On isomorphisms between Hardy spaces on complex balls

Tomasz M. Wolniewicz*

1. Introduction

Let B be the unit ball in \mathbb{C}^n and D the unit disc in \mathbb{C} . The aim of this paper is to present a new proof that the Hardy spaces $H^1(B)$ and $H^1(D)$ are isomorphic. This became necessary after the discovery that Wojtaszczyk's paper [18] contains a mistake. Part of Wojtaszczyk's proof was based on the intuition that nonisotropic distances on the unit sphere in \mathbb{C}^n and on \mathbb{R}^{2n-1} give "locally similar" metric spaces. This, as we show in Section 5 is not true, hence the argument behind Proposition B of [18] is not valid. Our proof is based on the probabilistic approach developed by Maurey in [10]. We show that if the standard Brownian motion is replaced with the diffusion corresponding to the invariant Laplacian in B, then Maurey's method gives an isomorphic embedding of $H^1(B)$ onto a complemented subspace of a martingale H^1 -space which, in turn, is isomorphic to a complemented subspace of $H^1(D)$. Then we can use the first part of Wojtaszczyk's proof, which established that $H^1(D)$ is isometric to a complemented subspace of $H^1(B)$ (see also [1]) and the isomorphism follows by the decomposition principle. The last part of [18], where the atomic H^1 -space on \mathbb{R}^m with a nonisotropic distance is studied, is of independent interest and in Section 5 we use it to show that, in spite of the mistaken proof, Proposition B of [18] is true.

The case of $1 was solved in [1, 18] where it was shown that <math>H^p(B)$ is isomorphic to $L^p([0, 1])$, hence to $H^p(D)$.

In order to make the paper reasonably self-contained we included some arguments which are fairly strightforward modifications of proofs which can be found in the literature.

I would like to thank Richard M. Timoney for many stimulating discussions and help in the preparation of the manuscript.

^{*} This work was done while the author was visiting Trinity College, Dublin.

2. Preliminaries

2.1. Spaces of analytic functions

Throughout the paper we will assume that $1 \le p < \infty$.

Let B be the unit ball in \mathbb{C}^n , S the unit sphere and σ the normalized, rotation-invariant measure on S.

 $H^p(B)$ will denote the space of all analytic functions in B such that

$$||f||_{H^p} = \sup_{r < 1} \left(\int_S |f(rz)|^p d\sigma(z) \right)^{1/p} < \infty.$$

A(B) will denote the ball algebra of all functions continuous in \overline{B} and analytic in B. Rudin's book [13] is an excellent reference for the theory of $H^p(B)$.

If $f \in H^p(B)$ then $\tilde{f}(z) = \lim_{r \to 1} f(rz)$ exists for almost every $z \in S$ and $||f||_{H^p} = ||\tilde{f}||_{L^p(s,\sigma)}$. f can be recovered from \tilde{f} by the means of the Poisson formula

(1)
$$f(w) = \int_{S} \tilde{f}(z) P(w, z) d\sigma(z)$$

where $w \in B$ and $P(w, z) = (1 - |w|^2)^n / |1 - \langle w, z \rangle|^{2n}$ is the invariant Poisson kernel. For $\alpha > 1$, $z \in S$ and $f \in H^p(B)$ let

$$D_{\alpha}(z) = \left\{ w \in B \colon |1 - \langle w, z \rangle| < \frac{\alpha}{2} (1 - |w|^2) \right\}$$

and

$$(M_{\alpha}f)(z) = \sup \{|f(w)| \colon w \in D_{\alpha}(z)\}.$$

Then, by [13, Theorem 5.6.5]

(2)
$$||M_{\alpha}f||_{L^{p}(S)} \leq A(\alpha)^{1/p} ||f||_{H^{p}}.$$

For $z, w \in \overline{B}$ let $d(z, w) = |1 - \langle z, w \rangle|^{1/2}$. Then d(z, w) satisfies the triangle inequality in \overline{B} and restricted to S is a distance ([13, Proposition 5.1.2]). If $w \in S$ then Q(w, r) will denote the d-ball in S.

The space BMOA is defined as consisting of all $f \in H^2(B)$ such that

$$||f||_{\mathrm{BMO}}^2 = \max\left\{|f(0)|^2, \sup\left\{\frac{1}{\sigma(Q)}\int_Q\left|\tilde{f}-\frac{1}{\sigma(Q)}\int_Q\tilde{f}\,d\sigma\right|^2d\sigma\colon Q = Q(z,r)\right\}\right\} < \infty.$$

BMOA can be identified with the dual space of $H^1(B)$ in the sense that every continuous functional φ on $H^1(B)$, restricted to the dense subspace $H^2(B)$ is given in the form $\varphi(f) = \int f \overline{g} d\sigma$ for some $g \in BMOA$ and $\|\varphi\|_{(H^1)^*}$ and $\|g\|_{BMO}$ are equivalent (cf. [2]).

2.2. Martingale spaces

We will also consider the martingale analogues of $H^p(B)$ (for details we refer to [9]). If (Ω, \mathcal{M}, P) is a probability space, E the corresponding expectation and $\mathscr{F} = (\mathscr{F}_m)_0^\infty$, an increasing sequence of sub- σ -fields of \mathcal{M} then $H^p(\mathscr{F})$ is defined as consisting of all \mathscr{F} -martingales (f_m) , for which

$$||f||_{H^p(\mathscr{F})} = \left(E\left(\sup_m |f_m|^p\right)\right)^{1/p} < \infty.$$

Let $\mathscr{F}_{\infty} = [(\mathscr{F}_m)_m]$ be the smallest σ -field containing all \mathscr{F}_m . If $(f_m) \in H^p(\mathscr{F})$ then f_m converges almost surely and in L^p to an \mathscr{F}_{∞} -measurable random variable f_{∞} and $f_m = E(f_{\infty}|\mathscr{F}_m)$. Hence $H^p(\mathscr{F})$ may be identified with a space of \mathscr{F}_{∞} -measurable functions. The martingale version of BMO consists of all $f \in L^2(\Omega, \mathscr{M}, P)$ such that

$$\|f\|_{\mathrm{BMO}(\mathscr{F})} = \max\left\{|Ef|, \sup_{m} \left\|E\left(|f - E(f|\mathscr{F}_{m-1})|^2|\mathscr{F}_m\right)\right\|_{L^{\infty}(\Omega)}^{1/2}\right\} < \infty.$$

As before BMO (\mathscr{F}) can be identified with the dual of $H^1(\mathscr{F})$. We will also need the inequality $||f||_{BMO(\mathscr{F})} \leq 2 ||f||_{H^2(\mathscr{F})}$.

