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Optimal decompositions for the
K-functional for a couple of Banach lattices

Michael Cwikel(!) and Uri Keich

Abstract. Let f=g:+h; be the optimal decomposition for calculating the exact value of the
K-functional K(t, f; X) of an element f with respect to a couple X =(Xo, X1) of Banach lattices
of measurable functions. It is shown that this decomposition has a rather simple form in many
cases where one of the spaces Xg and X7 is either L or L'. Many examples are given of couples
of lattices X for which [g;| increases monotonically a.e. with respect to t. It is shown that this
property implies a sharpened estimate from above for the Brudnyi-Krugljak K-divisibility constant
~(X) for the couple. But it is also shown that certain couples X do not have this property. These

also provide examples of couples of lattices for which v(X)>1.

1. Introduction

Let Xo and X; be Banach lattices of (equivalence classes of) real valued mea-
surable functions on the same measure space (2,3, p). It is well known (see
e.g. [13], pp. 40-42 or Remark 1.41 of [10]) that X, and X; form a Banach couple
X =(Xg, X1) in the sense of interpolation theory (4], p. 24, [5], p. 91).

A basic notion in the study of interpolation spaces with respect to any Banach
couple A=Ay, A;) is the Peetre K-functional, defined for each f€Ag+A; and each
t>0 by

(1) K(t, f; Ay =it {||glla, +tllhlla, : g€ Ao, he A1, g+h=F}.

The norms of many interpolation spaces are obtained by composing the K-
functional with suitable lattice norms defined on functions on (0,00). For many
couples A, all interpolation space norms with respect to A can be obtained in this
way.

There is a rather extensive literature devoted to the calculation of K-function-
als for particular couples. In many cases there are concrete formulze for functionals
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which are equivalent to K (£, f; A), i.e. the constants of equivalence are independent
of f and t. Furthermore, for a number of specific couples, an explicit and exact
formula has been obtained for the K-functional for each element feAg+A; and
it is also possible to describe elements g; and h; for which the infimum in (1) is
attained, i.e.

(2) f:gﬂrht, gtEA(), htEAl and K(t,f;fi):||gt||AO+t||ht||A1.

See e.g. [1], [2], [11], Lemma 4.1, [16] and [19]. It will be convenient to refer to
any pair of families {g:}1>0 and {h¢}io satisfying f=g;+he, 1€ Ao and €Ay
for some fixed feAg+A; and for each >0 as a decomposition of f. We shall also
use the notation {f=g;+h¢}>0. Such a decomposition will be called an optimal
decomposition of f if it satisfies (2} for each ¢>0.

Every optimal decomposition {f=g;+h: o of any given element f has the
property that

{3) t+——|lg¢lla, is non-decreasing and t— |h:|| 4, is non-increasing on {0, 0o).

Let us describe a slightly more general result which implies (3) and which holds also
if f does not have an optimal decomposition: For each fixed t>0 there always exist
sequences of functions { gy ¢ Inen and {hy, 1 }nen, in Ag and A; respectively such that
f:gn,t+hn,t and K(t» f3 A) < ||gn,t ||Ao +t||hn,t||/11 §(1+1/n)K(t> f5 A) By passing
if necessary to subsequences, we can suppose that the limits z(t) =1imy, oo ||gn.t | a0
and y(t)=lim, o ||n ]| 4, both exist. Then z(t)+ty(t)=K(¢t, f; A). Every pair of
functions z(t) and y(t) obtained for each t>0 in this way satisfies

(1) x(t) is non-decreasing and y(¢) is non-increasing on (0, 0o).

The validity of the condition (4) and so also of (3) is rather well known. Tt
can be deduced from an examination of the Gagliardo diagram (cf. e.g. [4], p. 39).
For the reader’s convenience, we also provide an explicit proof at the end of this
section. (See Remark 1.9.)

For quite a number of previously studied particular Banach couples which are
couples of lattices, there always exist optimal decompositions which have a certain
monotonicity property, which is in some sense a “refinement” of (3). This property,
which will be our main object of study here, is described precisely in the following
definition.

Definition 1.1. Let X=(Xy, X1) be a couple of Banach lattices of measurable
functions on the measure space (2,%, ). A decomposition {f=g;+h:}s>o of an
element feXy+ X7 is said to be monotone if, for a.e. weld, it satisfies

lgs (W) <|gi{w)|, whenever 0 < s<t.
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The couple X is said to be exactly monotone if every f€Xy+X, has a monotone
optimal decomposition.

In this paper we shall identify a number of exactly monotone couples. These
include couples of L? spaces (in Sections 2 and 6), and of certain Lorentz spaces,
and also couples of the form (B, L>) for “most” Banach lattices B. (Section 2).
They also include the couple (L, X) for “most” rearrangement invariant spaces X
(Section 5). We also show (Section 3) that (Xo, X;) is exactly monotone whenever
the dimension of Xy+ X3 is no greater than 2. On the other hand we give examples
(Section 4) of couples (Xp, Xy) which are not exactly monotone. These, too, can
be finite dimensional. In fact, in our examples, the dimension of Xy+ X, is 3.

In some of our examples in Sections 2 and 6 we will also consider wetghted
Banach lattices.

Definition 1.2. Given any measure space {2, %, 1), we shall use the usual termi-
nology weight function for any measurable u: 2—(0, 00). For each Banach lattice
X of measurable functions on (£, %, 1) and each weight function u, we shall use
the usual notation X, for the weighted Banach lattice consisting of all measurable
functions f on Q such that fueX. It is normed by || fllx, = ulx.

Remark 1.3. If p,g€[1, 00| with p#q, then many results about the couple of
weighted LP spaces (L%, L) on a given measure space (£2,%, ) can be deduced
from corresponding results for the “unweighted” couple (LP(v), L4(v)) on the same
measurable space (2, £) equipped with a suitably chosen different measure v. This
can be done using a positive one-to-one linear mapping introduced by Stein and
Weiss (see [21], pp. 162163, Lemma 2.6) which is simultaneously an isometry of
L2 () onto LP(v) and of LI(u) onto Li(v). (Cf. also 7], Corollary 2, p. 234.)

The exact monotonicity of a couple implies that it has other special proper-
ties. We give one explicit illustration of this in Section 7, where we investigate the
relationship between exact monotonicity and the size of the K -divisibility constant.
This is the constant y=+(X) which is the infimum of all values of the constant
appearing in the important “K-divisibility theorem” of Brudnyi and Krugljak (see
[5], p. 325, or the beginning of Section 7 below). Moreover, v(X) is also the infi-
mum of all values of the constant appearing in the strong form of the “fundamental
lemma, of interpolation theory” (see [9] and also Remarks 1.34 and 1.36 and Propo-
sition 1.40 of [10]). We show that v(X) <4 whenever X is exactly monotone. This
is an improvement (for such couples) of the sharpest result obtained thus far for
general couples, namely that v(X)<3+2v/2 (see [9]). It is relevant to note that, on
p. 492 of [5], Brudnyi and Krugljak claim that there are sound reasons to believe
that v(X)<4 for all couples X.
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In some cases, rather than using exact monotonicity to obtain better estimates
for the constant ¥(X), we can, conversely, use information about v(X) to deduce
that X has a property related to exact monotonicity. In particular, if v(X)=1 for
some couple X of Banach lattices, then X is “almost exactly monotone” in a sense
which we will define now, via a slight generalization of the notion of an exactly

monotone couple.

Definition 1.4. A couple X of Banach lattices of measurable functions on a
measure space (§2, 2, it) is A-monotone for some number A>1 if, for each f€Xy+ X7,
there exists a decomposition {f=g;+h:}:~0 such that, at almost every we2, the
function t—|g;(w)| is non-decreasing and

() lgellxo +tlihellx, <AK (2 f5X)

for all £€(0, 00).
The couple X is almost exactly monotone if it is A-monotone for every A>1.

Remark 1.5. 1t is very easy to see that a couple (Xp, X1) is A-monotone if and
only if the corresponding weighted couple (X, X1.) is A-monotone for any, or
every, weight function u.

The property of A-monotonicity is also related (see Proposition 7.5 below) to
another property of the K-functional for arbitrary couples of Banach lattices.

(%) For some constant C=C(X) and each f € Xo+ X1, there exists an increasing
family {E,}i~0 of measurable subsets of Q (depending on f) such that

(6) Kt f;X) <llfxellx +tlfA—xp)x, <CK(t f;X)  for each t>0.

This property is established in Theorem 4.1 of [10] and plays an important réle in
the general results of [10]. 1t has also been obtained independently by Brudnyi and
Krugljak ([5], Lemma 4.4.30, pp. 599, 603-605).

Remark 1.6. If f is a non-negative function in Xo+ X1 and it has a decomposi-
tion {f=g¢+h¢}i>0, then the new decomposition { f=G;+ H; }+~q obtained by set-
ting Gy =min{f, |g.|} and H,=f— G satisfies [|Gelx, <[l9¢lx, and | Hyllx, <[lhellx,
and also 0< G, < f. Using this and other obvious facts, it is easy to see that a couple
X of Banach lattices is A\-monotone if and only if for each non-negative function
FE€Xp+ X1 and each t>0 there exist non-negative functions g, and h; such that
f=g:+h; and, at almost every point of the underlying measure space, g; is non-
decreasing with respect to ¢ and (5) holds.

For such a decomposition we also, of course, have that h is non-increasing with
respect to ¢ at almost every point of the underlying measure space. This observation
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enables us to immediately see that the couple (X;, X1) is A-monotone if and only
if the “reversed” couple (X7, Xp) is A-monotone.

It follows almost immediately from the definition that v(X)>1 for all cou-
ples X. It is also known that (X )=1 for certain special couples. In particular the
couples (L2, L1}, where u and v denote arbitrary weight functions and the expo-
nents p and ¢ are each either 1 or oo, satisfy v(L2, L9)=1. (We refer to [5], p. 335,
Proposition 3.2.13, for the proof in the cases where p=¢. The case where ps#¢q and
both v and v are identically 1 is proved in [12] or by (an obvious generalization of)
the proof of Lemma 5.2 of {10], p. 44. To extend this case to general u and v we
use the mapping of Stein—Weiss mentioned in Remark 1.3.)

