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In his paper [9], Goes shows, how by means of known theorems on summa- 
bility factors for the Ces~ro summability method C ~ of nonnegative order ct, it is 
possible to obtain effective sufficient conditions for the multipliers of Fourier series, 
imposed directly on them. The foundation for this is the theory of C~-complementary 
spaces of Fourier coefficients, developed by him [6, 7]. The theory was extended 
to Toepliz methods T by Tynnov [24]. The notion of T-complementary space was 
generalized in [2] for double Fourier series, and with the help of known theorems 
for summability factors for double series, we found effective sufficient conditions 
for various classes of multipliers for double Fourier series. 

In the present paper, we find A-complementary spaces of Fourier coefficients 
to Orlicz spaces L~ and ~ of functions of two variables, and to the space C of 
continuous functions of two variables, for an arbitrary matrix method A of sum- 
mability of double series, with bounded double sequence of Lebesgue constants. 
We first prove criterions for a double trigonometric series to belong to these spaces, 
expressed in terms of A-means of the double Fourier series. Theorems are obtained 
on connections between summability factors of double series, A-complementary 
spaces, and multipliers of classes of double Fourier series. It is shown that the 
A-complementary space of coefficients of a double Fourier series is a BK-space. 
We get also theorems on identities of classes of multipliers for various BK-spaces 
of double Fourier series, under the hypothesis that the preimage spaces are norm- 
determining manifolds for a certain BK-space. 
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1, Notations and introductory remarks 

In what follows if limits of summation are not indicated, they are 0 and oo 
on each index, and the free indices assume all values 0, 1, . . . .  I f  x , ~ a  as 
m,n~o~  and Xm,=O(1) we write b-lim,,,,Xm,=a. 

Throughout this paper f ,  g, h, ... will denote real-valued functions of  two 
variables, defined almost everywhere on the plane, 2n-periodic in each variable 
and Lebesgue integrable on the square Q=[ -z r ,  z0 ~. As in [2, 3] let fo  be the 
double Fourier series of the function f ,  i.e. 

f~  0 = Zk . ,  Ak,(s, O, 
denoting 

Akl (S, t) ~ 2-~ ( akt cos ks cos It + b u sin ks cos It + cu cos ks sin It + dkz sin ks sin lO, 

where ~--2 if k = / = 0 ,  g = l  if k + l = l ,  and u = 0  otherwise. 
We shall denote by the same symbol both a set of  functions f and the set of  

double Fourier series f0 of  these functions f .  Moreover if  X is a normed space and 
fEX ,  then we define l l f~ and consequently the set of all f ~ 1 6 3  is also a 
normed space. This convention will be applied to the Lebesgue spaces X = L  p :=LP(Q) 
for 1 <_-p< ~o with the norm 

lifll,, = (SSQ I /(s, ,)1" d~ d r ) ' ' ;  

X=M:=LO~ with the norm 

Ilfl iM = ess~up If(s, t)l, 

and to the space X = C : = C ( Q )  of  all continuous functions on Q with the maxi- 
mum norm. 

We shall assume that �9 and ~g are two absolutely continuous functions of  
one nonnegative variable forming a pair of complementary Young functions (see 
[16], p. 134, or [27], p. 77). In this case their derivatives #'=~p and ~ " - - $  are 
mutually inverse in a generalized sense ([16], p. 135). We recall that # is called a 
Young function if 

(u) = f2  w(s) ds, 

and cp is a real nondecreasing function defined on [0, + ~ )  such that r and 
r is left continuous for s_~0 (see e.g. [16], p. 195, or [27], p. 76). 

We require throughout that the Young function # satisfies the so-called As- 
condition 

r  = O ( 1 ) ~ ( u )  Vu => u0 

(for some u0>0). We denote by Lo the Orlicz space (see [27], p. 79, or [16], p. 145) 
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of  all measurable functions f,  for which the norm 

Ilfll| = sup { f f  a If(s, t)g(s, t)l ds dt: gCM~,} 
is finite, where 

M ~ =  {g: f f  ~'(Ig(s, OOd, dt <= 1}. 

Since ~ satisfies the As-condition, then (see corollaries of  [26], p. 154, and [27], 
p. 81) 

L, = {f: ffQ ~(i.r(,. t)l)d, dt < ~}. 
By L~, we denote the Orlicz space of  all measurable functions f for which 

the norm 

IISIl~, = suP { SSa i f ( , .  t) g(s, t)l d, dt: gEM,} 
is finite, where 

M. = {g: f fe  @(Ig(s,,)l)dsd, ~= 1}. 

We do not require that 7 x satisfies the As-condition. 
The Orlicz spaces L~ and/-.e are Banach spaces (see [27], p. 101, or [16], p. 156, 

or [151, p. 71). 
I f  ~b(u)=cu p, where 0 < c = c o n s t ,  then L~,=L t'. For p > l  we have that 

/_~=L ~, where p - X + q - l = l  and for p : l  we have / _ ~ = M  (see [26], p. 154, 
[27], p. 82, [16], p. 195--196). 

