sometimes a con- 
tinuation formula, involving differentiations only, can be given. In such cases the 
restrictions on f2 given in (2.1) are superfluous, so that u can be continued into the 
whole of the domain f2x defined in the introduction. We shall in this section det- 
ermine necessary conditions for a differential operator Q to have the property that 
each p-harmonic function u in ~2, satisfying a set of  boundary conditions (1.2) can 
be continued into a function u~CHV(f20 by means of  the formula 

[u(xl, x'), x~O 
u ' ( x l ,  x') = ~lim u(xl,  x'), xCco 

I xI~O 
tQu( -x l ,  x'), x ~  

(5.1) 

Throughout  the rest of the paper, we shall make use of  the fact that a nec- 
essary conditions for (5.1) to constitute a p-harmonic continuation o f  u into f2x 
is that for all uEHP(R ") satisfying the same boundary conditions (1.2), we must have 

u(--xl ,  x') = Qu(xl ,  x'), xER". (5.2) 
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We shall call (5.2) a reflexion formula. I t  will be seen that the set HP(R ") is so 
large that  for our purpose the condition (5.2) is also sufficient. 

In this chapter we assume the polynomials qi(D1) in (1.2) to be homogeneous, 
that is qi(D1)D~', i= 1 . . . .  , p. 

Theorem 5.1. Let y be a fixed point with y~aO and assume that there is a dif- 
ferential operator Q(D) with constant coefficients, and with the property that 

u(-y~,  y') = Q(D) u(yl ,  y') (5.3) 

for all uC HP(R ") such that u satisfies the boundary conditions 

D~,u = O, x~ = O, i = l, ..., p, (5.4) 

where 0_<-vl<v2 < ... <vp.  Then there is a differential operator Q1 defined by 

= ~ i = 0  Bixf  +~Ai (5.5) 

with constant B i such  that 

U(--X1, X t) = Ol(Xl,  O)u(x1 ,  X t) (5.6) 

for all x and all uEHP(R ") satisfying (5.4). 
The p roof  will be given by means of  a few lemmas. 

Lemma 5.1. I f  the assumptions of Theorem 5.1 are fulfilled, then there is a dif- 
ferential operator Q1 (xl, D) of the form 

Ol(I1, D) =- ~ ~ A~,Bx~+2#D~A ~, fl < p, (5.7) 

where the A~,p are constants, and such that (5.6) holds. 

Proof. First we observe that any orthonormal  transformation O in the bound- 
ary variables x ' ,  which keeps y '  fix, transforms Q into an operator Q0 which also 
satisfies the condition (5.3). Since the set o f  all or thonormal  transformations in 
the x'-variables is a compact  group, it can be equipped with a Haar-measure. See 
e.g. Weil [14] p. 34. Therefore, if  we take the mean value of  Q0 over the set of  all 
or thonormal transformations in the x'-variables by means of  an integration with 
respect to this Haar  measure, we obtain an operator Q'  which also satisfies (5.3) 
and which is invariant under or thonormal  transformations in the boundary vari- 
ables. 

I t  is clear that  a function whose values depend only on xx and r" = (x~ +.. .  + x2,) 1/2 
is a function of  x~ and r ' .  Therefore, a polynomial which is invariant for all ortho- 
normal transformations in the boundary variables x,, t=2 ,  ..., n is a polynomial 
in x~ and r '2, hence a polynomial in xl and r2=x~+r "2. This shows that the mean 
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value operator Q' must be of the form 

a'u(y l ,  y3  = z~, ~ p  A~,~D~A~u(yl, y') (5.8) 
and satisfy (5.3). 

We observe further that the conditions (5.4) are invariant for translations in 
the x'-variables and for contractions. This means that if u(xl, x')EHP(R"), and 
u satisfies (5.4), then, for any fixed (xl, x') with x~r the function v(z) defined by 

v ( z~ , z ' )=  u(z l - -~ ,  " - y  ,, ~ +x" ) 

is also in HP(R ") and satisfies (5.4). Hence we can apply (5.3) and (5.8) to v with 
z=y ,  and get for any x with Xlr  

"v " , Xl D~Aau(xx, x'), u ( - x l ,  x') = v ( - y l ,  y') = a (yl, y ) = ~,,,.~a A~',a ~Yl/ 

since ~  xl ] D,u, t= 1 . . . . .  n. Since y was a fixed point, this proves the lemma. 
OZ~ ~, yl ! 

Remark. It is obvious that the lemma remains true if the boundary condi- 
tions (5.4) contain differentials in the boundary variables if only these conditions 
remain invariant for contractions, for translations and orthogonal transformations 
in the boundary variables x', e.g., if each condition (5.4) is of the form 

q,(O) = Zk+2,=, a~,,t Ok A'' 

We shall now introduce a set o f p  operators defined by 

u-,-u,  = xf+'A'(x-Up~}, i =  O, 1, ..., p--1 (5.9) 

which were used by Huber in formula (1.6). 

Lemma 5.2. I f  uEHP(Rn), then ui~HP(Rn). 

Proof. Let u=x~v where v is simply harmonic. For p - l > = j > - p - i  we get 

txf_~ ) = xf+~A~(xl-p§ = 0 

since for such a j ,  i - l>- j -p+i>=O,  and hence x{-P+ivCH i. For p-i>j>=O we 
get from a repeated use of formula (2.7) 

xp+,A, ( v ) 1 = = x P + i  ~ i  a -----=-=r-. O i - k ,  ~ i  ,, . . i + J - k o i - k  v 
Ui 1 za ~ )  1 ~ k = 0  k x p - l + k  1 v = ~ k = O  U k ~ ' l  1 , 

where ak are constants. Since O<=k<-i, O<- j<p- i  and D[-kvEH i, we get 0<_--i+ 
j - k < - p  - 1, hence the right hand sum belongs to H p. 
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Since the Huber operators (5.9) are linear, the lemma now follows from the 
Almansi representation of  u. 

It is evident that the Huber operators (5.9) are linearly independent, and a 
straightforward computation by means of  (2.7) shows that they can be written in 
the form 

ul = ~,o~_~+p~_iA~,~x~+2~D~dPu, i : 0, 1 . . . .  , p - l ,  (5.10) 

where A~,~= 1. 

Our third lemma is the converse of  this statement. 

Lemma 5.3. I f  a differential operator of  the form (5.7) maps H p (R") into HP (R"), 
it is equivalent to an operator written in the form (5.5), using Huber operators only. 

