On John and Nirenberg’s theorem

Ingemar Wik

Introduction

A well-known theorem by John and Nirenberg states that for a function f in
BMOR™) with | flzsmo=K we have for every cube Q with sides parallel to the
axes:

) |x€Q; 110 —agl > 0| = ere™ K.

The constant ¢, which is obtained normally is of the form 2—°". In the paper [2]
John and Nirenberg claim that the constant ¢, can be improved to be of the order
log n/n. (c, is an absolute constant e.g. 2.)

In this paper we introduce the more general notion of a false cube and an as-
sociated BMO-norm, || fllzao- We will show that (1) is true with this norm for
all false cubes Q with a constant ¢, which then is independent of n (Theorem 1),
We also will show (Theorem 2) that the quotient of | fl3p0 and || fllzmo is at
most of the order }n, which means that we can improve c, in (1) to the order of
n~Y2 and at the same time allow Q to be any false cube.

Definitions and notations

A cube will always mean a cube in R” with sides parallel to the axes.

A false cube is an n-dimensional rectangle in R*® whose sides are parallel to
the axes and for some s have side lengths either s or 2s, i.e. its proportions are
2X2X...X2X1IX1IX... X1

The Lebesgue measure of a set E is denoted by |E|. If fis a real-valued function
in L} . we define the sharp function, f*, by

1
@ 40 = swp 15 [o [ (0 =fO) dxdy,

where the supremum is taken over all cubes Q containing 7,
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f¥ is also defined by (2) but with the less severe restriction that Q varies over
all false cubes containing z. Obviously

50 = 0.

We use the following norms:
1flawo = 1 /¥ and | flsmo = 1/¥ -

In [3] it is shown that
I flamo = 1 flemo = 2| fl5mo>

where || fll%:0 denotes the usual BMO-norm as defined in [2]. We will let a, de-
note a median value of fin a (false) cube @, i.e. a real number with the property that

[(x€Q; fO) = ag)|= +101, |(¥€Q; f(x) = ag)| = 510l

B, consists of the vertices of the unit cube in R™ If v=(v;, v, ..., v,) and
w=(tyg, fs, .--, 4h,,) are two elements of B, the Hamming distance between v
and pis:

A, u) = 2:';1 [V — -

Theorems and proofs

Theorem A. Let a be a real function on B,,, such that

la)—a@)| = d@, w.
Then

Sen, Syen la()—al) = LZLmemkﬂzmﬁm§M N

An elegant graph theoretic proof of this theorem is now available [1].

Lemma 1. Let E be a subset of R" with finite Lebesgue measure and ¢ a real
number in (0, 1). Suppose that E is contained in a false cube Q (or just R*) and
that |E|=¢|Q|. Then there exists a sequence {Q,}; of dyadic false cubes, dyadic
with respect to Q, and contained in Q such that they have disjoint interiors and

D 5ol <10,nE| = 010l
2) U7 Q.0F,
where E’ is the set of density points of E.

Proof. Let x be a point in E’. Then there exists a dyadic cube, Q, ;, containing

X, such that
1Qx1NE| = 01Qx,1l-
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We double the volume of the cube Q, ; and obtain a false dyadic cube Q, , by
doubling the length of the side parallel to the x;-axis and proceed with the other
dimensions in order. After the n:th doubling we have got a new (true) cube and
start again with the first dimension. After finitely many, say (p—1), doublings we
reach a first false cube with an “E-density” of at most g, i.e.

‘Qx,anl = Qle,pl-

Since
|Qx,p—lnEl = QIQx,p—ll
we have
Qs P El = Qs p 1N El = 0100l = 5 Qs
ie.

Q
7|Qx,pl = |Qx,anl = Qle,pl'

This procedure can be carried out for every x in E’. We obtain a family of false
cubes {Q, }.cr . (p will depend on x.) We will now show that two such false cubes
O..p, and Q. , have disjoint interior unless one of them is contained in the
other.

If the two false cubes do not have disjoint interiors their intersection must
contain at least one dyadic cube Q,. It is evident that both @, , and Q, , are
obtained by successively (within Q) doubling Q, dyadically in the dimensions
1,2, 3, .... Therefore either the two cubes coincide or one of them is a subset of
the other.

We delete from the family those false cubes that are contained in others and
the remaining cubes, which then have disjoint interiors, can be numbered by de-
creasing volume. Thus we have obtained the sequence claimed in the lemma.

Note. We note that if Q is a (true) cube we may prescribe not only that the false
cubes should be disjoint but also that their side lengths do not increase when taken
in a certain common order, which in the proof above is chosen to be the order given
by the x, x,, ..., X, axes.

Theorem 1. Suppose that fis a function in BMO (R") and

I/ 13m0 = K.