I f  ~ ( u ) = u  In + u, where In + u = m a x  (0, In u), then �9 is a Young function, 
satisfying the d,-condition (see [16], pp. 133 and 138) and L~=L In + L, where 
(cf. [30], p. 16) 

L In + L = {f: ff~ If(s, t)[ In + If(s, t)] d, dt < ~o}, 

but its complementary function ~P does not satisfy the A2-condition (see [16], p. 136 
and 138). 

2. Conditions for a double trigonometric series to be a double Fourier series 

Let A =(~.~z) be a triangular matrix summabflity method, given by means of  
transformation matrices of  a double series into a double sequence. Let us denote 
the A-means of  the double series f0  by am.f, i.e. 

(a . . f ) ( s ,  I) = Zk , ,~ . , .  ~.k~&,(s, l). 

Denote by K,~ the kernel of the summability method A, i.e. 

K.~(s, 0 = Z~ k,l~_.,,. 2--"e..kt COS ks cos lt, 
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and by L~. the Lebesgue constants o f  .,1, i.e. 

zm. = ~-~ f f Q [Km,(S, t)l ds dt. 

We define the functions e, ea and ez by the formulas 

e(s, t) - 1, ex(s, t) --- cos ks.  cos It, e2(s, t) = sin ks. cos It. 

We shall give criterions for double series to belong to Orlicz spaces first for  
L~, and then for L . .  

Theorem 2.1. I f  the method ,,t satisfies the conditions 

(2.1) b-lim U,,,kl = 1 
/'a~n 

and 
(2.2) Lm, = 0 ( I ) ,  

then in order that f~  L~,, it is necessary and sufficient that 

(2.3) I[~,..fll~, = O (1). 

Proof. Necessity. Let f~  Then there exist (see [27], p. 80, theorem 2) 
positive constants /~ and N such that 

f fa  ~'(fl If(s, 0]) ds dt <= N. 

Relying on (2.2), we denote 

L = sup Lmn, Or~n = z~L,,, �9 
m~n 

For the A-means of  the double series f0  we have the formula (cf. [30], p. 303) 

(amnf)(u, v) = .-~ f f  K~.(s, Of(u+s ,  v+ 0 ds dt. 

Since c~,,,>0 and ~ is nondecreasing and convex (see [15], p. 7, or [16J, p,.129), 
it follows by means of  Jensen's inequality (cf. [16], p. 133, or [3], p, 159) that 

~ ( L - l  fl [(a,,.f)(u, v)[) _<-- ~,(aa~. fl f f ~ [f(u+ s, v+ t) I [Km,(S, OI as dt) 

<= a7,x, f f o 71([3 If(u + s, v+ t)[)Ig,,,(s, t)l ds dr. 

This yields by periodicity in both variables 

f f Q v(L-,p I(~..f)(.,  v)l) au dv 

-~= 6-~ ffQdudv f f  ~(fllf(s, t)[)lKm.(S-u, t-v)] dsdt 

= ffQ ~'(~ If(s, t)l) ds dt <= N. 
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Furthermore, since (of. theorem 1 of  [26], p. 152, or [27], p. 79) 

�9 ~ f f , ,  f)(u. 01) du dv+ 1, 

then by what was proved above, we obtain 

IlL-lflam,fll~, <- N + I ,  

whence (2.3) follows, because / /~  0. 

Sufficiency. Suppose that (2.3) is true. Then (cf. [5], p. 10, theorem 2) there 
exists a convergent subsequence ([l~m~.vfll~,)- According to Theorem 9 of  [27], 
p. 159, there exists a subsequence (p)~(v) and a function hC/_,/, with the prop- 
erty that for every gCL~, the equality 

(2.4) lim=ffeg(s, t)(tTm~,n~.f)(s, t)dsdt = ffQg(s, 0h(s ,  t)dsdt 

holds. Putting g=zc-~el and observing that gEL~ (see for example [27], p. 128, 
ex. 8), we conclude from (2.4) that 

f f h(s, t) (s, t) ds dt = lim = e l  akl  akl  n j, kl 

in view of  (2.1). Similarly for bkl, Ckl and dkl. Therefore h ~  ~ whence f~ 
Everywhere in the sequel we denote by P the set of  all double trigonometric 

polynomials tkt. 

Theorem 2.2. I f  the method A satisfies the conditions (2.1) and (2.2), then in 
order that f~ L ,  it is necessary and sufficient that the double sequence (a,,,f) is 
boundedly convergent in Lo in norm. 

Proof. Necessity. Let f~ Then by theorem 2.1 

(2.5) Ilamnfll~ = O(1). 

We show that a,,,: L ~ L ~  are continuous linear operators for any m, n. In fact, 
the function e belongs to/-a, (see for example [16], p. 145). Setting 

G = m a x  {llell~,  llell~,}, 

we obtain that the Fourier coefficients 

akt = 7z -~ f f of(s, 0 cos ks cos It ds dt 

(see for example [23], p. 176) are continuous linear functionals on L~, because by 
H61der's inequality (see for example [15], p. 74, [26], theorem 3) 

lak~l <= ~-~ffolf(s, t)l dsdt <= ~-~ {Ifllo G ~- G IlfJ[o. 
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Hence, and also by analogous formulas for bkl, c u and dkt, we obtain 

(2.6) tlAk, ll~ ~- 4GZl l f l l~ .  