If $\mathscr{A}_m \subset \Omega$ then by $[(\mathscr{A}_m)_m]$ we denote the σ -field generated by (\mathscr{A}_m) , similarly for random variables X_m , $[(X_m)_m] = [\{\{X_m \in A\}: A \text{ is a Borel set}\}].$

2.3. Diffusion in B

Let $\tilde{\Delta}$ denote the invariant Laplacian in B (cf. [13]) and $(X_t^z(\omega))$ the corresponding analogue of the Brownian motion — the diffusion in B with the infinitesimal generator $1/2\tilde{\Delta}$ (cf. [5], [11, p. 90]). It was proved in [5] that (X_t^z) has almost surely infinite life-time and for every $z \in B$ the process (X_t^z) , starting at z, converges almost surely to a random variable X_{∞}^z taking values in S. Below we list the main properties of (X_t^z) .

- (A) X_t^z is Aut (B)-invariant, i.e. for every biholomorphic automorphism Φ of B, $(\Phi \circ X_t^z)$ is identical to $(X_t^{\Phi(z)})$. Because of this we may assume that $X_t^z = \Phi_z \circ X_t^0$ for some $\Phi_z \in \text{Aut } B$ satisfying $\Phi_z(0) = z$. For convenience we will denote X_t^0 by X_t .
- (B) If ζ is an X_t^z -stopping time then X_ζ^z will denote the variable $X_{\zeta(\omega)}^z(\omega)$. The process X_t^z has the so-called strong Markov property, i.e. conditional to $\zeta < \infty$ and $X_\zeta^z = w$, $X_{\zeta+t}^z$ is independent of the past and identical to X_t^w (cf. [11, pp. 90—91]). As a consequence we get, for example, that conditional to $(\zeta < \infty, X_\zeta^z = w)$ X_∞^z has the same distribution as X_∞^w .
 - (C) If $f \in C^2(B)$ and $\tilde{\Delta} f = 0$ then for every finite X_t^2 -stopping time ζ ,

$$E(f(X_{\zeta}^{z})) = f(z)$$

(cf. [7, 16, 17). In particular the above equality holds for all analytic functions in B.

(D) Trajectories $t \mapsto X_t^z(\omega)$ are almost surely continuous on \mathbb{R}_+ .

As the first application of (A) we get

Lemma 1. Let μ_z denote the distribution of X_{∞}^z on S. Then

$$d\mu_z(w) = P(z, w) d\mu(w).$$

Proof. μ_0 is obviously rotation-invariant, hence $\mu_0 = \sigma$. Since $X_t^z = \Phi_z \circ X_t$ and Φ_z is continuous in \overline{B} , we have $X_{\infty}^z = \Phi_z \circ X_{\infty}$. In particular for every $\varphi \in C(S)$

$$\int_{S} \varphi(w) d\mu_{z}(w) = \int_{\Omega} \varphi(X_{\infty}^{z}) dP = \int_{\Omega} \varphi(\Phi_{z}(X_{\infty})) dP$$
$$= \int_{S} \varphi(\Phi_{z}(w)) d\mu_{0}(w) = \int_{S} \varphi(\Phi_{z}(w)) d\sigma(w).$$

By formula (3.3.5) of [13] we get

$$\int_{S} \varphi(\Phi_{z}(w)) d\sigma(w) = \int_{S} \varphi(w) P(\Phi_{z}(0), w) d\sigma(w) = \int_{S} \varphi(w) P(z, w) d\sigma(w)$$

which proves the claim.

As we observed above, the distribution μ_0 of X_{∞} is equal to σ . If we assume that the process (X_t) is defined on a complete probability space then for every Lebesgue-measurable function g on S the composition $g \circ X_{\infty}$ is measurable and

$$E(g \circ X_{\infty}) = \int_{S} g \ d\sigma.$$

We will use this fact without further comment.

3. Probabilistic properties of analytic functions

In the sequel (Ω, \mathcal{M}, P) denotes the probability space corresponding to the process (X_t) defined in the previous section.

For $f \in H^p(B)$ define

$$f^*(\omega) = \sup_{t \ge 0} |f(X_t(\omega))|.$$

Proposition 2. To every $1 \le p < \infty$ corresponds a constant A_p such that for every $f \in H^p(B)$

$$||f||_{H^p} \le ||f^*||_{L^p(\Omega)} \le A_p ||f||_{H^p}.$$

Proof. We begin with the right-hand inequality. Fix $\alpha > 2$. By (2) it is enough to show that

(3)
$$||f^*||_{L^p(\Omega)} \leq A_{p,\alpha} ||M_{\alpha}f||_{L^p(S)}.$$

This inequality is essentially due to Debiard but in his paper [4] it is formulated and proved only for the unbounded realization of the ball. Here we give a direct

proof for the ball generalizing the one-dimensional case presented in [12]. Inequality (3) will immediately follow from:

$$(4) \qquad \forall_{\lambda \geq 0} \forall_{f \in C(B)} P(f^* > \lambda) \leq C_{\alpha} \sigma \{ z \in S : (M_{\alpha} f)(z) > \lambda \}.$$

To prove (4) we define

$$U_{\lambda} = \{ w \in S : (M_{\alpha}f)(w) > \lambda \};$$

$$V_{\lambda} = \bigcup_{w \in S \setminus U_{\lambda}} D_{\alpha}(w);$$

$$G_{\lambda} = B \setminus V_{\lambda}.$$

Notice that V_{λ} is open in B, U_{λ} is open in S, and $U_{\lambda} \cap \overline{V}_{\lambda} = \emptyset$. Since $\sigma(U_{\lambda}) = P(X_{\infty} \in U_{\lambda})$ we have to prove that

$$(5) P(f^* > \lambda) \leq C_{\alpha} P(X_{\infty} \in U_{\lambda}).$$

If $U_{\lambda} = S$ then (5) holds if $C_{\alpha} \ge 1$ so we may assume that $U_{\lambda} \ne S$.

