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Introduction 

There are two basic "unique continuation" properties for a holomorphic func- 
tion h in a connected complex manifold ~/ :  h will vanish identically in ~0t in either 
one of the following two cases: I) when h - 0  on a totally real submanifold X of  
9Yt such that dim a X = d i m  c ~fft; II) when h vanishes to infinite order at a single 
point. 

It is natural to ask whether such properties can be generalized to an arbitrary 
locally integrable structure on a manifold ~01. By this we mean the datum of  a com- 
plex vector subbundle T '  of  the complexified cotangent bundle CT*~01 such that 
locally, T '  is generated by exact differentials. On this subject and on the concept of  
hypo-analytic structures which is used below, we refer the reader to Sect. 4 of  the 
present article, also to [BCT] and IT]. In a locally integrable structure the role of 

* The work of the first author was supported in part by NSF Grant MCS 8401588 and that 
of the second author by NSF Grant MCS 8102436. 
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holomorphic functions is played by what we call the solutions, for want of a better 
term: these are the functions whose differentials are sections of the bundle T'. 

Unique continuation in Case I generalizes to all locally integrable structures 
as an immediate consequence of the Approximation Formula in [BT] (see also [T], 
p. 29). In trying to extend Case II the first problem is to identify the class of sub- 
manifolds that could play the role played by points in a complex structure. Natural 
candidates are the noncharacteristic submanifolds: these are the submanifolds 2~ 
whose conormal bundle N*S does not intersect, off the zero section, the charac- 
teristic set T O of the locally integrable structure (T O is equal to the the intersection 
of T' with the real cotangent bundle T* ~) .  

There is no indication, so far, of the validity of unique continuation for sub- 
manifolds that are merely noncharacteristic. Recently (see [R]) J.-P. Rosay has 
shown that the property is valid when the base manifold ~ is an embedded real 
hypersurface in complex space C n+l and 2~ is equal to the transverse intersection 
of ~2 with a holomorphic curve in C n+l (i.e., a complex submanifold of complex 
dimension one). Here, of course, 931 inherits its structure, which is a Cauchy-- 
Riemann (abbreviated henceforth to CR) structure, from the ambient complex space. 

Actually, the structure that the hypersurface ~ inherits from C "+~ is more 
than locally integrable; it is a particular case of a hypo-analytic structure. And 
the particular kind of submanifolds 2~ to which Rosay's result applies are the 
hypo-analytic noncharacteristic submanifolds of~0/(see Sect. 4). All this leads natural- 
ly to the 

Conjucture. In any hypo-analytic manifold 97/, if a solution h in ~0/(endowed 
with a modicum of regularity - -  in the present article it will be Lipschitz continuity) 
vanishes to infinite order on a hypo-analytic noncharacteristic submanifold 2~ then 
it vanishes identically in an open neighborhood of 2~. 

The present work fails short of proving the conjecture (about whose validity 
the authors have doubts). What this article does is to present a generalization of 
Rosay's result to a large class of hypo-analytic manifolds (in particular, of generic 
submanifolds of C ~+~ whose codimension is equal to d~ l ) .  Our methods are 
quite different from Rosay's, which are based on holomorphic extension and use 
of the Bochner--Martinelli formula to insure the "right" kind of polynomial approx- 
imation. Our proof combines a "miniversion" of the Approximation Formula of 
[BT] with a hypo-analytic change of variable that transforms the given solution 
into one with compact support. The latter ingredient is an adaptation of ideas in 
the work [BZ]; and as a matter of fact, in the case where ~ ,  its hypo-analytic struc- 
ture and the submanifold S are all real-analytic, unique continuation is a direct 
consequence of the main theorem in [BZ]. 

In the present article we reason under the hypothesis that ~2 and its structure 
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are of  class cg~. One noteworthy case where unique continuation holds is when the 
submanifold E is analytic in a suitable sense. When ~IR is a generic submanifold, 
of  class cgl, of  codimension d, in C ~+d, this means that E is a d-dimensional real- 
analytic submanifold of C "+d (and is the holomorphic-transverse intersection of ~0~ 
with a d-dimensional holomorphic submanifold J/f of c~+d; see Sect. 1). 

The main result of the paper, Th. 3.1, concerns generic submanifolds of com- 
plex space. The article is self-contained, except for the use, in the proof  of Th. 4.1 
(which generalizes Th. 3.1 to hypo-analytic manifolds), of the uniqueness in the 
Cauchy problem, which, as we have said at the beginning, is a consequence of the 
Approximation Formula. 

1. Holomorphic-transversai intersection of a generic submanifold 
with a holomorphic submanifold 

Throughout  the present section ~0l will denote a generic submanifold of  C "+d 
of  class ffl and codimension d.* It means that, locally, ~IR is defined by a set of  
equations 

(1.1) Oj(z,~) = O, j = 1 . . . .  ,d ,  

where the Oj are real-valued functions of  class cdx such that 

(1.2) 00t A... A OOa ~ O. 
,~f_ ~-,n+ d We have used the customary notation ~ , J - z ~ j = l  (~f/~zj)dzj. Needless to say, 

Conditions (1.1) and (1.2) do not depend on the choice of the defining functions 0j. 
Let J denote the complex structure on the real tangent spaces to C~+a; if p is 

an arbitrary point of ~ ,  Tv~lRc~JTp~ is a complex subspace of T v C ~+a of  complex 
dimension n, which we denote by ~gYt. 

Let . ~  be a holomorphic submanifold of C "+a with dim c g = d ,  which inter- 
sects ~Ol at a point Po. We shall say that the intersection of ~IR and g is holomorphic- 
transversal (or that S0I and g are holomorphic-transversal to one another) at the 
point Po if 

(1.3) TpC "+a = ~ @ T v ~  (@: direct sum) 

when P=Po. Then property (1.3) holds at all points p in a full neighborhood of 
Po in ~01c~g. 

Suppose that ~" is defined, in some open neighborhood of p0, by n (independent) 

* If properly interpreted all the statements in this article remain valid when either n or d are 
equal to zero. In these cases, however, they become uninteresting. The reader should therefore 
assume that both n and d are _~ 1. 
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holomorphic equations 

(1.4) hj(z) = O, j = 1, ..., n. 

