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1. Introduction 

Let B be the unit ball in C" and D the unit disc in C. The aim of this paper is 
to present a new proof that the Hardy spaces Ha(B) and Ha(D) are isomorphic. 
This became necessary after the discovery that Wojtaszczyk's paper [18] contains a 
mistake. Part of Wojtaszczyk's proof was based on the intuition that nonisotropic 
distances on the unit sphere in C" and on R ~"-1 give "locally similar" metric spaces. 
This, as we show in Section 5 is not true, hence the argument behind Proposition B 
of [18] is not valid. Our proof is based on the probabilistic approach developed by 
Maurey in [10]. We show that if the standard Brownian motion is replaced with the 
diffusion corresponding to the invariant Laplacian in B, then Maurey's method gives 
an isomorphic embedding of Ha(B) onto a complemented subspace of a martingale 
Ha-space which, in turn, is isomorphic to a complemented subspace of Ha(D). 
Then we can use the first part of Wojtaszczyk's proof, which established that H a (D) 
is isometric to a complemented subspace of Hi(B) (see also [1]) and the isomorphism 
follows by the decomposition principle. The last part of [18], where the atomic 
Hi-space on R" with a nonisotropic distance is studied, is of independent interest 
and in Section 5 we use it to show that, in spite of the mistaken proof, Proposition B 
of [18] is true. 

The case of l < p <  ~ was solved in [1, 18] where it was shown that HP(B) 
is isomorphic to LP([0, 1]), hence to HP(D). 

In order to make the paper reasonably self-contained we included some argu- 
ments which are fairly strightforward modifications of proofs which can be found in 
the literature. 

I would like to thank Richard M. Timoney for many stimulating discussions 
and help in the preparation of the manuscript. 

* This work was done while the author was visiting Trinity College, Dublin. 
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2. Preliminaries 

2.1. Spaces of analytic functions 

Throughout the paper we will assume that 1 <=p< co. 
Let B be the unit ball in C ", S the unit sphere and a the normalized, rotation- 

invariant measure on S. 
HP(B) will denote the space of all analytic functions in B such that 

sup{f ""/" Ilflln, = s If(rz)lP da(z)) <oo. 

A(B) will denote the ball algebra of all functions continuous in B and analytic 
in B. Rudin's book [13] is an excellent reference for the theory of HP(B). 

If fEHP(B) then f(z)=lim,,xf(rz ) exists for almost every z~S and 11 fllH~ = 
IlfllL,C~,~. f can be recovered from f by the means of the Poisson formula 

(1) f(w) = f ](z)P(w, 2) 

where wCB and P(w,z)=(1-1wl2)"/ll-(w, z)[ ~ is the invariant Poisson kernel. 
For 0t>l, zCS and fCHP(B) let 

D~(z) = {wEB: [1-(w, z)[ < 2(1--lw12)} 

and 
(M~f)(z) = sup {[f(w)l: w~D~(z)}. 

Then, by [13, Theorem 5.6.5] 

(2) IlM~f[lL,~S) ~- A(cOxlP[lflln~. 

For z, w~B let d(z, w ) = l l - ( z ,  w)l a/2. Then d(z, w) satisfies the triangle 
inequality in B and restricted to S is a distance ([13, Proposition 5.1.2]). If wCS 
then Q(w, r) will denote the d-ball in S. 

The space BMOA is defined as consisting of all fCH~(B) such that 

Ilfll~M~ = max {'f(0)l" sup { l ~ - @ f ~  1 y tr(Q)l ] d a r f Q  da: Q = Q(z, r)}} . < ~  

BMOA can be identified with the dual space of Hi(B) in the sense that every 
continuous functional r on HI(B), restricted to the dense subspace H2(B) is given 
in the form ~(f)=ff~da for some g~BMOA and EI~IIcHI~, and IIglIBMo are 
equivalent (cf. [2]). 
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2.2. Martingale spaces 

We will also consider the martingale analogues of HP(B) (for details we refer 
to [9]). If (f2, J / ,  P) is a probability space, E the corresponding expectation and 
~=(~-m)~, an increasing sequence of sub-a-fields of ~ then HP(~ -) is defined as 
consisting of all ~--martingales (fro), for which 

IlfllHp(~) = (E(sup IfmlP)) lip <oo. 