Consequently a,,, are continuous linear operators from L ,  into itself. 
By the principle of  uniform boundedness ([27], p. 135, theorem 1), from (2.5) 

it follows that there exists a constant 7>0 ,  such that 

(2.7) IIo,,,fll~ ~ v Ilftl~. 

The set P of  all trigonometric polynomials is dense in L~ (see [27], p. 128, ex. 8). 
Therefore there exists a double sequence (t,,,)c=P such that for any ~>0 there 
exists a number N > 0  such that 

(2.8) r [ I f -  t~,vtl~ < ~/3 

for each /t, v_~N. Choose # = v = N  and denote 

tNN ~ Zi,j•N Ai N', "/2 = II/~sll| 
we obtain 

In view of  (2.1) there exist indices N~ such that for any k , / = 1  . . . .  , N, each m, n =  > 
N~ and arbitrary positive integers i, j we have 

(2.9) {~,,,~t - ~,. +i,. + j,kt[ < e/(12GZzN~). 

Let No=max {Nkt: k, 1=l . . . . .  N}. Then (2.9) is true for all m,n>=No and for 
all positive integers i, j i f  k, I<=N. Consequently (2.9) and (2.6) imply that 

N [J ~r,.. t~N - ~r m + ,,.+j tNN[I o = I Iz  +,.. + a ,ll, 

< 4G~zNZe/(12GZrN z) = el3. 

From this, (2.7) and (2.8) we obtain for all positive integers i, j :  

[ [a , , , f -ar ,+i , ,+jf [ l~  -<- Ila,.,f-o,,.t~N[l~ 

§ II a,.. tNN-- a.,+/,,+i t~Nll ~ 

-t-Ilam+~,.+ jtNN--a.,+~,.+ j f l l .  

< 2y[{f-t~Nll#+e/3 <: 2 # 3 + # 3  = e 

for all n, n>-No. Since L~ is a complete space, then, taking into account (2.5), 
the double sequence (am.f) boundedly converges to some function h(L#  (see 
[5], p. 11, theorem 5, and compare [18], p. 255), i.e. 

(2.10) b-lim I la , . . f -  hll~ = 0. 
rtl~n 
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We will prove that h ~  ~ From (2.10) it follows that (ore"f) converges weakly 
to h. Employing the general form of a continuous linear functional in L# (see [151, 
p. 128, or [27], p. 138 and p. 142), we obtain from (2.10) and (2.1) that 

- 2 f f Q  h (s, t) el (s, t) ds dt = limrn n n - 2 f f o ( a m ,  f ) ( s ,  t)et(s, t) ds dt 

= lim O~rank I akl = akt. 
rash 

Analogously for the Fourier coefficients b~, ck~ and dkt. Therefore h ~ =f0, whence 
from (2.10) 

(2.11) b-lim Ilam"f-f~ = 0. 
m~ n 

Sufficiency. Let the double sequence (am.f) boundedly converge in the norm 
in L~ to some limit h. Since L~ is a Banach space, then hEL~, and hence (2.10) 
is true. From (2.10) and what we proved above, it follows that h ~  ~ Con- 
sequently f~  L~,. 

For simple Fourier series theorem 2.1 and theorem 2.2 were proved by 
Tynnov ([24], pp. 67--70) and previously by Goes ([7], pp. 377--378) for the method 
of arithmetical means. 

From theorems 2.1 and 2.2, putting ~(u)=cu p, where 0<c=const ,  we con- 
clude the following: 

Corollary 2.3. I f  the method A satisfies the conditions (2.1) and (2.2), then a 
necessary and sufficient condition for 

a) f ~  ~ with p > l  is Ilam"fllp=O(1), 
b) f ~  is II~m"f[l~=O(1), 
c) . f~176 with p>=l is that (am, f )  boundedly converges in L ~ 

For simple Fourier series corollary 2.3 is known (see [11], pp. 215--217). 

Theorem 2.4. I f  the method A satisfies the conditions (2.1) and (2.2), then in 
order that f ~  it is necessary and sufficient that 

b-lim [If-  am"file = 0. 
Ftl~n 

Proof. See [3], p. 159, proof of lemma 3.1, and [24], p. 71, proof of theorem 3. 
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3. On A-complementary spaces 

Let the function g have the double Fourier series expansion 

g~ 0 = Z~.~Ek,(s, O, 
where 

Eu(s, t) ---- 2-~(~u cos ks cos lt+flkt sin ks cos lt+Tkl COS ks sin It+6u sin ks sin lt). 