It is also easy to show (see Section 2 for details) that these same couples
(L2, L2), for p and q as above, are all exactly monotone. We shall extend this latter

result (in Section 6) by showing that (L2, L?) is exactly monotone for all values of
p and ¢ in [1,00].

Remark 1.7. Tt is known that y(A)>1 for certain couples A=(Aq, A1) of Ba-
nach spaces (which apparently cannot be represented as couples of Banach lat-
tices on a measure space). This was first shown in [14] for the couple A=(C,C")
and it was subsequently shown in [17] that this same couple satisfies y(A)>
(3+2v2)/(1+2v2). A different approach in [20] produced a couple A=(Ag, 4;)
for which v(A)=(3+2v2)/(1+2v/2). Here Ay is R? equipped with the {* norm
and A; is a one-dimensional subspace of R? whose umnit ball is a line segment
which makes an angle of %77 with one of the coordinate axes. Furthermore, it was
shown in [20] that v(A)<(3+2v/2)/(1+2v/2) for all couples A such that AgCR?
and A;CR2. Our results here enable us to produce the apparently first known
examples of couples of lattices X which satisfy v(X)>1. (See Corollary 7.3.)

Let us recall one more notion which will be needed later.

Definition 1.8. Let A=(Ay, A1) be a Banach couple. For =0, 1 the Gagliardo
completion of A;, which we denote by A}’ is the set of elements a€ Ag+ A, which are
limits in the Ag+A4; norm of bounded sequences in A; or, equivalently, for which
llalla> =sup,q K (¢, a; A)/t is finite.

We refer, e.g., to [11] and also [10] for examples and more details concerning
Gagliardo completions.

Remark 1.9. As promised above, we close this section with a proof of (4)
and (3).

For each t>0 let P, be the point (2(t),y(t))€R? and let L; be the line {(z,y)€
R%:z+ty=K(t, f; A)} which passes through P,. Now let us make an arbitrary
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choice of s and ¢ such that 0<s<t and show that

(7) ()2 a(s) and y(t) <y(s).

We first claim that

(8) P, lies on or above Ly, and P, lies on or above L;.

If, on the contrary, P; lies strictly below L then
K(s, f) < m (llgn,ellao+sllhnellar) =2(t)+sy(t) <z(s)+sy(s) = K(s, f)

which is, of course, impossible. Similarly, if P, lies strictly below L;, then
(1)< m (g allag 1A sllay) = () +ty(s) < 2(0) + () = K (¢, )

which is again impossible, and we have established (8).

Since L; passes through the points (K(¢, f),0) and (0,K(t, f)/t), since
K(s, f)<K(t,f) and K(s, f)/s>K(t, f)/t, and since s#t, we see that L,NL; is
a single point (z,y) with >0 and y>0. In view of the slopes of these two lines
and (8), we obtain that P, cannot lie strictly to the right of (z,y) and P, cannot
lie strictly to the left of (z,y). Consequently z(s)<z<uz(t) and (again using the
slopes) y(t) <y<y(s). This establishes (7) and so also (4) and (3).

2. Some previously known examples of exactly monotone couples

In many, but not all, of the couples X which we shall show to be exactly
monotone, this is a consequence of the fact that each non-negative fe& Xy+X; has
an optimal decomposition {f=g;+h}i~0, where for each ¢>>0 the function h; is of
the form h;=min{f, A\;} for some constant A\,€[0,c0]. The most obvious instance
of this phenomenon is the next theorem.

Theorem 2.1. Let B be any Banach lattice of real valued measurable functions
on a measure space {0, %, u) and let L denote the space L™(p) of essentially
bounded measurable functions on . Then the couple (B, L™) is almost exactly
monotone. Furthermore, this couple is exactly monotone if

(i) B has the Fatou property, or

(ii) B coincides isometrically with its Gagliardo completion B™ with respect to
the couple (B, L*).
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Remark 2.2. In fact, (i) implies (ii). (See [10], Corollary 1.17.)

Proof. Let f be a non-negative function in B+L*°. If we know that every
such f has some optimal decomposition {f=g;+h:}+>0 into non-negative func-
tions, then it is simple and immediate to show that (B, L) is exactly mono-
tone: We use the decomposition {f=G¢+H;}i~0, where Hy=min{f,||h¢| 1=}
Clearly this decomposition must also be optimal, and Gy=f— H; must be point-
wise non-decreasing as a function of ¢ because, by (3), ||| L~ is a non-increasing
function of . The general proof uses an elaboration of the same simple idea.
For each t>0 and neN, we can (cf. Remark 1.6) express the above function
f as the sum of two non-negative functions f=gy++hy, such that g,:€B and
hnt €L and K(t, f)<|\gntllB+t|hntlloe <(1+1/n)K(t, f). As in the formula-
tion of (4), we can suppose that lim,, o ||gn+l| p=2(t) and lim,, o0 [|An ¢ | Lo =¥y(2),
where, by (4), y(t) is a non-increasing function of ¢. Given any A>1, we define
Hy=min{f,y(t)+(A—-1)K (¢, f)/4t} and we choose n€N sufficiently large so that
(1+1/n)<1+1(A-1) and also

A— A—
YO =T K (6 1) < il <904 22K ).

Then, since 0<h,, < f, we have that h,, ; <H;. Consequently, 0<f—H,<f—hp ;=
gn,: and so

A—
If = Hellp+t| Hell oo < Ilgn,t||3+t(y(t)+—1K(t, f))

4t
A _
o <lgnello+e(w) -G K00 )+ 25 K )
9
A—
< llgnll s+l e + 257 K (1, )

< <<1+¥)+%>K(t,f):ﬁf(t,f)-

Since y(t)+(A—1)K(¢, f}/4t is a non-increasing function of ¢, this shows that
(B, L*) is A\-monotone. Now suppose that B satisfies condition (i) or (ii). For
any fixed ¢>0, consider the sequence of functions H,, ;=min{f, y(t)+ K (¢, f)/mt}.
If we choose A=1+4/m, then 1(A—1)=1/m and we obtain from (9) that

(10) 1=l ol < (142 ) K0, ).

Obviously, H,, : converges pointwise and in L> norm to H, ;=min{f,y(¢)}. So the
sequence G, = f—H,,; is pointwise non-decreasing and converges pointwise and
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also in B4+L™ to G, ,=f—min{f,y(¢)}. Thus, using either the Fatou property,
or the condition B~ =B, we deduce that G, ,€B and |G| g <limp, o0 [|Gm.t| -
(Obviously the reverse inequality is also true.) These remarks, together with (10),
show that {f=G.;+H, t}+>0 Is an optimal decomposition. So, since y(¢) is non-
increasing, we have shown that (B, L*) is exactly monotone. [J

In the rest of this section we list some other couples which can readily be seen
to be exactly monotone.

Erample 2.3. The result of the previous theorem can be immediately general-
ized to show that the couple (B, L) is exactly monotone for all choices of weight
functions u, since this is equivalent to the exact monotonicity of (By/,, L>). (Cf.
Remark 1.5.)

Ezample 2.4. The couple (L., L) of weighted L' spaces on some arbitrary
measure space is exactly monotone. This follows since for each element f we can

choose g;=fXx{u<tv}-

FEzxample 2.5. The couples of Lorentz spaces (A(¢o), A(¢)) studied by Sharp-
ley {19] are also all exactly monotone in view of the exact formula obtained in [19]
for the K-functional.

It is interesting to note that the optimal decompositions of a function f for
Sharpley’s couples, obtained by dividing the graph of |f| into two separate se-
quences of horizontal “slices” are of a radically different nature to the optimal
decompositions obtained in the other examples mentioned here.

Ezample 2.6. The couple (L', LP) for any pc(l,00] is exactly monotone in
view of the exact formula for its K-functional which is given in [16]. (In fact some
further small steps are needed to extend the formula given in [16] to the cases of
more general functions f and more general measure spaces.) The papers [1] and [2]
give more details and various generalizations of the results of [16]. With the help
of the mapping of Stein-Weiss (see Remark 1.3), this result also extends to all
weighted couples (L1, LP).

In Section 5 we shall prove a theorem which includes the exact monotonicity of
(L', L?) as a special case. In fact the couple (L2, L2) is also exactly monotone for
all choices of p, g€[1, o0] and all choices of weight functions u and v. For the proof
of this in the remaining cases which are not covered by the preceding material of
this section, we refer to Section 6.
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3. Exactly monotone couples of finite dimensional lattices

Let (Yo,Y7) be a couple of Banach lattices of measurable functions on the
measure space (2,3, ) and suppose that dim Yy and dimY; are both finite. Then
of course Y=Y, +Y] also satisfies n=dim Y <oo. Let {f;}}_; be a basis of Y and
let Q*={weQ:> 1, |fr(w)|>0}. Then, of course, each f€Y must vanish a.e. on
MQ*. Furthermore, Q* must be the union of n atoms, Q*={J,_, E}. Similar
reasoning shows that there are also two subsets Qf and QF of Q*, either or both of
which may coincide with Q* or be empty, such that for every measurable function
f on ©, we have that f€Y; if and only if f=0 a.e. on Q\Q}.

The map > ,_; apXp, (@1, ag,...,0,) enables us to naturally identify the
couple (Yp, Y1) with the couple of lattices (X, X1) where

(11) Xi={(oq,a2,...,00)eR" 1 =0 for all k¢ I}

and Ij={k€{l,2,..,n}:ExCQ;}. The lattice norm on X; is naturally induced by
| - ly;- That is, here we are considering R™ as the space of all real valued functions
on a set of n points, and so the notation <y means that z=(x1,z2,...,2,) and
Y=(y1,Y2, -, Yn) satisfy zx <y for k=1,2,...,n.

