Complementary spaces and multipliers
of double Fourier series

S. Baron

In his paper [9], Goes shows, how by means of known theorems on summa-
bility factors for the Cesiro summability method C* of nonnegative order «, it is
possible to obtain effective sufficient conditions for the multipliers of Fourier series,
imposed directly on them. The foundation for this is the theory of C*-complementary
spaces of Fourier coefficients, developed by him [6, 7]. The theory was extended
to Toepliz methods 7" by Tynnov [24]. The notion of T-complementary space was
generalized in [2] for double Fourier series, and with the help of known theorems
for summability factors for double series, we found effective sufficient conditions
for various classes of multipliers for double Fourier series.

In the present paper, we find 4-complementary spaces of Fourier coefficients
to Orlicz spaces Ly and Ly of functions of two variables, and to the space C of
continuous functions of two variables, for an arbitrary matrix method 4 of sum-
mability of double series, with bounded double sequence of Lebesgue constants.
We first prove criterions for a double trigonometric series to belong to these spaces,
expressed in terms of 4-means of the double Fourier series. Theorems are obtained
on connections between summability factors of double series, A-complementary
spaces, and multipliers of classes of double Fourier series. It is shown that the
A-complementary space of coefficients of a double Fourier series is a BK-space.
We get also theorems on identities of classes of multipliers for various BK-spaces
of double Fourier series, under the hypothesis that the preimage spaces are norm-
determining manifolds for a certain BK-space.
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1. Notations and introductory remarks

In what follows if limits of summation are not indicated, they are 0 and <
on each index, and the free indices assume all values O,1,.... If x,,—~a as
m,n—~- and x,,=0(1) we write b-lim,, , Xm,=a.

Throughout this paper f, g, h,... will denote real-valued functions of two
variables, defined almost everywhere on the plane, 2z-periodic in each variable
and Lebesgue integrable on the square Q=[—=n, 7] As in [2, 3] let f® be the
double Fourier series of the function f; i.e.

Lo>s, ) = 341 Auls, D),

denoting
Ay (s, 1) = 27%(ay, cos ks cos It+ by, sin ks cos It + ¢, cos ks sin I+ dy, sin ks sin /1),

where »=2 if k=I=0, x=1 if k+I=1, and x=0 otherwise.

We shall denote by the same symbol both a set of functions f and the set of
double Fourier series f° of these functions f. Moreover if X is a normed space and
f€X, then we define || £, =1 fllx, and consequently the set of all f%cX isalso a
normed space. This convention will be applied to the Lebesgue spaces X=L7:=L?(Q)
for 1=p<< with the norm

111, = (ff 117G, Ol ds dr)?
X=M:=L*(Q) with the norm
11l = ess sup 1 f(s, D,

and to the space X=C:=C(Q) of all continuous functions on @ with the maxi-
mum norm.

We shall assume that ¢ and ¥ are two absolutely continuous functions of
one nonnegative variable forming a pair of complementary Young functions (see
[16], p. 134, or [27], p. 77). In this case their derivatives ®'=¢ and ¥’=y are
mutually inverse in a generalized sense ([16], p. 135). We recall that & is called a
Young function if

o) = [ () ds,

and ¢ is a real nondecreasing function defined on [0, + <) such that ¢(0)=0 and
@ is left continuous for s=0 (see e.g. [16], p. 195, or [27], p. 76).
We require throughout that the Young function ¢ satisfies the so-called A4,-
condition
PQRu)=0(P(w) Yu=u,

(for some u,>0). We denote by L, the Orlicz space (see [27], p. 79, or [16], p. 145)
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of all measurable functions £, for which the norm

Iflo =sup { [f 1f(s, Dg(s. D) dsdr: g€ My}

is finite, where

Mg = {g:fo'I’(lg(s, D) dsdt =1},

Since @ satisfies the 4,-condition, then (see corollaries of [26], p. 154, and [27],
p- 81)
Lo ={f: [f,2(fG. 0l) dsdt <<=}.

By Ly we denote the Orlicz space of all measurable functions f for which
the norm

Ifle = sup{ ff \f(s. D g(s, 1) ds dr: g€ M)

is finite, where

My ={g: fo ®(|g(s, 1)) ds dt = 1}.

We do not require that ¥ satisfies the 4,-condition.

The Orlicz spaces L, and Ly are Banach spaces (see [27], p. 101, or {16}, p. 156,
or [15], p. 71).

If ®(u)=cuP, where O<c=const, then Ly=L?. For p>1 we have that
Lg=1% where p~'+g~'=1 and for p=1 we have Ly=M (see [26], p. 154,
[27), p. 82, [16], p. 195—196).