Then there exists a constant o (=16 will do) such that for every false cube Q

(3) Syl = 2. 2-9C071Q],
where

S; = {x€Q; |f(x)—agl = o}.
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This can also be expressed as

20
f(x)~agl - -
erc ofdx = In2{a—cK) o for c=—+ K

Proof.- We may assume that | fllzyo=1. Let Q be an arbitrary false cube
and E, a subset of Q with measure |Q|/2 such that

f(x) =ap on E,, and f(x)=ap on QO\EK.
Put, for k=0
E, = {x€Q; f(x)—aq = k}.
We now use Lemma 1 to cover E;, k=0, with a sequence {Q, };-, of disjoint
false cubes, dyadic with respect to Q, such that

@ T100,) < 1En 04l = 5100

Therefore

CEINO,. = 510,

and we have for ¢in @, , and />0

, - ]E an,vl
f” (t) o IQ l2 fEanQk,vdyfc(Ek)an,v(f(y) ——f(X)) dx =1 kTQk,vlk ’

and, since ||f¥|.=1,
[Ees1n Gyl =

We use (4) and make a summation over v. This gives

10l
s

1 4 4
|Egqdl = TZ 1@k, < T 2 NE Q= T [El-
We can obtain the same estimate for the sets

{(x€Q; f(¥)—ag =k}, k=<0.
The estimates combine to
8

ISkl = T [Sil-
We take /=16 and find

ISk 416l = ‘;‘ 1Skl
which, for any positive integer p implies:

[Sie,l = 27718, =277|Q),

from which (3) follows and the theorem is proved,
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We will now prove a couple of lemmas which will make it possible for us to
compare || fllgso and || fllzao- Theorem 1 then will provide a good constant in
John and Nirenberg’s theorem.

Lemma 2. Suppose that f is a function in BMO(R"®), Q an arbitrary false cube
and ay a median value of f in Q. Then

()

1 2
@fclf(x)wd dx =5 [ [ L@ ~f0)l dxdy = @fg 1f(x)—agl dx.

1
o
Proof. Let E, and E, be disjoint subsets of Q such that
fx)=ap for xcE, f(x)=ay for xCE, and |E|=|E|=+I0l.
Then
Jo [\ 0 —fOaxdy = [, [ 1/)-f0)dxdy
+ [, [ V@~ fONdxdy+2 [ [ 1f6)—~f0)ldxdy.

The right inequality of (5) is an immediale consequence of the triangle inequality.
Using only the third member of the right-hand side of (6) we can also derive:

S S f@~foNaxdy=2 [, [ [(f)-ag)+(ag—f()]dxdy
=101 [, 1/ —agl dx+10! [, lag—fG)l dy = 10| f , 1/(x)—aql dx,

©®

which proves the left inequality of (5).

Corollary. Suppose f is a function in BMO(R"). Then, for every cube Q, we have
[ 17 —agl dx = | flawo.
10l /e e

The same inequality with || f1 za0 replaced by || fllzuo holds for every false cube Q.

The corollary is an immediate consequence of (5) and the definition of || f{zye and
| /13m0 @s suprema.

Lemma 3. Suppose f'is a function in BMO (R") and Q, and Q, two adjacent cubes
with the same side length. Then

lag, —ag,| = 6 flsmo,

where ay and a,, are median values of f in Q, and Q, respectively.
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Proof. We may assume that | flgo=1. Let Q be the cube which consists
of half of @, and half of Q, and a, the median value of fin Q. Then for some 7=1
we use the corollary above to see that:

Song M@ —agldx =110l [, 1f()—agdx =10l

Jano, f®)=agldx = (1=0i@l, [, 1f()~ag) dx = IQI.

By the triangle inequality

anleQ—aQJ dx = (1+0|Q|, ie. lag—ag|=2(1+1)
and
lag—ag,| =2@2~1).
Thus
lag,—ag,) =2(1+0+2(Q2—1) =6,

which proves the lemma.

Theorem 2. Let f be a function in BMO(R"). Then

o = [2+6 1@-] I flasto-

Proof. Without loss of generality we may assume that [ flzo=1. Let Q be
an arbitrary false cube consisting of 2", 1=m<=n cubes. We may also assume that
0 has side lengths 2s in the first m dimensions and side lengths s in the remaining
n—m dimensions. Put

b, = Ixnelg x, k=12,...,n
The midpoints of the subcubes of Q then have the coordinates
1 1 1 s K
[bl+(§+81]s9 b2+[’5+82] Sy eey bm+(§"+6m] 3, bm+1 F55 s bn+7]9

where the g,:5 k=1,2, ..., m are either zero or one. We number the subcubes by
the m-digit numbers v=¢,, &, &, ..., &, which also will denote vertices of B,,.
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a, is a median value of fin Q,. We have:
Jo S M@ -faxdy = 3T, [, dx [ 1f)~f)dy
=30 [, 4% [, (7 =al+la,—a,l+1/0)—a,)dy

= 2101 3T, [, - dxt 37 la,—a,)

Since | fllgaso=1 we use the corollary of Lemma 2 to see that

2101 3V, [, 1fe)—a)dx =210 37, 10,] = 21QP.

By Lemma 3
la,~a,| = 6d(v, ),

where d(v, u) is the Hamming distance between v and u regarded as elements of
B,,. This implies, using Theorem A, that

o = [2+61/§] -

and the theorem is proved.
As a corollary to this theorem and Theorem 1 we obtain the following version
of John and Nirenberg’s theorem.

Corollary. Suppose that f is a function in BMO(R") and

I/ 1sso = K.

Then there exists a constant o (=16(2+6 Vn/n) will do) such that for every false
cube Q

S, = 227707 Q),
where

Ss = {x€Q; |f(x)—ag| = a}.
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