Theorem 3.1. Let X=(Xy, X;) be a couple of Banach lattices on some meas-
ure space, such that dim(Xo+X1)<2 for j=0,1. Then X is exactly monotone.

Remark 3.2. As we shall see in the next section, this result is false if we weaken
the hypotheses to dim(Xp+X7)<3.

Proof. By the remarks preceding the statement of the theorem, we may sup-
pose without loss of generality that the spaces X, are each of the form (11) for n=2
and for index subsets I; each containing at most two elements. We fix some element
f=(c,3)€Xo+X1=R? and will show that it has a monotone optimal decomposi-
tion. It suffices to do this for the case when >0 and 3>0 {(cf. Remark 1.6). An
obvious compactness argument guarantees the existence of an optimal decomposi-
tion {f=g;+h¢}¢>0. We can assume (cf. again Remark 1.6) that

(12) 0<g:<fand0<h,<f forallt>0.

If dim X ;=0 for either =0 or j=1 then the result is trivial and obvious. If dim Xy=
1 then I is either {1} or {2} and g; is of the form g;=¢(#)e where ¢: (0, 00)—[0, 00)
and the fixed element ecR? is either (1,0) or (0,1). Now ¢(t)=|l9:|lx,/|lell x, and,
in view of (3), this must be a non-decreasing function of ¢ and so the proof is
complete. A slight variation of this argument takes care of the case dim X;=1. Thus
we can suppose from here on that dim Xo=dim X;=2, i.e. Xo=X;=R?. Let us use
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the simpler notation || - ||o or || - |1 for || - l|x, or || - || x,, respectively. For j=0,1 and
each u€R? and each 7>0, let B;{u,r) denote the closed ball {veR?:|lu—vl|;<r}.
We denote its interior by Bj(u,r) and its boundary by dB;(u,r). That is,

B;(u,r)z{veRQ:Hu—ij<r} and 9Bj(u,r)={veR?: |lu—v|; =7}

We shall make a temporary auxiliary assumption: (A) For j=0,1, the boundary
0B;{0,1) of the unit ball of X; has a unique tangent at each point {x,y) and this tan-
gent is not parallel to any other such tangent, except of course at the point (—x, —y).
Since X is a lattice, 8B;(0,1) is invariant under the maps (z,y)—(—=,y) and
(z,y)~>(z, —y), and the assumption (A) implies that the tangent is horizontal at
the points of intersection with the y axis and vertical at the points of intersection
with the z axis. For each fixed ¢>>0 the balls Bj(0, ||lg:llo) and Byi(f, ||h:]|1) satisfy

By {0, igello) N B (f, 1hell1) =0,

since any g€ Bg(0, [|g¢llo)NB1(f, |ht]l1) would satisfy the impossible estimates

K(t, f; X) <llgllo+tl f—glln < llgello+tllheliy = K(¢, f; X).

The same argument shows that

Bo(0, lg:llo) By (f, [[hell1) = 0.

We deduce that the intersection of the corresponding closed balls, namely J,=
By (0, llgtllo}NB1(f, ||he]l1), must be disjoint from each of the open balls B(0, ||g.lo)
and B5(f,||hll1), and therefore Jy=0By(0, llg:|l0)NOB1(f, |h:]l1). This set is non-
empty since it contains the point g;. It must also be convex. This means it cannot
contain any point other than g, since our temporary assumption (A) precludes the
possibility of either 8Bg(0, llg[lo) or dB((f, ||ht]]1) containing any line segments.
If g; and h; are both non-zero, then, since g; lies on the boundaries of both of
the non-empty disjoint open balls B§(0, ||g:llo) and Bi(f, ih¢ll1), it follows that
the two uniquely determined tangents at gy, to 8Bo(0, ||g:llo) and to dB1(f, |hell1),
respectively, must both be the same line which we shall denote by L;. We shall
denote the slope of L; by m,. For j=0 and j=1 we can write the set 9B,{0,1)N
{(z,y):2>0, y>0} in the form {(z, ¢;(z)):0<x<d;} where ¢;:(0,6;]—[0,00) is a
strictly decreasing concave function with ¢;(d;)=0 and ¢} exists and is strictly
decreasing on [0, ;) with ¢}(0)=0 and lim,_,5; ¢}()=-0c0. Thus, for our purposes
here we can and shall unambiguously introduce the notation qb;(éj):—oo so that




Optimal decompositions for the K-functional for a couple of Banach lattices 37

now ¢’ is strictly decreasing on all of [0,d;]. This representation of 9B;(0,1)N
{(z,y):2>0, y>0} immediately implies that, for each r>0,

0B;(0,")N{(z,y): x>0, y20}:{(x,r¢)j<§)) :nggréj},

and also that the slope of the tangent line to 9B;(0,r) at the point (z,r¢;(z/r)),
equals ¢’ (x/r) for all x€[0,74;) and also for =rd;, in accordance with the conven-
tion adopted above. Let us write g; in terms of its coordinates, i.e. gr=(z(t), y(t)).
By (12) we have 0<z(¢)<« and 0<y(t)<g for all £>0 and so both g; and h;=
(a—z(t), B—y(t)) are in the first quadrant {(x,y):2>0, y>0}. As a special case of
the above formula for slopes of tangents, we obtain that

¢0< z(t) ), whenever g; # 0.
llg¢llo

We will need a second formula in terms of ¢} for m;. This is easily obtained, e.g.,
with the help of the affine involution map J defined by

J(J?,y) = (Oé—.’E,ﬁ—y) :f_(wvy)'

The map J maps each straight line in R? onto another straight line with the same
slope. Since L; is also the tangent to 0By (f, |hil1) at gu, its slope m, must equal the
slope of the tangent J(L;) to J(OB1(f, ||ht||1))=9B1(0, |ht|l1) at J(g;)=h. This
gives that

= ¢ < z(t) ) , whenever h; #£0.
[[72e I

We have to show that both x(¢t) and y(¢) are non-decreasing functions of t. We
shall now do this for x(¢). Thus we fix arbitrary numbers s and ¢ with 0<s<t
and have to show that x(s)<x(¢). This is obviously true if g,=0 or h;=0 since in
these cases z(s)=0 or x(t)=q, respectively. So from here on we can assume that
both g; and h; are non-zero. We shall show that supposing z(¢)<z(s) leads to
a contradiction. On the one hand it implies, since 0<||gs[lo<|lg:llo (by (3)), that
0<z(t)/Mlgello<x(s)/]|gsllo<dg and so we have

4% —osmo=a () < (o, ) =meso

On the other hand, x(f) <x(s) also implies that o—x(

s
by (3), 0<||he]l1 <||hslit, it then follows that (a—x(s))/
S0

(s

=t () <o (o) =meso

)<a—xz(t) and, since, again
sl <(a—=2(t))/[Ihl2 and
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This contradicts (13) and so proves that z(t) must be non-decreasing. The proof
that y(t) is non-decreasing is exactly analogous and we leave it to the reader. The
last step will be to extend our proof to the general case, i.e., where the unit balls
of Xy and X7 do not necessarily satisfy the above mentioned temporary assump-
tion (A). It is not difficult to show that, for j=0,1 and for each positive integer
n, there exists a two-dimensional lattice X;(n) whose unit ball B; ,(0,1) satisfies
assumption (A) and furthermore

1
Bj(O, 1) - Bj,n(O, 1 cC B; (0, 1+g)

Then, by the preceding part of the argument, for each n there exists an opti-
mal decomposition {f=g(t,n)+h(t,n)}s>0 of f with respect to the couple X (n)=
(Xo(n), X1(n)) such that, if g(t,n)=(z(t,n),y(t,n)), both z(t,n) and y(t,n) are
non-decreasing functions of ¢. Furthermore, by (12), 0<z(t,n) <« and 0<y(t,n) <8
for all t >0 and neN. By Helly’s selection theorem (see e.g. [18], Exercise 13, p. 167)
there exists a strictly increasing sequence of integers {ny}ren such that z(t,ny)
and y(t,ng) converge for each ¢ to non-decreasing functions z(¢) and y(t). Let
g(t)=(z(t),y(t)) and h{(t)=f—g(t). It is easy to check that {f=g(t)+h(t)}s>0 is a
monotone optimal decomposition of f for t with respect to the original couple X.
This completes the proof. [

4. A counterexample in R3

Theorem 4.1. Let Xy be R® equipped with the lattice norm
1(z, y, 2)llo = max{|z|, [y], zlyl+|z], 2|z|+Z|yl+ 312}

and let X be the subspace of R® consisting of elements of the form (z,y,0) equipped
with the lattice norm

1,5, 0)[[1 = 107> | +y].
Then the couple X =(Xy, X,) is not exactly monotone.