Let X be some space of double series f ~ Following Goes ([6], p. 348; [7], p. 373; 
[8], p. 151) and Tynnov ([24], p. 75) the space of all trigonometric series go for which 
the double numerical series 

(3.1) ( f o  gO) := Zk ,  t 2-" (~k~ akz + fl~t bkt + 7kl Ckt + 6k~ dg~) 

is boundedly A-summable for every fo  in X, is called A-complementary to X. This 
space is denoted by (X~A), i.e. 

(X ~ A) = {gO: (fo, go)EA; Vf~ 

where A~ is the set of all boundedly A-summable double series. If au=O for all 
fo  in X, we also assume that ~u=0  for all gO in (X~A) .  The conventions with 
regard to the coefficients bk~, CkZ and dkz are analogous. 

Denote the A-means of the series (3.1) by hm., i.e. 

0-2) hm, = ~ k, l ~_m, ,, 2 -  ~ ~,,,kl ( ~kt akl q- flkt bkz + 7 kl Ckl q- 6kl dkt). 

Now we can write 
(X --- A) = {gO: (h,,.)6bc Vf~ 

where be is the space of all boundedly convergent double sequences. In [2] we re- 
quired (hm,)Erc instead of (hm.)Ebc, where re is the space of all regular (com- 
pletely) convergent double sequences ([2], p. 42). 

Theorem 3.1. I f  the method A satisfies conditions (2.1) and (2.2), then the A-com- 
plementary space to L ,  is I_~,. 

Proof. We wish to prove that (L,-~A)=/_~,. For each g in L,e we associate 
a function f E L ,  and define the functionals r L , - ~ R  by the formula 

~Pm.f= hmn" 

Expressing the Fourier coefficients of  the double series fo  by integrals (cf. for ex- 
ample [23], p. 170,  we obtain 

(3.3) h , . .  = ~-e f f  ef(s, t)(am, g)(s, t)ds dt. 

From this, taking into account the general form and upper bound of the norm of  
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linear continuous functionals in L# (cf. [26], p. 155, or [27], p. 138, theorem 2), 
we see that (~Pm,) is a double sequence of continuous linear functionals, which con- 
verges by virtue of condition (2.1) on the dense set P in L~, and its norms satisfy 
the inequality 

(3.4) II~m, gll~,/2 <-- 11~,11 <-- Iltr,,.gl!v,. 

Consequently, by theorem 2.1 we have 

(3.5) II~0~,ll = O(1), 

because conditions (2.1) and (2.2) are fulfilled. According to the Banach--Stein- 
hails theorem (see Kull [17], p. 10, theorem III) the double sequence of functionals 
(r is pointwise boundedly convergent on L~, that is the double numerical se- 
quence (hm,) boundedly converges for any f~ This means that g~ 

We will prove the opposite inclusion (L~A)C=L~,. Let g~ i.e. let 
the double series (3.1) be boundedly A-summable for any f~ which means 
that the double sequence (r f )  boundedly converges for any f~ Then by 
the Banach--Steinhaus theorem, (3.5) is true, and from the left inequality in (3.4) 
we obtain Iltrmgl[~,=O(1 ), which by theorem 2.1 means that g~ 

Theorem 3.2. I f  the method A satisfies conditions (2.1) and (2.2), then the A-com- 
plementary space to L~, is L~. 

Proof. We need to prove that (L~,~A)=L~. For each gELo we associate 
a function fEL~ and define functionals ~Pm,: /-~,~R and tp: L~,-.-R by the for- 
mulas 

(3.6) (Or,,j "= hm,, tpf = ,~-2 f fe f(s ,  t)g(s, t)dsdt. 

Taking into account the general form of linear continuous functionals on Le (cf. 
[27], p. 142, remark 2), we see that ~o~,, and ~0 are continuous linear functionals 
on L~,. In view of (3.3) and (3.6) we have by H61der's inequality (see for example 
[27]. p. 82) 

I~o,,,f-~ofl <= ~-2 Ilfll~,l[am, g-gll~. 

But, since g~ then condition (2.11) is satisfied for g by theorem 2.2. Hence, 
the double sequence of  functionals (r is pointwise convergent on Le to the 
functional tp, that is the double numerical sequence (h,,,) is boundedly convergent 
for any foELe.  Hence g~ 

We shall prove the opposite inclusion (L~,~A)C=L,. Let the double series 
(3.1) be boundedly A-summable for any f~ that is by the first equation of 
(3.6) the double sequence (~0m~f) is boundedly convergent for any fE/-~,. Then by 
the Banach--Steinhaus theorem, (3.5) is true. In view of (3.3) and the inequality (cf. 
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[27], p. 142, Remark 2) 
Ila,,,glt~/2 <= IE~o,,,ll, 

we get Ilamgllo=O(1 ). From the proof  of  the necessity part of  theorem 2.2, it 
follows that (2.11) is true for g, that is (am, g) boundedly converges on Lo. By theo- 
rem 2.2 we obtain that g~ 

For simple series theorems 3.1 and 3.2 were proved by Tynnov ([24], pp. 
72--73), and earlier by Goes ([7], pp. 377--378; see also [30], p. 178) for arithmetical 
means. 