Proof. Take ~=(~1, ~') with ~ # 0  and (r i f )=0 and set 

k 
u(x) = ~ e<~.r (5.11) 

We shall prove the lemma by applying the operator 01 in (5.7) to the function u 
in (5.11) for different values o fk .  We observe that for k=ko,  uCH k~ and u~[ H ~0, 
so that a necessary condition for u to belong to H p is that k<p.  Let Q1 defined 
by (5.7) transform H p into H p. We may suppose that fl<p. We denote the upper 
bound of (e+fl)  in (5.7) by j .  Applying (5.7) to (5.11) we get 

2 ~ Qlu = xJ+ke  (x ~}~:J "~ 1 ' ~,lz.,~+t=jA,,a,-77------~o,,+R(xl, ~-1) e<x'r 
t~c--p), 

(5.12) 

where R is a polynomial in xl of degree less than j + k  in xl.  We shall interpret 
2P/(k-fl)! as 0 when k - f l < O .  I f  k < p  we have uEH p, hence by assumption 
QxuEH p. This implies that if j+k>-p,  the coefficient of  ~+ke<X'r must be zero, 
that is 

2 p 
Z~+a=s A~,a (k-fl)~------~. - O. (5.13) 

First suppose that j>p .  Putting k = 0 ,  we get that the sum (5.13) reduces to one 
term with f l=0.  Hence Aj,0=0, and continuing with k = l  . . . .  , p - - l ,  we get 
recursively that all A~,a = O, ~ + fl =j>=p. Hence we may assume that j<p.  Applying 
(5.7) to the functions (5.11) for k = p - j , p - j + l  . . . .  , p - l ,  we again infer that 
the coefficient (5.13) of  r (x'r in (5.12) must be zero for each k > p - j ,  that 
is, we get a system o f j  linear equations in the j + l  unknowns A~,a, e+f l=j .  The 
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matrix of  the coefficients has the rank j. Indeed the matrix is 

2 o 2 j 
(p_j)!  "'" ( p _ j _ j ) !  

20 2 j 

~p--1)! " '  ( p - - l - - j ) !  

l?he determinant of  the first j columns is easily transformed to 

21+2+...+(1-a) 

( p - 1 ) !  ... ( p - j ) !  

1 p - j  ... ( p _ j ) j _ l  
1 p - - j + l  ( p - - j +  1) j-~ 

1 p--1 (p-- l )  y-~ 

which is a Van der Monde determinant. Thus the determinant is r  This means 
that there is exactly one degree of freedom among the A~,,p, e+[3=j, for each 
j = p - l , p - 2  . . . .  ,1, O. 

In other words: once we have choosen the value of  e.g. Ao, j, the value of  all 
A,,p, e + f l = j  are determined. 

Now consider the Huber operator Bjuj=Bjxf+JAJ(u/xf-J). 
(5.10) shows that Bjuj can be written in the form (5.7) with A, ,p=0 if e + f l > j ,  

and we have Ao, j=Bi .  
Since, by Lemma 5.2, a Huber operator transforms H p into H p, we obtain 

from (5.12). 
Qlu = Ao.jxP+JAJ(u/x~-J)+Q~.u, 

where Q~ is also of  the form (5.7), transforms H p into H p and only contains terms 
with a + f l < j .  We can therefore iterate the procedure for j = p -  1, p - 2  . . . . .  0, and 
finally get, with Bi=Ao, i, 

p- -1  Qlu = ~ i=0  Bixf+~Ai(u/xp-i) 

which was to be proved. 
To prove Theorem 5.1 it is now sufficient to note that it follows from Theorem 

4.1 that if QuCH p for those uCH p which satisfy the boundary conditions (5.4), 
then QuCH p for all uCH ~', that is Q maps HP(R ") into HP(R"). 

It is readily seen that Q1 is invariant if Xl is replaced by - x l .  Using (5.6) 
twice, we obtain 

Q2u = u, u~H p, (5.14) 

provided that u satisfies (5.4). Because of  Theorem 4.1, (5.14) must then hold for 
all p-harmonic functions. 
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Definition 5.1. 
C,(Q) by 

Theorem 5.2. 
i f  and only i f  

To each operator Q of  the form (5.5) we define p numbers 

(a+i)! 
C~(Q) = Zi=0 ( a - i ) !  B,, ~ = 0, 1, ..., p - 1 .  

A differential operator Q of  the form (5.5) has the property (5.14) 

C ~ ( Q ) = •  a = O ,  1 . . . .  , p - 1 .  (5.15) 

Proof For  the proof  we shall consider the p-harmonic functions x~ 0<=k<2p. 
We first prove the "only if". To do so, note that an elementary computation gives 

and 
Q(x, ,  D)x f  +~ = C=(Q)xf +~, 0 <= a < p, (5.16) 

Q(xl ,D)x~  -1-~ = C=(Q)xf -1-~, 0 <= a < p. (5.17) 

Hence, applying either (5.16) or (5.17) in (5.14) we obtain the necessity of (5.15). 
Next we prove the suff• Since Q 2 u - u C H  p for all u ~H  p, and since 

Q 2 u - u  is obviously of the form (5.7) except for terms containing A p as a factor, it 
follows from Lemma 5.3 that with constant A~ 

O 2 u - u = Z i = o  Aix{ +Ia' , u~HP" (5.18) 

Now we have Q Z u - u = O  if  u(x)=x~ -1-~ 0<=a<p, in view of  (5.17). Applying 
p - - l - - ~  (5.18), to xl for a = 0 ,  1 . . . . .  p - 1  we get successively that A0=0, A1 = 

0 . . . . .  Ap_l=O. This completes the proof. 
The theorem implies that there are exactly 2 p sets of coefficients Bi, each defining 

an operator Q of  the form (5.5), satisfying (5.14), and transforming H p into H p. 

For each p, the set of  2 p operators mentioned in this theorem will be denoted T p. 

6. Reflection formulas and the corresponding boundary conditions 

Let f2 and C2 be domains as defined in the introduction. Let uqHV(O) and 
let Q be an operator such that QuqHP(~)  for all uEHP(Q). Define a function u" 
in g2wg2 by 

~U(Xl, x') x ~ 2  (6.1) 
u-(x) = t Q u ( - x l ,  x') xCO 

Then u" is p-harmonic in f2 and in f2, and it is clear that a necessary and sufficient 
condition for u ~ to be p-harmonic in f21=f2wcowf2 is that u ~ is continuous over 
co together with the 2 p - 1  first normal derivatives. 
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I f  we denote 

qj(D)u(O, x') = lira [D~U(Xl, x ' ) - ( - l ) JDiQu(x l ,  x')], j = 0, 1 . . . .  (6.2) 
xI~O 

then this condition becomes 

qj(D)u(O, x') = 0, j = 0, 1, ..., 2 p - 1  and uEC2P(K2•oJ). (6.3) 

When (6.3) is satisfied, u ~ is a p-harmonic extension of  u into f21. Since u ~ 
is then analytic in f2~, it follows that qj(D)u(O, x')----0 for j>=2p also. 

From (6.2) we get 2p conditions on u over 09 and since the qj(D) obviously 
depend only on Q, we shall call them the boundary conditions corresponding to Q. 

We shall here only be concerned with operators QC T p. 

Lemma 6.1. Let QE T p. Then a boundary condition qj(D), corresponding to Q, 
is a homogeneous differential polynomial of order j, j = 0 ,  1 . . . . .  It can be written 
in the form: 

qi(D ) = ~ 1  aj,,D{-2t Aa (6.4) 

where [j/2] denotes the integer part of .H2. 
I f  C~(Q)(-I)P+~=-I ,  then ap+~,0=2 and ap_~_l,0=0. 
I f  C~(Q)( -1 )P-~- I=- I ,  then ap+~,0=0 and ap_~_l,0=2. 