Proof. We shall establish the result by determining the optimal decomposition
f=g:+h, for the element f=(1,1,1) exactly when t=10~% and approximately when
t=10. For the case t=1070 it is convenient to use the function

¢z, y) = (1—2,y,1)llo+107°(|(z, 1=y, 0) 1.
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Obviously K(107%, f; X)=inf{¢(x, y):(z,y) €R?}. Note that ¢(0,0)=1+10"%. We
shall see that this is the infimum, and that it is not attained at any other point
(z,y)#(0,0). Now

(2,9) 2 3lyl+1+107° 1 —y| > Fly| +14+107° (1~ fy[) = 14107+ (- 107°) [y,
So if the infimum is attained at (z,y) we must have y=0. But then
6z, 0) = [[(1=2,0, Dllo +10" (2,1, 0)[}y > 1+10~%}z]+10"°,

and so necessarily x=0. Consequently f=g;+h:, where g;=(1,0,1) and h:=(0,1,0)
is the unique optimal decomposition of f for t=10"%. Now to treat the case {=10
we shall use the function

¢(x’y) = H(xv 1—y, 1)||0+10“(1_x7 y70)”1

First observe that ¥(0,0)= % +10-1073= % +1072. We shall not explicitly show that
this is the infimum, but we shall see that the infimum can only be attained in a
very small neighbourhood of (0,0). Indeed, suppose that

(14) Y(z,y) <¥(0,0).
Then it follows from the estimate
W, y) > 21—yl +£+10ly[ > 2(1—[y])+ 2 +10Jy| = 2+ L|y|

that

7
(15) 'y| < 5500

We then also have the estimate ¢(x,y) > 2|z|+2(1—|y|)+ 2, which, combined with
(14) and (15), yields that 2|z|<107242=L: and so |z| is considerably smaller
than %. This shows that any optimal decomposition f=g;+h; for t=10 must have
g¢ very close to (0,1,1) and hy very close to (1,0,0). Thus the first coordinate
of [g:| cannot be an increasing function of ¢ which proves that X is not exactly
monotone. [J

Remark 4.2. There is nothing special about the fact that X; in the previous
theorem has dimension 2. This choice was made only to simplify the calculations.
To obtain an example of a couple (Xg, X} which is not exactly monotone and where
both spaces have “full” dimension 3, we can simply use a small “perturbation” of
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the example of Theorem 4.1. For example, we can define X¢ as above and modify
X1 to now be R3 equipped with the lattice norm

Iz, y, 2) L = 10722+ |y|+107|z].

Then a straightforward variant of the above proof shows that here again the optimal
decomposition of f=(1,1,1) for t=1075 is exactly (1,0,1)+(0,1,0) and for t=10 it
is again very close to (0,1,1)+(1,0,0). Thus we have the required counterexample.

Remark 4.3. Tt is easy to see that neither of the couples introduced in Theo-
rem 4.1 and Remark 4.2 can be almost exactly monotone. Otherwise, for f=(1,1,1)
and each n€N there would exist a decomposition into non-negative monotonic func-
tions {f=gn ¢ +hn.t >0 such that ||gn |l x, +tlAnillx, <(1+1/n)K(t, f; X). Then,
as in the final step of the proof of Theorem 3.1, we could use Helly’s selection theo-
rem to pass to subsequences of {g,} and {h, } which, for each ¢, converge in R?,
and therefore also in Xy and X, to give a monotone optimal decomposition of f,
contradicting what we have shown above.

5. The couple (L', X) for a large class
of rearrangement invariant spaces X

The “large class” referred to in the title of this section consists of those spaces
X which are exact interpolation spaces with respect to the couple (L*(u), L™ (1))
on the same underlying measure space (€, 3, pt). Characterizations of these spaces
have been obtained by Calderén [6], Theorem 3, p. 280, and also by Mityagin [15].
Such spaces X are necessarily rearrangement invarignt. That is, if f€eX and g isa
measurable function on €2 such that the non-increasing rearrangements of f and ¢
satisfy g*(t)< f*(t) for all t>0, then g€ X and ||g||x <||flix. However, rearrange-
ment invariance alone is not sufficient to imply exact interpolation with respect
to (L', L*). Under appropriate conditions on (£, 3, 1) it is sufficient to have any
one of the additional conditions that X has the Fatou property, or it is separable,
or it contains L'ML% densely. We refer to [6], Theorem 4, p. 281, and Sections 4
and 5 of Chapter II of [13] for details of these matters.

Theorem 5.1. Let (2, X, u) be an arbitrary measure space. Let X be a Banach
lattice of measurable functions on ) which is an exact interpolation space with re-
spect to (LY, L>®°)=(LY(u), L>(u)). Suppose also that X has the Fatou property. Let
f:Q2—=[0,00) be an element of L'+ X and, for each A€[0, 0], define f*=min{f, A}
and fr=Ff—f*. Then, for each t>0, there exists A=\(t)€[0, co] such that

(16) Kt £ LY X) = (| fall e+t 7 x -
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Furthermore, the couple (L', X) is ezactly monotone.

Remark 5.2. Theorem 5.1 cannot be generalized to the case of all Banach
lattices X on (2,3, ). We can see this with the help of the couple (X, X1) of
Remark 4.2. Here X;=L'(p1) for a suitable measure p on Q={1,2,3}, but neither
this couple, nor (X7, Xg) (cf. Remark 1.6) is exactly monotone.

Proof. Since f€L*+X and X CL'+ L™, we have f=u+v+w where u,veL’
and we L™ and of course these three functions can all be taken to be non-negative.
It then follows that fy€L' for A=||w]|| L. Consequently \,:=inf{A\€[0,00]: freL'}
satisfies 0< A, <oo. Let g be a measurable function which satisfies 0<g<f, g€ L'
and f—geX. The main step of our proof will be to show that for a suitable choice
of A€[A,, 00] the function G=f—min{f, \} satisfies

(17) GeL' with |G|z <9l
and
(18) [-GeX with [|[f-G|x <||f-9lx.

Clearly, the function A— || fa]| 1 is non-increasing on [0, o0]. By dominated conver-
gence it is also continuous on (A, 00). By monotone convergence, we have

R

li =
Jim e =15

whether or not || fy, ||z is finite. Furthermore, by dominated convergence, we also
have limy ~ || fallr =] foollzr =0. Using these properties we see that, if ||g| ;1 <
| fx.llz1, then there exists some A€(A,, 00] such that ||fxllzi=|lgllz:- In the re-
maining case, when ||g| 21>/, ||z, which of course can only arise if || fx, ||z <oo,
we set A=MA,. Obviously the function G=f—min{A, f}=f, obtained by choosing
X as above, satisfles (17). To show that it also satisfies (18) it will suffice, in view of
the interpolation properties of X, to show that for each n€N there exists a linear
operator S {depending on n) such that

(19) S:LP — LP  with norm not exceeding 1 for p=1, oo,
and

1
(20) (1-3)u-er=s0-0)

Our construction of S will use a number of arguments similar to ones which appear
in various papers, such as [6] and [7]. However it seems simpler to give a fairly
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self contained explanation rather than patching together miscellaneous components
from those papers. Let us first construct S in the case where ||g||z1>||/x, Iz We
have that

(21) |f Gl <A= Ao

We can suppose that A, >0 since if A\, =0 we can of course simply take S=0. Thus it
follows from the definition of A, that F,,={weQ:(1-1/m)A. <f(w)<(14+1/m)A.}
satisfies p(Fy,)=o00 for each meN. We now construct a bounded linear functional
¢m on L'+ L> for each m. We do this in one of two different ways, corresponding
to two separate subcases.

Subcase 1. This occurs if F},, has a measurable subset F;, with the property
that p(F;,)=occ and every measurable subset of F%, has measure which is either 0
or . Then we have hXF;ZO a.e. for each heL'. In this case we define ¢,, by
setting @m(h)=vm(hxr; ), where 9., is a norm one linear functional on L° such
that ¢ (fxFs)=FXxrz

Subcase 2. If Subcase 1 is not applicable then F,,, must contain a measurable
subset of finite positive measure. We claim that this implies that the quantity

lLoo.

M :=sup{u(F): Fe¥X, FCF,, uF)<oc}

must be infinite, since if not there exists a sequence {Ey }ren of measurable subsets
of Fy,, with M —1/k<p(E}y) <o, and also, necessarily u(EUE2U...UER) <M for all
keN. Then p(Upen Er)=M and it is easy to check that the set F} :=Fn\ Upen Er
has the property dealt with in Subcase 1. Since M=o, there exists a sequence of
measurable sets { Ex }xen such that Ex CF,, and k<u(F))<oo. By passing if neces-
sary to a subsequence, we can suppose that { Ey}ren has the further property that
the bounded sequence {(1/u(Ey)) fEk f du}ren converges as k tends to oo. We can
now define ¢, by setting ¢, (h)=B-limy_,o0(1/1(Ex)) fEk hdy, where B-limy_, o
denotes a Banach limit on [°°, i.e. a norm one linear functional which extends the
functional Y({ag})=limg_ o g, defined on the subspace of convergent sequences
in [®°,

Note that in both of these subcases we have

(22) b (h) =0 for all he L,
(23) 6m(h)| < |[Bllp= for all he L™,

and so, since g€ L', we also have

(24) (1= )2 < =omtr-9)< (142 ).



Optimal decompositions for the K-functional for a couple of Banach lattices 43

It follows from (22) and (23) that the operator S defined by

f—-G

Sh= o) G

has the required boundedness property (19) for all choices of n€N. Furthermore,
at all points we, we have, using (24) and (21), that

1 -G

i.e., we can obtain the second required property (20) for any given n€N by choosing
m=n. As a preliminary to the next step, we consider another similar operator
which can be constructed, whenever A\, >0, using the same functional ¢,,, and the
set Fi={weQ: f(w)<A.}. This is the operator U, which is defined by

_(i_1 _fxr
(25) Umh = (1 m>¢m(hXF’ Feen e

and which clearly has norm not exceeding 1 on L> and maps L' to {0}. Furthermore

(26) Un(f—9)=Un(f)> < L )fxp at all points of ©.

1——
m

We now turn to constructing § in the remaining case where ||g||p <|{fx,llz:. Let r
be a constant in (0, 1) whose precise value will be specified later. Since in this case
we have A> ), the sequence {A;}3°, defined by

M=M=

is strictly decreasing. Note also that

e - 1
)\k+1 s

(27)
We define a pairwise disjoint sequence of measurable sets {A}72, by setting
Ap:={weQ: X < flw)}

and
Ap={weQ: A < flw) <A1} fork=1,2,....



