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Introduction 

A well-known theorem by John and Nirenberg states that for a function f in 
BMO(R ~) with IIflIBMo=K we have for every cube Q with sides parallel to the 
axes: 

(1) I{xcQ; If(x)-aQI > a}] <- cle-C:K-'lQl. 

The constant c2 which is obtained normally is of  the form 2 -c". In the paper [2] 
John and Nirenberg claim that the constant c z can be improved to be of  the order 
log n/n. (Cl is an absolute constant e.g. 2.) 

In this paper we introduce the more general notion of  a false cube and an as- 
sociated BMO-norm, Ilfll'BMO. We will show that (1) is true with this norm for 
all false cubes Q with a constant c2 which then is independent of n (Theorem 1). 

We also will show (Theorem 2) that the quotient of  Ilfll'~Mo and Ilfll~Mo is at 

most of  the order l/n, which means that we can improve c~ in (1) to the order of  
n-VZ and at the same time allow Q to be any false cube. 

Definitions and notations 

A cube will always mean a cube in R" with sides parallel to the axes. 
A false cube is an n-dimensional rectangle in R" whose sides are parallel to 

the axes and for some s have side lengths either s or 2s, i.e. its proportions are 
2X2X.. .X2Xl XIX...X1. 

The Lebesgue measure of  a set E is denoted by [El. I f  f is a real-valued function 
in L~o c we define the sharp function, f~ ,  by 

1 
(2) P(O =  u}7-l -fo dx dy, 

where the supremum is taken over all cubes Q containing t. 
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j~ '  is also defined by (2) but with the less severe restriction that Q varies over 
all false cubes containing t. Obviously 

f~'(t) => f~ (0. 
We use the following norms: 

iifl[BUO = ]!f#[l~* and IlfI['BMO = ]If#'[i~ �9 

In [3] it is shown that 

IifItBMO <: [[fklnMo < 21 ~ r * = = , [ J I J B M O ~  

where [I fll~Mo denotes the usual BMO-norm as defined in [2]. We will let aQ de- 
note a median value of  f i n  a (false) cube Q, i.e. a real number with the property that 

I( )1 I( )1 1 xEQ; f (x)  >= aQ >= , xEQ; f (x)  <- aq >= -~ IQI. 

B m consists o f  the vertices o f  the unit cube in R '~. I f  v=(vl,  vz . . . . .  Vm) and 
#=(/zt , /% . . . .  , Pro) are two elements of  B m the Hamming distance between v 
and # is : 

m 

d(v, #) = ~ i = 1  Ivi--]lil" 

Theorems and proofs 

Theorem A. Let a be a real function on B m, such that 

l a ( v ) -a~ ) l  <- d(v, #). 
Then 

< ~ m  y ,  ( m ] ( k )  l k _ p l = m ( 2 ~ ) < 4 m V ~  ~ Zv~B,~ Zucnm la(v)--a(#)l = ~k=0 ---,p=o I,p) 

An elegant graph theoretic proof  of  this theorem is now available [1]. 

Lemma 1. Let E be a subset of  R" with finite Lebesgue measure and 0 a real 
number in (0, 1). Suppose that E is contained in a false cube Q (or just R n) and 
that IEI<=elQI. Then there exists a sequence {Qv}~o of dyadic false cubes, dyadic 
with respect to Q, and contained in Q such that they have disjoint interiors and 

1) ~-elQd < IQ~c~EI <: 0lad  

2) U~ Q~DE', 

where E" is the set o f  density points of  E. 

Proof. Let x be a point in E ' .  Then there exists a dyadic cube, Qx,~, containing 
x, such that 

IQx,lc~gl > elQx,tl. 
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We double the volume of the cube Q~,~ and obtain a false dyadic cube Qx,2 by 
doubling the length of  the side parallel to the x~-axis and proceed with the other 
dimensions in order. After the n: th  doubling we have got a new (true) cube and 
start again with the first dimension. After finitely many, say ( p - 1 ) ,  doublings we 
reach a first false cube with an "E-density" of  at most Q, i.e. 

Since 

we have 

i.e. 

}Qx, pnEI  <- olQx,~l- 

IQx,p-lnEI > ~lQ~,p-xl 

Q 
IQx,pnEI ~= IQ~,,,_~nEI > elQx,~-~l  - -  T Ia~,pl 

21O~,pl < IO~,,pnEI ~ elOx,pl. 