Proof. We note that 
0 if j < c ~ + 2 f l  

lim D{x~+"aD~Aan = /  ( J 2 )  ~1-0 (c(+2fi)! D{-2tJAt~u if j _--> c~+2fl, 

which is homogeneous of  order j .  Since all terms of QE T p are of this type, it is 
clear that q# (D) is also homogeneous of  orderj .  And since the boundary differentials 
only appear as A'=(A-D~)  we see that qi(D) has the form (6.4). 

To show the second part  of  the lemma, we use the p-harmonic functions 

u~ = x~ '+~, ct = O, 1, . . . , p - 1  
and 

v~=x~ -~-1, c t = 0 , 1  . . . .  , p - -1 .  

Since QCT p, (5.16) shows that 

qp + ~ (D) u~ (0) = lim [D~ + ~ x~ + ~ -  (-- 1) P + ~ C~ (Q)D~ + ~xf + ~]. 
XI~0 

Let C~(Q)(-1)P+~=-I.  Then 

qe+:(D)u:(O) = 2. (p+c~)! 

On the other hand we obtain from (6.4) 

qp+~(D) u~(O) = av+~, o �9 (p+a)! 
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Hence ap+,.0=2. Repeating the argument for C , ( Q ) ( - 1 ) P - ~ - I = - ! ,  (i.e. 
C , ( Q ) ( - 1 ) P + ' =  + 1), we obtain 

qp+,(D) u,(O) = ap+,,o . (p+ot)[ = O. 
Hence ap+,,0=0. 

The statement about ap_,_l, 0 is proved in the same way by means of the func- 
tions v~. 

For  a special Q then number of conditions (6.3) may be reduced by two reasons. 
It may be that for some j,  qi reduces to identically zero. It may also be that some 
of the conditions (6.3) are consequences of the others in the following way. Suppose 
that there are differential polynomials Sj, k(D') in the boundary differentials only, 
such that for, 0<=j<2p, we have 

qj (D) = Z k  c N Sj,k (D') qk (D) (6.5) 

where N is a set of  integers with at least some j CN. In that case %(D)u(O, x ' ) = 0  
for all u such that qk(D)u(O, x ' )=0 ,  all kCN, since Sj, k(D') differentiates in the 

boundary variables only. 
These two cases may be treated as one by permitting the polynomials sj, k to 

vanish identically. 
Since, by Lemma 6.1, the boundary differentials always appear as A', the Sj,k (D') 

can be regarded as polynomials in the single variable A', i.e., Sj, k(A'). 

Definition 6.1. An operator QET p is said to be in S p if there are p numbers 
vi, i= 1 . . . . .  p and differential polynomials sj, v,(A') such that the boundary con- 
ditions corresponding to Q satisfy 

qj(D) = ~,f=lsj.v,(A')q~,(D), 0 <--j < 2p. 

The set {v,]i=l, ...,p}, will be denoted NI(Q). 

Let QE S p and let uE HV(R ") satisfy the corresponding p boundary Lemma 6.2. 
conditions: 

Then 
qj(D)u(O, x') = 0 jCNI(Q).  (6.6) 

u ( - x l ,  x') = Qu(xx, x'). (6.7) 

Proof  Let u~HP(R ") satisfy (6.6). Let the restriction of u to R+ be con- 
tinued into the whole of  R" by means of (6.1). Since QCS p, the conditions (6.3) 
are fulfilled. (6.7) is then a consequence of the uniqueness of  the analytic con- 
tinuation. 

Example 6.1. 
ary conditions are 

Let Q u -  - u .  We get from (6.2) that the corresponding bound- 

qj (D) u = lira [D{u + (-- 1)JD{u]. 
XI~O 
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That  is: qj(D)---2D~ for j = 2 j ' , j ' = O  . . . . .  p - 1  and qj(D)--O for j = 2 j ' + l ,  
j ' = 0  . . . .  , p - 1 .  

Hence Q -  - 1  belongs to S v, all p, and NI(Q) consists of  the first p even 
numbers { j = 2 j ' l j ' = 0 ,  . . . , p -  1}. 

For  Qu-u ,  we get in the same way that  the corresponding boundary con- 
ditions are q j ( D ) = 0  for j = 2 j ' , j ' = O  . . . .  , p - l ,  and qj(D)=2D~ for j = 2 j ' + l ,  
j ' = 0  . . . . .  p - -1 .  Q - + I  is also in S p for all p and NI(Q) is the set 

{j = 2 j ' + l  ] j '  = 0, . . . , p - l } .  

The boundary conditions in Example 6.1 suggest the following definition. 

Definition 6.2. For each p we define a set of  operators M p by the following 
condition. QE T ~ belongs to M p if there are p numbers vi, such that  the boundary  
conditions corresponding to Q can be written 

s'p rA'~DV, 0 _--< j < 2p (6.8) qj(D) = ~.~=t sj,,,~, j 1 

where sj, v~(A') are zero or non-zero polynomials in A'. 
The set {vili=l . . . .  ,p}, will be denoted N2(Q). 
M p is not void, since at least the two operators in Example 6.1 belong to M e. 

The operator given in (1.6) is also in M p. 

There is of  course a lemma for M p corresponding to Lemma 6.2. 

Lemma 6.3. Let QE M p and let uE HP(R ") satisfy the p conditions 

DI u(O, x') = O, 

Then /,/(--X1, x')=Qu(xl,  x'), xE R". 
The proof  is obvious. 

jE N~ (Q). 

We state the next lemma both for QES p and, within parenthesis, for QEM 1'. 

Lemma6.4 .  Let QES p (respectively QEMP). 

Then 

C ~ ( Q ) . ( - 1 )  p+" = - 1  r (p+~ENz(Q)), ~ = 0 . . . . .  p - 1  (6.9) 

and 

C~(Q). ( - 1 )  p - l -~  = - 1  r p - I - ~ E N I ( Q ) ,  ( p - I - ~ E N ~ ( Q ) ) ,  = 0, ..., p - 1 .  

(6.10) 

According to this lemma, only one of  the two numbers p + ~  and p - l - ~  
can belong to NI(Q), (N2(Q)). 
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Proof. As in Lemma 6.1, we consider the functions ,~-~lP+~ and obtain by 
means of (5.16) 

= [DlXl - ( - 1 )  DIC~(Q)x~ ] qj(D)u~(O) lira J P+~ J j P+~ 
xI~O 

Let C ~ ( Q ) ( - 1 ) P + ~ = - I .  Then 

{ qj (D)u , (O)= 0 j ~ p+~  (6.11) 
q.  +,  (O)  u,  (0) = �9 (p + ~) ! 

Let Q~S p and assume that p+~{N~(Q) .  Then the conditions of Lemma 6.2 
are fulfilled, but 

Qu,(x1) = C,(Q)xf  +~ = - ( - x 3  "+" r u , ( - x l ) .  
Hence 

C , (Q) ( -1 )  "+" = - 1  =~ p+c~EN~(Q), ~ = O, . . . , p - 1 .  