Then condition (1.3) is equivalent to the property that 

(1.5) Ohl A . . .  AOhnAOQ1A . . .  AOQd r 0 

in a subneighborhood ofpo.  If  this is so then, near Po, 2?=-~I/c~o~/g is a cgl sub- 
manifold and dim R 27=d. We say that ~ and ~ have a holomorphic-transversal 
intersection if they do at every point of 2?. 

Remark 1.1. In general, for 9~ and ~ to be holomorphic-transversal at P0 
is not the same as to be transversal at P0, as shown by the following example: take 
~ = C 2 •  2 defined in C 4 by I m z j = 0 , j = 3 ,  4, and let ~ be defined by the equa- 

tions Zn=Zl, z4=V~-L'~zl, lndeed, ~/ and ~ intersect transversally, and their 
intersection is the z~-plane z~=z3=z4=O; but they are not holomorphic-trans- 
versal. 

However, as the reader will easily ascertain, the two notions coincide when 
the eodimension of ~ is equal to one, i.e., when ~ is a real hypersurface in 
C "+1. [] 

In the sequel we shall always reason about a central point of ~ which we take 
as the origin in C "+a. The choice o f  coordinates will presently be modified, and the 
last d coordinates will not any more be called z,+x . . . . .  Z,+d; instead we shall 
denote them by w~ . . . . .  w d. 

Proposition 1.1. Let ~t~ be a generic submanifold and ~ be a holomorphic sub- 
manifoM of  C "+d, with dim R ~R=2n+d, dim c ~ = d .  

I f  ~Il and 9r ~ have a holomorphic transversal intersection at the origin, then the 
coordinates Zl . . . . .  z , ,  w~ . . . . .  w d in C "+a can be chosen in such a way that, in an 
open neighborhood 0 o f  the origin in C n+a, ~ will be defined by the equation z=0 ,  
whereas ?Ol will be defined by the equation 

(1.6) Imw = ~o(z, ~, Rew), 

with ~o a C ~ map of  an open neighborhood of  the origin in R ~"+a into R d, satisfying: 

(1.7) q~(0) = 0, dq~(0) = 0. 

Conversely, i f ~  is defined near the origin by the equations (1.6) with ~o as described, 
then ~ll and the w-subspace (defined by z = O) have a holomorphic-transversal inter- 
section. 

Proof. It is well known, and elementary to check, that ~ can be defined by 
the equations (1.6) with the map ~o fulfilling the requirements of the statement, in 
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particular (1.7). From (1.5) and (1.6) we derive that ,  if a holomorphie submanifold 
of C ~+d such that dim c g = d ,  is holomorphic-transversal to ~F/ in a neigh- 

borhood of 0 it must be defined, there, by equations of the kind z=g(w), with g 
a holomorphic map of an open neighbourhood of the origin in C a into C n. Let us 
then perform the biholomorphic change of coordinates (z, w) ~(z -g(w) ,  w). In the 
new coordinates the equations (1.6) read 

(1.8) Im w-~o(z+g(w), ~+~(~) ,  Re w) = 0. 

But by virtue of (1.7) the Jacobian matrix with respect to Im w, of  the left-hand 
side in (1.8), is equal, at the origin, to the d•  identity matrix. We can therefore 
solve (1.8) with respect to Im w, which yields an equation of the same kind as 
(1.6), with a new map q~ that has the same properties, in particular (1.7), as 
the old one. 

The proof of the converse is immediate, and is left to the reader. [] 

Proposition 1.2. Let ~ be a generic c~1 submanifold of C n+d with codim R 9J~=d. 
Let 7, be a C ~ submanifoM of 9Jl, with dim R 7,=d, having the following property: 

Every point p of  7  ̀ has an open neighborhood ~Pp in C n+a which contains a holo- 
morphic submanifoM ~p whose complex dimension is equal to d, and whose intersec- 
tion with ~ is holomorphic-transversal and is equal to 7`nOp. 

Then there is a holomorphic submanifoM ~ of C "+a, with dim c ~r whose 
intersection with 92~ is holomorphic transversal and is equal to 7,. 

Proof. We select a set S of points p in 7  ̀ such that {0p}pr forms a locally 
finite open covering of ~. Possibly after replacing each tPp by a smaller open set 
we may reason under the following two hypotheses: i) for each pC S the submanifold 
~u is the zero-set of an ideal ~ of holomorphic functions in •p; ii) for every pair 
of points p, qES either the holomorphic submanifold ,.r is empty, or else 
7`n~gpn0q#0 and in this case, ~pnd~q is connected. Assume ~nSpnr  It 
is readily checked that 7`nd~pnd~ is a totally real submanifold of ~ n 0 ~ .  It has 
real dimension d and, as a consequence, any holomorphic function in r which 
vanishes on 7`nd~pnd~q must vanish identically on Jfpnd~q. We see thus that the 
zero set in r of the elements of ocp is contained in the zero set of the elements 
of Jq. By symmetry this shows that ..r The union 
~/t~=U~,r ~'p,  has the properties required of it in  the statement. [] 

Let us introduce the characteristic set T O of the CR manifold 9J/; a point (p, 0) 
of the (real) cotangent bundle T*gJ/belongs to T O if the covector 0 is orthogonal 
to ~gY/. Since dim R ~93 t=2n  we see that T O is a vector subbundle of T*.r 
fibre dimension is equal to d. A submanifold Z of 9Yt is called noncharacteristic i f  

(1.9) N*2~N(T~ = 0 
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(N'27: conormal bundle of 27). Notice that (1.9) sets a lower bound on dim27; 
it must be =>d. By duality (1.9) is equivalent to 

(1.10) T~0IIz = T2~+ ~ 

where + stands for the fibrewise vector sum, not necessarily direct. 

Proposition 1.3. Let ~ and ~ be as in Prop. 1.1. I f  ~0l and ;/t ~ are holomorphic- 
transversal then 27=flRcaYf is noncharacteristic (and does not contain any non- 
characteristic submanifold of  strictly lower dimension, since dim 2~ = d). 