If ®(u)=uln*u, where In* y=max (0, Inu), then & is a Young function,
satisfying the 4,-condition (see [16], pp. 133 and 138) and L,=LIn* L, where
(cf. [30], p. 16)

L1n+L={f: fo LfGs, Dl In* | £(s, 1)| dsdt<oo},

but its complementary function ¥ does not satisfy the 4,-condition (see [16], p. 136
and 138).

2. Conditions for a double trigonometric series to be a double Fourier series

Let A=(a,.4) be a triangular matrix summability method, given by means of
transformation matrices of a double series into a double sequence. Let us denote
the A-means of the double series f° by o, f, i.e.

Omn SIS D = 2 1=m,n Yommia Aa (55 1)-
Denote by K., the kernel of the summability method A, i.e.

Kon(5, 1) = Dk 1mmyn 27 % iy COS ks cOS It
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and by L, the Lebesgue constants of A, i.e.
L,,=n"? , )] ds dt.
mn =772 [ 1Kon(s, )] ds
We define the functions e, ¢; and e, by the formulas
e(s,t) =1, e(s,1)=cosks-coslt, eys,t)=sinks-coslit.

We shall give criterions for double series to belong to Orlicz spaces first for
Ly and then for L.

Theorem 2.1. If the method A satisfies the conditions

(21) b-lim Okt = 1
m,n
and
(22) Lmn = 0(1)’
then in order that f°cLy, it is necessary and sufficient that
23) l6mnf e = O(1).

Proof. Necessity. Let f°¢Ly. Then there exist (see [27], p. 80, theorem 2)
positive constants § and N such that

Jf ) (B f(s, D)) dsdt = N.
Relying on (2.2), we denote
L=supL,,, On,=n2L,,.
For the 4-means of the double series f° we have the formula (cf. [30], p. 303)
O, 2) =2 [ o K5, ) fluts, v+ ds dt.

Since §,,>0 and ¥ is nondecreasing and convex (see {15), p. 7, or [16], p..129),
it follows by means of Jensen’s inequality (cf. [16], p. 133, or [3], p. 159) that

V(LB N, 0)) = ¥ (8328 ff 1/ k5,04 D] (Ko (55 1) s )
=5 ff P (B1futs, v+ D) 1K (s, 1| ds dt.

This yields by periodicity in both variables
S P B1Cm ) (W 2))) du dv
= 5;}ffgdu dvfo'P(ﬁ 1S, D) | Ky (5 — 11, t—2)| ds dt
= fo (BIf(s, B))dsdt = N.
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Furthermore, since (cf. theorem 1 of [26], p. 152, or [27], p. 79)
1L B0 flle = [ [ o V(LB (G ) (s v)]) du dv+1,
then by what was proved above, we obtain
IL72 B0 f e = N+1,
whence (2.3) follows, because f0.

Sufficiency. Suppose that (2.3) is true. Then (cf. [5], p. 10, theorem 2) there
exists a convergent subsequence (||o, a, S lg). According to Theorem 9 of [27],
p. 159, there exists a subsequence (,u)vg(v) and a function h€Ly with the prop-
erty that for every g€lL,, the equality

24) Jim ff &G, 0@, /) D dsdt = [ (s, Dhis, 1) dsdr

holds. Putting g=n"%¢; and observing that gcL, (see for example [27], p. 128,
ex. 8), we conclude from (2.4) that

foh(S, t)el(s, t) dS dt - lim txmunukldkl = ak,
H->co

in view of (2.1). Similarly for &, ¢, and dy,. Therefore h®=f°, whence f°¢Ly.
Everywhere in the sequel we denote by P the set of all double trigonometric
polynomials ¢, .

Theorem 2.2. If the method A satisfies the conditions (2.1) and (2.2), then in
order that f°€L, it is necessary and sufficient that the double sequence (6,,f) is
boundedly convergent in Ly in norm.

Proof. Necessity. Let f°cL,. Then by theorem 2.1
(2.5) 10w S llo = O(1).