The same argument applied to the functions v, o, -- x~P-'-1, shows that 

C~(Q)(-1) p - ' -~  = - 1  =~ p - l - c ~ 6 N a ( Q ) ,  ~ = 0 . . . .  , p - 1 .  

Since this already makes p elements in NI(Q), the assumption QES p proves the 
implication from right to left in (6.9) and (6.10). 

This proves the Lemma for QCS p. 
To prove the lemma for QCM p, it is sufficient to note that 

Diu,(0) = 0, j r p+~ .  

The rest of  the argument will be the same as above, except that we appeal to 
Lemma 6.3 instead of Lemma 6.2. 

It  is an immediate consequence of  Lemma 6.4 that if Q belongs to both S p 
and M p, then NI(Q)=N~(Q).  

A comparison of  Lemma 6.4 and 6.1 shows 

Corollary 6.1. Let QES  p and jENI(Q).  Then in (6.4), aj ,o=2. 

Proof. Let j=p+c~ENI(Q).  Then by Lemma 6.4, C , ( Q ) ( - 1 ) P + ' = - I  and 
by Lemma 6.1, ap+~,0=2. The argument holds also for j = p - ~ - l .  

Lemma 6.5. Let QE S p. Then there are polynomials Sj, k(A') in A" only and 
si(Dx, A') such that the boundary conditions qj(D) corresponding to Q satisfy 

" D qj(D) = ~k~Ul(Q) Sj, k(A )qk(D)+sj(  ~, A')A p, all j ~ 0. (6.12) 

Proof. Let uEHP(R"+). Define u" by means of(6.1). Let u satisfy the p bound- 
ary conditions 

qk(D)u(O, x') = O, kENt(Q).  
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Then u ~ is analytic in R". Hence 

qj(D)u(O, x') = 0 all j _-> 0. 

Because of  Lemma 6.1 and Corollary 6.1, Theorem 4.2 is applicable and proves 
the result. 

In the same way we can prove the corresponding lemma for QEM p by means 
of  Corollary 4.1. 

We only state the lemma. 

Lemma 6.6. Let QEM p. Then there are differential polynomials sj,k(A" ) and 
sj(D1, A') such that 

* k qj(D) = Zk~N~(Q)Sj,k(A )Dx+sj(Dx, A')A p, all j ->_ 0. 

The form (5.5) of  the operators in T p suggests the following definition 6.3. 

Definition 6.3. To each sum of  Hnber operators 

---,i=o i 1 ~ (6.13) 

i.e. transforming H p into H p, we define the operator Q* by 

__ V P _ 2 1 ~  . ~ . p _ l + i A i f  U I (6.14) Q ' u =  z _ , ,  o ~ ' , ~  ~ ~ �9 
"= " ( X l  ) 

It  is clear that Q* is an operator transforming H p-1 into H p-1. The boundary 
conditions (6.2) corresponding to Q* will be denoted q*(D). If  Q* belongs to S 9-1 
or M p-l, the meaning of  Nl(Q*) and N2(Q*) is obvious. Note however that NI(Q*), 
(N2(Q*)) contains only p - 1  elements. 

Lemma6.7.  Let QET p. Then Q*ET p-~. Let QES p and Q*ES p-1. Then 
kENI(Q*) implies k + IE Nx(Q). Similarly i f  QE M p and Q*E M p-~, then kE N2(Q*) 
implies k+ 1 ENd(Q). 

immediate consequence of  Definition 6.3 that for u=x~v, Proof It  is an 
vE H p-l, 

Hence if QE T p, 
Q(XlV) = -xaQ* v. (6.15) 

(Q,)2v 1 1 
x l  Q~(xlv) xl x~v 

which proves that Q*ET p-I. 
Let Q*ES p-I and QES p, (Q*EM p-1 and QEMP). 

1 +eEN~(Q*)(N2(Q*)), e = 0 ,  ..., p - 2 .  Then by Lemma 6.4 
Suppose that k = p -  

C,(Q*)(-1) p-l+" = - 1 ,  ~ = 0 . . . .  , p - 2 .  
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The definition of Q* and Definition 5.1 applied to C,(Q*) show that 

C,(Q*) = - C,(Q), a = 0,..., p - 2 .  
Hence 

C,(Q)(-1)  p+" = - 1 ,  a = O, ..., p - 2  

which by Lemma 6.4 implies that k +  1 =p+aCNI(Q)(p+aEN~(Q)). 
The proof  is similar for k = p - l - ~ - l .  To each Q1ET p-l, there are two 

operators Q~T p such that Q*=Q1. For one Cp_I(Q)=+I and for the other 
Cp_l(Q)= - 1. 

Lemma 6.8. Let Q be a Huber operator (6.13) transforming H p into H p. Let 
qj (D) be the boundary conditions corresponding to Q and q~. (D) be the boundary con- 
ditions corresponding to Q*. Then 

OqJ(~_____!) 
0~1 - j 'q~-x( r  J = 1 . . . .  , 2 p - 2  

and 

Oq2p-~(r _ ( 2 p - l ) .  q~p_2(r A p-l, (6.17) 
0G 

where K is a constant. 

Proof. Take a function f ( x l ,  x') such that U=xlfCHP(R"). Then (6.15) shows, 
in view of  Theorem 4.1 that 

Q ( x l f ) +  XlQ* f = P(xl,  D)dP-l f 

since the left hand side is zero for f E H  p-1. To determine P(xl, D) we write Q ( x l f )  
and x lQ*f  in the form (5.10). Since in (5.10) the summation only goes to a+fl<_- 
p - 1  for Q and o~+fl<=p-2 for Q*, we see that there will only be one term con- 
taining Ap-lf, the coefficient of which is K- x~ p-1 where K is a constant. 

Hence 
Q ( X l f ) + x  1Q*f = K. x~P-IAP-l f (6.18) 

Now (6.2) gives in view of  (6.18) 

lim qj(D)xl f (x l ,  x') = lim [Dlx~f(xl,  x ' ) - ( - l ) J D I Q ( x l f ( x l ,  x'))] = 
Xl~O Xl~O 

= lim [D{xlf(xl,  x')--(--1)JDJl{-xaQ*f(x 1, x')+Kx~P-IAP-lf(x1, x')}]. 
Xl~0 

For j < 2 p - 1  this becomes by Leibniz' formula 

lim i rDJ- ~ r~x Xl_0Jt 1 J t  1, x ' ) - ( - 1 ) J - l D { - 1 Q * f ( x l ,  x')] = j  q~_l(D)f(O, x'), 
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and for j = 2 p - 1  we obtain 

* D ( 2 p - - l ) .  q2p-2( ) f(0,  x')q-gxAP-lf(O, x') 

where K1 is a constant. 
Since by Leibniz' formula 

lira qi(O)Xlf(xl, x') = q~(D)f(O, x'), j > 0 
Xl~O 

OqJ(O the lemma is proved. where q~(r 0r ' 

Lemma 6.9. Let Q be an operator in T p with Cp_a(Q)=-i  and such that 
Q*E S p-1. Then QE SL 

Proof. Since Q*ES p-1 there are by definition a set NI(Q*) of p - 1  num- 
bers and polynomials sj,k(A" ) such that the boundary conditions corresponding to 
Q satisfy 

j .  q*-l(D) = ~k_IENt(e.)Sj,  k (A ' )k ,  q~_l(D), 0 <=j-1 <= 2 p - 3 .  