Proof left to the reader. 

Proposition 1.4. Let 931 be a generic submanifold of  C n+d, of class c~t, of  codimen- 
sion d, and let 27 c ~  be a real-analytic submanifold of C n+J which is noncharacter- 
istic in ~J~ and whose real dimension is equal to d. Then there is a holomorphic sub- 
manifold ~ of  C n+d with dim c Ae=d, whose intersection with ~IR is holomorphic- 
transversal and equal to 27. 

Proof. By Prop. 1.2 it suffices to show that the assertion is valid locally. We 
reason near the origin and suppose that ~ is defined by (1.6), and that (1.7) is true. 
By hypothesis 27 is equal to the image of a real-analytic map 0 , / 0  from an open 
neighborhood of 0 in R d into R ~ •  R ~d. Thus, near the origin, 2~ is defined by the 
parametric equations 

(1.11) z = ;t(s), w = g(s). 

Due to (1.7) the fibre of ~ at 0, ~ is spanned by the vectors O/#xi, ~/Oyj 
(1 <=i,j~_n). Then (1.10) demands that the Jacobian determinant of # does not vanish 
at 0. But then extending ~ holomorphically to the complex values of s enables us 
to solve with respect to s the second set of equations (1.1 1), getting thus s=x(w). 
Now extending also ~ holomorphically and setting g=2o Z shows tha t ,  near 0, 
27 lies on the holomorphic submanifold g0 of C "+d defined by the equation z=g(w). 
We may as well make the change of  variables (z, w)~(z-g(w) ,  w), which does 
not change the equation for ~ (near 0) in any essential manner, as already indicated 
in the proof of Prop. 1.1. In the new coordinates ~,o is defined by the equation 
z = 0  and is obviously holomorphic-transversal to ~ in some neighborhood of 
the origin. U 

2. Condition (~r 

In the present section ~02 shall denote a generic cgl submanifold of C n+d and 
27 a c#1 submanifold of ~ ,  such that codim R 931=dim R 27=d. We shall always 
reason under the hypothesis that 
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(2.1) there is a holomorphic submanifold ogt' of  C "+d, with dim c a f = d ,  whose in- 
tersection with ~ is holomorphic transversal and equal to 1;. 

We shall say that the submanifold 2; satisfies Condition (~r at the point poE1; 
if the following is true: 

(~r Given any open neighborhood ~ of  p0 in 1; there is a holomorphic function F 
in an open subset of ~ containing ~ ,  such that F(po)~ 0 and that the con- 
nected component ofpo in the set {pE"K; F(p)~0}  has compact closure con- 
tained in "/P. 

It is clear that Condition ( d )  is invariant under local biholomorphic trans- 
formations. 

Let us take P0 to be the origin and use local representations of 9.1l and of 9 f  as 
in Prop. 1.1. Thus we identify the submanifold ~t' to the w-subspace z=O, in 
which 1; is defined by the equation 

(2.2) Im w = ~o (0, 0, Re w). 

As 0<8-~0 the sets 

= {wECd; 3sER n, Isl < 2s, such that w = s+l/----Tq~(0, 0, s)} 

form a basis of neighborhoods of 0 in 1;. Let F(w) be the holomorphic function in 
Condition ( d ) .  We must have F (0 )#0  and the closure of the connected com- 
ponent of the origin in the set 

{sERa; Isl < 25, F(s+g--lcp(O, 0, s)) # 0}, 
must be a compact set contained in the open ball {sERa; Is[<2e}. 

Let us show right-away that Condition (~r is no restriction at all when ~ is 
a real hypersurface. 

Proposition 2.1. I f  d= 1 the submanifoM 1; o f  ~ satisfies Condition (sO) at 
every point. 

Proof Take F(w)=[w-~-~/---Z-lq~(O, O, ~)][w+~-lf-S]'~0(0, 0, -e ) ]  and ob- 

serve that F(s+t/-Ziq~(O, O, s))=0 if and only if s =  +e. [] 

The next statement is of interest when d:-1 : 

Proposition 2.2. Suppose that q~ (0, O, s) is a real-analytic function o f  s in some 
ball {sERe; [sl<eo}. Then 1; has Property (~r at the origin. 

Proof. First suppose that q~(0, 0, s )=0  if [s[<~0. Then, for any 8<80/2 ,  
F(w) = a s - (w~ +.. .  + w~) satisfies the requirements above, in the neighborhood of 0 
in 1;, ~r 

Consider now the general case. Let G(w) denote the solution, in a suitably 
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small neighborhood of the origin in C d, of the equation 

w = a +  o,  63 ,  

such that G(0)=0. At the origin the Jacobian matrix of G(w) is equal to the d•  
identity matrix. Furthermore we have G(s+I/-'-S-iq~(O, O, s))=-s, which shows that 
the holomorphic change of variables (z, w)~(z, G(w)) preserves v~f and transforms 
27 into real space R a. Near the origin we may take gk=ReGk(s+lf'L-~cp(z, ~, S)) 
( k = l  . . . . .  d) as the coordinates in R n, and check that G ( s + l / - 1  ~o(z, ~, s ) )=g+ 

] / - l ~ ( z ,  ~,g) has the same properties as s+(--T~o(z, ~,s) (in particular, ~ sat- 
isfies (1.7)). [] 

Corollary2.1. Let Z c ~  be a real-analytic submanifoM of C"§ n, with 
dim R 27=d. I f  27 is noncharacteristic in ~ then Z, has Property ( d )  at every one 
of its points. 

According to Prop. 1.4 the hypotheses in Cor. 2.1 imply that Condition (2.1) 
is satisfied. 

Proof. We apply Prop. 1.1 and use the local equations z=0  for .Of and (1.6) 
for ~21/; we assume that (1.7) holds. The hypothesis that E is real-analytic implies 
that this is true of the function ~0 (0, 0, s) in some open neighborhood of the origin 
in R a, whence the result by Prop. 2.2. [] 

Remark 2.1. One can easily produce examples of d-dimensional totally real 
submanifolds 27 of ~r a (with d > l )  that have Property ( d )  without being 
real-analytic. Suppose, for instance, that 27 is defined by the equations (2.2), and that 

(0,  0,  s)  = . . . .  , Ca(sa)) .  