Let V be the space of  all functions of  two variables having bounded variation 
in the sense of  Vitali (cf. [29], p. 220, or [5], p. 220) on Q. We denote by dV the space 
of  all double Fourier--Stieltjes series of  functions in V, i.e. double Fourier series 
f 0  with coefficients ak~ defined by the double Riemann--Stieltjes integral 

akt = r c - ~ f f ~ c o  s kscos ltF(ds dt) 

for suitable FEV (cf. [31], p. 313). The coefficients bkz, ckt and dkt are given by 
analogous formulas. 

We now prove (cf. [7], p. 383, and [24], pp. 74--75) the following 

Theorem 3.3. I f  the method A satisfies conditions (2.1) and (2.2), then the A-com- 
plementary space to C is dV. 

Proof. We wish to prove that (C~A)=dV.  If  f~ then for some F we 
have F~ For any function gEC, with double Fourier series gO we have 

(3.7) ,-2 f f  e (...g)(s, t)F(ds dt) = h~n. 

Since A satisfies (2.1) and (2.2), by Theorem 2.4 the double sequence (am.g) is bound- 
edly convergent uniformly on Q for each g~ In view of  0 .7)  the double se- 
quence (h,.,) boundedly converges for any g~ that is f~ 

We will prove the opposite inclusion (C~A)c=dV. Let f~  i.e. let 
the double series (3.1) be boundedly A-summable for any g~ this means that 
(hm.) is boundedly convergent for any g~ We define a double sequence of  con- 
tinuous linear functionals r C ~  R by the formula 

( 3 . 8 )  = ffog(s, t)(a,,,f)(s, t)ds dt. 

Then the limiting functional ~k is also linear and continuous on C (cf. [17], p. 12, 
Theorem IV). By the Riesz--Markov theorem (see [19], p. 129, or [20], p. 246) on 
the general form of  continuous linear functionals on C, the functional ~9 is given by 

(3.9) ~kg = lim $, , ,g = ~-'ff_g(s, t)F~(ds dt) 
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with F~V. Hence choosing g=e~ and taking into account (2.1) and (3.8), we 
obtain 

4tel = u-~ f f el (s, t) Fl( ds dt) -- ~-~ lira f f el(s, t)(am.f~ t) ds dt 
m,n d o  Q 

= lim ~,kZ ak~ = au. 
mg n 

Analogously, choosing g=e2 we obtain ffe2=bk~ and so on. Since F~V,  we 
obtain that f~ 

4. Finding conditions for multipliers 

A double sequence a=(em,) is called a multiplier of class (X, Y) if  the 
double series 

(Tf)~ 0 = 2k, t SklAu(s, t) 

is the double Fourier series of a function from Y, whenever fo  belongs to X. 
Let also B=(flm.u) be a triangular matrix summability method in the series- 

to-sequence form. Denote the B-means of  the double series fo  by z,~f,  i.e. 

(Zm.f)(s , t) = Zk, Z~_m,.flm.uAkt(S, t). 

The numbers am. are called summability factors of type (Ab, Bb) if  for each 
boundedly A-summable double series Z uk~ the double series ~ek~Ukl is bound- 
edly B-summable. 

We shall prove (of. [9], p. 143, [25], p. 94) 

Theorem 4.1. I f  the numbers e~, are summability factors of type (Ab, B~), then 
the double sequence e is a multiplier of the class ((X~A), (X~B)) and of the class 
(X, (X~A)~B) for any space X and any methods A and B. 

Proof. Let g~ be arbitrary. Then the double sequence (hm), where 
hm,=(f~  am,g ) are defined by (3.2), is boundedly convergent for each f~ ac- 
cording to the definition of  A-complementary space. As long as era, are summability 
factors of  type (A b, Bb), the double sequence (kin,), where 

kin. = ~k, l~. , , .  2-~ flm.U ekl(aU akl +flkZ bkz + ?kzCu +6k~ dk3, 

or briefly, k m . = ( f  ~ "c.,.(Tg)), boundedly converges for any f~ Hence the 
double series (Tg)~ and consequently e is a multiplier of the class 
((X~A),(X~B)). Since also km.=(zm.(Tf),g ~ and the double sequence (kin.) 
boundedly converges for each g~ then (Tf)~ and con- 
sequently e is a multiplier of  the class (Jr, (X~A)~B).  

If  in  theorem 4.1 we take X to be one of  the spaces L~, L~, and C, then we 
obtain from theorems 3.1, 3.2 and 3.3 the following: 
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Theorem 4.2. Let A=(O~m,U) and B-----(flmnkl ) be two summability methods 
so that 

b-lim ~,~,u = b-lim fl,.~kt = 1, 
m , n  m , / l  

and their double sequences of  Lebesgue constants are bounded. I f  era, are summabHity 
factors of  type (Ab, B~), then ~ is a multiplier of  the class (L~, L~), of  the class 
(I_~, L~) and of  the class (dV, dV). 

The case L~ =L p of theorem 4.2 is contained in theorem 3.2 of  [3], and for 
p > l  in theorem 4 of  [2]. 