We show that ¢,,: Ls—L, are continuous linear operators for any m, n. In fact,
the function e belongs to Ly (see for example [16], p. 145). Setting

G = max {|le]ly, llelly}

we obtain that the Fourier coefficients
a; =mn"2 s, t)cos ks cos It ds dt
” Jf, 160

(see for example [23], p. 176) are continuous linear functionals on L,, because by
Holder’s inequality (see for example [15], p. 74, [26], theorem 3)

|agl =772 [[ 1f(s, Dl dsdi = 27*1f10G = Gl flo-
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Hence, and also by analogous formulas for b, ¢, and dy,, we obtain

(2.6) I 4ullo = 4G*| fllo-

Consequently ¢, are continuous linear operators from L, into itself.
By the principle of uniform boundedness ([27], p. 135, theorem 1), from (2.5)
it follows that there exists a constant y=>0, such that

2.7 omSllo=71fllo-

The set P of all trigonometric polynomials is dense in L, (see [27], p. 128, ex. 8).
Therefore there exists a double sequence (f,,)SP such that for any ¢>0 there
exists a number N=0 such that

(28 Y= twllo < &/3

for each u,v=N. Choose p=v=N and denote

) tay = 2 i=n AN, 7= twlle,
we obtain

- N
Crn NN = 2 k=N mnit ARY -

In view of (2.1) there exist indices Ny; such that for any k, I=1, ..., N, each m,n=
N, and arbitrary positive integers 7, j we have

(2.9) ‘amnkz"“mﬁ.nﬁ,m‘ < ¢/(12G*TN?).

Let Ny=max {Ny: k,I=1,...,N}. Then (2.9) is true for all m,n=N, and for
all positive integers 7, j if k, /=N. Consequently (2.9) and (2.6) imply that

NG mnIvn — Ot i+ j Ennllo = ||2k,t§1v (“mnkl““mn,nj,kz)fiﬁ”o

= Di1=N Lokt = Yt iyt ANo

< 4G?*tN%g/(12G?*tN?) = ¢g/3.
From this, (2.7) and (2.8) we obtain for all positive integers i, j:
1O S = Omsinsjf o = 1O f—Omntunlo
| O EvN — Ot i,n+ jEnllo
HOmsisnt jINN—Omeine 1 S0
<29 f—tynllot+e/3 < 2e/3+e3 =¢

for all n,n=N,. Since L, is a complete space, then, taking into account (2.5),
the double sequence (o,,f) boundedly converges to some function h€L, (see
[5], p. 11, theorem 5, and compare [18], p. 255), i.e.

(2.10) b-lim |0 f— hllo = O.



Complementary spaces and multipliers of double Fourier series 207

We will prove that #°=f°. From (2.10) it follows that (s, f) converges weakly
to h. Employing the general form of a continuous linear functional in L (see [15],
p. 128, or [27], p. 138 and p. 142), we obtain from (2.10) and (2.1) that

n—szQh(s, fey(s, ) ds dt = lim n—foQ(am,,f)(s, e (s, ) dsdt
= 1'}'11;‘1 Lokt At = g+

Analogously for the Fourier coefficients by, ¢,, and d;;. Therefore h®=f°, whence
from (2.10)

(2.11) b-lim ||y f—f°ll 6 = O-

Sufficiency. Let the double sequence (o, /) boundedly converge in the norm
in Ly to some limit k. Since L, is a Banach space, then h€L,, and hence (2.10)
is true. From (2.10) and what we proved above, it follows that h®=f°. Con-
sequently f°¢ L.

For simple Fourier series theorem 2.1 and theorem 2.2 were proved by
Tynnov ([24], pp. 67—70) and previously by Goes ([7], pp. 377—378) for the method
of arithmetical means.

From theorems 2.1 and 2.2, putting & (u)=cuP, where O<c=const, we con-
clude the following:

Corollary 2.3. If the method A satisfies the conditions (2.1) and (2.2), then a
necessary and sufficient condition for

a) f°eL? with p>1 is |6, fll,=0(),
b) foeM is |0mfllu=0Q),
©) focL? with p=1 is that (6, f) boundedly converges in LP.

For simple Fourier series corollary 2.3 is known (see [11], pp. 215—217).

Theorem 2.4. If the method A satisfies the conditions (2.1) and (2.2), then in
order that f°cC it is necessary and sufficient that

b‘}’i{{} “f— amnf“C =0.

Proof. See [3], p. 159, proof of lemma 3.1, and [24], p. 71, proof of theorem 3.
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3. On A-complementary spaces

Let the function g have the double Fourier series expansion

g()(s’ t) = Zk,lEkl(Ss t),

where
E, (s, 1) = 27*(oty; cos ks cos It + By, sin ks cos It+yy, cos ks sin It+ &, sin ks sin If).

Let X be some space of double series f°. Following Goes ([6], p. 348; [7], p. 373;
[8], p. 151) and Tynnov ([24], p. 75) the space of all trigonometric series g° for which
the double numerical series

3.1 (% 8% = 2127 (U G+ Bubut Vucu+dudy)

is boundedly A4-summable for every f° in X, is called A-complementary to X. This
space is denoted by (X—4), i.e.