This procedure can be carried out for every x in E ' .  We obtain a family of  false 
cubes {Qx, p}xcr- (p will depend on x.) We will now show that two such false cubes 
Qxl, pl and Q"2,p, have disjoint interior unless one of  them is contained in the 
other. 

I f  the two false cubes do not have disjoint interiors their intersection must 
contain at least one dyadic cube Q0. It is evident that both Qxl, p, and Q~2,p~ are 
obtained by successively (within Q) doubling Q0 dyadically in the dimensions 
1, 2, 3, . . . .  Therefore either the two cubes coincide or one of  them is a subset of  
the other. 

We delete from the family those false cubes that are contained in others and 
the remaining cubes, which then have disjoint interiors, can be numbered by de- 
creasing volume. Thus we have obtained the sequence claimed in the lemma. 

Note. We note that if  Q is a (true) cube we may prescribe not only that the false 
cubes should be disjoint but also that their side lengths do not increase when taken 
in a certain common order, which in the proof above is chosen to be the order given 
by the xl ,  xz . . . . .  x, axes. 

Theorem 1. Suppose that f is a.function in BMO (R") and 

t l f l l ;Mo = K .  

Then there exists a constant e ( e =  16 will do) such that for every false cube Q 

(3) [S.I ~ 2.2-'~'~)-l[QI, 
where 

S~ = {x~Q; I f(x)-aol  ~ tr}. 



196 I. Wik 

(4) 

Therefore 

This can also be expressed as 

2ct r fa e4Y(x)-~ dx <- tn 2(ct -cK) IOl for c < 

Proof. We may assume that Ilfl[~Mo=l. 
and Eo a subset of  Q with measure IQI/2 such that 

f ( x )  <-a e on Eo, and f (x)>=ar on Q\Eo .  
Put, for k->_0 

Ek = {xCQ; f ( x ) - a ~  >= k}. 

We now use Lemma 1 to cover Es k>=0, with a sequence 
false cubes, dyadic with respect to Q, such that 

1 
l l a k , J  < Igkna~,,I <= ~-IQk, J- 

Let Q be an arbitrary false cube 

{Qk, v}~'=l of disjoint 

1 
IC(EDnQk,J => ~-IQk, J. 

and we have for t in Qk, v and l > 0  

2 f~ a y f r  (f(y)-f(x))dx >= l ]E"+tnok'~l , 
f#'( t)  >-- IQk, vP ~§ (~)nek, v IQk,,I 

and, since IIP'II~ = 1, 
IQk,,I 

[E~+~n Qk,J <= ---F-- 

We use (4) and make a summation over v. This gives 

1 4 4 
IEk+zl <--TXIQk,  J < T z ~ I E ~ n Q ~ , J  = levi. 

We can obtain the same estimate for the sets 

{x~Q; f ( x ) - a  e <- k}, k < O. 
The estimates combine to 

IS~ I < 8 ISkl -Fl ~ 

We take l=  16 and find 

IS~+1~1 < 1 = y Iakl, 

which, for any positive integer p implies: 

IS1~ I < 2-PlSol < 2-PlQI 

from which (3) follows and the theorem is proved, 
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We will now prove a couple of  lemmas which will make it possible for us to 
compare [lf[IB~o and tlf[l~Mo- Theorem 1 then will provide a good constant in 
John and Nirenberg's theorem. 

Lemma 2. Suppose that f is a function in BMO (R'), Q an arbitrary false cube 
and a 0 a median value o f f  in Q. Then 

(5) 

' So ' So So IQI I f (x) -ael  dx <= IQI---- r. <= l f (x ) -ae l  dx. 

Proof. Let E1 and E~ be disjoint subsets of  Q such that 

f(x) ~_a e for xEEI, f(x)<=ae for x~E~ and levi = Ig, I =~-IQI. 

Then 

(6) 
f Q f ~2 If(x)--f(Y)l dx dy = f r,, rE, If(x)-f(y)l dx dy 

+ f ~, f ~, If(x)-f(.v)l dx dy + 2 f ,~, S~, If(x)-f(Y)l dx dy. 