Obviously for $z \in V_{\lambda}$, $|f(z)| < \lambda$, hence if $f^*(\omega) > \lambda$ we must have $X_t(\omega) \in G_{\lambda}$ for some t. It follows that if ζ is the time of the first entrance to G_{λ} then

$$P(f^* > \lambda) \leq P(\zeta < \infty).$$

Thus it is sufficient to prove the following:

If $U \subseteq S$ is open, $V = \bigcup_{w \in S \setminus U} D_{\alpha}(w)$, $G = B \setminus V$ and ζ is the time of the first entrance to G then

(6)
$$P(\zeta < \infty) \leq C_{\alpha} P(X_{\infty} \in U).$$

Since $U \cap \overline{V} = \emptyset$ and for all ω , $X_0(\omega) = 0 \in V$, if $X_{\infty}(\omega) \in U$ we must have $X_t(\omega) \in G$ for some t, or equivalently $\zeta(\omega) < \infty$. It follows that $P(X_{\infty} \in U | \zeta = \infty) = 0$ and so

$$P(X_{\infty} \in U) = P(X_{\infty} \in U | \zeta < \infty) P(\zeta < \infty).$$

Hence it is enough to show that $P(X_{\infty} \in U | \zeta < \infty) \ge k_a > 0$. But

$$P(X_{\infty} \in U | \zeta < \infty) = \int_{B} P(X_{\infty} \in U | \zeta < \infty, X_{\zeta} = z) dP(X_{\zeta} = z | \zeta < \infty)$$

(7)
$$= \int_G P(X_{\infty} \in U | \zeta < \infty, X_{\zeta} = z) dP(X_{\zeta} = z | \zeta < \infty)$$

by (B)
$$= \int_G P(X_\infty^z \in U) dP(X_\zeta = z | \zeta < \infty).$$

We will now find a lower bound for $P(X_{\infty}^z \in U)$ when $z \in G$. By Lemma 1,

$$P(X_{\infty}^z \in U) = \int_U P(z, w) \, d\sigma(w).$$

For $z \in B$ let

$$E_{\alpha}(z) = \left\{ w \in S \colon |1 - \langle z, w \rangle| < \frac{\alpha}{2} (1 - |z|^2) \right\} = \left\{ w \in S \colon z \in D_{\alpha}(w) \right\}.$$

It is easily seen that for $z \in G$, $E_{\alpha}(z) \subset U$. In addition, if $w \in E_{\alpha}(z)$ then

(8)
$$P(z,w) = \frac{(1-|z|^2)^n}{|1-\langle z,w\rangle|^{2n}} > (2/\alpha)^{2n} \frac{1}{(1-|z|^2)^n}.$$

Now for $z \in B$ let w=z/|z|. Then $d(z, w)=(1-|z|)^{1/2} < (1-|z|^2)^{1/2}$. Hence if $w' \in S$ is such that $d(w, w') < ((\sqrt{\alpha/2})-1)(1-|z|^2)^{1/2}$ then $d(z, w') \le d(z, w) + d(w, w') < ((\alpha/2)(1-|z|^2))^{1/2}$. This proves that

(9)
$$Q\left(\frac{z}{|z|}, \left(\sqrt{\frac{\alpha}{2}} - 1\right)(1 - |z|^2)^{1/2}\right) \subset E_{\alpha}(z).$$

Hence if $z \in G$ we get

(10)
$$P(X_{\infty}^{z} \in U) = \int_{U} P(z, w) d\sigma(w) \ge \int_{E_{\alpha}(z)} P(z, w) d\sigma(w)$$

$$\ge \left(\frac{2}{\alpha}\right)^{2n} \frac{1}{(1 - |z|^{2})^{n}} \sigma(E_{\alpha}(z)).$$

By [13, Proposition 5.1.4], $\sigma(Q(w,r)) \ge 2^{-n}r^{2n}$ so (9, 10) imply

$$P(X_{\infty}^{z} \in U) \ge \left(\frac{2}{\alpha}\right)^{2n} \frac{1}{(1-|z|^{2})^{n}} 2^{-n} \frac{\left(\sqrt{\alpha}-\sqrt{2}\right)^{2n}}{2^{n}} (1-|z|^{2})^{n} = \left(\frac{\sqrt{\alpha}-\sqrt{2}}{\alpha}\right)^{2n} = k_{\alpha} > 0.$$

Putting this into (7) we obtain

$$P(X_{\infty} \in U | \zeta < \infty) \ge k_{\alpha} \int_{G} dP(X_{\zeta} = z | \zeta < \infty) = k_{\alpha} P(X_{\zeta} \in G | \zeta < \infty) = k_{\alpha}$$

which proves (6), hence also (4).

Now the left-hand inequality follows easily. If $f \in A(B)$ then $f(X_t) \to \tilde{f}(X_{\infty})$ a.s. hence $|\tilde{f}(X_{\infty})| \leq f^*$ a.s. and

$$||f||_{H^p} = ||\tilde{f}||_{L^p(S)} = ||\tilde{f}(X_{\infty})||_{L^p(\Omega)} \le ||f^*||_{L^p(\Omega)},$$

which proves the inequality for $f \in A(B)$, and by density it extends to the whole $H^p(B)$.