Hence by Lemma 6.8, the boundary conditions corresponding to Q satisfy 

S P f q~(D) = j(Zl )-4-Zk_IENI(Q.)Sj, k(A )qk(D), 1 <--j <= 2p--2. (6.19) 

For j = 0 ,  qo(D) is by Lemma 6.1 a constant a0,0=2. 
Hence, in (6.19), sj(A') may be written sj(A')=sj, o(A" ). qo(D). Thus there is 

a set N o f p  numbers such that 0EN and kEN if k-1EN~(Q*) (cf. Lemma 6.7) 
and such that 

qj(D) = ,~akENSj, k(A')qk(D) 0 <= j <= 2p--2. (6.20) 

It remains to show that (6.20) holds for j = 2 p - 1 ,  for then N=NI(Q) and 
QE S p. 

From Lemma 6.5 applied to Q*ES p-~ and j = 2 p - 2  we obtain that 

(2p-- 1) * D 
�9 q2p-~( ) = Zk-a~ N~(e*) s2p-2,k(A')kq:-l(D)+K2 Ap-~ 

where K~. is a constant. Then by (6.17) 

where 
S �9 q2P - l ( o )  = Zk~N J,k( h )qk(D)+K3" q(D) 

0q(0  = ( 2 p -  1)./t p-1. 
0r 

(6.21) 

Since the order of qk(D) is k<2p-- 1, q(D) is the only term in (6.21) that con- 
FI2p--1 tains the term ~1 . Hence, writing q2p_l(D) in the form (6.4), we see that 

K 3 :  a2p-l,O. 
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Since Cp_I(Q)=- 1, a2,_l,o=K3=O by Lemma 6.1, which proves that (6.20) 
holds for 0 ~ j < = 2 p - l .  Hence QCS p. 

There is of course a corresponding lemma for M L  

Lemma 6.10. Let Q be an operator in T p with C p _ ~ ( Q ) = - I  and such that 
Q*CM p-1. Then Q*M v. 

Proof By the definition of  M v-l ,  there is a set N2(Q*) of p - I  numbers 
a n d  polynomials Sj,k(A') such that the boundary conditions corresponding to Q* 
satisfy 

* D ' < J ' q j - l (  ) = ~ k _ I c N 2 ( a . ) S i k ( A ) ' k ' D {  - t  0=<j - -1  = 2 p - - 3 .  

The proof  of  Lemma 6.9 can now be repeated to show that the boundary con- 
ditions corresponding to Q satisfy 

qj(D) = ,~keN,(Q)Sj, k(A')D~ 0 g j <= 2p--1. 

Hence Q E MP. 

7. Sufficient conditions on reflection formulas 

Up to now the coefficients B i in (5.5) for an operator QC T v have only been 
defined implicitly by means of C , ( Q ) a n d  the condition (5.15). We shall begin this 
paragraph by studying them more closely. 

Lemma 7.1. Define a set o f  Huber operators Om by 

Omu= (--I)PZlP-I(--1);  1 [( 2i ] f 
= m ~ t t i  - -  m )  - -  t 

Then each operator Q defined by 

Qu = ~P-loa,nO,.u , a,. = + 1 .  

is one of  the operators in T p. Furthermore 

2i ]] xp+iA, ( u 
i - m - l J J  1 [xp--~-T). (7.~) 

m = 0  . . . .  , p - 1  (7.2) 

a m = + 1  =~ C, , (Q)( -1)  p+" = 1. (7.3) 
and 

am = --1 :~ Cm(Q)(-1)  p - l - "  = 1. (7.4) 

P r o o f  In the proof  of  Theorem 5.2, both the necessity and the sufficiency 
of  (5.I5) was proved by means of the p-harmonic functions x~, 0_-<k<2p. Hence it 
follows from (5.16) and (5.17) that it is enough to prove that 

o,,(x~ +~) = am, , ( -x0  "+~, (7.5) 
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and 
Om(xf -1-~) = -am,~(x0~-~-% 

where am,== 1 if m = a and am,,= 0 otherwise. 

(7.6) 

Indeed, if this is proved, then for a Q defined by (7.2) 

Qx~+" p-1 = .~m=oamO,n(X~ +') = a,(--xl) p+', a = 0, ..., p--1 (7.7) 
and 

p - 1  
Qxf -I-~ = ~'m=0 amOm(Xf -1-~) = --a,(--xO "-~-r a = 0, ..., p--1 (7:8) 

an comparison with (5.16) and (5.17) proves (7.3) and (7.4) respectively. 
A direct computation in (7.1) with u=x f  +~ shows that 

Om(Xf +') (--1)" ~'-~ 2 m + l  (a+i)!  
= "~i=m(--1)i(i--m)!(i+m+l)! (c~--i)! xf+~' c ~ = 0 , . . . , p - - 1  

(7.9) 
where we define a ! = ( a ! ) - l = 0  for a negative. Hence 

Om(Xf +~)=0 for m > a ,  (7.10) 

since then i>-m>a and (a--i)!-x=0. 
For m<_-a we get from (7.9, putting i - m = j  

{ - - m )  ( a + j + m ) ,  x~+," (7.11) Om(Xf+,)= (_ l )p+  m 2 m + l  S , . _ m _ l  a 
(a--m)! z~/=0 (--1) j j ( j + 2 m + l ) !  

The coefficient in (7.11) can also be obtained in the following way. Differentiate, 
by means of  Leibniz' rule for the differentiation of a product, the (constant) function 

2 m + l  (~+m)! 1 x~+m+l 
K =  (--1) p+m (a -- m)-----------~ ( a + m + l ) t  "X~l +m+l 

(a--m) times. Hence 
Om(x~+')=O for a > m .  

From (7.11) we obtain for a = m  

O,(xf +,) = (-1) .+~xf+% 

since [0 ]=0  for j > 0 .  This proves (7. 5). 

If  we take u = x f  - ' -1 ,  e = 0  . . . . .  p -  1, the coefficients in the computations above 
will remain unchanged. Hence (7.6) and the lemma are proved. 

Note. Since there are only 2 p elements in T p, (7.2) exhausts T p. If  Q defined 
by (7,2) belongs to S p, (MP), then by Lemma 6.4, am= + 1 implies p -  1 -mENI(Q),  
(N2(Q)), m = 0  . . . . .  p - 1  and a m = - I  implies p+mENI(Q),(N~(Q)). 
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Lemma 7.2. Let Or~U be defined by (7.1). Then 

Qu u + 2 .  ~-1 = ~ m = o ( - - l ) p - l - m b m O m  u, b,, = 0 or 1, 

is an operator in T p. 
I f  b , , = l ,  then C . , ( Q ) = - I ,  m=O . . . . .  p - 1 .  
I f  b,,=O, then C , , ( Q ) = + I ,  m = O  . . . .  , p - l .  