Then, as suggested by the proof of Prop. 2.1, we can take 

F(w) =/ /~=1  [wk--e- ]/-- 1 ~lk(e)][Wk"~, - -V~-- f l [ Ik ( - -~ , ) ]  , 

for e >0  suitably smaU. Subtler examples can also be produced. [] 

We do not know of an example of a d-dimensional totally real submanifold 
27 of C a that does not have Property (~) ,  but we believe that such examples 
exist. 

3. Unique continuation in a generic submanifold of C "+d 

As before, ~)l will be a generic submanifold of C "+d, of class ~1, of codimen- 
sion d_- > 1; 27 is a d-dimensional submanifold of 53/, also of class c~, equal to the 
holomorphic-transversal intersection (see Sect. 1) of ~ with a holomorphic sub- 
manifold ~ '  of C "+d, with dim c ~e=d.  
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Let P0 be a point of Z. We shall say that there is unique continuation on Z, at 
P0 when the following is true: 

(q/cg) Give any open neighborhood U of  P0 in 93~ there is an open neighborhood 
V c  U of Po in ~ such that the folloving is true: 

IfaLipschitz-continuous CR function h in U vanishes to infinite order on 
Zc~U, then h = 0  in V. 

What we mean by saying that h vanishes to infinite order on Z n U  is that, 
given any compact subset K of U and any integer N=>O, there is a constant Cr, N >0  
such that 

lh(p)l --< CK.n[dist (p, 2~)] n, MpEK. 

We may now state and prove our main result: 

Theorem 3.1. I f  ~ satisfies Condition ( ~ )  at one of its points, Po, then there is 
unique continuation on ~ at Po. 

Proof. We use the local representations of ~21/, Jr and 2~ of Prop. 1.1 ; P0 will 
be the origin o f  C "+a and z = x + ] / - l y ,  w=s+]/~-Tt, with x, yER", s, tERn. 
Our hypothesis is that Condition (~r holds at the origin. Take the neighborhood 
U of 0 in the product form: U=  U1X U2, with UI (resp., Us) an open neighborhood 
of 0 in z-space (resp., in s-space). Let then F(w) be a holomorphic function in an 
open neighborhood in C n of the image of cggU, (the closure of Us) under the map 

s ~ s + l / -  1 tp(O, O, s), having the following properties: F(0)~0;  there is a compact 
neighborhood of 0 in R n, K c  Uz, such that 

(3.1) F(s+l/-L'--f~o(O, 0, s)) = 0, VsEOK. 

Consider now the following equation in the unknown z: 

(3.2) z = F(s + r - 1 q~(z, ~, s))~. 

Whatever sEcggU~, the Jacobian of the right-hand side with respect to (x, y) 
vanishes when (---0. Recalling that the function (p is of class (~1 we can apply the 
implicit function theorem and solve (3.2) by 

(3.3) z = G((, s) 

for all ((,s)EAXU.,, with A a sufficiently small open polydisk centered at the 
origin in C". We have 

(3,4) G(O,s)-- O, VsEUs; a ( ( , s ) - -  O, V(EA, sEOK. 

Indeed, either when ( = 0  or, by virtue of (3.1), when sEOK, Equation (3.2) has 
the obvious solution z=0 ,  which is perforce unique. 
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The neighborhood A • Us (regarded as an open subset of (~, s)-space C" • R d) 
is diffeomorphic to a generic submanifold Ho of C "+d via the map (4, 0, s)~(~, z), 
where 

(3 .5)  = �9 = s), 

(3 .6)  r s) = s), s), s). 

Clearly, the submanifold H o is of class cgl and codim a Ho=d.  
Let now h be a Lipschitz-continuous CR function in U1 • U2 which vanishes to 

infinite order at z=0.  We regard the pull-back to A • Us, 

/-/(r s) = h (G (r s), s) 

as a function on H0. We contend that H is a CR function, naturally Lipschitz con- 
tinuous. This is based on the following observation: Regard the map (~, s)-~(z, s), 
with z given by (3.3), as a map from H0 into H .  Then it extends as a holomorphh" 
map of an open neighborhood of the origin in C n+a into another such neighborhood, 
namely as the map (~, z)~(z, w) with z=F(z)~ and w=z. Because of this, if 
the differential dh belongs to the span of the dzj, dw,, then dH must belong to the 
span of the dr dz~ (l<=j<=n, l<=k<=d). Actually, we shall regard H a s  a CR func- 
tion in A • U~ equipped with the CR structure pulled back from ~J/0. 

The new feature, here, is that the CR function H(~, s) vanishes to infinite 
order not only at ~=0 whatever sE 0"2, but also when sEOK whatever ~EA. Define 
H(~, s) as being equal to H(~, s) when sEK, and to zero when sE Uz\K.  If we 
show that / 7 - 0  in AXU~, it will entail that H(~, s), and therefore also h(z, s), 
vanish identicalIy in a full neighborhood of the origin (in A X U, and in Uj • 0"2 
respectively). 

Thus the proof  of Th. 3.1 will be complete if we prove the following 

Lemma 3.1. I f  A and Us are sufficiently small, then any Lipschitz-continuous CR 
function/7 in A X Us which vanishes to infinite order at ~ = 0 and is such that/7(~, s) = 0 
for all (~, s)EA X Us, s~ K, for some compact subset K of  U~, must vanish identically 
in a x u , .  

Lemma 3.1 will be a consequence of the following 

Lemma 3.2. Let f(~, s) be a Lipschitz-continuous CR function in A X Us which 
vanishes for all (~, s)EA •  Then the integral 

(3.7) fv, f d z  = fv, f(r s) det [ I+ l/Zq~k~ (~, r s)] ds 

is a holomorphic function of  ~ in A. 