(X ~ A) ={g": (f* 8”4, VfoeX},

where A4; is the set of all boundedly 4-summable double series. If a,=0 for all
f®in X, we also assume that o, =0 for all g° in (X—4). The conventions with
regard to the coefficients b,;, ¢, and d,, are analogous.

Denote the A-means of the series (3.1) by h,.,, 1.€.

(3.2 Pown = 2k t=mon 27 % it (0 @y Bra by + Vg Ca + 9 da)-

Now we can write
(X~ A) = {g°: (h)Ebe VfOeX),

where bc is the space of all boundedly convergent double sequences. In [2] we re-
quired (h,,)€rc instead of (h,,)¢bc, where rc is the space of all regular (com-
pletely) convergent double sequences ([2], p. 42).

Theorem 3.1. If the method A satisfies conditions (2.1) and (2.2), then the A-com-
plementary space to Ly is Ly.

Proof. We wish to prove that (L,—~A)=Ly. For each g in Ly we associate
a function f¢L, and define the functionals ¢,,: L,—~R by the formula

(pmnf = hmn N

Expressing the Fourier coefficients of the double series f° by integrals (cf. for ex-
ample [23], p. 176), we obtain

33) oy = 772 [ [ f5: D)(0n) (s, 1) ds dt.

From this, taking into account the general form and upper bound of the norm of
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linear continuous functionals in Lg (cf. [26], p. 155, or [27], p. 138, theorem 2),
we see that (¢,,,) is a double sequence of continuous linear functionals, which con-
verges by virtue of condition (2.1) on the dense set P in L,, and its norms satisfy
the inequality

(34) IlamngIIW/2 = ”(Pmn“ = Ilamngll‘l"
Consequently, by theorem 2.1 we have

because conditions (2.1) and (2.2) are fulfilled. According to the Banach-—Stein-
haus theorem (see Kull [17], p. 10, theorem III) the double sequence of functionals
(@) is pointwise boundedly convergent on Lg, that is the double numerical se-
quence (h,,) boundedly converges for any f°cL,. This means that g°¢(Ly— A).

We will prove the opposite inclusion (Lg—>A)SLy. Let g°%¢(Ly—A), ic. let
the double series (3.1) be boundedly A-summable for any f°¢L,, which means
that the double sequence (¢,,f) boundedly converges for any f°¢L,. Then by
the Banach—Steinhaus theorem, (3.5) is true, and from the left inequality in (3.4)
we obtain | 6,,&lly=0(1), which by theorem 2.1 means that g% Ly.

Theorem 3.2. If the method A satisfies conditions (2.1) and (2.2), then the A-com-
plementary space to Ly is L.

Proof. We need to prove that (Ly—A)=L,. For each gc¢L, we associate
a function f€Ly and define functionals ¢,,: Ly—~R and ¢: Ly—~R by the for-
mulas

(3.6) OnS = huns 0f =772 [ f(s, 085, D ds dt.

Taking into account the general form of linear continuous functionals on Ly (cf.
[27], p. 142, remark 2), we see that ¢,, and ¢ are continyous linear functionals
on Ly. In view of (3.3) and (3.6) we have by Holder’s inequality (see for example
[27], p. 82)

[P f—@f| = 772 fllglOmmg—&llo-

But, since g€ L,, then condition (2.11) is satisfied for g by theorem 2.2. Hence,
the double sequence of functionals (¢,,) is pointwise convergent on Lg to the
functional ¢, that is the double numerical sequence (h,,) is boundedly convergent
for any f°¢Ly. Hence g% (Lg—A).

We shall prove the opposite inclusion (Ly-~A)SLg. Let the double series
(3.1) be boundedly A-summable for any f°¢L,, that is by the first equation of
(3.6) the double sequence (¢, f) is boundedly convergent for any f¢Ly. Then by
the Banach—Steinhaus theorem, (3.5) is true. In view of (3.3) and the inequality (cf.
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[27], p. 142, Remark 2)
“amng“Q/2 = ”4’"".“,

we get [0, 8llo=0(1). From the proof of the necessity part of theorem 2.2, it
follows that (2.11) is true for g, that is (o,,,g) boundedly converges on L. By theo-
rem 2.2 we obtain that g% L.

For simple series theorems 3.1 and 3.2 were proved by Tynnov ([24], pp.
72—73), and earlier by Goes ([7], pp. 377—378; see also [30], p. 178) for arithmetical
means.