For example, if we take A and B in theorem 4.2 to be the Ceshro method 
C "'p of  order a, f l>0,  then condition (2.1)is satisfied. That condition (2.2)holds 
follows from Nikolskii's theorem (cf. [4], p. 5) or can be obtained by direct com- 
putation (cf. [30], p. 94), because the Ceshro method is factorable. Applying theo- 
rem 2 from [1] and the supplement to theorem 6 from [13], we obtain 

Corollary 4.3. I f  for oe, f l>0  the conditions 

e,,, =O(1) ,  lim A~+l~,,, = lira AOn+l~mn = O, 
n m 

~,~, ,  (m+  1)~(n+ 1) a A ' + l * a + l e m n  I <: oo 

are satisfied, then e is a multiplier o f  all the classes of  theorem 4.2. 

5. Some topological properties of A-complementary spaces 

A Banach space X of  numerical sequences is called a BK-space whenever con- 
vergence in norm of  any sequence in Ximplies its coordinate-wise convergence (of. [28], 
p. 466). In particular, each of  its coordinates is a continuous linear functional in 
the space. We can also regard sets of double sequences of  quadruples of  numbers 

(a,,z, bkl, Ckl, dkl) 

as BK-spaces. For example, the set of  all quadruples of  Fourier coefficients of some 
Banach space of  functions of  two variables is a BK-space, if  the coordinate-wise 
convergence of  any sequence follows from its convergence in norm. This space is 
called the space of  double Fourier series. 

Let hm, be defined as in 0.2). As we saw above the equalities 

(5.1) h,,, = (f0, a,, ,g) = (tr,,, f ,  gO) 

are known for the summability method A. We prove the following (compare [6], 
p. 351, Satz 2.1, [7], p. 373, [24], p. 76, theorem 12) 
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Theorem 5.1. I f  the space X of  double Fourier series is a BK-space and A sat- 
isfies condition (2.1), then the A-complementary space (X-+A) is also a BK-space 
with norm 

(5.2) IIf~ = sup sup Ih,,~l. 
ra, n II gO II x --'-'-'-a 1 

Proof. The set (X- ,A)  is a vector space. It is important to obtain that if  
f~  then []f~ co in (5.2). In fact, defining for goEX 

(5.3) 9,,~ gO = h,,,, 

we see that (9,,,) is a double sequence of  continuous linear functionals on X (com- 
pare [28], p. 471, Satz4.4a). I f  f~  then according to the definition of  
( X ~ A )  the double sequence (h~,)Ebc for each g~ and by the Banach--Steinhaus 
theorem (see [17], p. 10, theorem III) we obtain (3.5) and therefore IIf~ 0% 
because 

(5.4) sup sup Ih,..I = sup llgm.l[ < oo. 
m , n  II0~ m , n  

In view of (5.1) it is clear that (5.2) satisfies the axioms of  a norm. 
Let us prove that (X-~A) is a complete space. Let (f i  ~ be a Cauchy sequence 

in (X~A) ,  where 
A ~ = ( 4 ,  b~,, cb, d~,). 

Then for any e>0  there exists a number N=N(~) such that for any i>=N and 
any natural j the equality 

(5 .5)  0 0 0 0 Ilff -f/+jll(x-,A) -- sup sup I(,f~ - f i + j ,  am, g)[ < e 
m , n  II g~ 

holds. If  we put g=flkle2, then we obtain 

- ~  * ~+~ = o_f?+ 2 JO~mnktflkt(bkl--bk! )1 < IIA jlI(x~A) < 

for i>=N and anyj .  By (2.1) (and analogous reasoning for the other coefficients), it 
follows that there exists 

(5.6) f0  = (a~, b~, e~, d~,) 

such that a~+J--,-au, Ai+.i~A 
" " ~  ~ k l  ~ k l  

for any j ,  the inequality 

(5.7) sup 
~IgOll x-~.7. 

holds for all 

(5.8) 

for j - - ~ .  Since the inequality (5.5) is valid 

I < f f - f  ~ am~g)l <= e 

i>-N independently of  m, n. Taking sup over m, n in (5.7), we obtain 

I I f ? - f ~  ~ e  
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for all i>-_N. From (5.8) it follows that f~ that is (h~,)Ebc for all gaEX, 
because, in view of (5.1), the divergence of  the double sequence ((a,, ,f,  gi~ even 
for some g~EX with IIg~llx<=l is impossible. In fact, if i>=N, then for each m, n, 
by virtue of  (5.7) and (5.1), we have 

e ~ sup I(o, . . ( f , - f ) ,  g~ ~ I(a, ,~(fi-f) ,  g~ 
llgOnx~l 

--> g x O ) l - I & , . . f  , g~~ 

and the double sequence ((tr,..f~,g~))Ebc for all i>N. because .~E(X~A).  Thus 
(X~A)  is a Banaeh space. 