Lemma 3. Let $\mathcal{F}_t^z = [X_s^z, s \le t]$. If $f \in H^1(B)$ then $(f(X_t^z))_{t \ge 0}$ forms a uniformly integrable (\mathcal{F}_t^z) -martingale and as $t \to \infty$, $f(X_t^z)$ converges to $f(X_\infty^z)$ almost surely and in L^1 .

Proof. The martingale property of $(f(X_t^z))$ is well known and easily follows from (B) and (C) (see also [17, III.22.6]).

Next observe that for $f \in H^1(B)$ and $\Phi \in \text{Aut}(B)$, $f \circ \Phi \in H^1(B)$ and $(f \circ \Phi)^* = f \circ \Phi$. This and (A) allows us to consider only z=0. Uniform integrability follows then from the L^1 -boundedness of the maximal function f^* (Proposition 2). Now

by the martingale convergence theorem, $(f(X_t))$ converges to a random variable F and $|F| \le f^*$. Hence, by Proposition 2, we have

(11)
$$||F||_{L^1(\Omega)} \le A_1 ||f||_{H^1}.$$

If $f \in A(B)$ then $F = \tilde{f} \circ X_{\infty}$. For a general $f \in H^1(B)$ let $f_m \in A(B)$, $f_m \to f$ in $H^1(B)$. Putting $f_m - f$ into (11) we get that $\tilde{f}_m(X_{\infty}) - F \to 0$ in $L^1(\mathbb{R})$, but we also have

$$\|f_m - f\|_{H^1} = \|\tilde{f}_m - \tilde{f}\|_{L^1(S)} = \|\tilde{f}_m \circ X_\infty - \tilde{f} \circ X_\infty\|_{L^1},$$

hence $f_m(X_m) - f(X_m) \to 0$ and so $F = f(X_m)$ a.s.

Proposition 4. There is a constant C such that for every $f \in BMOA$ and every finite (X_t) -stopping time ζ

$$||E(|f(X_{\infty})-f(X_{\zeta})|^2|X_{\zeta})||_{L^{\infty}(\Omega)}^{1/2} \leq C ||f||_{BMO}.$$

Proof. Let v_{ζ} be the distribution of X_{ζ} . Using (B) and Lemma 1 we get

$$\begin{split} & \big\| E \big(|\tilde{f}(X_{\infty}) - f(X_{\zeta})|^2 \big| X_{\zeta} \big) \big\|_{L^{\infty}(\Omega)} = \big\| E \big(|\tilde{f}(X_{\infty}) - f(X_{\zeta})|^2 \big| X_{\zeta} = z \big) \big\|_{L^{\infty}(\nu_{\zeta})} \\ &= \big\| E \big(|f(X_{\infty}^z) - f(z)|^2 \big) \big\|_{L^{\infty}(\nu_{\zeta})} \le \sup_{z \in B} \left\{ \int_{S} |f(w) - f(z)|^2 d\mu_{z}(w) \right\} \\ &= \sup_{z \in B} \left\{ \int_{S} |f(w) - f(z)|^2 P(z, w) d\sigma(w) \right\} \le C^2 \|f\|_{\mathrm{BMO}}^2. \end{split}$$

The last inequality is a consequence of the well known equivalence of the BMO-norm and the Garsia norm (cf. [14, Proposition 2.7]).

4. Main result

In this section we prove:

Theorem 5. $H^1(B)$ is isomorphic to $H^1(D)$.

By [1, 18] $H^1(D)$ is isomorphic to a complemented subspace of $H^1(B)$. We will prove that also $H^1(B)$ is isomorphic to a complemented subspace of $H^1(D)$. This, as shown in [18, Section 1], is sufficient to prove our Theorem 5.

We will use the following result of Maurey:

Proposition 6 ([10, Proposition 4.15]). For every increasing sequence of finite σ -fields (\mathcal{F}_m) , $H^1(\mathcal{F})$ is isomorphic to a complemented subspace of $H^1(D)$.

Thus the proof of Theorem 5 can be reduced to the next proposition.

Proposition 7. There is an increasing sequence (\mathcal{F}_m) of finite sub- σ -fields of \mathcal{M} such that $H^1(B)$ is isomorphic to a complemented subspace of $H^1(\mathcal{F})$.

We will closely follow the proof of Proposition 3.7 in [10]. We give first the construction we will need and the rest of the proof will be divided into the following sequence of lemmas.

Fix $\varepsilon < 1/2$. It easily follows from (1) and obvious properties of the kernel P(z, w) that for every $z \in B$ we can find an open ball $B_z = B(z, r_z)$ such that

- (i) $\overline{B}_z \subset B$.
- (ii) If $x, y \in B_z$ and $f \in H^1(B)$ then

$$|f(x)-f(y)| \le \varepsilon(1-|z|)||f||_{H^1}.$$

(iii) If $\varrho < 1$ then $\inf_{|z| < \varrho} r_z > 0$.

By $1/2B_z$ we will denote the ball $B(z, r_z/2)$.

As in [10], in addition to (\mathscr{F}_m) , we also construct a sequence ζ_m of (X_t) -stopping times and a sequence (Z_m) of \mathscr{F}_m -measurable random variables approximating the variables X_{ζ_m} .

We begin with

$$\mathscr{F}_0 = \{\emptyset, \Omega\}, \quad \zeta_0 = 0, \quad Z_0 = 0.$$

Next we define $\zeta_1 = \zeta_{B_0}$ — the time of the first exit from the ball B_0 .