Let ¥V be the space of all functions of two variables having bounded variation
in the sense of Vitali (cf. [29], p. 220, or [5], p. 220) on Q. We denote by dV the space
of all double Fourier—Stieltjes series of functions in ¥, i.e. double Fourier series
F° with coefficients g,, defined by the double Riemann—Stieltjes integral

gy=n"f f ,00s ks cos ItF(ds df)

for suitable FeV (cf. [31], p. 313). The coefficients by, ¢, and d,, are given by
analogous formulas.
We now prove (cf. [7], p. 383, and [24], pp. 74—75) the following

Theorem 3.3. If the method A satisfies conditions (2.1) and (2.2), then the A-com-
plementary space to C is dV.

Proof. We wish to prove that (C—A)=dV. If f°cdV, then for some F we
have F°¢V. For any function g€C, with double Fourier series g° we have

(3.7 w2 ff o TG, 1) F(ds dt) = h,,.

Since A satisfies (2.1) and (2.2), by Theorem 2.4 the double sequence (6,,,£) is bound-
edly convergent uniformly on Q for each g°¢C. In view of (3.7) the double se-
quence (h,,,) boundedly converges for any g°C, thatis foc(C—~4).

We will prove the opposite inclusion (C—~A)EdV. Let f°c(C—+4), ie. let
the double series (3.1) be boundedly 4-summable for any g°C, this means that
(hmm) is boundedly convergent for any g% C. We define a double sequence of con-
tinuous linear functionals ,,,: C—~R by the formula

(3.8) Vmng =772 [ 805, 00w /s, 1) ds .

Then the limiting functional  is also linear and continuous on C (cf. [17], p. 12,
Theorem IV). By the Riesz—Markov theorem (see [19], p. 129, or [20], p. 246) on
the general form of continuous linear functionals on C, the functional ¥ is given by

(39) Vg =limyy,g =2 ff g(s, OF(dsdt
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with F,€V. Hence choosing g=e, and taking into account (2.1) and (3.8), we
obtain

ver =172 [ e(s, DF(dsd) = n=*lim [ ei(s, (@ /(s O dsdt

= lim opq @q = ay-
m,n

Analogously, choosing g=e, we obtain Ye,=b,, and so on. Since FcV, we
obtain that f°cdV.

4. Finding conditions for multipliers

A double sequence e=(s,,) is called a multiplier of class (X, Y) if the
double series

(TFY(s, ) = Di,1 80 Aua(s, 1)

is the double Fourier series of a function from Y, whenever f° belongs to X.
Let also B=(B,) be a triangular matrix summability method in the series-
to-sequence form. Denote the B-means of the double series f° by 1,.,f, 1.e.

(Tmnf)(s’ t) = Zk,lém,n ﬁmnkl Akl(s5 t)'

The numbers &, are called summability factors of type (4,, B;) if for each
boundedly A4-summable double series > u, the double series > guuy is bound-
edly B-summable.

We shall prove (cf. [9], p. 143,251, p. 94)

Theorem 4.1. If the numbers &, are summability factors of type (A,, B,), then
the double sequence & is a multiplier of the class ((X—A),(X—~B)) and of the class
(X, (X—~A4)—~B) for any space X and any methods A and B.

Proof. Let g°c(X—A) be arbitrary. Then the double sequence (h,,,), where
B ={f® 6,,ng) are defined by (3.2), is boundedly convergent for each f°¢X, ac-
cording to the definition of A-complementary space. As long as ¢, are summability
factors of type (4,, B,), the double sequence (k,,,), where

Kn = 2 k1mmun 27 Bkt €10 @ + Bra by + Yia €+ Ora di),

or briefly, k,,={f° 7,.,(Tg)), boundedly converges for any f°cX. Hence the
double series (7g)°€(X—B) and consequently ¢ is a multiplier of the class
((X~4),(X—~B)). Since also k,,=(7,,(Tf), g% and the double sequence (k)
boundedly converges for each g% (X—4), then (Tf)°¢((X—A4)—B), and con-
sequently ¢ is a multiplier of the class (X, (X—A4)—B).

If in theorem 4.1 we take X to be one of the spaces Ly, Ly and C, then we
obtain from theorems 3.1, 3.2 and 3.3 the following:
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Theorem 4.2. Let A=(a,4,) ond B=(B,m) be two summability methods
so that
b‘ljgl Uppga = b-lim g = 1,

and their double sequences of Lebesgue constants are bounded. If ¢, are summability
factors of type (A,, B,), then ¢ is a multiplier of the class (Ly, Ly), of the class
(Ly, Ly) and of the class (dV,dV).

The case Ly=L? of theorem 4.2 is contained in theorem 3.2 of [3], and for
p=1 in theorem 4 of [2].