Proof that Lemma 3.2 implies Lemma 3.1. First we choose Us small enough 
that IVJp(0, 0, s)[<l/2 for all sEU,. Thanks to (3.4) and (3.6) this enables us to 



Unique continuation in CR manifolds and in hypo-analytic structures 31 

choose A small enough that IVs~k(~,~,s)l<3/4 for all (~,s)EA• Next, we 
apply Lemma 3.2 to the function 

f(~, s) = aq(~, s)Ev[zo-s-K-"SW~b(~, ~, s)], 

where z0 is an arbitrary (but fixed) point in C d and 

e,(z) = (v/zc) d/z exp ( -  v Zk=ld Zk). 

Call Iv(z0,~) the corresponding integral (3.7); l~(z0,~) vanishes to infinite 
order at ~=0;  therefore it vanishes identically in A. But it is well-known, and 

readily checked (by making the change of variables S~So-S/1/~ ), that, when 

v~+oo,  I~(so+t/--L--~((, ~, s0),~), converges uniformly to /7((,s0) on any com- 
pact subset of A • U~. [] 

Proof of Lemma 3.2. By Hartog's theorem it suffices to show that the integral 
(3.7) is separately holomorphic in each variables ~j ( j = l  . . . . .  n). Write 
A=A1X.. .XA n and fix arbitrarily (jCA i for all j~ i .  Then ((~,s)--IT((,s) is a 
CR function in Ai• Uz for the CR structure defined by the functions (~ and Zk=Sk+ 
t / ~ f f k ( ( ,  ~, S) ( k = l  . . . . .  d), in which (j has been fixed for all j~ i .  This CR func- 
tion vanishes identically when sCK (the special properties of ~ will not be needed 
here). 

Let therefore n = 1 ; A is a disk centered at 0 in the ~-plane. We have: 

(3.8) d [f d~ ̂  dz] = df  ̂  d~ ̂  d~, 

where dz=d~t ^ ... adz d. The left-hand side exterior derivative must be under- 
stood in the distribution sense, since the coefficients of the d-form dz are of class 
cg0. Those of the 1-form df belong to L~~ • U2). Now, formula (3.8) is valid 
when z is a ~ function of (~, t/, s) in A • U2. It remains true when z is a Cgl func- 
tion, as one sees by taking the limit along a sequence of regularizations of z. 

Suppose now that f - 0  when s~K. Let V be a simple closed, smooth curve in 
A, and call f2 its interior. I f  we integrate the right-hand side in (3.8) over g2XUz 
we get, by Stokes' theorem, 

(3.9) f ,  f r f d ~ ^ d ' c =  f o f t l  df^d~^d'r.  

But the fact that f i s  a CR function entails that the coefficients of the (d+2)- 
form df^d~ Adz vanish almost everywhere, since df is a linear combination 
of d~, dq ..... dT a with coefficients in L~(A • U2). We reach the conclusion that 

f,{f ,fd,}aC=o. 
The simple closed curve y is arbitrary and fu, f d z  is a continuous function of 
in A. Thus the assertion in Lemma 3.2 is a consequence of Morera's theorem. [] 
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Corollary 3.1. Let ~ be a hypersurface in C "+1 and S be the transversal inter- 
section of ~ with a holomorphic curve ,~. Then there is unique continuation on Z 
at every one of its points. 

Proof. Combine Th. 3.1 with Remark 1.1 and Prop. 2.1. [] 

Corollary 3.2. Let ~)l be a generic submanifold of C "+a of codimension d. Let Z 
be a noncharacteristic submanifold of ~ of dimension d which is a real-analytic sub- 
manifold of C n+a. Then there is unique continuation on ~ at every one of its points. 

Proof. Combine Th. 3.1 with Prop. 1.4 and Cor. 2.1. [] 

4. Unique continuation in hypo-analytic structures 

Let now ~ denote an "abstract"  off1 manifold. We write dim ~1 = m + n (with 
m>= I, n>-O). A hypo-analytic structure on ~JI is a collection ~- of pairs (U, Z)  con- 
sisting of  an open subset U of ~0/and of  a cgl map Z = ( Z 1  . . . .  , Zm): U ~ C  m, sub- 
mitted to the following conditions: 

(4.1) As (U, Z )  ranges over ~" the open sets U from a covering of  ~0l. 

(4.2) Whatever (U, Z)E ,~ ,  the differentials dZ~ . . . . .  dZ m are C-linearly indepen- 
dent at every point of U. 

(4.3) Whatever the pair of  elements (U, Z)  and (U', Z ' )  of ~ such that UnU'~O 
there is a biholomorphic map H of  an open neighborhood of Z(UnU')  in C m 
onto one of  Z'(UnU')  such that Z ' = H o Z  in UnU'.  

This concept generalizes that of  an analytic manifold, as well as the concept 
of  the structure of  an embedded generic submanifold of C "+d. In the latter ease 
m=n+d and the family ~ consists of  a single element, (~0/, Z),  where Z is the 
natural injection of  ~2R into C "+a. 

Returning to the general hypo-analytic structure ~" on the manifold 93t we 
define a hypo-analytic function in an open subset f2 of  ~0t as a function f :  f2-~C 
having the following property:  Given any point PoE(2 and any pair (U, Z ) E 5  
such that PoE U there is a holomorphic function f in an open neighborhood of Z(po) 
in C m such that f = f o Z  in a neighborhood of po in f2. 

We can now define a hypo-analytic chart in .qJt: it is any pair (U, Z )  consisting 
of an open subset U orgY/and of  a map Z :  U ~ C  m which satisfies (4.2) and whose 
components Z i ( i=  1 . . . . .  m) are hypo-analytic functions in U. All elements of  

are hypo-analytic charts, but a hypo-analytic chart need not belong to ~ ' .  
By the structure bundle of  the hypo-analytic structure we mean the vector sub- 

bundle T '  of  the complexified cotangent bundle C T * ~  whose local sections are the 
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differentials of the hypo-analytie functions: if (U, Z)  is a hypo-analytie chart, 
T'lv is spanned by dZ 1, .,., dZ". Thus the fibre dimension of T '  is equal to m. 
Its orthogonal for the duality between tangent and c~tangent vectors is the vector 
subbundle ~ of the complexified tangent bundle CT99l whose local sections are 
the complex vector fields L such that Lh=O whatever the hypo-analytic func- 
tion h. 