Let $z_1, ..., z_k \in \partial B_0$, $A_1, ..., A_k \subset \partial B_0$ be such that A_i are Borel, disjoint subsets of ∂B_0 , $\bigcup_{i=1}^k A_i = \partial B_0$ and $A_i \subset 1/2B_{z_i}$. Define

$$\mathcal{A}_i = \{X_{\zeta_i} \in A_i\},$$

$$\mathcal{F}_1 = [(\mathcal{A}_i)_1^k],$$

$$Z_1 = \sum_{i=1}^k z_i \chi_{\mathcal{A}_i}.$$

In the next step ζ_2 is defined as follows: if $\omega \in A_i$ then $X_{\zeta_1}(\omega) \in A_i \subset B_{z_i}$ and

$$\zeta_2(\omega) \stackrel{\text{def}}{=} \inf \{ t \ge \zeta_1(\omega) \colon X_t(\omega) \notin B_{z_i} \}.$$

 \mathscr{F}_2 and Z_2 are then constructed with the same procedure which was used for \mathscr{F}_1 and Z_1 : for each i we find $z_{i,j} \in \partial B_{z_i}$, $A_{i,j} \subset \partial B_{z_i}$ such that $(A_{i,j})_j$ are Borel, disjoint, cover ∂B_{z_i} and $A_{i,j} \subset 1/2B_{z_{i,j}}$. Next we define

$$\begin{aligned} \mathscr{A}_{i,j} &= \{ \omega \in \mathscr{A}_i \colon X_{\zeta_2}(\omega) \in A_{i,j} \}, \\ \mathscr{F}_2 &= [(\mathscr{A}_{i,j})_{i,j}], \\ Z_2 &= \sum_{i,j} z_{i,j} \chi_{\mathscr{A}_{i,j}}, \end{aligned}$$

and we continue in the obvious way.

Lemma 8. (a) If $\zeta_m(\omega) \leq t \leq \zeta_{m+1}(\omega)$ then $X_t(\omega) \in B_{Z_m(\omega)}$, in particular for every $f \in H^1(B)$

(12)
$$|f(X_{\zeta_m}(\omega)) - f(X_t(\omega))| < \varepsilon ||f||_{H^1},$$

- (b) $\zeta_m \to \infty$ as $m \to \infty$,
- (c) $|Z_m| \to 1$ a.s. as $m \to \infty$,
- (d) $\mathscr{F}_m \subset \mathscr{N}_m \stackrel{\text{def}}{=} [X_{\zeta_k}: k \leq m].$

Proof. (a) and (d) are obvious by construction. To prove (b) and (c) let $\omega \in \Omega$. Since $\zeta_m(\omega)$ increase, $\zeta_m(\omega) \to t_0 \in [0, \infty]$. Then, by continuity of $X_t(\omega)$ on $[0, \infty]$, $X_{\zeta_m}(\omega) \to X_{t_0}(\omega)$. Since $X_{\zeta_m} \in 1/2B_{Z_m}$ and $X_{\zeta_{m+1}} \in \partial B_{Z_m}$ we get

(13)
$$|Z_m(\omega) - X_{\zeta_m}(\omega)| \leq \frac{1}{2} r_{Z_m(\omega)} \leq |X_{\zeta_m}(\omega) - X_{\zeta_{m+1}}(\omega)|.$$

Hence $r_{Z_m(\omega)} \to 0$ and thus, by (iii), $|Z_m(\omega)| \to 1$. But, by (13), we also have $Z_m(\omega) \to X_{t_0}(\omega)$ so $|X_{t_0}(\omega)| = 1$ which is only possible if $t_0 = \infty$.

Now for $f \in H^1(B)$ let

$$f_{m} = E(\tilde{f} \circ X_{\infty} | \mathscr{F}_{m}).$$

Lemma 9. (a) f_m converge to $\tilde{f} \circ X_{\infty}$ a.s.

(b) For every m

(14)
$$||f_m - f \circ X_{\zeta_m}||_{L^{\infty}(\Omega)} \leq \varepsilon ||f||_{H^1}.$$

Proof. Since $\mathscr{F}_m \subset \mathscr{N}_m$, we have $f_m = E(E(\tilde{f}(X_\infty)|\mathscr{N}_m)|\mathscr{F}_m)$. By the optional stopping theorem ([17, Theorem II.53.1], [6, Theorem 10, Ch. VI]) $E(\tilde{f}(X_\infty)|\mathscr{N}_m) = f(X_{\zeta_m})$ so $f_m = E(f(X_{\zeta_m})|\mathscr{F}_m)$. Let \mathscr{A} be an atom in \mathscr{F}_m and $\omega \in \mathscr{A}$ be fixed. Then it follows that

$$f_m(\omega) = \frac{1}{P(\mathscr{A})} \int_{\mathscr{A}} f(X_{\zeta_m}) dP$$

(we disregard atoms of probability zero). In particular $|f_m(\omega)-f(X_{\zeta_m}(\omega))|$ is bounded by the oscillation of $f\circ X_{\zeta_m}$ on $\mathscr A$. But, by Lemma 8 (a), $X_{\zeta_m}(\mathscr A)\subset B_{Z_m(\omega)}$ and, by (ii), the oscillation of f on $B_{Z_m(\omega)}$ is bounded by $\varepsilon(1-|Z_m(\omega)|)\|f\|_{H^1}$. Hence

and as $|Z_m| \to 1$ and $f(X_{\zeta_m}) \to \tilde{f}(X_{\infty})$, (15) implies both (14) and the fact that f_m converge to $\tilde{f}(X_{\infty})$.

Now we define

$$Tf = \tilde{f} \circ X_{\infty}$$
.

Lemma 10. (a) For every $p \ge 1$, T is an isomorphic embedding of $H^p(B)$ into $H^p(\mathcal{F})$.

(b) T is bounded from BMOA to BMO (\mathcal{F}) .