The right inequality of  (5) is an immediale consequence of  the triangle inequality. 
Using only the third member of  the right-hand side of  (6) we can also derive: 

f a f a If(x)-f(y)l dx dy >- 2 f E, f ~, [(f(x)-a~ dx dy 

= IQI rE, If(x)-a~ dx + IQI fE, lae-f(Y)l dy = IQI fQ If(x)-ael dx, 

which proves the left inequality of  (5). 

Corollary. Suppose f is a function in BMO(R'). Then, for every cube Q, we have 

1 
f Q If(x)--aol dx ~ [If lingo. 

IQI 

The same inequality with II fllBuo replaced by II fll'8uo holds for every false cube Q. 
The corollary is an immediate consequence of  (5) and the definition of  I1 fllns~o and 
II fll'aMo as suprema. 

I.emma 3. Suppose f is a function in BMO(R") and Q1 and Qz two adjacent cubes 
with the same side length. Then 

laQl--aQ, l ~ 6[If[IBuo, 

where a~ and aQ, are median values o f f  in Q1 and Q~ respectively. 
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Proof. We may assume that I[fllBMo=l. Let Q be the cube which consists 
of  half  of  Q~ and half  of  Q2 and aa the median value of  f i n  Q. Then for some t <- 1 
we use the corollary above to see that: 

f Qne~lf(x)-ael dx = tlQI, f Qne~ If(x)-aell dx <= IQI 

f ana, If(x)-aQI dx ~ (1 - t ) lQI ,  

By the triangle inequality 

fQ lae-aa~l  dx <= (i  +t)lQI, flQx 

and 

Thus 

f onQ, I f(x)-a~l dx ~ IQI. 

i.e. laa-aQll <= 2 ( 1 + 0  

laa-aQJ <= 2 ( 2 - 0 .  

laQl-a~2] <= 2 ( 1 + 0 + 2 ( 2 - 0  = 6, 

which proves the lemma. 

Theorem 2. Let f be a function in BMO (Rn). Then 

llf]l'nMo <= {2 +6 V ~ l  ]If'[~Mo. 

Proof. Without loss o f  generality we may assume that I l f l lnuo=l .  Let Q be 
an arbitrary false cube consisting of  2 m, 1 <=m<n cubes. We may also assume that 
Q has side lengths 2s in the first m dimensions and side lengths s in the remaining 
n-rn dimensions. Put  

b k = m i n x k ,  k = l , 2  . . . . .  n. 
xEQ 

The midpoints o f  the subcubes of  Q then have the coordinates 

bl+ - f+sl  s, b2+ - f + ~  s . . . . .  bm+ "~+~ra S, bm+l+-~-,  . . . .  bn+~ , 

where the ek:s k = l ,  2 . . . . .  m are either zero or one. We number the subcubes by 
the m-digit numbers v=e l ,  ez, e3 . . . . .  e m which also will denote vertices of  Bm. 
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a~ is a median value o f f  in Q~. We have: 

L L If(x)-f(y)[ dx dy = Z2",.=lfedx feif(x)-ffy)[ dy 

<= Z~,~,=lf ~ dx f Q, (if(x)-avl+ia~-a~,l+lf(y)-a~,l)dy 

$ m 

21QI Z , = .  for IQI = ~ If(x)-a~l dx+- -~ -~v ,~=l  la,-a~l. 

Since I l f l l s ~ t o  = 1 we use the corollary of  Lemma 2 to see that  

21QI Z','~ f If(x)-a,I dx -~ 21QI Z~'__~ IQ,,I = 21QI'. 

By Lemma 3 
lav-at, I ~ 6d(v, #), 

where d(v, 10 is the Hamming  distance between v and/~  regarded as elements of  
Bm. This implies, using Theorem A, that  

]lf[l'~MO<=[2+6Vr~}<61/n 

and the theorem is proved. 
As a corollary to this theorem and Theorem 1 we obtain the following version 

o f  John and Nirenberg's theorem. 

Corollary. Suppose that f is a function in BMO (R ~) and 

Ilf)lB~o : K. 

Then there exists a constant ~ (~=  16(2+6 1/n/--~) will do) such that for every false 
cube Q 

IS.l <= 2.2--(,K)-'IQI, 
where 

S~ = {xEQ; If(x)-aQl >= tr}. 
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