It remains to prove the coordinate-wise convergence in (X~A).  In fact, if, 
for example, we take g2=eJllezllx, we obtain from (5.1) and (5.2) that 

2 -"  [b~z- bkl110~,..~t = [(trm.(f~ ~ 1 7 6  g~)l" Ile..llx 

<- Ilffl-f~ �9 Ileallx, 
whence by (2.1) 

2-~lblt--bkll <= IIf?--f~ " llezllx, 

which yields that bkt bkt for i---oo. An analogous argument applies to the co- 
ordinates akl, Ck~ and dk~. Consequently, (X- ,A)  is a BK-space. 

Corollary 5.2. I f  X is any of  the spaces C, M, L p, L~, I-n, or V and the summa- 
bility method A satisfies condition (2.1), then the complementary space (X-~A) is a 
BK-space. 

Proof. Since the above-mentioned spaces X of  functions f are Banach spaces, 
the corresponding spaces X of  Fourier coefficients (5.6)with norm IIf~ 
are BK-spaces, and by theorem 5.1 the A-complementary spaces (X-*A) are BK- 
spaces with the norm (5.2). 

The following corollary holds true (compare [6], Satz 2.3, [8], Satz 3', and [24], 
theorem 13): 

Corollary 5.3. I f  the space X of  double Fourier series is a BK-space, A satisfies 
condition (2.1) and X n P  is dense in X, then f~ i f  and only i f  

(5.9) IIf~ < co, 

Proof. The fact that f~ implies (5.9) is contained in the proof  of  
Theorem 5.1. We shall prove the converse. Assume (5.9). Then (5.4) is true for  
the double sequence (tp,,,) of  continuous linear functionals, defined by (5.3). By 
the Banach--Stei.tthaus theorem it remains to prove that (h,,,)Ebc on a set dense 
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in X. I f  g~ then gO is some tkt and therefore 

(5.10) ((tr,,,,,f, g~ be 

in view of  (2.1) and (5.1). Since X n P  is dense in X, it follows that (5.10) is valid 
for any g~ that is f~ 

6. Identical classes of multipliers 

Now we require the following definition (see [10], p. 34, [21], p. 202). 
Let X be a normed space with dual X'.  A closed subset F o X "  is called a 

norm-determining manifold for X if for any xE X we have 

sup {koxl: II ollx, 1,  oEr} = Ilxllx. 

For example, the dual X" itself is a norm-determining manifold for X (see 
[21], p. 186, theorem4.3--B,  or [10], p. 30, theorem2.7.4). Consequently, the 
space M is a norm-determining manifold for L:=L 1, because L ' = M  (see [14], 
p. 191). It is advantageous to assume that C" =dV, and then dV is a norm-deter- 
mining manifold for C. This is possible because in view of  (5.1) and (3.9) any con- 
tinuous linear functional ~p on C can be represented by the formula (cf. [9], p. 140) 

(pf =- lira (fo, am, g} 
//l~n 

with fEC and g~ by Theorem3.3, if A satisfies conditions (2.1) 
and (2.2). 

Now we can prove (cf. [9], Satz 6, [25], theorem 4.3) the following 

Theorem 6.1. Let the summability method A satisfy (2.1). Let X and Y be BK- 
spaces of  double Fourier series, P be dense in X, and let F and A be norm-determining 
manifolds for Y. Then 
(6.1) (F, (X --~ A)) = (A, (X ~ A)). 

Proof. By the definition of  multipliers and corollary 5.3, it follows that ~ is 
a multiplier of  the class (F, (X-,A)) if and only if I[(Tf)~ oo for each 
f iEF .  Let Tin,: Y'-o.X~ be continuous linear operators determined by the for- 
mula 

T,,,,f ~ = a,,,( Tf). 

Let the continuous linear functionals fm,=Tm.f~ be defined b y  the formula 

fro.gO = (/" fO, gO). 
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Then by (5.2) and (5,1) we obtain 

ll(Tf)~ = sup sup ]fr,,g0l = 
m,n I lg~ 

= s u p  I l f , , , l lx .  = s u p  IlZm, f~ 
/?1~/I lqltn 

Therefore e is a multiplier of  the class (F, ( X ~ A ) )  if and only if 

(6.2) sup IlZm, f~ , < co Vf~ 
m . .  

By the uniform boundedness theorem ([10], p. 26, theorem 2.5.5), condition (6.2) is 
equivalent to 

(6.3) Ilz,,,ll~w,x,) = O(1). 
In view of  (5.1) 

(T.,.f0, gO) = (f0, Tin.gO), 

that is Tin. are self-adjoint operators ([21], p. 214). Therefore from the previous 
calculations we obtain that 

tlZ,,,ll~(r,x,) = sup sup I ( f  ~ Tmng~ 
llf~ u  [Ig~ 

f ~  F 

= sup IIT,,,g~ = IJZm, ll~x.y), 
llg01lx~_l 

because F is a norm-determining manifold for Y. Since A is also a norm-deter- 
mining manifold for the same Y, it also follows that 

[IZ,~,ll~e~a.x.) = IIT,,,I[~x.y) 
and consequently 

IlZ,,,ll~ew,x,) = IlZ,,,llzeCa,x,), 

whence in view of  the equivalence of  (6.2) and (6.3) the equation (6.1) follows. 
From theorem 6.1 we obtain (cf. [9], p. 141) the following corollaries: 

Corollary 6.2. If the summability method A satisfies (2.1) and X is any one o f  
the spaces L~, L p or C, then 

(6.6) (C, (X ~ A)) = (M, (X ~ A)). 