44 Michael Cwikel and Uri Keich

For each a> A, it follows easily (e.g. by applying Chebyshev’s inequality to the
function fz€L', where 3 is some number in (A.,q)) that the set {weQ: f(w)>a}
has finite measure. Thus, for each £=0,1,..., we have u(A;)<oco. We define a
sequence of disjoint intervals I, =[ay, 1) by setting ag=0 and Oék:Z?;é w(A;),
i.e. we have |Ix|=p(Ay) for k=0,1,.... Let %:]0,00)—[0, 00) be the function

=Y (o [ (-0 )i

keK

where K is the set of non-negative integers &k such that pu(Ax)>0. It is clear that
@ is non-increasing. Let U: L' ([0, 00), dz)+ L°°([0, 00), dz)— L' (u)+ L (1) be the

operator defined by
o J )
= — hdz ) xa,-
Z <M(Ak) I *

keK

Of course U: LP([0, 00), dz)— LP(p) with norm 1 for p=1, co. Furthermore,

Ui=Y <ﬁ(71§25 /Ak(f—G)du>xAk,

keK

and f—G=min{f, A\}=min{f, A\o}. Consequently, f —G=A =g on Ay and for each
k=1,2,..., fw)—Gw)=Ff(w)€[g, Ap—1) for all weA,. So, using also (27), we
obtain that

r(f—G)<Uu at almost every point of U Ak
k=0

We observe that, by our definition of G,

(28) / gduﬁ/gduz/GdMZ G
Ao Q Q Ao

and consequently,

(20) (f~G)du< /A (f~9) du.

Ao

We now define the operator V: L (p)+L>(u)—L([0, 00), dx)+L>([0, 00), dz) by

1
Vi3 (7 [, )

keK
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It is clear that V:LP(u)—> LP(]0, 00), dz) with norm 1 for p=1,00. We claim that
for every t>0

(30) /OtV(f—g)d:cz/Otﬁda:.

By (29), V(f—g) assumes a constant value greater than or equal to A on Ip. Since
@(x) <A for all z, we see that (30) holds for all t€l=[0, «;). Using once more the
fact that f—G=f on each Ay for k>1 we see that V(f) and @ assume the same
constant value on Iy for each £>1. In other words,

Vf(z)=1(x) forall z>ajy.

So, for all t>aq,

/OtV(f—g)dﬂc:/Oa1 V(f~g)da:+/at V(f—g)da

1

:/Ao(f—g)du—f-/atl Vfd;c—/o: Vgds
Z/Ao(f—g)du—k/:lﬁd:c—/;olfgd:r
=A0(f~9)dﬂ+Li&dx—§[\kgdﬁ

t
2/ fd/,H—/ adx—/gdu.
Ao o Q

By (28) this last expression equals
t

t
fdu-i—/ tdr— Gd/L:/ (f—G)du+/ udz
Ao o Ao Ao o

1638 t ' b4
:/ ﬂd:c+/ ﬂdx:/ wdx,
0 (s 5% 0

and so we have established (30) for all ¢t>0. Let A* denote the non-increasing
rearrangement of he€ L'([0, 00), dz) +L>([0,00), dx). Then, for each >0,

T 1
(31) / h* dmzsup{/ |h|dz: E C[0,00), E measurable, |F| :t} 2/ hdzx.
0 E 0
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(Cf,, e.g., Proposition 3.3 on p. 53 of [3] or Assertion 8 on p. 64 of [13].) Since
@=(1)*, we obtain from (31) and (30) that

t t
/(V(f—g))*darz/ (@) dz for all £>0.
0] 0

This is a sufficient condition, by Theorem 1 of [6], p. 278, (and also a necessary one)
for the existence of an operator T: L' ([0, 00), dz)+ L ([0, 00), dz)— L' ([0, 00}, dz )+
L([0, 00), dz) such that T(V(f —g))=4 and T: L*([0, 00}, dz)— L ([0, 00}, d) with
norm not exceeding 1 for p=1,00. Combining the previous steps, and writing
A =Us, Ak we see that the operator Sy defined by

Soh=UTVh

satisfies So: L?()— LP (1) with norm not exceeding 1 for p=1,00 and also that
So((f—9)xa.)=r(f—G)xa, at almost every point of 2. To complete the construc-
tion of S for any given n€N we need to choose r=1—1/n and to find a second
operator S1: L®(p)~> L°°(p) with norm not exceeding 1 such that Sy (L'(u))={0}
and

1
(32) Si1(f-g9)> (1_;> (f—G)xa\a, at almost every point of Q.

Then, of course,
Sh:=xp, So(hxa.)+Xxo\a.S1h

will have the required properties (19} and (20). Now Q\A,={we: f(w)<A,} and
so, if A.=0, then both of the functions (f—g)xa\a. and (f —G)xa\a, vanish iden-
tically, i.e., we can simply take S;=0. If, on the other hand, A.>0, we can use
the operator U, defined above by (25). We have F=0\A, in that definition, and
furthermore, fxg=(f—G)xr and U,,(h)=0 for all he L*(u). Thus, if we choose
m=n and S1=U,, then (26) immediately gives us (32). Having constructed the
operator S we can now easily finish the proof of the theorem: Given any fixed >0,
there exists a sequence of functions {g¢, }nen such that (i) 0<g,(w) < f(w) for a.e.
weq, (i) gn€ LY, (iil) f—g,€X and

1
(33) lgnlles +21f=gnllx < —+K(t, f; L', X).
We shall now define a new sequence {G, },,en by choosing G, = f —min{\,, f}=Ffx,..

where A\, €[\, 0] is chosen to satisly [|fx, lz2=lgnllz, if llgnllo: <l fa,llz:, and
otherwise A, =A.. Applying our main step for each n, we see that conditions (i),
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(ii), (iii) and (33) all hold when g, is replaced by G,. Thus {||G,||1 }nen and
{Ilf =Gnlix }nen are both bounded sequences and

(34) limsup ([|Gullz +t f~Gallx) < K (5 f; LY, X).
n—oo

By passing, if necessary, to a subsequence, we can suppose furthermore that there
exists Ay =Aix (t) €[Ax, 00] such that either

(35) A/ N
or

If (35) holds, then, using the Fatou property of X, we obtain that the pointwise limit
min{ f, A } of the norm bounded monotone increasing sequence f— G, =min{f, \,}
is an element of X with norm

(37) mingf, Aes}llx = lim || mingf, A} x-

Since G1=f—min{f, \;}€L!, we can apply dominated convergence to the mono-
tone decreasing sequence {G,} of non-negative functions to show that

(38) f-min{f,A}€L' and |f-min{f, A} lz2 = lim |f—min{f A} e

If, on the other hand, (36) holds, then we still obtain (38) by monotone convergence,
and, instead of (37), we have simply that

min{f, A} €X and |min{f, A }|lx <||min{f, A\, }|x for all neN.

Thus in both cases we can substitute in (34) to obtain that (16) holds for A=\...(¢).
Finally, to show that (L', X) is exactly monotone, it suffices to show that (16) also
holds for A=A(t), where A(¢f) is a non-increasing function of ¢. Let us define the
function 1: [As, 00]—=[As, 00] by setting

vV =inf{a € A, Al [|f —min{f, a}|| g = [[f —min{f, A} L1}

We observe that this infimum is always attained: This is obviously the case when
A=\, and so ¥(\.)=A.. Furthermore, for each A>)\,, we have, by monotone
convergence, that

(39) 1f =min{f, p(M) Hlzr = [|f —min{f, A} <oo.



48 Michael Cwikel and Uri Keich

From (39) we also obtain that [, min{f, A} —min{f,4¥(\)} du=0 for each A> A, and
so the non-negative function integrand satisfies

(40) min{ f, \} —min{f,9(A\)} =0 for a.e. we.
Obviously (40) also holds when A=)\,. We deduce that

[|min{ f, A} ||x = || min{f,¥(A\)}||x for all A€ [\, ox].

We can now define the function A(¢) by setting A(¢)=v¢(A..(t)). The preceding
remarks show that, for each fixed ¢>0, (16) holds also for A=A(t). Suppose that
0<s<t. Then, by (3),

0 < [|f —min{f, A(t) |t — || f —min{f, \(s) |2 =/Qmin{f, A(s)}—min{f, A(t)} dp.

On the one hand, if this integral is strictly positive, then we must have A(s)>A(¥).
On the other hand, if it is zero, then, necessarily,

(41) P(A(s)) =1(A(t)).

But, since the infimum in the definition of ¢ is attained, we have that ¥ (¢(A))}=1(N)
for each Ae[\,,00]. Consequently (41) implies that A(s)=A(t). Thus we see that
A(t) is a non-increasing function, which shows that (L!, X) is exactly monotone and
so completes the proof of the theorem. O

6. The couple (LP, L?) for arbitrary p and q in
[1, 00] and arbitrary weight functions v and v

In this section we complement the remarks of Section 2 and show that the
couple (L, L%) on an arbitrary measure space (€2, %, ) is exactly monotone for all
p,g€[1, 00| and all weight functions u and v on Q.

The case max{p,q}=oco is covered by Theorem 2.1 and Example 2.3. The
case min{p, ¢} =1 is covered by Example 2.4 when p=¢=1 and by Example 2.6 or
Theorem 5.1 when max{p, ¢} >1. (As already mentioned, the case of general weight
functions here can be deduced from the case where both u and v are identically 1,
via the mapping of Stein—Weiss referred to in Remark 1.3.)

Thus the remaining case which we have to treat is when both p and g are
n (1,00). Although the K-functional for (L2, L%) looks quite different when p=gq
as compared to when p##q, and although for p#gq, its formula is very much simpler
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when u and v are identically 1, it turns out that we can just as easily treat all these
cases simultaneously by the same “calculus of variations” approach similar to that
used by Bastero, Raynaud and Rezola in [2] to obtain various exact K-functional
formulee. We shall use some rather straightforward modifications or generalizations
of some of the proofs and results of [2].
Let f be an arbitrary non-negative function in L2+ L%. For some fixed £>0,

let {Gr}ren be a sequence of functions in LE such that f—Gr €L and

Hm ||Ggllpe +llf —Grllog = K@, f; LY, LY).

k—o00
We can of course (Remark 1.6) choose the functions Gy so that they satisfy 0<
Gr<f. Furthermore, since p,g€(1,00), we can suppose, by passing if necessary
to a subsequence, that G} converges weakly in Lf to a function g=g:€LZ and
f—Gy converges weakly in L to a function h=h,eL?. These functions satisfy
lgllze +tllhllLs <K(t, f; LP, L1). Furthermore, since [,(g+h)d du= [, f¢ du for all
¢€L’1’,/uﬂL’{l/v, we have that f=g+h and so

(42) lgllee +t1f—glls = K( f; LE, L)

for the particular t>0 chosen above. Since [, g¢dp and [,(f—g)¢dp are non-

negative for every non-negative ¢ L? ' ALY, we also have that gand h=f—g are

1/ 1/v
non-negative almost everywhere.
Let F={we: f(w)>0}. Our next step will be to show (cf. [2]) that the func-
tion g obtained as above must satisfy

(43) (i) g(w) < f(w) for ae. we F or (ii) g(w)= f(w) for a.e. we.