For example, if we take 4 and B in theorem 4.2 to be the Cesaro method
C*# of order a, f>0, then condition (2.1) is satisfied. That condition (2.2) holds
follows from Nikolskif’s theorem (cf. [4], p. 5) or can be obtained by direct com-
putation (cf. [30], p. 94), because the Cesaro method is factorable. Applying theo-
rem 2 from [1] and the supplement to theorem 6 from [13], we obtain

Corollary 4.3. If for o, =0 the conditions
8mn = 0(1)5 hm A?n-{-lgmn = hm A£+18mn = O’
Zmn (Mt D (nt 1P 45500 e, | <

are satisfied, then ¢ is a multiplier of all the classes of theorem 4.2.

5. Some topological properties of 4-complementary spaces

A Banach space X of numerical sequences is called a BK-space whenever con-
vergence in norm of any sequence in X implies its coordinate-wise convergence (cf. [28],
p. 466). In particular, each of its coordinates is a continuous linear functional in
the space. We can also regard sets of double sequences of quadruples of numbers

(aus by, cr» diy)

as BK-spaces. For example, the set of all quadruples of Fourier coefficients of some
Banach space of functions of two variables is a BK-space, if the coordinate-wise
convergence of any sequence follows from its convergence in norm. This space is
called the space of double Fourier series.

Let h,, be defined as in (3.2). As we saw above the equalities

(5.1) B = {f° Ornng) = (Omn [ %

are known for the summability method 4. We prove the following (compare [6],
p. 351, Satz 2.1, [7], p. 373, [24], p. 76, theorem 12)
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Theorem 5.1, If the space X of double Fourier series is a BK-space and A sat-
isfies condition (2.1), then the A-complementary space (X—A) is also a BK-space
with norm
(.2 1/ x4 = SUD  SUD Al

mn g% y=1

Proof. The set (X—.A) is a vector space. It is important to obtain that if

fPe(X—~4), then | f%x-qy<-<e in (5.2). In fact, defining for gc X

(5'3) q)mn go = h""l b4

we see that (¢,,,) is a double sequence of continuous linear functionals on X (com-
pare [28], p. 471, Satz4.4a). If f°¢(X—A), then according to the definition of
(X— A) the double sequence (h,,,)€bc for each g°¢ X, and by the Banach—Steinhaus
theorem (see [17], p. 10, theorem III) we obtain (3.5) and therefore || /llx-.4)< o
because

G4 sup Sup |hy,,l = sup @l <o

mn g%l x=1 m,n

In view of (5.1) it is clear that (5.2) satisfies the axioms of a norm.
Let us prove that (X—4) is a complete space. Let ( £;°) be a Cauchy sequence
in (X—A4), where
S = (ah, by, ¢k, diy).
Then for any &=>0 there exists a number N=N(g) such that for any i=N and
any natural j the equality

(5.5) “fio_fi?x-j”(x—m) =sup sup [f'—fLi om8)| <¢

mn g% x=1

holds. If we put g=p,e,, then we obtain

27|ty B (b — bl )| = 1Al oy <€

for i=N and anyj. By (2.1) (and analogous reasoning for the other coefficients), it
follows that there exists

(5.6) S° = (au, b, cu» du)
such that a&f/~ay,....d; 7 ~d, for j—o. Since the inequality (5.5) is valid
for any j, the inequality
(5'7) syp |<fio""foa o.mng>l =&
1ol x =1

holds for all i=N independently of m, n. Taking sup over m, » in (5.7), we obtain
(5.8) 1R~ Nxamy =€
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for all i=N. From (5.8) it follows that f°c(X-4), thatis (h,,)€bc for all g'cX,
because, in view of (5.1), the divergence of the double sequence ({c..f, £1)) even
for some gi¢X with | g)]xy=1 is impossible. In fact, if i=N, then for each m, n,
by virtue of (5.7) and (5.1), we have

ez Sup [Kom(fi—f): &) = [(Om(fi—1), gD

fig0ll xy=1
= ||<o-mnfl:3 gg>[—l<a-mnf; g?)ll

and the double sequence ({5, f;, g)€bc for all i>N, because f’c(X—~4). Thus
(X—A4) is a Banach space.

It remains to prove the coordinate-wise convergence in (X—A4). In fact, if,
for example, we take g,=e,/|e,lly, we obtain from (5.1) and (5.2) that

27 lbgcl— b\ it = Kﬂ'mn(ffo —f%, 82>1 ey
= 12N x= - leallx,
27*|bj,— byl = 12—/ llxon) - 2l

which yields that bi,~b,, for i—~<. An analogous argument applies to the co-
ordinates g, ¢;; and dy;. Consequently, (X—4) is a BK-space.

whence by (2.1)

Corollary 5.2. If X is any of the spaces C, M, L*, Ly, Ly or V and the summa-
bility method A satisfies condition (2.1), then the complementary space (X—A) is a
BK-space.