Let ~oo:[(~'m)/] be the smallest a-field containing all #r m. If (fm)EH%~) then fm 
converges almost surely and in L p to an #'~-measurable random variable f=. and 
f,,=E(foo[,~m). Hence HP(~ ") may be identified with a space of ~-~-measurable 
functions. The martingale version of BMO consists of all fEL2(K2, dr P) such that 

]lf}ln~o(~) = max {]Ef], sup IIeOf-E(f:m_Ol l m)l]L <,,,} < •. 

As before BMO (~') can be identified with the dual of H 1(~-). We will also need 
the inequality 1[ f[[B~o(~) <--2 [I f[ln't~)" 

If ~r C I2 then by [(dm)~] we denote the a-field generated by (mCm), similarly 
for random variables Xm, [(Xm)m]=[{{XmEA}: A is a Borel set}]. 

2.3. Diffusion in B 

Let zT denote the invariant Laplaeian in B (cf. [13]) and (X:(og)) the correspond- 
ing analogue of the Brownian motion - -  the diffusion in B with the infinitesimal 
generator 1/2zT (cf. [5], [11, p. 90]). It was proved in [5] that (X~) has almost surely 
infinite life-time and for every z6B the process (X:), starting at z, converges almost 
surely to a random variable XL taking values in S. Below we list the main properties 
of (X~). 

(A) X~ is Aut (B)-invariant, i.e. for every biholomorphic automorphism ~ of 
B, (~oXT) isidentical to (X~(')). Because of this we may assume that X : =  ~,oX~ 
for some ~,EAut B satisfying ~z(0)=z. For convenience we will denote X ~ by X t. 

(B) If ( is an XT-stopping time then X{ will denote the variable X~,~)(co). The 
process X~ has the so-called strong Markov property, i.e. conditional to ( <  
and X{=w, X{+ t is independent of the past and identical to X E (cf. [ll, pp. 90--91]). 
As a consequence we get, for example, that conditional to ( (<  co, X{=w) X~ has 
the same distribution as X~. 

(C) If fEC~(B) and zTf=0 then for every finite XT-stopping time (, 

E(f(X~)) = f ( z )  

(cf. [7, 16, 17). In particular the above equality holds for all analytic functions in B. 
(D) Trajectories t~+X[(co) are almost surely continuous on R+. 
As the first application of (A) we get 
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Lemma 1. Let IX z denote the distribution of X~ on S. Then 

d~=(w) = P(z, w) d~(w). 

Proof. tto is obviously rotation-invariant, hence tt 0 = a. Since X~ = ~zoXt and 
~z is continuous in B, we have XL=~=oX.~. In particular for every (p~C(S) 

fs ~(w) d~=(w) = f . ~o(X=~) de  = f . ~(@=(x_)) dP 

= f s  ~(@:(w))duo(W) : f s  ~0(@=(w)) a~(w). 

By formula (3.3.5) of [13] we get 

fs  ~ (@=(w)) d~(w) = f~ m (w)P(@: (0), w) ao (w) = f~ ~ (w)XO(z, w) d~(w) 

which proves the claim. 
As we observed above, the distribution #x 0 of X~ is equal to a. If  we assume that 

the process (Xt) is defined on a complete probability space then for every Lebesgue- 
measurable function g on S the composition goX~ is measurable and 

E(goX. . )  = f s g da. 

We will use this fact without further comment. 

3. Probabilistic properties of analytic functions 

In the sequel (Q, ~/ ,  P)  denotes the probability space corresponding to the 
process (Xt) defined in the previous section. 

For fEHP(B)  define 

f * ( ~ )  = sup 
t_~O 

Proposition 2. 
fEHP(B) 

To every 1 ~ p <  co corresponds a constant Ap such that for every 

Ilfl[n~ ~ [If*llL~(~)<: AplIflIH~. 

Proof. We begin with the right-hand inequality. Fix ~>2.  By (2) it is enough 
to show that 

(3) Ilf*llL~(~) <- A,,~, IIM~,fllL,'(s). 