Suppose that (43) is false, i.e. that the sets B={weF:g(w)=f(w)} and F\B
both have positive measure. Then, since F is o-finite, B has a subset B’ with
positive and finite measure, and furthermore, for some n€N, the subset

1 1 1
B;L:{weB’:—<f(w)<n, — <u(w)<n, “<U(°~’)<n}
n n n

also has finite positive measure. We define the function ¢: R—[0, 00) by
¢(8) =llg+dxmy oz +tf —9—dxm; ll1s-
We claim that ¢ is differentiable at every point €(—1/n,0) and, for these 4,

_ fB; (g+5)1‘"1u17 du thib (f_g_é)q—lvq du
 (algtoxs,)rur du)=1e - (Jo(f—g—0xs, )97 du)'=1/e’

¢'(9)
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This follows of course from a standard theorem for differentiating under the integral
sign. But note that various conditions appearing in the definition of Bj, have been
imposed to ensure the validity of this theorem. To be more specific, what we
need and have used here (and will also use again later) is the following simple
fact, which follows immediately from Lagrange’s theorem and Lebesgue’s dominated
convergence theorem.

Fact 6.1. Suppose that ¢ and w are non-negative measurable functions on
(2,%, 1) such that g"w"™€L(p) for some re(l,00). Let A€X be such that the
functions " 'w"x4 and w"xa are also in L(n). Let $(6)= [, lo+dxal"w" dp.
Then, for each §>—inf, e 4 o(w), ¥ is differentiable at ¢ and

VO = [ oo du

From our assumptions about B, F\B and Bj, it follows that the one sided limit
limgs o ¢'(8) exists and is strictly positive. But this is impossible, since, by (42), we
have ¢(0)<@(d) for all §£0. This contradiction proves (43).

We next claim that

(44) (i) glw) >0 for a.e. we F or (ii) g(w)=0 for a.e. w €.

This is proved by an exactly analogous argument to the one we have just presented
for (43). That is, one has only to permute the réles of L2 and L?, and also the rdles
of the functions g and h=f—g.

We now establish another property of the function g=g¢; in the case when it
satisfies

(45) 0<gi(w) < flw) for ae weF.

For each n€N, let F,, be the subset of F consisting of all points w at which the
values of the functions g{w), f(w)—g(w), u(w) and v(w) are all in the range (1/n,n).
Let B be any measurable subset of F,, and consider the function

#(0) = lg+oxallLe +tllf—9—0xBllLs-

Since of course u(B)<oco we can use Fact 6.1 to show that, for all de(—1/n,1/n),

6y = JplatOTiwd it (f g0y vt dp
(Jolg+oxg)Pur dp) =17 (fo(f—g—bxp)v? dpu)t=/a’
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Since ¢ assumes a minimum value at §=0, it follows that

, g7 lup t(f—g)q‘lv")
0) = — dpu=0
i /B<||g|’g? 1F—glz” )

for all sets B as above. This implies that

gr P t(f—g)iT e
lallbz" IF—glley!

(46)

at almost every point of F,, and so also at almost every point of |J, o Fn=F"

We are now ready to consider the behaviour of the above functions g=g; and
h=h,=f—g; as t ranges over all possible values in (0, c0).

Let E. denote the set of all numbers ¢>>0 for which the function g=g: satis-
fies (45). In view of (43) and (44) the set (0, 00)\ £, is the union of the two disjoint
sets Fo={t>0:g¢(w)=0 for a.e. weN} and E;={t>0:g:{w)=f(w) for a.e. weQ}.
Since t—+||g¢||zz has to be a non-decreasing function on (0,00) (cf. (3)) we see
that either Ej is empty, or it is an interval whose left endpoint is 0. Similarly,
either Ey is empty, or it is an interval whose right endpoint is co.

Suppose that 0<s<t. We claim that

(47) gs(w) < ge(w) for a.e. weld

This is obvious if s€Ey or if t€Ey. It is also obvious if s€ E; or, alternatively, if
te I, since then of course t€E; or s€Ey, respectively. Thus it remains only to
consider the case when both s and ¢ are in E,. Here we can apply (46) to obtain
that

—1 _ —1
(48) gP P _ sllgs Itz and gl _ tllgelly
(f—gs)ttve ||f—9s||qL§1 (f—ge)a 1o IIf—gtHigl

at almost every point of F. Now, using (3) once more (i.e. that t—||g:||# is non-
decreasing and t— || f—g¢||z2 is non-increasing), we deduce from (48) that

6@ gy
o < e

For each fixed weF we have f(w)>0 and therefore the continuous function z—
P71 /(f(w)—x)T ! is a strictly increasing map of the interval (0, f(w)) onto (0, 00).
Hence this function has a strictly increasing inverse on (0, co0) which can be applied

(49) for almost every w e F.
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to (49) to yield that gs(w)<g:(w) for a.e. weF. Since gs(w)=g;(w)=f(w)=0 for all
w¢ F this establishes (47).

We have still not quite established that (L2, L?) is exactly monotone, since it
could happen that the exceptional subset of measure zero N, ;C F', which contains
all points w where (47) does not hold, depends on s and ¢ in such a way that
U{Ns,:0<s<t} might not be contained in a set of zero measure. To overcome
this (small) problem we first consider the set N,=|J{N;::0<s<t, s€Q, teQ}.
This is of course measurable and p(N,)=0, and for each we F\N, we have that
the function t— g (w) restricted to (0,00)NQ is non-decreasing. Now let us define
Gy (w) for each >0 and each we F\N, by Gi(w)=sup{gs(w):0<s<t, s€Q}. It is
then easy to check that ||Gy|| r +t||f—G:llpa =K (¢, f; LR, LY) for all rational and
irrational points t€(0,00) and to use the decomposition {f=Gi+(f—G¢)}i>0 to
show that (LP, L4} is exactly monotone.

7. The K-divisibility constant and A-monotone couples

According to the Brudnyi-Krugljak K-divisibility theorem ([5], p. 325), for any
given Banach couple X, there exists a constant C' having the following property.

(#x) If x is an arbitrary element of Xo+ X for which K(t,z; X)<Y oo | ¢n(?)
for all t>0, where the functions ¢, are all positive and concave and Y oo | ¢n{1)<
00, then there exist elements x, € Xo+X1 such that =3 oo | Tr, and K (t,z,;X)<
Con(t) for all t>0.

We shall let v(X) denote the K-divisibility constant for X, i.e. the infimum of
all numbers C for which (*%) holds. We recall (cf. [9]) that

(50) 1<y(X)<3+2V2

for every Banach couple X.

In this section we shall investigate certain connections between the condition
of exact monotonicity for couples of lattices X and the value of y(X). On the one
hand, when X is exactly monotone, or “close” to being exactly monotone, we shall
obtain an estimate for v(X) which is sharper than (50). On the other hand we shall
see that if v(X) is “small” then this implies that X has a property similar to exact
monotonicity. In particular (see Corollary 7.2) every couple of lattices X satisfying
v(X)=1 must necessarily be “extremely close” to being exactly monotone.

The precise formulations of these results are in terms of the notion of A-
monotone couples and almost exactly monotone couples (see Definition 1.4).

In fact every couple of Banach lattices is A-monotone for some A. More precisely
we have the following result.
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Theorem 7.1. Each couple X of Banach lattices of measurable functions is

A-monotone for every A>vy(X).

Proof. As already observed in Remark 1.6, it suffices to obtain the decomposi-
tions f=gi+h; for the case where f>0. This can be done exactly as in the proof of
Theorem 4.1 of [10], i.e. we can set g;=&(t) and h,=& (t) in the notation of [10].
Note that the estimate (ii) at the beginning of the proof in [10] corresponds exactly
to (5) above with A=Cj(1+¢). In our case p=1 and it is clear that we can take
Cp=C;=7(X) and £>0 arbitrarily small. O

Corollary 7.2. If v(X)=1 then X is almost ezactly monotone.

Corollary 7.3. If X is either of the couples introduced in Theorem 4.1 and
Remark 4.2 then v(X)>1.

Proof. This is an immediate consequence of Corollary 7.2 and Remark 4.3. O

Remark 7.4. We can rewrite the result of Theorem 7.1 as A(X)<v(X) if we
define A(X) to be the infimum of all A>1 such that X is A-monotone. In fact,
Theorem 7.7 below will enable us to obtain an approximate reverse of this inequality
so that altogether we will have

A(X) <(X) <4M(X).

The réle played by the proof of Theorem 4.1 of [10] in the proof of the preceding
theorem, points to the fact that the A-monotonicity of each couple of lattices X is
also related to the formula to within equivalence for K (¢, f; X) stated above as (6)
(i.e. Property ()). The proof of Theorem 4.1 of [10] shows that the constant C in
(6) can be chosen to be any number greater than 2v(X). Our next (very simple)
result provides an alternative estimate for this constant C. Since Theorem 7.1 does
not exclude the possibility that a given couple of lattices X may be A-monotone also
for some A<y(X), it is possible that this alternative estimate for C may sometimes
be sharper than the one provided by Theorem 4.1 of [10].