Proof. One must prove that the Banach space C is a norm-determining mani- 
fold for the Banach space L. In fact, C c M = L "  and for each gEC there exists 
a functional r163 such that 

= f f t2x(s, t) g(s, t) ds dt q~x 

(see [14], p. 191) for all xEL, whence a_<-l[xllL, where 

= s u p  {koxl" ll~011u -~ 1. gee}. 
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On the:other hand for each xEL there exists the function goEM with go(s, t ) =  
sgn x(s, t). According to Lusin's theorem ([12], p. 106) for each 6>0  there exists 
a subset E~=Q with Lebesgue measure mEo>4n~-6 and a function g~EC such 
that go(s, t)=go(s, t) on E0 and Igo(s, t)l<=l. Designating eo=Q\Eo and 

x = x(s ,  0 go (s, t) ds dt, 

by the absolute continuity of the Lebesgne integral for any e>O there exists 6>0  
such that 

>l ,xl = =  ffE+ff.l>lff l= - [ f f o l  

= llXllL--ffe, IX(S, 01 ds d t - f f e ,  x(s, t)go(s, 0 dsdt  

> I tXlIL--2f f  e IX(S, t)l dsdt  > IlXllL--2e 

and hence a=l lxl lL.  
Now the set P is dense in C (see [22], p. 14) and in Lv (see [27], p. 128) and 

hence in L p. It remains to adapt theorem 6.1 with Y=L,  I '=C and A=M.  

Corollary 6.3. I f  the summability method A satisfies (2.1) and X is any one of  
the spaces L~, L p or C, then 

(L, (X -- A)) = (air, (X ~ A)). 

Proof. The Banach spaces L and dV are norm-determining manifolds for C. 
In fact, we have seen that dV=C'.  Further, L ' = L c C "  and from the theorem 
on sufficiently many continuous functionals (see [10], p. 30, theorem 2.7.4), it 
follows that for each xoEC=L there exists a functional ~ooEL' with [Iq%]IL,=l 
and ~o0x o-- [[xo[[c. Consequently 

sup {l~0x01: II~01lc, <-- 1, ~pEL} --> sup {l~ox0l : II~PlIL' --<-- 1, ~oEL'} _-> Ilxollc. 

The inverse inequality follows from Iq~xl<-IIq~llc, llxllc , Thus L is also a norm- 
determining manifold for C. Because P is dense in the considered spaces, it remains 
to adapt theorem 6.1 with Y=C, /"  = L  and A =dV. 

From corollaries 6.2 and 6.3 with the help of theorems 3.1 and 3.3 we obtain: 

Corollary 6.4. The following identities 

1) (C, L~,) = (M,L~,), la) 

lb) (C, M) = (M, M) 

3) (L, L~) = (are, L~,), 

3b) (L, M) = (dV, M), 

between classes of  multipliers hold: 

(C, L p) = (M, L p) with p > l, 

2) (C, dV) = (M, dr) ,  

3a) (L, L p) =- (dV, L p) with p >  1, 

4) (L, dV) = (dV, dr) .  
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The following is also true (of. [9], p. 143, Satz 12, [25], p. 93, theorem 4.5): 

Theorem 6.5. For any summability method ,4 and arbitrary spaces X and Y, the 
inclusion 

(X, Y )  ~ ( (r  -. a), (X -. a)) 
holds. 

Proof Let e be a multiplier of  class (X, Y), that is (Tf)~ Y for any f~ 
Let goE(Y~A). Since 

(Y ~ A )  -- {gO: (gO, hO)Ed,b Vh0EY} 

and h~176 Y, it follows that (gO, (Tf)O)EA~ for any f~ Since (5.1) means 
hat  (gO,(Tf)~176176 one obtains ((Tg)~176 for any f~ that is 
(Tg)~ A). 

Corollary 6.6. The following identities between classes of  multipliers hold: 

1) (Lo, L| = (L~,, L~,), 

l b) (L, L) = (M, M), 

2a) (L p, M) = (L, L~), p > 1, 

3a) (L p, L) = (M, L~), p > 1, 

where p - X + q - l =  1. 

l a) (L p, L p) = (L q, La), 

2) (L o, M) = (L, L~,), 

3) (Lo, L) = (M, L~,), 

4) (L~, L) = (M, Lo), 

p > l ,  

Proof For example 2) follows from theorem 6.5, putting X = L r  Y=M,  and 
A satisfying (2.1) and (2.2), with the help of  theorems 3.1 and 3.2, since 

(L . ,  M) ~ ((M -~ A), (L .  -~ A)) = (L, L~,) = ((L~, -~ A), (L ~ A)) = (L| M). 
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