Proof. We begin with (a). Since $\zeta_m \to \infty$ we have

$$f^* = \sup_{t \ge 0} |f(X_t)| = \sup_{m} \sup_{\zeta_m \le t \le \zeta_{m+1}} |f(X_t)|.$$

By Lemma 8 (a), for $\zeta_m \le t \le \zeta_{m+1}$, $|f(X_t) - f(X_{t_m})| \le \varepsilon ||f||_{H^1}$, hence

$$\left\|\sup_{m}|f(X_{\zeta_{m}})|-f^{*}\right\|_{L^{\infty}(\Omega)}\leq \varepsilon \|f\|_{H^{1}}.$$

Comparing this with (14) we get

$$\left\|\sup_{m}|f_{m}|-f^{*}\right\|_{L^{\infty}(\Omega)}\leq 2\varepsilon\|f\|_{H^{1}},$$

so

(16)
$$\left| \left\| \sup_{L^{p}(\Omega)} |f_{m}| \right\|_{L^{p}(\Omega)} - \|f^{*}\|_{L^{p}(\Omega)} \right| \leq 2\varepsilon \|f\|_{H^{1}},$$

and since $\|\sup_{m} |f_{m}|\|_{L^{p}(\Omega)} = \|Tf\|_{H^{p}(\mathcal{F})}$ we get, by Proposition 2 and (16),

$$(1-2\varepsilon)\|f\|_{H^{p}} \leq \|f^{*}\|_{L^{p}(\Omega)} - 2\varepsilon\|f\|_{H^{1}} \leq \|Tf\|_{H^{p}(\mathscr{F})} \leq 2\varepsilon\|f\|_{H^{1}} + \|f^{*}\|_{L^{p}(\Omega)}$$
$$\leq 2\varepsilon\|f\|_{H^{p}} + \|f^{*}\|_{L^{p}(\Omega)} \leq (1+2\varepsilon)A_{p}\|f\|_{H^{p}}.$$

To prove (b) we notice that

$$(E(|\tilde{f}(X_{\infty}) - f_{m-1}|^2 | \mathscr{F}_m))^{1/2} \leq (E(|\tilde{f}(X_{\infty}) - f(X_{\zeta_m})|^2 | \mathscr{F}_m))^{1/2} + (E(|f(X_{\zeta_m}) - f_{m-1}|^2 | \mathscr{F}_m))^{1/2}.$$

Since $\mathscr{F}_m \subset \mathscr{N}_m$, we have

$$\begin{split} & \big\| E\big(|\tilde{f}(X_{\infty}) - f(X_{\zeta_m})|^2 \big| \mathscr{F}_m \big) \big\|_{L^{\infty}(\Omega)} \leq \big\| E\big(|\tilde{f}(X_{\infty}) - f(X_{\zeta_m})|^2 \big| \mathscr{N}_m \big) \big\|_{L^{\infty}(\Omega)} \\ \text{by } & (B) = \big\| E\big(|\tilde{f}(X_{\infty}) - f(X_{\zeta_m})|^2 \big| X_{\zeta_m} \big) \big\|_{L^{\infty}(\Omega)} \text{ by Proposition 4} \leq C^2 \|f\|_{\text{BMO}}^2. \end{split}$$

By (12), we get

$$||f(X_{\zeta_m})-f(X_{\zeta_{m-1}})||_{L^{\infty}(\Omega)} \leq \varepsilon ||f||_{H^1},$$

and this, together with (14), gives

$$||f(X_{\zeta_m}) - f_{m-1}||_{L^{\infty}(\Omega)} \le 2\varepsilon ||f||_{H^1} \le 4\varepsilon ||f||_{BMO}$$

so

$$\left\|E\left(|f(X_{\zeta_m})-f_{m-1}|^2\big|\mathscr{F}_m\right)\right\|_{L^{\infty}(\Omega)}\leq 16\varepsilon^2\|f\|_{\mathrm{BMO}}^2.$$

Remark. Using duality and a slightly more careful calculation in the proof of Proposition 4, one can prove that T is also bounded below on BMOA, however this is not necessary for the proof of Theorem 5.

Now we can finish the proof of Proposition 7 exactly the same way as in [10]. It is well known (cf. [9]) that $H^2(\mathcal{F}) = L^2(\Omega, \mathcal{F}_{\infty}, P)$, because of this and the preceding lemma, $T(H^2(B))$ is a closed subspace of $L^2(\Omega, \mathcal{F}_{\infty}, P)$. Let Q be the

orthogonal projection from $L^2(\Omega, \mathscr{F}_{\infty}, P)$ onto $T(H^2(B))$. We intend to show that Q is bounded in $H^1(\mathscr{F})$ -norm, this will mean that Q can be extended to a bounded projection from the $H^1(\mathscr{F})$ -closure of $L^2(\Omega, \mathscr{F}_{\infty}, P)$ onto the closure of $T(H^2(B))$, but these closures are respectively $H^1(\mathscr{F})$ and $T(H^1(B))$ so this extension will give the desired projection.

Below we will denote various constants by C. They may change from line to line but do not depend on particular functions.

Let $F \in L^2(\Omega, \mathscr{F}_{\infty}, P)$. Then $QF \in T(H^2(B))$ so $QF = Th = \tilde{h} \circ X_{\infty}$ for some $h \in H^2(B)$. Hence

$$\begin{split} \|QF\|_{H^{1}(\mathscr{F})} &= \|Th\|_{H^{1}(\mathscr{F})} \leq C \|h\|_{H^{1}} \leq C \sup \left\{ \left| \int_{S} \tilde{h} \tilde{g} \, d\sigma \right| \colon g \in \text{BMOA}, \ \|g\|_{\text{BMO}} \leq 1 \right\} \\ &= C \sup \left\{ \left| E(\tilde{h}(X_{\infty}) \overline{\tilde{g}(X_{\infty})}) \right| \colon g \in \text{BMOA}, \ \|g\|_{\text{BMO}} \leq 1 \right\} \\ &= C \sup \left\{ \left| E(QF) \overline{\tilde{g}(X_{\infty})} \right| \colon g \in \text{BMOA}, \ \|g\|_{\text{BMO}} \leq 1 \right\}. \end{split}$$