Two different hypo-analytic structures can have the same structure bundle T'.  
It is more precise to say that T'  defines the locally integrable structure underlying 
the hypo-analytic structure under consideration. 

When CT*IIJI=T' @T' (T' :  complex conjugate of T') the locally integrable 
structure is a complex structure, in the customary sense of the word. When CT*~ff/= 
T ' + T '  it is a CR structure. When T 'c~T '=0  it is an elliptic structure; when 
T ' = T '  it is essentially real (see IT]). 

The characteristic set of the hypo-analytic structure of ~ is the subset T o of 
the real cotangent bundle T*gJI equal to the intersection T'c~T*.~JI. In general it 
is not a vector bundle, i.e., the dimension of its fibres may vary. However it is a 
vector bundle when the structure is either CR or essentially real. When it is elliptic 
(and afortiori when it is a complex structure) we have T~ A point (p, 0)~ T * ~  
belongs to T o if (0, Re v )=0  whenever (p, v)~r Thus its orthogonal is the sub- 
set R e ~  of TgJ/, the image o f ~  under the map (p, v)~(p, Re v), 

A cgl submanifold Z of !0t is said to be noncharacteristic if (1.9) holds or, 
equivalently, if 

(4.4) T~)I[~ = TZ+Ref/ ' [~ .  

(cf. (1.10)). 
The proof of the following statement is immediate: 

Proposition 4.1. Let Z, be a rdl submanifold of ~rJ~, whose codimension is even 
and equal to 2~, and which has the following property: 

(4.5) Each point pE ~ has an open neighborhood Up in 9J~ in which there are ~ hypo- 
analytic functions hj ( j =  1, ..., ~) such that, in the set Up, 

(4.6) Z, nUp is defined by the equations h~= . . . .  hx=0;  

(4.7) dhl . . . . .  dh,, d~ .. . . .  d~x are C-linearly independent rood T ' n T ' .  
Then ~ is noncharacteristic. 

We shall say that 2~ is a hypo-analyt& noncharacteristic submanifold of ~ff/ if it 
has Property (4.5). 

When ~ is an embedded generic submanifold of C n+d and codim ~l)/=d, a 
d-dimensional submanifold Z of ~ is hypo-analytic noncharacteristic if locally, 2~ 
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is equal to the holomorphic-transverse intersection of ~ with a holomorphic sub- 
manifold ~'t ~ of  C n+d such that dim e ~ ' = d  (see Sect. 1). 

Let (U, Z )  be a hypo-analytic chart. After a C-linear substitution we may 
assume that the following property, stronger than (4.2), holds: 

(4:8) the differentials d(Re Z1), ..., d(Re Zm) are linearly independent at every point 
of  U. 

After contracting U about  one of its points, P0, we may take the functions xi = Re Zi 
as par t  of  a coordinate system in U whose remaining coordinates we shall provi-  
sionally denote by yl  . . . . .  Yn- We may and shall assume that these coordinates, 
as well as the functions Zi themselves, all vanish at P0. For  this reason we shall 
often refer to Po as the origin and denote it by 0. We now have 

(4.9) Z, = x i+l / - - l~o i (x , y ) ,  i = 1, . . . ,m,  

with the qh real-valued. Further contractions of  U and C-linear substitutions of  
the Z, allows us to assume (cf. (1.6), (1.7)) that 

(4.10) V, ~0i (0, 0) = 0, i =  1, . . . ,m.  

By (4.2) we know that the rank at  the origin of  the map Z is -> m; denote 
it by m + v .  By (4.9) and (4.10) v must be equal to the rank at  0 of  dytpl . . . . .  dytPm. 
We can carry out an R-linear substitution of the Z, so as to achieve that 

(4.11) dy~ol . . . .  ,d /p~ are linearly independent at 0; d%+1,  ...,dq~n 

vanish at 0. 

Further contracting of  U about  0 allows us to take q~l . . . . .  ~o v as the first v coordi- 
nates yj .  In order to bring our notation closer to the one used in the CR case we 
shall make the following changes: 

We write W k instead of Zv+k, Sk instead of  Xv+k and tPk(X, y,  S, t) instead of  
(pv+k(X,y) for k = l ,  ..., d = m - v .  We write t e instead of  Yv+c for ~ = 1  . . . . .  d ' =  

We end up with the following "representat ion" 

Zj  = x j + l / - - T y j ( =  zj), j = 1 . . . . .  v; 
(4.12) 

--- + y ,  s, 0 ,  k = 1 . . . .  , d .  

Moreover, the functions q~k are real-valued and 

(4.13) ~0k[ 0 = 0, d~o,10 = 0, k = 1, ..., d. 

Below we write q~ = (~ol, ,.., (Pd): U ~  R d. 
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When d = d ' = 0  (i.e., v = m = n  and dim~J~=2n) the underlying locally 
integrable structure is a complex structure over the set U. When d ' = 0  it is a CR 
structure. When d = 0  it is elliptic. When v=0  (in which case d=m) and tpk=---0 
for all k =  1 . . . . .  d, the structure is essentially real. 

The formulas (4.12) make clear that, in general, the "hypo-analytic" map 
(Z, W): U ~ C  v+n is not an embedding. It is one when there are no variables t, 
i.e., when the structure induced on U is a CR structure. Otherwise the pre-image 

of a point (z, w) under that map is the set {(x ,y ,s ,  t); x+l/----(y=z, s = R e  w, 
~o(x, y, s, t ) = I m  w}, which, in general, will consist of more than one point. 