Proof. Since the above-mentioned spaces X of functions f are Banach spaces,
the corresponding spaces X of Fourier coefficients (5.6) with norm | f*lx=| flx
are BK-spaces, and by theorem 5.1 the 4-complementary spaces (X-~A4) are BK-
spaces with the norm (5.2).

The following corollary holds true (compare [6], Satz 2.3, [8], Satz 3’, and [24],
theorem 13):

Corollary 5.3. If the space X of double Fourier series is a BK-space, A satisfies
condition (2.1) and X\P is dense in X, then f°€(X—~A) if and only if

(5.9) "fo”(x-»A) = oo,

Proof. The fact that f°c(X—d4) implies (5.9) is contained in the proof of
Theorem 5.1. We shall prove the converse. Assume (5.9). Then (5.4) is true for
the double sequence (¢,,) of continuous linear functionals, defined by (5.3). By
the Banach—Steinhaus theorem it remains to prove that (h,,)cbc on a set dense
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in X. If g% XnP, then g is some ¢, and therefore

(5.10) (o > 8°))E bC

in view of (2.1) and (5.1). Since XnP is dense in X, it follows that (5.10) is valid
for any g% X, thatis fPc(X—4).

6. Identical classes of multipliers

Now we require the following definition (see [10], p. 34, [21], p. 202).
Let X be a normed space with dual X’. A closed subset I'CX’ is called a
norm-determining manifold for X if for any x€X we have

sup {lox: llolxy =1, €I} = |x|ix.

For example, the dual X’ itself is a norm-determining manifold for X (see
[21], p. 186, theorem 4.3—B, or [10], p. 30, theorem 2.7.4). Consequently, the
space M is a norm-determining manifold for L:=I', because L'=M (sec [14],
p- 191). It is advantageous to assume that C’=dV, and then dV is a norm-deter-
mining manifold for C. This is possible because in view of (5.1) and (3.9) any con-
tinuous linear functional ¢ on C can be represented by the formula (cf. [9), p. 140)

¢of = Um (f°, o, &)

with fEC and g% (C—~A)=dV by Theorem 3.3, if A satisfies conditions (2.1)
and (2.2).
Now we can prove (cf. [9], Satz 6, [25], theorem 4.3) the following

Theorem 6.1. Let the summability method A satisfy (2.1). Let X and Y be BK-
spaces of double Fourier series, P be dense in X, and let I and A be norm-determining
manifolds for Y. Then

(6.1) (T, (X ~ 4)) = (A, (X = 4)).

Proof. By the definition of multipliers and corollary 5.3, it follows that ¢ is
a multiplier of the class (I', (X—4)) if and only if [(Tf)°x-4<o for each
feer. Let T,,: Y'—~X’ be continuous linear operators determined by the for-
mula

L f* = Om(TS)-

Let the continuous linear functionals f,,,=T,,f°¢X’ be defined by the formula

S8 = Ta [ &°)-
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Then by (5.2) and (5.1) we obtain
WTA x>0 = sup sup 1lfm,.g"l =

m,n g%l x=

= sup ”fmn"X' = sup ”Tmnf()”X"
mn m,n

Therefore ¢ is a multiplier of the class (I', (X—A)) if and only if
(6.2) SUP || T fOllxr <o VSO€T.

By the uniform boundedness theorem ([10], p. 26, theorem 2.5.5), condition (6.2) is
equivalent to
(6.3) 1Tl e, xy = O (D).
In view of (5.1)

<I;rmf0’ g0> = <f03 Tmng0>’
that is T, are self-adjoint operators ([21], p. 214). Therefore from the previous
calculations we obtain that

”Tmn”.‘Z’(T,X’) = sup sup |<f0, Tmng0>l

Hfol gy =1 g0l x=1
reer
= Ssup ”TmngOHY = ”Tmn“.Q’(X,Y),
1l x=1

because I' is a norm-determining manifold for Y. Since A is also a norm-deter-
mining manifold for the same Y, it also follows that

“Tmn“.Q’(A,X') = uTmn”g(x,y)
and consequently

“Tmn“.z'(r,X') = ”Tmn”y(A,X')a

whence In view of the equivalence of (6.2) and (6.3) the equation (6.1) follows,
From theorem 6.1 we obtain (cf. [9], p. 141) the following corollaries:

Corollary 6.2, If the summability method A satisfies (2.1) and X is any one of
the spaces Ly, L? or C, then

(6.6) (C, (X ~ 4)) = (M, (X ~ 4)).