This inequality is essentially due to Debiard but in his paper [4] it is formulated 
and proved only for the unbounded realization of the ball. Here we give a direct 
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proof for the ball generalizing the one-dimensional case presented in [12]. Inequality 
(3) will immediately follow from: 

(4) V;t~oVf~c(B)P(f* > A) ~_ C~a{zES: (M~f)(z) > 2}. 

To prove (4) we define 

Notice that V~ is open in B, Ux is open in S, 
P(X~.E U~,) we have to prove that 

u ,  = { w e s :  (Mj)(w) > ~}; 

V~ = U~Es,.,v~ D~(w); 

c ~  = B ' , , ~ .  

and Uxn~=O.  Since a(Ux)= 

(5) P ( f *  > ~) ~ C~P(X~EUg. 

If U~=S then (5) holds if C~->I so we may assume that U~#S. 
Obviously for zEV~, If(z)l<2, hence if f*(o~)>2 we must have Xt(o~)EGz 

for some t. It follows that if ( is the time of the first entrance to G~ then 

P(f* > A) <- P(~ <oo). 

Thus it is sufficient to prove the following: 
If UGS is open, V=Uwr G=Bx,,V and ~ is the time of the first 

entrance to G then 

(6) p(~ < ~o) ~ C=P(X~.EU). 

Since UniT=0 and for all 09, X0(co)=0EV , if X.~(co)EU we must have Xt(co)EG 
for some t, or equivalently ~(co)<oo. It follows that P(X**EU[~=~)=O and so 

P(X.EU)  = P(X.CUI~ < ~)P(~  <r 

Hence it is enough to show that P(X=E U[~< ~)->k,>0.  But 

= f e(x~EUl~ < ~ ,  x r  = z) aP(xc = zlC < co) (7) 

by (B) = f~  P(X~EU) dP(X; = z[~ < oo), 

We will now find a lower bound for P(X~E U) when zEG. By Lemma 1, 

e ( x = c u )  = f v ~,(z, w)da(w). 
For zEB let 

E~,(z)={wES: I I - ( z ,  w)[ < 2 ( 1 - , z l ' ) }  = {wES: zED,,(w)}. 
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It is easily seen that for zEG, E,,(z)c U. In addition, if wEE~,(z) then 

(1-1z]~)" 1 
(8) P(z, w) = ] l - ( z ,  w>l 2~ > (2/~ (1-Iz12) " " 

Now for zEB let w=zflz I. Then d(z, w)=(1-]zl)l/~<(1--lzl2) a/~. Hence if w'ES 
is such that d(w, w ' ) < ( ( ~ ) -  1) (l-lz12) ~/~ then d(z, w')<=d(z, w)+d(w,w')< 
((~/2) (1 - lz?)) 1/2. This proves that 

Hence if zEG we get 

P(X:EU) = f~e(z, w) d~(w) >- f~ P(z, w) a,~(w) ,,(z) 
(lo) 

by (8) = (l_lzl~)" ,r(E~,(z)). 

By [13, Proposition 5.1.4], a(Q(w, r))=>2-"r ~ so (9, 10) imply 

P(XLEU) >= (l_lzlZ) ~ 2" (1-lzl2) ~ = = k, > 0 .  

Putting this into (7) we obtain 

which proves (6), hence also (4). 
Now the left-hand inequality follows easily. If  fEA (B) then f(Xt)--,-f(X~ ) a.s. 

hence If(X~)l<_-f * a.s. and 

IIfI[R, = [IJ'IIL~iS) = IIf(X~)IIL~'r ~ Ilf*llL~(~), 

which proves the inequality for fEA(B), and  by density it extends to the whole 
~'(B). 

Lemma 3. Let ~ --[X~, s<=t]. I f  fE HI(B) then ( f(X~))~_o forms a uniformly 
integrable (3-~t')-martingale and as t - ~ ,  f(X{) converges to f(X~) almost surely 
and in L ~. 

Proof. The martingale property of (f(XT)) is well known and easily follows 
from (B) and (C) (see also [17, III.22.6]). 

Next observe that for fEHI(B) and ~EAut  (B), fo~EHI(B) and ( f o g ) - =  
f o  4. This and (A) allows us to consider only z=0.  Uniform integrability follows 
then from the Ll-boundedness of the maximal function f *  (Proposition 2). Now 
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by the martingale convergence theorem, (f(Xt)) converges to a random variable F 
and I F l < - f  *. Hence, by Proposition 2, we have 

(11) IIFIILI(~) <-- A1 Ilflln,. 