Over U the vector bundle ~e" (see above) is spanned by n=v+d" vector 
fields 

Lj = O/OZjq- ~dk= 1 •],kO/OSk, j = 1 . . . . .  V, 
(4.14) 

t a L,+e = 0/0 e+ ~k=~2~+e, kO/OSk, ~ = 1 . . . .  , d', 

in which the coefficients 2j, k are determined by the requirement that LjWk=O for 
all j ,  k, l<=j<-n, l<-k<-d. It follows from (4.13) that all these coefficients vanish 
at the origin. It follows that the fibre of ~e" at 0 is spanned (over C) by the tangent 
vectors O/O~j, O/Ot e ( j = l  . . . . .  v, Y=I  . . . . .  d'). From this, or directly from (4.12)-- 
(4.1 3), it follows that the fibre at the origin of the characteristic set T o is spanned 
(over R) by the dsk, k = 1 . . . . .  d. Thus the dimension of the fibre of T O at 0 is equal 
to d. This, combined with (I.9), demands that the codimension of any noncharacter- 
istic submanifold of ~/J/, 27, passing through the origin, be < - m + n - d = n + v ,  i.e., 
dim ~ =>d. 

We shall denote by (U, (Z, W)) any hypo-analytic chart in which the "basic" 
hypo-analytic functions are given by (4.12). If  moreover (4.13) hold true we shall 
say that (U, (Z, W)) is a distinguished hypo-analytic chart. It ought to be kept in 
mind, hGwever, that the integers v, d, d '  may vary from one distinguished hypo- 
analytic chart to another. 

The proof of the next statement is left as an exercise to the reader: 

Proposition 4.2. Let �9 be a hypo-analytic noncharacteristic submanifoM of  
such that codim Z=2~.  Then every point of  ~ lies in the domain U of  a distin- 
guished hypo-analytic chart (U, (Z, W)) such that Z n U  is defined in U by the 
equations 

(4.15) Z j = 0 ,  j = l  . . . . .  ~. 

(Thus we must have x~_v.) 
Conversely, given any distinguished hypo-analytic chart (U, (Z, W)), 

tions (4.15) define a hypo-analytic noncharacteristic submanifoM of  U. 
the equa- 
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We shall say that the distinguished hypo-analytic chart (U, (Z, W)) is adapted 
to the manifold Z if S n U  is defined in U by the equations (4.15). 

In the hypo-analytic structure on the manifold ~0/ the sohttions play the role 
that CR functions play on a generic submanifold of C "+d. Here we shall be interested 
in Lipschitz-continuous solutions h in some open subset f2 of ~lJ/. This means that 
h is a Lipschitz-continuous function in f2 whose differential is an L = section of the 
vector bundle T'. In any hypo-analytic local chart (U, Z)  with Ucf2,  dh is a 
linear combination of dZ1 . . . . .  dZ,, with coefficients in L = (U). This is equivalent 
to saying that, given any continuous section L of ~ over f2, we have Lh=O. In 
this last characterization lies the motivation for the name "solution". 

Any hypo-analytic function in f2 is a solution in f2 but, in general, there are 
solutions which are not hypo-analytic. 

When 9~ is a generic submanifold of C "+a inheriting its CR structure from 
the ambient complex space, the sections of-//" are the tangential Cauchy--Riemann 
vector fields; and the solutions are the CR functions. The hypo-analytic functions 
are those functions which can be extended holomorphically to an open neighborhood 
in C "+d of every point of their domain of definition. 

Let 27 be a hypo-analytic noncharacteristic submanifold of U and P0 a point 
of 27. We shall say that 27 satisfies Condition (~) at Po if there is a distinguished 
hypo-analytic chart (U, (Z, W)) centered at Po (i.e., in which P0 becomes the origin), 
with Z and W given by (4.12), adapted to the manifold 2 and such, furthermore, 
that the following is true: 

(4.16) The submanifold 27o of C a defined by the equations 

Im w = ~0 (0, 0, Re w, 0) 

satisfies Condition ( d )  at the origin (see Sect. 2). 

Theorem 4.1. Let 27 be a hypo-analytic noncharacteristic submanifold of ~Jl. 
Suppose that 2 satisfies Condition (~) at one of its points, Po. 

Then, to each open neighborhood U of  po in 9~ there is another one, V c U, such 
that every Lipschitz-continuous solution h in U which vanishes to infinite order on 
~,nU also vanishes identically in V. 

Proof. After contracting U about P0 we may assume that U is the domain of a 
distinguished hypo-analytic chart (U, (Z, W)) centered at p0 and adapted to 27. 
Suppose that Z and W are given by (4.12)and that (4.13) holds. Let Uo denote the 
subset of U defined by t=0 .  The map 

(4.17) ( x , y , s ) ~ ( z , w ) ,  z=x+(--- - - fy ,  w = s + ( - l q ~ ( x , y , s , O ) ,  
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is a c~1 diffeomorphism of Uo onto a generic submanifold ~19l 0 of C "+e whose codimen- 
sion is equal to d. Let 2~ 0 denote the submanifold of ~33l 0 defined by z=0 .  It is 
equal to the holomorphic-transversal intersection of ~lgt o with a holomorphic 
submanifold o~r 0 of C V+d, with dim c ~g~'0=d. By hypothesis it has Property ( d ) .  
Therefore, by Th. 3.1, there is unique continuation in ~ 0 ,  on 2;o, at the 
origin. 

Now, given any Lipschitz-continuous solution h in U, the transfer of  hit= o 
to ~Jl 0 via the map (4.17) is a Lipschitz-continuous CR function ~0 on 9J/o. It follows 
from Th. 3.1 that ~ 0 - 0  in a neighborhood 170 of  the origin in C 2v+d (170 can be 
taken independently of h). By pull-back under (4.17) we obtain that h = 0  in a full 
neighborhood V 0 of 0 in the subspace t = 0  of  U. Th. 4.1 follows then from the 
uniqueness in the Cauchy problem which is one of the consequences of  the Approxi- 
mation Formula in locally integrable structures (see [T], p. 29*). [] 

The analogues of Corollaries 3.1, 3.2 are valid here: 

Corollary 4.1. Let Z be a hypo-analytic noncharacteristic submanifold of  
passing through a point Po at which the fibre of the characteristic set T o of  ~ has 
dimension <-__ 1. Then the conclusion of  Th. 4.1 is valid. 