Proof. One must prove that the Banach space C is a norm-determining mani-
fold for the Banach space L. In fact, CcM=L" and for each ge€C there exists
a functional ¢@€L’ such that

ox =fox(s, Ng(s, Hdsdt
(see [14], p. 191) for all x€L, whence o=|x|,, where
o = sup {lox|: ¢ly =1, geC}.
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On the ‘other hand for each x¢L there exists the function g,€M with gy(s, f)=
sgn x(s, t). According to Lusin’s theorem ([12], p. 106) for each 6=0 there exists
a subset E;CQ with Lebesgue measure mE;>4n2—3 and a function g,€C such
that g;(s,7)=g,(s.t) on E; and |g,(s, t)|=1. Designating e;=Q\E; and

PsX = /fo(S’ t)ga(S, t) ds dt,

by the absolute continuity of the Lebesgue integral for any &>0 there exists 6=0

such that
o =loct = | [, +I1, )= L)1,

= lIxl—ff, 1xGs, Dl dsdt— [ x(s, 0gs(s, dsde

= |xl =2 ff Ix(s, )l dsdt > x| —2e
and hence o=|x| . ’
Now the set P is dense in C (see [22], p. 14) and in L, (see [27], p. 128) and
hence in L?, It remains to adapt theorem 6.1 with Y=L, '=C and A=M.

Corollary 6.3. If the summability method A satisfies (2.1) and X is any one of
the spaces Ly, L? or C, then

(L, (X ~ A)) = (dV, (X ~ 4)).

Proof. The Banach spaces L and dV are norm-determining manifolds for C.
In fact, we have scen that dV'=C’. Further, L’cLcC’ and from the theorem
on sufficiently many continuous functionals (see [10], p. 30, theorem 2.7.4), it
follows that for each x,6CCL there exists a functional @,€L" with {@g)..=1
and @gxo=|xollc. Consequently

sup {loxol: [ollc: = 1, 9€L} = sup {loxol: ol =1, 9L} = |Ixollc-

The inverse inequality follows from |ex|={¢|c|xlc. Thus L is also a norm-
determining manifold for C. Because P is dense in the considered spaces, it remains
to adapt theorem 6.1 .with Y=C, I'=L and A=dV.

From corollaries 6.2 and 6.3 with the help of theorems 3.1 and 3.3 we obtain:

Corollary 6.4. The following identities between classes of multipliers hold:

1) (C,Ly) = (M, L), 1a) (C, LP) = (M, L?) with p =1,
1b) (C, M) = (M, M) 2y (C,dv)=(M,dV),
3) (L,Ly)=(dV,Ly), 3a) (L, L?) = (dV, L?) with p =1,

3b) (L, M) = (dV, M), 4) (L,dV) =(dV,dvV).



218 S. Baron

The following is also true (cf. [9], p. 143, Satz 12, [25], p. 93, theorem 4.5):

Theorem 6.5. For any summability method A and arbitrary spaces X and Y, the

inclusion
(X,Y) S (¥ ~ 4), (X ~ 4)
holds.

Proof. Let ¢ be a multiplier of class (X, Y¥), that is (Tf)°¢Y for any fo€X.
Let g% (Y—4). Since
(¥ ~ A) ={g°: (g h°)e 4} VheY}
and R°=(Tf)°c Y, it follows that {g° (Tf)°)c 4, for any f°cX. Since (5.1) means

hat (g° (Tf)*)=((T¢)° f°), one obtains ((Tg)’, f°)cA4; for any f°cX, that is
(Te)e(X~A).

Corollary 6.6. The following identities between classes of multipliers hold:
1) (Le, Lg) =(Ly, Ly), la) (L7, LP) = (L%, L), p=>1,
1b) (L, L) = (M, M), 2) (Lo, M) =(L, Ly),
2a) (LA, M) = (L, L9, p>1, 3) (Lo, L)=(M, Ly),
3a) (L, L)=M, L9, p>1, 4 (Ly,L)=(M,Ly),
where p~l4+g 1=1.

Proof. For example 2) follows from theorem 6.5, putting X=L,, Y=M, and
A satisfying (2.1) and (2.2), with the help of theorems 3.1 and 3.2, since

(Lo, M) S (M ~ 4), (Lp ~ A)) = (L, Ly) S (Ly > 4A), (L ~ A)) = (Lo, M).
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