If fEA(B) then F=foX=.  For a general fEHa(B) let fmEA(B), fm--'f in H~(B). 
Putting fm--f into (11) we get that f,n(X=)-F--"O in La(R), but we also have 

l l f ~ - f l l ~ ,  = Ilf~-fllL,<s) --  I l fmoX~- foX.~[ lLx ,  

hence f , , (X~)-f(X~)~O and so F=f (X=)  a.s. 

Proposition 4. There is a constant C such that for every fEBMOA and every 
finite (Xt)-stopping time 

Ile(If ( x - ) - s  ( x,)i:lx~)lli.~<o) - = -  ciifii, , ,t,o. 
Proof. Let v~ be the distribution of X~. Using (B) and Lemma 1 we get 

I le( ly(x . ) - f  <X,)l:lx~)ll<:<o, : I le ( iy (x . ) - f  (x,)i:lx, = ~)11~o<~0> 

= Ile(If(X=:)-f(=)l:)[[,:<::> ~: sup { f :  I f ( w ) - f ( z ) l  2 d,u=(w)} 
-- ~Tp {f: l i (w) - i (z ) l :P( : ,  w)da(w)} ~- C:lifll~Mo. 

The last inequality is a consequence of the well known equivalence of the BMO- 
norm and the Garsia norm ~cf. [14, Proposition 2.7]). 

4. Main result 

In this section we prove: 

Theorem 5. Hi(B) is isomorphic to Hi(D). 

By [1, 18] Hi(D) is isomorphic to a complemented subspace of Hi(B). We will 
prove that also H~(B) is isomorphic to a complemented subspace of H~(D). This, 
as shown in [18, Section 1], is sufficient to prove our Theorem 5. 

We will use the following result of Maurey: 

Proposition 6 ([10, Proposition 4.15]). For every increasing sequence of finite 
a-fields (~m), Hi (~)  is isomorphic to a complemented subspace of Hi(D). 

Thus the proof of Theorem 5 can be reduced to the next proposition. 

Proposition 7. There is an increasing sequence (~,,) of finite sub-a-fields of Jg 
such that Hi(B) is isomorphic to a complemented subspace of H~(~r). 
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We will closely follow the proof of Proposition 3.7 in [10]. We give first the 
construction we will need and the rest of the proof will be divided into the following 
sequence of lemmas. 

Fix e< 1/2. It easily follows from (1) and obvious properties of the kernel 
P(z, w) that for every z~B we can find an open ball Bz =B(z, rz) such that 

(i) BzcB. 
(ii) If  x, y~B, and fEHI(B) then 

I f ( x ) - f ( y ) l  <-- e(1 -Izl)IlfllH1. 

(iii) If 0<  1 then infl~t< e r~>0. 
By 1/2Bz we will denote the ball B(z, r,/2). 

As in [10], in addition to (~m), we also construct a sequence ~,, of (X0-stopping 
times and a sequence (Zm) of :r,,-measurable random variables approximating the 
variables X~.. 

We begin with 

: o = { 0 , a ) ,   0=0, z 0 = 0 .  

Next we define ~1= ~0 - -  the time of the first exit from the ball Bo. 
Let zl ..... zkEOBo, A1, ..., AkCOBo be such that Ai are Borel, disjoint sub- 

sets of 0B0, k [.-Ji=l Ai=gBo and Ai~I/2B~. Define 

= 

= [(dOff, 

k Z Z1 = Zi=x iXd,. 

In the next step [2 is defined as follows: if os~Ai then Xq(co)CAicB=, and 

[z(co) d~finf{t _> [a(co): Xt(~o)~B,,}. 

~2 and Z2 are then constructed with the same procedure which was used for 
and Za: for each i we find zi, j~OB~,, Ai..~cOB~, such that (Ai,~)j are Borel, dis- 
joint, cover OB~, and Ai, jcl/2B~,,j. Next we define 

= 

Z~ = ~i, jzi, jXd, j, 

and we continue in the obvious way. 
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Lemma 8. (a) If  (m(fD) ~ t<= ~m+l(O)) then Xt(o))6Bz~,@,), in particular for every 
fEH~(B) 

(12) < 

(b) ~m ''~ ~ as  m - - ~ ,  

(c) [Zml-*l a.s. as m-*~, 
(d) ~',~c~V~ d~_~r [X;k: k<=m]. 