If $g \in BMOA$ then $g \in H^2(B)$ so $\tilde{g}(X_{\infty}) \in T(H^2(B))$, and as Q is an orthogonal projection we get

$$E((QF)\overline{\tilde{g}(X_{\infty})}) = E(F\overline{\tilde{g}(X_{\infty})}).$$

We also have, by Lemma 10 (b),

so
$$\begin{split} \{\overline{\tilde{g}(X_{\infty})}\colon g\in \mathsf{BMOA}, \ \|g\|_{\mathsf{BMO}} & \leq 1\} \subset \{G\in \mathsf{BMO}(\mathscr{F})\colon \|G\|_{\mathsf{BMO}(\mathscr{F})} \leq C\},\\ \sup \{\big|E\big((QF)\overline{\tilde{g}(X_{\infty})}\big)\big|\colon g\in \mathsf{BMOA}, \ \|g\|_{\mathsf{BMO}} \leq 1\}\\ & \leq \sup \{|E(FG)|\colon G\in \mathsf{BMO}(\mathscr{F}), \ \|G\|_{\mathsf{BMO}(\mathscr{F})} \leq C\} \leq C\|F\|_{H^1(\mathscr{F})}, \end{split}$$

and it follows that

$$\|QF\|_{H^1(\mathscr{F})} \leq C \|F\|_{H^1(\mathscr{F})},$$

which ends the proof.

5. Nonisotropic distances and atomic H^1

Following [18] we define a nonisotropic distance Δ on \mathbb{R}^m ,

$$\Delta(x, y) = \max\{|x_1 - y_1|, ..., |x_{m-1} - y_{m-1}|, |x_m - y_m|^{1/2}\}.$$

We will show that in spite of a certain local similarity between (S, d) and $(\mathbf{R}^{2n-1}, \Delta)$, they are not locally equivalent as metric spaces. For this purpose we examine Lipschitz functions from (S, d) to $(\mathbf{R}, |\cdot|^{\alpha})$, $\alpha < 1$. When $\alpha = 1$ there are many examples of Lipschitz functions, this is no longer true for $\alpha < 1$.

Theorem 11. Let U be an open and connected subset of S and let $0 < \alpha < 1$. Suppose $\Psi: U \rightarrow \mathbf{R}$ satisfies

$$|\Psi(z) - \Psi(w)|^{\alpha} \leq Kd(z, w)$$

for all $z, w \in U$. Then Ψ is constant.

To begin with we introduce some notation. At each point $z \in S$ the tangent space $T_z S$ to S contains the vector iz. The complex tangent space $T_z^C S$ is defined as the orthogonal complement to iz in $T_z S$ and consists of all vectors $\Theta \in \mathbb{C}^n$ for which $\langle z, \Theta \rangle = 0$. The module of all C^∞ vector fields on U will be denoted by $\Gamma(TU)$ and the submodule consisting of these with values in $T^C S$, by $\Gamma(T^C U)$. For $X, Y \in \Gamma(TU)$, [X, Y] denotes their (real) Lie bracket. If γ is a curve in S then $\dot{\gamma}$ will denote its tangent vector.

For convenience we will assume that $U \subset \{|z_n| < 1\}$ and K = 1.

Lemma 12. Let γ be a C^2 curve in U such that $\dot{\gamma}(t) \in T^C U$ for all t. Then $\Psi \circ \gamma$ is constant.

Proof. Since $\langle \dot{\gamma}(t), \gamma(t) \rangle = 0$ we get

$$d(\gamma(t+s), \gamma(t))^{2} = |\langle \gamma(t+s) - \gamma(t), \gamma(t) \rangle| = |\langle \gamma(t+s) - \gamma(t) - s\dot{\gamma}(t), \gamma(t) \rangle + s\langle \dot{\gamma}(t), \gamma(t) \rangle|$$

$$\leq |\gamma(t+s) - \gamma(t) - s\dot{\gamma}(t)| = O(s^{2}).$$

Hence

$$|\Psi(\gamma(t+s)) - \Psi(\gamma(t))| \le d(\gamma(t+s), \gamma(t))^{1/\alpha} = O(s^{1/\alpha})$$

so $\frac{d}{ds}(\Psi \circ \gamma)(s)|_{s=t} = 0$ and we are done.

Let $X, Y \in \Gamma(TU)$ and let $\varphi(z, t), \psi(z, t)$ be their integral curves. Fix $z_0 \in U$ and define

$$\gamma(t) = \psi(\varphi(\psi(\varphi(z_0, \sqrt{t}), \sqrt{t}), -\sqrt{t}), -\sqrt{t}).$$

Then γ is a smooth curve and, by [15, Theorem 6, Ch. 5]

$$\dot{\gamma}(0) = [X, Y](z_0).$$

If $X, Y \in \Gamma(T^{\mathbf{C}}U)$ then, by Lemma 12, Ψ is constant along their integral curves and it follows that $\Psi \circ \gamma$ is also constant so we get

Corollary 13. If $X, Y \in \Gamma(T^C U)$ then for each $z_0 \in U$ there is a C^2 curve γ such that $\gamma(0) = z_0, \dot{\gamma}(0) = [X, Y](z_0)$ and $\Psi \circ \gamma$ is constant.

Lemma 14. Let $z_0 \in U$ and $\Theta \in T_{z_0}S$. Then there are $X, Y \in \Gamma(T^C U)$ such that $[X, Y](z_0) = \Theta$.

The proof easily follows from the observation that if I, E_n are vector fields defined on \mathbb{C}^n by

$$I(z) = z,$$

 $E_n(z) = e_n = (0, ..., 1),$

and $X_0 = E_n - \langle E_n, I \rangle I$, $Y_0 = iX_0$ then, restricted to S, X_0 , $Y_0 \in \Gamma(T^C U)$ and $[X_0, Y_0]$ does not vanish on U and is orthogonal to $T^C U$.

Now we can finish the proof of Theorem 11. Let η be a C^2 curve in U. We will show that Ψ is constant along η .