Proposition 7.5. Let X be a A-monotone couple of Banach lattices. Then
for each f€Xo+ X, there exists an increasing family {E;}i~o of measurable subsets
of the underlying space such that

x| o+ F(L=xE )X, <2AK(E, f5X)

for each t>0.

Proof. This is similar to a different (and quite simple) part of the proof of
Theorem 4.1 in [10]. Let f=g;+h; be the decomposition which exists according to
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Definition 1.4 and, for each t>0, let E; be the set where |g:|>|h¢|. It is easy to
check that these sets have all the required properties. [

We next present a simple lemma which will be needed for the proof of the last
main result of this section.

Lemma 7.6. Suppose that X is a A-monotone couple of Banach lattices.
Then, for each €>0 and each non-negative function f€Xg+X;, there exists a de-
composition {f=G¢+ H;}iso such that

(51) Gl xo+Ell Hellx, <A1+e)E (L, £;X)  for all t >0,

and for a.e. w in the underlying measure space Gi(w) is a non-decreasing non-
negative function of t and Hy(w) is a non-increasing non-negative function of t.
Furthermore, we can suppose that the functions t—||Gy|lx, and t—|H|x, are
continuous on (0, 00).

Proof. Fix a non-negative function feXy+X; and let f=g;+h; be a de-
composition having all the properties specified in Definition 1.4 and Remark 1.6.
We first set Gy=g; and H;=h, for each t of the form t=(1+¢)" for each ne€Z.
Then we extend G, and H; to all of (0,00), so that they are affine functions of
t on each interval [(14¢)", (14¢)"*!]. To show that (51) holds, given any fixed
t>0, we choose n€Z and 0€[0,1] so that t=(1—60)(1+&)"+0(1+¢&)"*!. Then
Gt=(1~—9)g(1+5)n —|—09(1+£)n+1 and Ht:(l—e)h(1+5)n+0h(1+€)n+1. By (5) we have
that

1Gslixo +s| Hsllx, <AK(s, f) for s=(1+¢)" and s = (14+¢)" 1.
Consequently,

1Gellxe +(1+2)" | Hellx, < (1=0)(IG a1y llxo +(146)" [Hapepnllx,)
+9(||CTY(1+6)"+1 ”Xo +(1+6)n”H(1+€)"+1 ”Xl)
<(1=OXK((1+e)™, f)+OAK ((1+e)"F, f).

The concavity of the function t— K (¢, f) implies that this last expression does not
exceed AK (¢, f). We deduce (51) immediately, since

Gellxo T el Hellx, < (1) (1Gellxo +(142)" [ He | x, )-

It is very easy to check that Gy and H, also have the other properties stated in the
lemma. O
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Our final main result in this section is the inequality
(52) Y(X) <AX(X)

which has already been alluded to above. That is we must show that (X) <4\ for
each X such that the couple of lattices X is A-monotone. We can deduce this easily
from Theoremy 7.7 which we shall state immediately after this paragraph. This
theorem is an analogue of Theorem 4 of [8], pp. 49-50, and of Theorem 1.7 of [9],
pp. 71-72, i.e. it is a variant of the so-called “strong fundamental lemma” of [9)].
The estimate (52) will follow from the fact that v(X)<4A(1+4¢) for each ) and ¢ as
in the statement of Theorem 7.7, and this in turn can be deduced from Theorem 7.7
in exactly the same way as Theorem 1 of [8] is deduced from Theorem 4 of [8] on
pp. 54-55 of [8], except, of course, that the constant 8 appearing there has to be
replaced here by 4A. (Cf. also Remarks 1.34 and 1.36 and Proposition 1.40 of [10].)

Theorem 7.7. Let X=(Xy, X1) be a A-monotone Banach couple of lattices
of measurable functions and let X~ denote the couple (X5, X7), where X7 is the
Gagliardo completion of X; in Xo+X1, j=0,1. Let feXo+X1. Then for each
£>0 there ezists a sequence of elements {un ¢ }nez={tn}nez in Xo+X1 such that
un € XoNXy for all but at most two values of n, ..~ un=Ff, with convergence
in the Xo+X;1 norm, and

(53) > min{|lunllxg, thunllxp } <ANA+E)K (X, £ X)) for all t>0.

n=—oo
(In the preceding estimate we set |luy || xr =00 if un ¢ X3

Proof. Clearly it suffices to consider the case where f 0 is a non-negative func-
tion. Many, but not all steps of this proof are modelled on the proof of Theorem 1.7
in Section 2 of [9]. For the benefit of the reader who may wish to refine either of
these theorems, we shall draw attention at various stages to some of the similarities
and differences between the two proofs. We first need to choose a constant 7>1.
We can of course suppose, without loss of generality, that the number ¢ appearing
in the statement of the theorem satisfies

(54) 14+e<r.

In fact, we shall see later that the optimal value for r is 2. But we shall present
most of the steps of the proof for general r, again with a view to facilitating future
improvements. We introduce the set D(f)={(||Gt|x,, || Ht||x,):t€(0,00)}, where
f=G:+H; is the continuous decomposition of f constructed in Lemma 7.6. This
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set will play a réle more or less analogous to that of the set D(a) introduced in [9].
(Let us note in passing that D(f) is always non-empty, whereas the set D(a) of [9]
may be empty. This case is not dealt with explicitly in [9], but it can be immediately
disposed of, since D(a)=*{ if and only if a=0.) Let us set

x—OO:}i_I;%HGt”Xov xm:tll)rgo “Gt“Xov y—OO:P_IE(l)”HtHXU yoo:tll)ngo “Ht||X1~

These are approximate counterparts of the quantities defined by the formule (2.1)
on p. 74 of [9]. However, they do not necessarily satisfy the formulse (2.2) of [9].
(Note also that here we have permuted part of the notation adopted in [9] so that
Y—oo 18 now the “largest” and 1., is now the “smallest” value of y for (z,y)€D(f).)
The next step of the corresponding proof in [9] is to construct a certain finite
or infinite sequence of points {(xn, Yn)}v_.o<n<v., i D(a). (We have taken this
opportunity to correct a minor misprint in [9], where the range of n for this sequence
is incorrectly stated to be v_o,—1<n<wv.+1.) Here, analogously, we shall now
construct a special sequence of points lying on D(f). This is done in a way which is
quite similar to the construction of the sequence {(Zn, ¥n)}o__ <n<vo, it [9], except
that in some cases we have to make some modifications when n is at one of the
“endpoints” v_, and v, if these are finite. Here the index n will range over a
possibly larger set which we will denote by 0_o <n<g@s- (These modifications are
needed because of the above mentioned possible failure of the quantities 4., and
Y+oo to satisfy (2.2) of [9].) The actual values of the four parameters 9_o0, 0co>
V_oo and Ve will be determined in the course of the construction. They can either
be integers, or £00. More specifically, they will satisfy —00<p_ o0 <V_ oo <0<V <
Oo0 <+00. Our sequence {(Zn, Yn)}o_ o <n<on, Of points of D(f) will correspond to
an increasing sequence of points {t, }o_ . <n<p.int (0,00), where we set ., =|G+, || x,
and yn=||Hz, || x,. In the two trivial cases, where G;=0 for all ¢, or H;=0 for all ¢, we
can prove the theorem by simply choosing uo=f and u,, =0 for all n£0. So we can
assume that the sets {¢>0:G,#0} and {¢>0: H; #0} are both non-empty. These sets
are necessarily intervals of the form (e, 00) and (0, 3), respectively. Furthermore,
since f#£0, we have 3>«. We begin the construction of {t,} by choosing some
arbitrary to€ (o, 8) and, correspondingly, (zo,yo)=(|G¢ | x4, | Ht,llx,). Then, for
each n>0, we construct (2, Yn)=(||G+, | x0 | Ht, Il x,) €D(f) inductively such that

ty>tn—1 and
Lp =TTp-1, Tp 2T Tp—1,
1 or 1

Yn < ;yn——l Yn = ;yn—l
holds. Because of the continuity and monotonicity of the functions t++||G¢] x, and
t— || Hel x,, such (zn, y,) and t, will always exist whenever the integer n satisfies

1
(55) TTn 1 <Too and ~Yn-1 > Yoo
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If (55) holds for every positive n then we obtain an infinite sequence {(%y, yn)}5%0
and, accordingly, we set 9oo=Voo=0c0. In this case, since zy>0, it follows that
lim, o =00 and therefore lim, ., t,=00. On the other hand, if at some stage
of the construction we encounter an integer n>0 which satisfies

1
TTp_1 2 Too OF SYn—1 < Yoo,
then we set voo=n. In such a situation there are two possibilities which must be
dealt with separately. First, if
1
(56> ;ynfl < Yoo OF Yoo = 07

then, as in [9], the construction stops at this stage, i.e. we also set g, =n and do
not define (zn,¥y,) and t,. The remaining possibility is that

(67) TZp—1> T and ye >0.

In this case we set 0oo =Voo +1 and (in contrast to [9]) the construction has one more
step, i.e. we choose t,_ sufficiently large so that the additional point (x,_, ¥, )=
(Gt 10 I Hr,._ 1 x,) satisfies g, <(1+2)yoc.