Proof. (a) and (d) are obvious by construction. To prove (b) and (c) let toe g2. 
Since ~m(O)) increase, ~m (CO) ~ toE [0, co]. Then, by continuity of Xt(co) on [0, co], 
X;,, (co) ~ Xto (CO ). Since X;'E1/2Bz" " and Xr we get 

1 .<: (13) IZm(co)-X~,(co)[ ~_ -ff rz,~(~,) = IX;,.(co)-X;,+~(oDI. 

Hence rz,,(,o)~0 and thus, by (iii), [Zm(O))[ ~1 .  But, by (13), we also have Zm(O))~ 
Xto(O) ) SO IXt0(co)[=I which is only possible if t0 =oo. 

Now for fEHI(B) let 

f,.  = E(.ToXool -,.). 

Lemma 9. (a) fm converge to foX~ a.s .  

(b) For every m 

(14) IIJ~-foXr I1 < Ilfll , .  L ~ ( . Q )  : 8 H 1 .  

Proof. Since ~'mC,f'm, we have fm=E(E(f(X=)laVm)l~ By the optional 
stopping theorem ([17, Theorem II.53.1], [6, Theorem 10, Ch. VII) E(f(x=)[~m)= 
f(X~,,) so fm =E(f(Xr Let d b e  an atom in , ~  and coE~r be fixed. Then it 
follows that  

1 
f (oD = P(d)  f . ,  f(X~,.) de 

(we disregard atoms of probability zero). In particular [fm(O~)--f(X;"(O~))[ is 
bounded by the oscillation of foX;,, on ~r But, by Lemma 8 (a), X;,.(d)CBz,,(,o ) 
and, by (ii), the oscillation of f on Bz,,(,~ ) is bounded by e(1-lZm(CO)[)[[fJrm. 
Hence 

(15) [fm (o))--f(X;,.(oD)] <_- e(1 - ]Zm (co)[)[]f][n,, 

and as ]Zm[~l and f(X~m)~f(x~), (15) implies both (14) and the fact that fm 
converge to f(xoo). 

Now we define 
Tf=foX. . .  
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Lemma 10. (a) For every p->l ,  T is an isomorphic embedding of HP(B) into 
H'(~). 

(b) T is bounded from BMOA to BMO (~'). 

Proof. We begin with (a). Since ~ - ~  oo we have 

f *  = sup If(X,)l = sup sup if(X,)l.  
t~_O m ~ m ~ t ~ r a + l  

By Lemma 8 (a), for ~ra~t~rn+l, If(Xt)--f(X~)l~ellflln~, hence 

[[sup [f(X, . ) l - f*l lL-(m ~ ~[[f[Im. 

Comparing this with (14) we get 

[[sup IfmI-FllL-,o, <= ~llfl l .~,  
S O  

(16) 

and since 

lllsup JlmflV,~>-II.r*lJL.(~>l ~ 2~ll/ll.,, 

HSUpm [fmi[IL'(~) = ][Tflin~(~) we get, by Proposition 2 and (16), 

(1-2e)llfl]n~ <-- [If*llL.(~)--2z I[f[ln, <- [ITfl]n,(s~)<-- 2e [Iflln'+ Ilf*l[L'(m 

<_-- 2~ ]]fllnp + llf*llL~(~) ~- (1 + 2~)Ap I]f[lnp. 

To prove (b) we notice that 

(E([f(x~)-fm_l[2[,~m)) 1/~ <= (E([f(X~)-f(X~,,,)]2]~',,,)) ~/2 +(E([f(Xr ~l~. 

Since ~ , , cW~,  we have 

IlE(li(x~)-f(x~. )l~]~m)[l~ . ,o> <= [ [ E ( J ( x ~ ) - j ( x ~  . )l~[w.)[l~ . ,o) 

by (B) = [[E(lf(X=)-f(Xr162 by Proposition 4 <_- C ~ [[f][gMO. 