Fix t. Then, by Lemma 14, there are $X, Y \in \Gamma(T^{\mathbf{C}}U)$ such that

$$[X,Y](\eta(t))=\dot{\eta}(t).$$

By Corollary 13, there is a C^2 curve γ such that $\gamma(0) = \eta(t)$, $\dot{\gamma}(0) = \dot{\eta}(t)$ and $\Psi \circ \gamma$ is constant. The first two conditions imply that $\eta(t+s) - \gamma(s) = O(s^2)$, and it follows that $\Psi(\eta(t+s)) - \Psi(\gamma(s)) = O(s^{1/\alpha})$. Since $\Psi(\eta(t) = \Psi(\gamma(0))) = \Psi(\gamma(s))$, we get $\Psi(\eta(t+s)) - \Psi(\eta(t)) = O(s^{1/\alpha})$, so $d/ds(\Psi \circ \eta)(s)|_{s=t} = 0$, and as t was arbitrary, $\Psi \circ \eta$ is constant.

Corollary 15. If U is an open and connected subset of S and

$$\Psi = (\Psi_1, ..., \Psi_{2n-1}) \colon (U, d) \to (\mathbb{R}^{2n-1}, \Delta)$$

is a Lipschitz map, then Ψ_{2n-1} is constant.

Let λ be the Lebesgue measure on \mathbb{R}^m . Then $([0, 1]^m, \Delta, \lambda)$ and (S, d, σ) are examples of spaces of homogeneous type in the sense of [3], and one can define atomic H^1 -spaces $H^1_{at}(S, d)$, $H^1_{at}([0, 1]^m, \Delta)$. Corollary 15 shows that a direct comparison of these spaces, as in [18], is not possible. However, it is still true that they are isomorphic, in particular Proposition B of [18] is true.

Theorem 16. $H_{at}^1([0,1]^m, \Delta)$ and $H_{at}^1(S,d)$ are isomorphic to $H^1(D)$.

The first part is due to Wojtaszczyk [18], the second part generalizes Theorem 5, since $H^1(B)$ is complemented in $H^1_{\rm at}(S,d)$ ([2]). The proof is exactly the same as that of Theorem 5, once one establishes Proposition 2 for $H^1_{\rm at}(S,d)$. In this case the left-hand inequality in Proposition 2 is much harder as the $L^1(S,\sigma)$ -norm is not equivalent to the norm of $H^1_{\rm at}(S,d)$. Instead one has to consider the L^1 -norm of the maximal function $M_{\alpha}f$ ([8]) and the proof of Proposition 2 in this case needs the inequality

$$||M_{\alpha}f||_{L^p(S)} \leq A_{p,\alpha}||f^*||_{L^p(\Omega)}.$$

The corresponding inequality for the "half-plane" realization of the unit ball appears in [4] and the proof can be adapted to the case of the ball itself.

Remark. After the preprint of this paper had been distributed I learned from Steven Krantz that he had been aware of the nonequivalence of $(\mathbf{R}^{2n-1}, \Delta)$ and (S, d), but I do not know of any published proof of this fact.

References

- Aleksandrov, A. B., The existence of inner functions in the ball, Mat. Sb. 118 (1982), 147—163; English transl. in Math. USSR-Sb. 46 (1983), 143—159.
- COIFMAN, R. R., ROCHBERG, R. and WEISS, G., Factorization theorems for Hardy spaces in several variables, Ann. Math. 103 (1976), 611—635.
- 3. Coifman, R. R. and Weiss, G., Extension of Hardy spaces and their use in analysis, *Bull. Amer. Math. Soc.* 83 (1977), 569—645.
- 4. Debiard, A., Comparaison des espaces H^p géométriques et probabilistes audessus de l'espace hermitien hyperbolique, Bull. Sci. Math. 103 (1979), 305—351.
- Debiard, A. and Gaveau, B., Frontière de Silov de domaines faiblement pseudoconvexes de Cⁿ, Bull. Sci. Math. 100 (1976), 17—31.
- 6. DELLACHERIE, C. and MEYER, P.-A., Probabilités et potentiel, Ch. V à VIII, Hermann, Paris, (1980).
- 7. DYNKIN, E. B., Markov processes, Springer-Verlag, (1965).
- 8. Garnett, J. B. and Latter, R. H., The atomic decomposition for Hardy spaces in several complex variables, *Duke Math. J.* 45 (1978), 815—845.
- 9. GARSIA, A., Martingale inequalities: Seminar notes on the recent progress, W. A. Benjamin Reading, Mass., (1973).
- 10. MAUREY, B., Isomorphismes entre espaces H₁, Acta Math. 145 (1980), 79—120.
- 11. McKean, H. P., Stochastic integrals, Academic Press, (1969).
- PETERSEN, K. E., Brownian motion, Hardy spaces and bounded mean oscillation, Cambridge Univ. Press, (1977).
- 13. Rudin, W., Function theory in the unit ball of Cⁿ, Springer-Verlag, (1980).
- SHAPIRO, J. H., Boundary values, distance estimates and bounded mean oscillation for functions holomorphic in a ball, *Preprint*, (1985).
- SPIVAK, M., A comprehensive introduction to differential geometry, 1, Publish or Perish, Inc., Berkeley, (1979).
- SHUR, M. G., Harmonic and superharmonic functions connected with diffusion processes, Sibirsk. Mat. Zh. 1 (1960), 277—296; English transl. in Select. Transl. Math. Stat. Prob. 7 (1968), 40—62.
- 17. WILLIAMS, D., Diffusions, Markov processes, and martingales, 1, John Wiley & Sons, (1979).
- 18. WOJTASZCZYK, P. Hardy spaces on the complex ball are isomorphic to Hardy spaces on the disc, 1≤p<∞, Ann. Math. 118 (1983), 21—34.</p>

Received July 15, 1987

Institute of Mathematics UMK Chopina 12/18 Torun, Poland