Hence 

Proof. 

and 

and 

(7.5)  shows that with u = x f  +',  

Q(x(+~) = xp+,+ 2(-1),-1-~(-Xa)P+,b,,  

Q(xf + ' ) = x  ~+~ if b ~ = 0  

m = 0, ..., p - - l ,  (7.12) 

u = O ,  ..., p - -1 .  

Q(x~ + ' ) = - x f  + ~ if b = = l .  

Similarly we obtain f rom (7.6) 

Q(xf  - ~ - ~ ) = x f  -1-~ if b ~ = O  

Q ( x f - l - ' ) = - x f - l - "  if b , =  1. 

That  b , ,=0  implies Cm(Q)= +1 and bm=l  implies C m ( Q ) = - I  is clear f rom a 
comparison with (5.16) and (5.17). 

In Theorem 7.1, when we shall characterize the set M p, we need the coeffi- 
cients of  the operators Q~M p for which N~(Q) consists of  the p elements: 

0,1 . . . . .  k, and then k + 2 ,  k + 4  . . . . .  k + 2 ( p - l - k ) ,  

0 <= k < p. (7.13) 

I t  is seen that  this is consistent with the fact that only one of  the two numbers 
p + m  and p - l - m  can belong to N=(Q), (Lemma 6.4). Formula (6.10) shows 
that in order to compute the coefficients B i of  the operator Q corresponding to 
(7.13) we shall for O<=v<=k take 

Cp_~_a(Q)(-1) ~ = - 1 .  

Hence, if we substitute p - v -  I = m ,  we shall in (7.2) choose 

a m = + l ,  m = p - - l , p - - 2  . . . . .  p--k--1.  

For  k < v < p  we shall because of (6.10) take 

Cp-v- l (Q) ( -  1) ~ = ( -  1) v- l -k,  

hence by (7.3) and (7.4) 

a m = (--1) T M  = (--1) v-k, m = p - k - - 2 ,  ..., O. 
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With these a m we obtain from (7.1) and (7.2) that the coefficient B~ of  

is 

B i =  Z m = O a m ( - - 1 ) ' + i ~  i - - m  -- i - - m - 1  = 

2i , -k -2  ) ] ,  
i - - m - - 1  

since the terms for m > p - k -  1 cancel each other because of  the signs of a m . Put 
p - k - 1  = - l  in the first sum. In the second sum put p - k - 1  = l  and m = m ' - 1 .  

Then 

1 - t  2 i  t 2i 
" ,  = 1,m+, (i m')] = 

1 l ( ( 2 i m }  = 
= (--1)P+/(20[ ~m=--I --1)m+/ i 

1 , [ [2 i - i }  ( 2 i - I  ]1(_l)m+,=(_l)~+,~[2i--l] 
= (--1)P+~ (20! ~ r a = - l t \  i - - m  + i - - m - - l ) 1  ~, i+1  ) 

(7.14) 

for O<i~=l. for i r  and B o = ( - 1 )  l+k. Since 2 i - - l < i + l  for i < l + I ,  Bi=O 
For the special case k = p - 1 ,  (i.e. I=0)  this becomes 

( 1.p+ i 2 ( 2 i -1"~  1)p+ I 1 
B , : -  ) ~ [  i ) = ( - -  (it) 2' 

which we recognize as the coefficients in formula (1.6). 
We shall now come to our first main theorem which completely characterizes 

the set M p of operators whose boundary conditions are of the form (6.8). 

Theorem T.1. Let  QE M ~. Then either 

a) Ou=u and N2(O)={v , ]v i=2 i+l ,  i=0 ,  . . . , p ' - l } ,  
b) or else for  some k with O<=k<p and l = p - l - k  

(_ l )p[ (_ l ) ,u+Z[ ,=_/+~(  - ~ 2 t 2 i - 1  u Qu 

and the corresponding N~(Q) is 

N2(Q) = {v, lv~ = i, i = O, ..., k; v~ = k §  i = k + l  . . . .  , p - I } .  

According to the theorem, M p as defined above contains p +  1 elements. 
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The proof will be split up into a few lemmas. We shall first prove the negative 
result, that is, M p cannot contain more than p+ 1 elements. 

Lemma 7.3. For each QEM ~ we have either C ~ - I ( Q ) - - - 1  or Qu=-u. 

Proof Suppose that QCM p and let C p _ l ( Q ) = + l .  Take j such that with 
Q expressed in the form (5.5), Bi=O for i > L  but B j r  Of  course j can be 
p - 1 .  Let u(x')EHP(R ") be a function of the x '  only and such that J u n O .  Then 

D ~ u ( x ' ) = 0  for v : > 0 .  

Since, by Lemma 6.4, Cp-l(Q) = 1 implies 0 ~ N2(Q), the conditions of  Lemma 
6.3 are fulfilled. Hence 

Qu(x') = u(x') 
is independent of  Xx. 

A direct calculation however, shows that 

Qu(x') J (u(x')] = ~'i=0 Bixf +iAi i.x~l-i) = Bjx~JAJu(x')+R(Xl ' D)u(x'), 

where R is a polynomial in xl and D of degree less than 2j in Xl. Hence Qu(x') is 
not independent of  x~ if j > 0 .  Thus j = 0  and Qu=+__u. Since for Q u - - - u ,  
Cp_l (Q)- - - -  1, the lemma is proved. 

Lemma 7.4. I f  QCM p, then Q*EM r-1. ( C f  Lemma 6.10). 

Proof Let QEM p. I f  Qu-u ,  then Q * v - - v .  Example 6.1 shows that the 
lemma is then valid. In view of  Lemma 7.3, we may thus assume that OEN2(Q). 
By Definition6.2 there are p - 1  numbers vi>0,  i= l  . . . . .  p - 1  such that the 
boundary conditions corresponding to Q satisfy 

S t p - - 1  I v- qi(D) = i,0( A ) + ~ ' i = ~  sj,~,(A )DI', j = 0, ..., 2p--1.  

Lemma 6.8 then shows that the boundary conditions corresponding to Q* 
satisfy 

* O P-~ ' J ' q j - l (  ) = ~ ' i = 1  s~,v,(A)'vi'D~ '-1, j --1 = 0 , . . . , 2 p - - 2 .  

Hence Q*C M p-1. 

Proof of Theorem 7.1. From these two lemmas it follows by induction that 
M p contains at most p + l  elements. Indeed, M P c T  p and T ~ contains 2 p ele- 
ments. For  p =  1 we have p + 1 = 2 p. Hence the assertion is true for p =  1. Suppose 
that M j contains . /§ 1 elements. Then by Lemma 7.4, M j+~ cannot contain more 
than 2 ( j +  1) elements. However, only j +  1 of  these Q have C:(Q)= - 1. There- 
fore by Lemma 7.3, M j+l contains at most j + 2  elements. The positive result 
is also proved by induction. For p = 1, M p = T p consists of  the two elements Qu= 
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+_ u, hence the theorem is true for p =  1. Case a of  the theorem is true for all p 
by Example 6.1. Suppose that  case b has been proved for p=j.  Then Lemma 6.7 
and Lemma 6.10 show that the statement about  the sets N2(Q) is true for p = j +  1 
also, since this implies that C j ( Q ) = - 1  and Q*EM j. The computat ion of  the 
coefficients B i o f  the corresponding Q was effected in (7.14). 