By (12), we get 
][f(Xr ) - f (Xr  )][ < [If I[ , , ,  m - 1  L ~ ( ~ )  = 8 H 1 ,  

and this, together with (14), gives 

[[f(X~ .)-f ,~ _~ IlL| (~)<= 2~l[fi]n ~ <= 4e IIf liSl~O 
S O  

IIE(rf(X, )-fo I~l~m)ll < 16ez[af [ ]~  ,n - 1  L ' ( ~ )  : . M O "  

Remark. Using duality and a slightly more careful calculation in the proof  of 
Proposition 4, one can prove that T is also bounded below on BMOA, however 
this is not necessary for the proof  of  Theorem 5. 

Now we can finish the proof  of Proposition 7 exactly the same way as in [10]. 
It is well known (c[: [9]) that H2(~)=L2(~2,  ~ ' , ,  P), because of this and the pre- 
ceding lemma, T(H~(B)) is a closed subspace of  L2(Y2, ~ . ,  P). Let Q be the 
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orthogonal projection from L2(12, #-=, P)  onto T(H2(B)). We intend to show 
that Q is bounded in H 1 (~')-norm, this will mean that Q can be extended to a bounded 
projection from the Hl(~')-closure of L~(K2, o~-, p )  onto the closure of T(H2(B)), 
but these closures are respectively H ~ ( ~ )  and T(HI(B)) so this extension will 
give the desired projection. 

Below we will denote various constants by C. They may change from line to line 
but do not depend on particular functions. 

Let FEL2(f2,~oo,P). Then QFET(H~(B)) so QF=Th=hoXoo for some 
hE H~(B). Hence 

flQFII~.,~, : II~hlf.l,., <-- Cllhli.1 ~ C sup {Ifs ~ a~l: gEBMOA, tlgll~,o --< 1} 

= C sup {[E ( / i (X. )~X~)) [ :  gE BMOA,  IIgI1BMO -< 1} 

= Csup gEBMOA, [IglIBMo ~-- 1}. 

If  gEBMOA then gEH~(B) so g(X~)ET(H~(B)), and as Q is an orthogonal 
projection we get 

E((QF)g(Xoj) = g(Fg(X=)). 

We also have, by Lemma 10 (b), 

{g(X~): gEBMOA, [[glf.Mo ~-- 1}= {GEBMO (~-): IIGIIBMo<~) <- C}, 
80 

sup {[E((QF)g(Xo.))[: gEBMOA, Ilgll,~to <= 1} 

<_- sup { I E ( F G ) I :  GCBMO ( ~ ) ,  IIGIIBMo<~) ~-- C} <__-- C II FIIH~<~), 

and it follows that 

which ends the proof. 
IIQFII < ClIFII HI(.~) = HI(.@'), 

5. Nonisotropie distances and atomic H 1 

Following [18] we define a nonisotropic distance A on R,", 

A (x, y) = max {[xl--yll . . . .  , IXm-l-y,"-ll, IX,n-y,"ll/~}. 

We will show that in spite of a certain local similarity between (S, d) and (R z"-x, A), 
they are not locally equivalent as metric spaces. For this purpose we examine Lip- 
schitz functions from (S, d) to (R, I �9 1~), ~< 1. When ~=  1 there are many ex- 
amples of Lipschitz functions, this is no longer true for ~< 1. 
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Theorem 11. Let U be an open and connected subset of  S and let 0 < a <  1. 
Suppose ~ : U ~ R satisfies 

I ~ ( z ) -  ~(w) l  ~ -<- Kd(~, w) 

for all z, wE U. Then ~ is constant. 

To begin with we introduce some notation. At each point zES  the tangent 
space TzS to S contains the vector iz. The complex tangent space T~Z~S is defined 
as the orthogonal complement to iz in T~ S and consists of all vectors OEC" for 
which (z, O)=0 .  The module of all C = vector fields on U will be denoted by F(TU)  
and the submodule consisting of these with values in TCs,  by F ( T c U ) .  For  
X, YEF(TU), [Y, Y] denotes their (real) Lie bracket. If y is a curve in S then p will 
denote its tangent vector. 

For  convenience we will assume that Uc{Jz , [<  1} and K = I .  

Lemma 12. Let Y be a C ~ curve in U such that p ( t ) q T c U  for all t. Then 7Joy 
is constant. 