Proof. In the distinguished hypo-analytic chart (U, (Z, W)) given by (4.12) 
and adapted to 2;, the hypothesis means that d-<__l. When d=O (i.e., there are 
no variables s) every solution is a holomorphic function of  z (independent of t) 
and the assertion is immediate. When d =  1, Prop. 2.1 entails that I; satisfies Con- 
dition (~)  at P0. [] 

We leave to the reader the statement and the proof  of  the analogue of 
Cor. 3.2. 

Remark 4.1. The proof  of Th. 4.1 has made use solely of  the fact that the solu- 
tion under consideration vanishes to infinite order on the submanifold of U defined 
by Z = 0 ,  t = 0  (which we may identify to the submanifold So of C a in Condi- 
tion (4.16)). But in fact this does not imply any loss of generality. Indeed, observe 
first that the restriction of  any Lipschitz-continuous solution h to the subspace 
Z = 0  defines a Lipschitz-continuous solution h0 in an open neighborhood of the 

* In the proof of the Approximation Formula that have been published so far the regularity 
assumptions on the basic "hypo-analytic" functions Z~ are fairly strong (at least cg~). Actually 
by the same argument used in the proof of Lemma 3.2 the formula can be proved under the hypo- 
thesis that the Zj are of class c~1 and the solution is Lipschitz-continuous. 
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origin, in (s, t)-space R d+d', for the hypo-analytic structure defined by the 
functions 

(4.18) w,, = s ,  + 1 / - -Tq , , (o ,  o ,  s, O, k = 1 . . . . .  a .  

The uniqueness in the Cauchy problem, already used at the end of the proof of 
Th. 4.1, implies that if h 0 vanishes (to first order) on the subspace t=0,  then it 
vanishes in a full neighborhood (independent of h0) of that subspace. 

Of course there is no greater generality to be gained by looking at the traces of 
solutions on submanifolds of the kind t=f(s) since a change of variables t ~ t - f ( s )  
can always bring us back to the case t=0.  [] 

5. Two extraneous examples of unique continuation 

Let us return to the embedded CR case: ~ is a generic cgl submanifold and 
a holomorphic submanifold of C n+a such that codim R ~lY/=dim c ~ = d ;  the inter- 
section .rff/o:~ is holomorphic-transversal and equal to 2;. 

It is sometimes possible to prove unique continuation on S, at a point Po, 
even if we cannot prove that 2; satisfies Condition ( d )  at Po (Sect. 2). Let us give 
two examples, one quite trivial, the other one less so: 

Example 5.1. Assume that the following property holds: 

(5.1) Given any open neighborhood U of Po in ~ there is an open neigborhood 
0 of Po in C ~+a such that dgc~gJ/cU and such that the following is true: 

To each Lipschitz-continuous CR function h in U there is a holo- 
morphic function h in 0 such that h=~ in d~n~l~. 

In other words, every germ of  CR function at Po is hypo-analytic at Po (of. Sect. 4). 
Then obviously there is unique continuation on Z at Po (i.e., Property (q/~) holds). 

Condition (5.1) is satisfied, in particular, when the Levi form of ~ has at least 
one eigenvalue <0  at every characteristic cotangent vector to ~ at the point Po 
(see [BCT], Cor. 6.1). 

Example 5.2. Suppose n--1 and 0 ~ .  Suppose moreover that ~ is defined, 
in some open neighborhood of 0 in C TM, by the equations 

(5.2) I m w ~  = ~0~(lzl, Rew), k = 1 . . . .  ,d. 

Let Z be defined by the equation z=0. Then (q/cg) holds at the origin. 

Proof. Because of the special form of the defining equations it is convenient 
to use polar coordinates r, 0 in the complex z-plane, in particular in representing 
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the tangential Cauchy--Riemann vector field on 9R away from 2;. Thus we may 
take it to have the form 

L = O/OY-~ r 2k(Y, S)O/OS k. 

Let now U = A X &  be a neighborhood of 0 in (z, s)-space CXRd; A is an open 
disk in the z-plane, & an open ball in R a, both centered at the origin. Let [7 be the 
image of U under the map (z, s)~(z,  w) with w=(wt . . . . .  wd) given by (5.2), and 
let ~ be any Lipschitz-continuous CR function in U which vanishes on 2~. Denote 
by h(r, O, s) its pull-back to U and set 

ho(r, s) = (2zc)- f0 h(r, O, s) dO. 

By integrating with respect to 0 over (0, 2re) the equation Lh=O, we obtain 

(5.3) Oho/Or + .~=12k(r'  S) Oho/OS k = O. 

Since ho(0, s )=0  for all sC~ we may extend h0 to r < 0  by setting it equal to 
zero there, thus getting a Lipschitz-continuous function in Uo=( - r0 ,  r 0 ) •  (to: 
radius of A). We see that, in Uo, ho(r, s) is a solution for the hypo-analytic structure 

defined by the functions W~=Sk+~-----~ok(r,s), k = l  . . . . .  d. Uniqueness in the 
Cauchy problem, with Cauchy data on the hypersurface r =  0, holds for the vector 
field L (by the Approximation Formula, see [T], p. 29), and therefore h 0 - 0  in 
an open neighborhood V0 of {0})<~ in U0. Furthermore V0 can be chosen inde- 
pendently of h. 

Suppose now that ~ vanishes to infinite order on 27. The preceding reasoning 
may now be applied not merely to ~ but to h/z" whatever the integer /z~0 or <0.  
We conclude that, whatever /~EZ, 

hu(r, s) = (2zr) -1 f h(r, O, s)e -r176 dO 

vanishes for all (r, s)EVo. But of course this means that h(r, O, s)=--O for all (r, s)CVo, 
whereby our contention is proved. [] 

Added in the proofs. After completion of this paper Howard Jacobowitz gave 
an example of a two-dimensional totally real submanifold of C z that does not have 
property ( d )  (cf. end of Sect. 2). See H. Jacobowitz, "On the intersection of va- 
rieties with a totally real submanifold", Proc. Am. Math. Soc. 1 0 1  (1987), 
127m130. 
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