Now, in a similar way, for n<0 we go “backwards” and inductively construct
(xrnyn):(Hth HXov Hth X1>€D(f) such that t, <t,4+, and

1 1
{ Ty = ;anrla or { Ty < ;wn%-la

Yn = TYnt1 Yn =TYn+1

holds. Again the existence of these points is guaranteed by the properties of t—
|Gtl x, and t—||H¢|jx, whenever the negative integer n satisfies

1
(58) TEn41>Tooo DA TYni1 <Yooo
If (58) holds for all negative n then we obtain an infinite sequence {(Zn,¥n)}ne— o
and we set V_o,=p0- . =—00. In this case, since yo>0, we have lim,_, _o y,=00

and therefore lim,—, ., t,=0. If, however, we encounter an integer n<0 for which

7T ST oo O TYUni1> Yoo,

then we set v_.,=n. Here again there are two possibilities which need to be treated
separately. The first occurs when

1
;-’En+1§x—oo or  T_oo =0,
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and if this happens we proceed as in [9], setting 90— o =V_oc=n and not defining
(Zn,Yn) and t,. On the other hand, if

TYni1 2> Yoo and x>0,

then we set ¢, =v_o—1 and, as an additional step, choose t,,__ >0 sufficiently
small so that (z,_.,% . )=(Gr,__ lIxo, 1 Hi, _llx,) satisfies v, <(14€)7—co.
Note that in all cases, whether or not vi,, and g1 are finite, we have defined
(Zn,Yn) and t,, for all integers n which satisly g <n<gs and for no integer n
outside this range. We can now define the sequence {u, }necz by

th_th—letn—l_th7 if Q‘w+1<n<goo,

f_Gtgoofletgoo~l? lfn:Qoo<OO,
Up, )
f_Hta_m+l :Gtg700+1’ 1fn:9—oo+1>_007
0 otherwise.
Observe that > oo o Un=1[, where the series converges in the Xy+X; norm. In

fact, if 9_oo>—00, then Z?z:afooﬂ U, =G, and if p_o,=—00 then

0
Z Un _'Gtg

n=—oo

=l G < Ji G llxor" =0,

Similarly, ZZO:1 u,=Hy, with convergence in the Xj norm, whether or not g.. is
finite.

As a first step towards proving (53) we need some preliminary estimates for
[len|lx, and [|unllx, . This is exactly the place where the monotonicity of Gy and H;
enables us to obtain better bounds than those which hold in the analogous proof
for a general Banach couple (cf. (2.9) and (2.10) on p. 75 of [9]). If p_ o+ 1<n<poo
then ||ug||x, =Gt — Gt 1 x, <||Gt,, [ x4, S0 we have

(59) lunllxo <N1Ge,llxo =2n  for oo <n<oso
(i.e. we have also observed that obviously (59) holds also for n=g_.+1, if o_w
is finite). Similarly ||u, || x, =||H¢,_, —Hy, llx, <I[He,_, || x, for 0—co+1<n<gs and

80

(60) unllx, <IHi,_llx, =yn-1 for 0o+l <n <o+l

(where again the additional case where n=g,, is obvious, when g, is finite).
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Now let us fix an arbitrary ¢>0 and show that (53) holds for this . There are
three cases which must be considered. Case 1 is when there exists an integer n*
the range v_o,+1<n* <vo such that t,« <t<t,-. Case 2 is when v <oco and
t>t,.—1. The remaining possibility, Case 3, is when v_o>—0o0 and t<¢,__ 1.
Let us first deal with Case 1. We use the notation m,=min{||u, | x,,t||u.llx,} and
write the sum

o ¢] n*—1
Z min{|{wn || x,, t|unllx, } = Z Mo, + Mgy =+ Z My =I_+mp~+1,.
n=—00 n=—oo n=n*+1

We note that, by (59),

n* 1 n*—1 n*—1
!
(61) I = E m, < E Tp=2, g+ E T
N=g—co+1 n=g¢_cot1 N=V_co-t1

Here we are using the notation

, { 0, if Q@—oc0 = V_00,

T =
ool .
oo To_otls I 0_co=V_oo—1>—00.

Our construction of {(z,,y,)} ensures that
(62) T < ;an, whenever V_o, <N < Vs —1.

Consequently ., <(1/r)™ " a,._; for v_,<n<n*—1 and so
n*—1 n*—1 n*—n—1 —n* 1
1 L—gp=n oot
(63) Z Tn < Z <;> Tpr 1 =T 1 T
N=v_g+1 n=v-_co+1

where we are adopting the convention that 7~ t#—et1=0 if v__=—00. If p_o is
finite and equal to v_.,—1, then

64) zp s1=%0_ <(Q+e)2_ oo <(14e)zy__ 41 < (1+£)r_"*+”*°°+2wm_1.

Combining (61), (63) and (64) gives us that

1— T\n v ootl

LS @ +<1+g)fr—n*+u-oo+z>

(=
(65) —r’"l(l L — " +V—°°+2<1—|—8—1i7il>>
(= =)

< Tps

‘1+s-

1—7—1 1—7—1
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On the other hand, if ¢_oo=V_s, whether or not this quantity is finite, a simpler
version of the preceding estimates gives us that

(66) I,S.’L'n*_ll

_ -1

We next apply very similar arguments to estimate 7,. By (60) we have

Qoo Qoo Voo
(67) L= Y ma<t 3 yoa=t 3 Yaor iy, 1,

n=n*+1 n=n*+1 n=n*+1
where _
0, if 0o, = Voo,
yQoo*1 = op
Yooo—1s 1 Ooo =Voo+1 < 00.

Our construction of {(%,, )} ensures that y, <(1/r)y,—1, whenever v_,,+1<n<
Veo. Consequently 1y, _, <{1/7)" ~1*7y . whenever n*+1<n<ve, +1. So

Voo Voo 1 —n*—1+n 1_7-"*_1’00
D D O =
n=n*+1 n=n*+1

where we are adopting the convention that 7~ =0 if v, =00. If oo is finite and
equal to v, 41, then

(69) Yoo 1 = Yoo < (14800 < (148)Yp, 1 < (14)r™ =Ty,
and we can combine (67), (68) and (69) to obtain that

Lot Ve _”00 nF—u

1 T
n *—Veo+1
=1Ynx (1 -+ <1+5—1—r1>>

-1
<tyn (1—T1+’1+€— )

1—r—1
On the other hand, when g, =V, whether or not g, is finite, we obtain similarly
that

I+ < tyn

I+ Styn* l—T_l .

Summarizing the preceding estimates, we see that in all subcases of Case 1, i.e.
whether or not the quantities 04, and vy, are equal to each other or finite,

-1

(70) I+, < <1~ _1+}1+e— ) )(xnmﬁyn*%
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‘We observe that
(71) Ty —1+8Ynx <AA1+&)K (s, f) for s=t,+1 and s =t~

and, since the left-hand side of (71) is an affine function of s and the right-hand side
is a concave function of s, we obtain the same inequality for s=¢. This, combined
with (70), gives

(72) I+1, < \14¢) (Lﬁ
-

e+£:—i‘)K(t, ).

We can also see that m.,» <A(1+e)rK(1, f) since either rz,-_1 =z, holds, in which
case My <||tnx || xo CTr =TTpr—1 <A(1+€)rK (L, f), or otherwise rypn- =y, _1 must
hold and then m,- <t||tn«|| x, <tryns <tr||H:l|x, <A(1+e)rK(t, f). Combining the
estimate for m,,« with (72) we obtain that, in Case 1,

oo}

. r r—2
(73) n;oomln{uunuxo,t||un||xl} <A(1+¢) <T+T—_—1+‘€+m )K(t,f).
We now turn to Case 2, i.e. when v <co and t>t, 1. Now we write m,, =
min{||u, || x5, thunllx} and we shall estimate Y~ m,. We first observe that,

quite similarly to before, using (59) and (62), we have

Voo —1 Voo —1 Voo—1

f, = Z ﬁflng Z ”unHXé‘S HUTLHXO

n=-—oo n=—oo N=9_co+1

Voo —1 Veoo—1 1 Voo —1—n
1 !
S‘rg*w—&-l_’_ E xn§$g_w+1+ E (;) LTy, —1-+

N=V_oc+1 N=V_co+1

By substituting n*=v, in (63), (64), (65) and (66) we obtain that, whatever the
value of g, whether or not it is finite or equal to v_,,

= T
74 I_<z, 1| —
(74) = P 1(7‘—1Jr r—1

r—2 7
Y <1 _
E—l—’r_l)__)\( +e)< +

r—2
E+E‘>K('ﬁ, f)

Since now v, < oo, there are only two possibly non-zero terms in ch:vm My, namely
My, and m,__ 41, and we have to estimate these terms in the two possible “subcases”
(56) and (57). Let us first suppose that (56) holds and 0 9o, =Vwo and 41 =0.
One possibility here is that y,_ —1/r <y and so

Moo SUH, 50 =W -1 SrYoe SA(L+E)TK(E, f).



62 Michael Cwikel and Uri Keich

Alternatively, we must have y,,=0 and also y,_—1/7>yo. Since (55) does not
hold, this also implies that rz, __1>%. It follows that

K(s, /)< 1i_>m (1GAllxo+ sl Hr|lx,) =%oo <00 for each s> 0.
Consequently, || fll x> =lim, o0 K (s, [) <z (cf. [9], (2.2)) and
s < v Ixg = 1Hn_,xg < 1l < 0o0 721 < ALHEWE(L 0.

It remains to deal with the second “subcase” i.e. when (57) holds. Then po=
Veo+1 and so, by (59), m,_ <||u,_||x, <% <Too<rE, 1. Since t>t, 1, this
last term is dominated by r||G.|lx,. We also have that m, 11 <tl|ju,_+1llx,=
tHy,  llx, <t(146)yoo <t(1+€)||H| x,. Combining these estimates and also using
(54), we obtain that

Moty 1 <T{[Gilixo +tr{[ Hill x, <MI+e)rK(E, f).

These estimates combined with (74) show that, in all possible subcases of
Case 2,

(75) i My < A(1+¢) (7‘+—+

T
r—1

s+:—}f—))x(t,f).

n=—o0

An analogous argument, whose details we leave to the reader, shows that (75)
also holds in the remaining case, namely Case 3. Thus, (cf. (73)) it holds for all
cases. We now substitute r=2 to obtain

> g <A1+e)(d+e)K(t, f) for all £>0.

n=—oo

This immediately gives (53), since we can of course carry out all preceding steps
of the proof with e replaced by any smaller positive number. This completes the
proof of the theorem, and consequently, as already explained above, also estab-
lishes (52). O
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