Proof. Since (p(t), y ( t ) ) = 0  we get 

d(7(t + s), y(t)) ~ = ](y(t + s ) - y ( t ) ,  y(t)) I = I(y(t + s ) -  y( t ) -sp( t ) ,  y(t))+ s(p(t), Y(0)I 

<= 17(t+s)-~(O-s~(OI = O(s~). 
Hence 

[ ~ ( ~ ( t + s ) ) -  ~'(~(t))l  <= d ( y ( t + s ) ,  ~(t))lr ~ = O(s~ ~) 
d 

so -~s  (~oy)(s)l~=t = 0 and we are done. 

Let X, YEF(TU) and let q~(z, t), ~(z, t) be their integral curves. Fix ZoE U 
and define 

= r 
Then y is a smooth curve and, by [15, Theorem 6, Ch. 5] 

(0) = [x ,  rl(zo). 

If  X, YEF(T  c U) then, by Lemma 12, ~ is constant along their integral curves 
and it follows that 7Joy is also constant so we get 

Corollary 13. I f  X, YEF(T  c U) then for each Zo~ U there is a C z curve 
such that y(0)=Zo, ~(0)=[X, Y](z0) and ~Uoy is constant. 

Lemma 14. Let zoEU and OET~oS. Then there ale X, YEF(TCU) such that 
Ix ,  r ]  (z0) = o .  
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The proof easily follows from the observation that i f / ,  E, are vector fields 
defined on C" by 

1 ( z )  = z ,  

= e .  - -  ( 0  . . . . .  l ) ,  

and Xo=E,--(E,,  I)I, Y0=iX0 then, restricted to S, Xo, Yo~F(TCU) and [X0, Yo] 
does not vanish on U and is orthogonal to T c U. 

Now we can finish the proof of Theorem 11. Let r/be a C z curve in U. We will 
show that T is constant along t/. 

Fix t. Then, by Lemma 14, there are X, YCF(T c U) such that 

[ x ,  = 

By Corollary 13, there is a C 2 curve y such that y(0)=q(t) ,  ~(0)=~(t)  and ~oy  
is constant. The first two conditions imply that ~l(t+s)-y(s)=O(s2), and it fol- 
lows that T(rl(t+s))--~g(y(s))=O(2/'). Since 7~(rl(t)=~g(7(0))=T(7(s)), we get 
~P(~l(t+s))--~(q(t))=O(st/~), so d/ds(To~l)(s)],= t =0,  and as t was arbitrary, 
7~o~/ is constant. 

Corollary 15. I f  U is an open and connected subset of S and 

7t = (~a, -.-, T2,- l):  (U, d) ~ (R 2"-t, A) 

is a Lipschitz map, then T2n-x is constant. 

Let 2 be the Lebesgue measure on R m. Then ([0, 1] m, A, 2) and (S, d, tr) are 
examples of spaces of homogeneous type in the sense of [3], and one can define 
atomic Ht-spaees H~t(S, d), H~t([0, 1] m, A). Corollary 15 shows that a direct com- 
parison of these spaces, as in [18], is not possible. However, it is still true that they 
are isomorphic, in particular Proposition B of  [18] is true. 

Theorem 16. Ha~t([O, 1] m, A) and H]t(S, d) are isomorphic to HX(D). 

The first part is due to Wojtaszczyk [18], the second part generalizes Theo- 
rem 5, since Hi(B) is complemented in Hit(S , d) ([2]). The proof is exactly the 
same as that of Theorem 5, once one establishes Proposition 2 for Ha~t(S, d). In 
this case the left-hand inequality in Proposition 2 is much harder as the Li(S, a)- 
norm is not equivalent to the norm of Halt (S, d). Instead one has to consider the 
L~-norm of the maximal function M , f  ([8]) and the proof of  Proposition 2 in this 
case needs the inequality 

IIgjIILPr ~-- Ap,~ IIf*llLpr 

The corresponding inequality for the "half-plane" realization of the unit ball ap- 
pears in [4] and the proof can be adapted to the case of the ball itself. 
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Remark. After the preprint of this paper had been distributed I learned from 
Steven Krantz that he had been aware of the nonequivalence of (R 2"-1, A) and 
(S, d), but I do not know of any published proof of this fact. 
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