The results now obtained may be used to prove the existence of  an analytic 
continuation of  a function in H p (f2). 

Theorem 7.2. Let f2 and 09 be sets as defined in the introduction. Let Q be an 
operator in M p, and let uE HP(f2) satisfy in the limit the p boundary conditions 

lim D ~ ' u ( x 1 , x ' ) = O  , (0, x')Ef.o, viEN~(Q), i = 1, p - 1 .  
X I ~  ~_0 "" .~ 

Then the function u~(xl, x') defined by 

' t /~/(X1, X ' ) ,  xE~r'~ 

x,)= {x?im0u(x,, x'), 
[ Q u ( - x l ,  x'), xEQ 

is a polyharmonic extension of u into ~1. 

Proof. I t  follows from Theorem 3.1 that  u can be analytically continued across 
Xl=0.  Hence u~(xl,X')EC=(Owo~). Furthermore it follows that u ~ is p-har- 
monic in O and in O. Because of  Theorem 7.1, u- has 2 p-1 continuous derivatives 
over ~o. Hence u'EHP(QO. 

Remark. The formula (7.15) may be transformed into the following form, 
more similar to formula (1.6) 

Qu = ( - I ) p Y  p-1 (--1)i l - I  ( i-- j)  p+i . i (  U 
-,-~i=0 (i!)z l I j = o ( - ~ j ] x l  ,1 (xT_i) .  

I t  is seen immediately that (1.4) corresponds to the special case l =  1. 
The operators in T p which are not in M ~ have boundary conditions of  more 

complicated structure. Still we have that they are in S p, that is, p boundary con- 
ditions on uEHP(I2w~o) are enough to ensure that u can be continued into 121 

by O. 

Theorem 7.3. Let QE T p. Then QE S p. 
We shall prove the theorem by induction over p. 
Since the result is trivial when p =  17 it is, in view of  Lemma 6.9, enough to 

prove. 

Lemma 7.5. Let Q be an operator in T p with Cp_~(Q)= + 1 and such that 
Q*E S p-1. Then QE S p. 
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Proof. Following the proof  of  Lemma 6.9, we know that the assumptions of  
the lemma imply that the boundary conditions qj(D) corresponding to Q satisfy 
(6.19) for l < - j ~ 2 p - 2 .  

From Lemma 6.1 it follows that qo(D)=_ao, o=O, since C p _ l ( Q ) = + l .  We 
need not bother with q~p_l(D), since if QC S ~ and Cp_I(Q)= + 1, then by Lemma 
6.4, 2p-ICN,(Q) .  

Hence it is enough to prove that in (6.19), sj,0(A')-=0, l_<-j<_-2p-2, for then 
by Definition 6.1, QES p. 

Since A" is of  order two, and since qj(D) is homogeneous of  order j ,  a term 
sj, o(A') can only appear for j even, j=2h. Formula (6.2) and Lemma 7.2 show 
that for j=2h  

q21,(D)u = lim [ - -2  P-* ~ m  =0 (-- 1) p-l-m b',D~nO'~ u] (7.16) 
" X I ~ 0  

where we may stop the summation at re=p-2 ,  since C p _ I ( Q ) = + I  implies 
b~_l=0. 

By the same argument as was used in Lemma 6.1, o~d(D), defined by 

o=,j(D)u = lim DiO,~u, (7.17) 
X l ~ 0  

is a homogeneous differential polynomial of  order j. Hence we may write (for 
j=2h) ,  

Om,~h(D) = ~ = 0  a~h, tAa D~ th-O, (7.18) 

where the a2"~,z are constants. We obtain from (7.16), 

q~h (D) p - 2 = --2 ~==0  ( -  1) p - l -=  bm~ . 

For the coefficients aa'~ l in (7.18), we shall now prove 

Lemma 7.6. For each operator 0,,, m r  and all j=2h,  h > 0 ,  

a~ h h + K , . ,  a" = 0 , gh, h - 1  
1 

where Km= ~ (p + m) ( p -  1 - m) is independent of h, h > O. 

We shall first see how this lemma proves Lemma 7.5. 
Since Km # 0, m # p -  1, the following can be written as one term in the expres- 

sion (7.18) of  Om,2h sion (7.18) of Om,2h 
a m  A * h - l [  l ~ g  rd- A t ~  

2h, h - - 1  ~ ~ ' / 1 - -  lXrn z-I ] 

for Km is independent of  h. Since this is true for each r e # p - l ,  it must also be 
true for the sum 

- - 2  P - - ~  Z , .  = o ( -  1) ~-1 _ = b= o,., ~h ( D )  = q2h ( D )  

that, with the same notation, no term A 'h will appear alone. Hence in the expres- 
sion (6.19) of  q2h(D), xzh,0(A')=0 for all h, since s~,0(A') does not contain D~. 
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Proof of Lemma 7.6. The verification of  the lemma consists of  a trivial, though 
a bit lengthy computation.  

m A D1 in (7.18). I f  we First, let us determine a2h ,  h , that is the coefficient of  ,h 0 

write the operator tfix ~ . in the form (5.10), we see that the coefficient 

A~, h of  2h~0.h X 1 /-)iLl U is  

A i B i ( P + i - 2 h - 1 ) ' ( h )  (7.19) 
0, h = ( p l  i__ 1)! 

Then we observe that 

l i m  ~'ll~2hAilao h'~l~'2hAt'-' . . . . .  (2h)!Aio, hAhU 
xI~O 

and observe that in the binomial expression of  C.Ah=C(D~+A') h, the coeffi- 
cients of  A 'h and A h are equal. Hence (7.1), (7.17) and (7.19) show that  in (7.18) 

,, _-- Z i=m (__1) i 2i (p+i--2h--1)! 
tz0 .  i - - m  i -  --1 ( p - - i - - l ) !  

To compute a m 2h, h-1 we may proceed as follows. 
Define O*m and O** by means of a repetition of  Definition 6.3. 
Note  that Definition 6.3 and Lemma 6.8 do not require that QET p, only 

that Q is a sum of  Huber  operators transforming H p into H p. 
We then define O*2n_l(D) by 

O * , 2 h _ I ( D ) u  = lim r~2h-lo*, 

and o** rn~ m, 2n-2 ~'-'; correspondingly. 
A reproduction of  the proof  of  Lemma 6.8 shows that 

0 
0~10m,2h(~) =--2ho*,2h-1(r 1 --<__ 2h < 2p--1.  

(The only difference in the definition of  q2h(D) and Om, 2h(D ) is the term D~ h 
and the sign (-1)zh.) 

Hence by repetition 

0z 
2 ** 0 ~  Om,2h(r = 2h(h--1)Om,~h-2(~), 2 <-- 2h < 2 p - 2 .  (7.20) 

Since the coefficient of  ~ - 2 ~ 0 - h - 1  x 1 t)lZl in the expansion (5.10) of  
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i ) ( p+ i - l -2h ) !  
h - l J  ~ - ~ - ~ '  

we obtain that  the coefficient of A "h-1 in o** tD~ is m, 2h--2~ ] 

( - 1 ) P ~ Y f - & ' ( - l l i  (2i)t i - i - m - 1  h - 1  ( p - i - 3 ) !  

Because of (7.20t this gives for the coefficient a 'n of ,h-1 2 2h, h--1 A D 1 in om,2h(D) 

p-1 [ 2i 2i a"~.. ~_~ = ~- ~). z,o~ ~_ ~ ) , ~  (~_ m)_ (~_ ~_ ~ )1 ( ~_ J ~ + ~- ~ - ~ h ~ ' ,  z tzO. (p-- i -- 3) ! 

where we use the convention that  ( a t ) - l = 0  for a<0 .  
To show the lemma, we compute 

m 1 S = a2h.h-l+--f (p+m)(p-- 1 --m)a~h.h 

(_1) p , -1  (2m+l)(p+i--2h--1)!2h! 
= z~i=~(--1)~(i+m+l)!(i--m)!(p--i--3)! .2 

X [ ( h i  1 ) + ( ~ ) ( p + m ) ( p - - l - - m ) i  

for i--m -- i--m--1 = (i+m+l)!(i--m)!" 

(p+m)(p--l--m) = 1 + 2  i+1  -~ (i+l+m)(i--m) 
(p--i--2)(p--i--1) p - i - - 2  (p--i--1)(p--i--2)' 

we obtain from the expression in the brackets 

(h - l i )+ (~){1_ t_2p_ i_2 i+1  -t (p-i-1)(p-i-2)(i+l+m)(i-m) } = ( i+l)h +2(ihl / i+l-hp_i_2 

th)( i) (~-i---~--2)(i-}-l +m)(i 'm)  = (I, i+h 1] p+ i -2h+(  p - i - 2  th,I (i+ l +m)(i-m)i_ + 
( p -  1 ) ( p -  i - 2 )  " 

Hence 

[ 0-2 (2m+l)(p+i-2h)!(2h)! (i+1/h 
S =  ( -1)"  X~=~(-1)i(i+m+l)!(i_m)!(p_i_2)!2 

( 1~ i (2m+l)(p+i-2h-1)!(2h)! / i ] ]  
+~Y~P---~+I-- , ( i + m ) ! ( i - m - 1 ) ! ( p - i -  l)!2 th)J 
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The deleted terms i = p - 1  and i=m are zero, since ( p - i - 2 ) ! - 1 : 0  for 
i = p - 1 ,  and similarly ( i - m - l ) ! - 1 = 0  for i=m. 

Substituting i-- i" + 1 in the last sum we obtain S =  0, which proves the lemma. 
There is also in this case a Theorem corresponding to Theorem 7.2. 

Theorem 7.4. Let 12 and o~ be sets as defined in the introduction. Let Q be 
an operator in T ~ (and hence in SP), and let qj(D) be the boundary conditions cor- 
responding to Q. Further let uEC2p-l(12u~o) and uE HP (12) satisfy the p boundary 
conditions: 

qj(D)u(O, x') = 0 jENI(Q). 

Then u'(xl ,  x') defined by 
" I u(x~,  x ' )  , x~favoo~ 

U (Xl, X')  = [au(_xx,X) X<~"2 

is a polyharmonic extension of u into 121. 
The proof  is evident. It  follows the proof  of Theorem 7.2. 

8. The MacLaurin expansion and continuation formulas 

Let 12 and o~ be defined as in the introduction. Let uEHP(f2) satisfy the set 
of  boundary conditions 

lim D~, u(0, x') = 0, i = 1 . . . . .  p. (8.1) 
xI~O 

I f  the set {vl} is one of  the sets mentioned in Theorem 7.1, then we have already 
obtained the reflection formula which continues u into the whole of  f21. We shall 
in this section give a method to obtain continuation formulas for other sets {v~} 
in (8.1). Since the corresponding continuation formulas cannot be of  purely dif- 
ferential type, the continuation will not necessarily be possible into more than f22. 

For  all natural numbers p, let Qp be the operator in formula (1.6). This oper- 
ator continues any u~ HP(g2) which satisfies on c0 the Dirichlet boundary con- 
ditions. 

Define the operator Q~ by 

[ {u)] Q~(x1, D)u = X~l+l Qp+ 1 Xlk+lOl ~ (8.2). 

Theorem 8.1. Let uC HP([2) satisfy the p boundary conditions 

l imD~u(xx, x ' ) = O ,  xEl2, i = O ,  1 k - l ,  k + l , . . . , p ,  O<=k<p. 
Xl~O "..~ 

(8.3) 
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Then the operator Q defined by 

? Qu = x k Qk(t, D)udt-4 (--Xl)k. [lirn Dku] (8.4) 
o k!  x ,~o  

has the property that 
U(--X1,  X') = (~U(X1, X t) X ~ O  t 

continues u analytically into f2~. 

Proof. The boundary conditions (8.3) imply by Theorem 3.1 that there exists 
a continuation of u into f2~. Hence u is analytic on t~. We can therefore expand 
u in MacLaurin series in xl (with x~ . . . . .  x, as parameters) with a positive radius 
of  convergence 

u (xl, x') = ~'7= 0 xl gj (x'). (8.5) 

The conditions (8.3) imply that 

g 3 ( x ' ) - - 0  for j = O , l , k - l , k + l , . . . , p .  

Using the expansion (8.5) we see that the function Ul defined by 

satisfies the p + 1 Dirichlet boundary conditions 

D~ ul (0, x') - 0, i = 0, 1 . . . .  , p. 

Since Ul=XlDlU--ku , UlEHp+I(Q) because of  Corollary 2.1. 
Theorem 7.2 then shows that the continuation of Ux into f22 may be effected by 

Ul(--X1, X') = Qp+lUl(X1, x') x~[-2. (8.7) 

It follows from (8.6) that the MacLaurin expansion of  Ul is 

u 1 (xl, x') = ~'7= 0 (J - k) (+  x,)Jgi (x3, 

where the series converges uniformly inside the radius of  convergence. We obtain 
from (8.7) 

Z T = o ( j - k ) ( - x l ) J g y ( x  ") = u t ( - x a ,  x') = Qpul(x 1, x'). 

Divide both sides by xkl +1 and integrate. In the left hand side we integrate term 
by term, which is permissible because of  the uniform convergence. A multiplication 
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wi th  x~ then gives wi th  the  no ta t ion  (8.2). 

X 1 

Z T = o ( - - x 1 ) J g j ( x  t) : f D)U(,, x') d, 
j~=k 0 

Fina l ly  we a d d  

( -  xl)k [ l im D~ u] 
( - -  x1)kgk (X") - -  k ! t-x , -  o 

to bo th  sides and  ob ta in  (8.4). The  unici ty  o f  the  analyt ic  con t inua t ion  then proves  

the  theorem.  

The  case k = p -  1 is o f  course  inc luded  in T he o re m 7.2. 

The  m e t h o d  descr ibed  in this sect ion m a y  be used for  o ther  sets (8.1) o f  bound-  

a ry  condi t ions  as well. 
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