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O. Introduction 

We prove that the notions of  a Banach lattice with "quasi-interior elements" 
and of a cyclic C(X)-module are essentially equivalent. This leads to various rep- 
resentation theorems for such Banach lattices. The most interesting result is 
perhaps that every separable non-atomic Banach lattice, such that the dual space 
has a weak order unit, can be represented by Lebesgue-measurable functions on 
the unit interval. 

1. The notion of  "ideal center" was first introduced in the setting of C*-al- 
gebras by Effros [2] and Dixmier [i]. In [6] W. Wils redefined the notion in the 
setting of  partially ordered spaces. He defines there the ideal center of  a partially 
ordered vector space E to be the set of  all endomorphisms of  E that are bounded 
(for the order of  operators) by a multiple of  the identity operator. We shall denote 
the center of  E by Z(E) (Wils writes Z~) and we shall use the ideal center in a con- 
text which was essentially avoided by Wils. According to Wils "ZE turns out to 
be a very useful tool in digging up remnants of lattice structure", and since the 
main interest of  Wils is to study more general partially ordered spaces, he almost 
entirely avoids the case of  Banach lattices. In passing he does however prove that 
the ideal center of  a Banach lattice is always a C(X)-space (both as a Banach lattice 
and as a Banach algebra), and it was observed by Hackenbroch [3] that if the given 
Banach lattice E has a weak order unit then Z(E) is isomorphic (as a vector lattice) 
to the order ideal generated by u. 

Using this fact Hackenbroch proves strong uniqueness theorems for representa- 
tion spaces of  Banach lattices (having a weak unit). Since thus the "endomorphism 
algebra" of  a Banach lattice with weak order unit contains a "large C(X)-space" 
the lattice itself may be considered as a module over its ideal center. 

Let A now be a Banach algebra and let M be a Banach space. We shall then 
say that M is a left Banach module over A, or a left A-module, if M is a representa- 
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tion space for A, that is if  there exists a contracting homomorphism of  A into 
L(M). Likewise N is called a right A-module if there exists a contracting anti- 
homomorphism of  A into L(M). We shall usually write " a .  m" or only "am" for 
the "product"  in a left A-module and "ma" for the product in a right A-module. 
It is well-known that if M is a left A-module then the dual space M" is a right A- 
module. Now it is a general rule that the simplest modules are the cyclic modules, 
and it is therefore a natural problem to decide when a Banach lattice B is a cyclic 
module over its center. It turns out that this holds if and only if the positive 
cone of  B has a so called "quasi-interior point" u. We shall in this paper call such 
an element a "topological (order) unit". Now the main importance of  a topological 
unit is that B may then be considered as the completion of  Z(B) for a smaller norm, 
and therefore we also get a representation of  the dual space B '  as measures on 
the maximal ideal space of  Z(B). Conversely, it is also natural to consider cyclic 
modules over a given (real) C(X)-space, and it is then easily proved that such a 
module is in fact a Banach lattice. The ideal center of  this Banach lattice may be 
properly bigger than the given space and in particular we prove that B is separable 
if and only if it is a cyclic module over a C(M)-space, where M is a metrizable 
compact space. (In the following a compact space is always assumed to be a Haus- 
dorff space.) 

It even turns out that every reflexive, separable, non-atomic Banach lattice 
is a cyclic module over C(I) (I the unit interval), while the ideal center of B is then 
isomorphic to L=(1, dx), and in fact B may be represented as an order ideal in 
LI(L dx), i.e. as a space of  Lebesgue-measurable functions on L 

The close relations between Banach lattices and C(X)-modules also hold for 
complex spaces and it is easily proved that a cyclic module over a complex C(X)- 
space is a complex Banach lattice (defined e.g. as the complexification of  a real 
Banach lattice). In the following all Banach spaces are assumed to be real spaces 
but it would require only minor modifications to consider complex spaces. 

We shall conclude this introduction with the remark that we follow the standard 
notations of  writing L(B) for the algebra of  all endomorphisms of  the given 
Banach space B, and we write U(B) to denote the unit ball of B. Finally, C(X) 
always denotes the algebra of all (real-valued) continuous functions on the com- 
pact space X. 

1. Preliminaries 

1. We shall begin by fixing terminology and notations. First of  all a Banach 
lattice is a partially ordered Banach space where each finite subset has a least upper 
bound and such that if [fl~<lgl then also Ilfll-<_llgll (we denote as usual 

If} = sup (f,  - f ) ) .  
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We also adopt the convention that a subspace of  a Banach space is always 
closed, and if for some reason we consider a subset L of a Banach space, such that 
L is stable under the linear operations then we shall say that L is a linear subspaee 
of  the given Banach space. In accordance with this convention a sublattice and 
an ideal in a Banach lattice are always assumed to be closed, while e.g. a linear 
ideal need not be closed. Furthermore, we shall say that an ideal fl in the Banach 
lattice B is a band if  whenever a subset E of  fl has a least upper bound e in B, then 
e Efl. Since every band is topologically closed there is no need for 'linear band's'. 

To fix notations we shall make the following 

Definition 1.1. Let S be a subset of  the Banach lattice B. We shall then write 
m(S)  to denote the linear ideal generated by S, i.e. 

re(s) -- {xc B l Ixl <- Z L a  r,. Is, I, r,C R, s,~ S}. 

1(S) to denote the ideal generated by S(I (S)  is the closure of  m(S))  
p ( S )  to denote the band generated by S. 

I f  the set S consists of  a single element s, then we shall write m(s), I(s)  and 
fl(s) instead of m({s}), I({s}) and fl({s}). The element a is called an atom if  I(a) 
is 1-dimensional. A Banach lattice is said to be non-atomic if  it has no atoms. 

We shall next introduce a perhaps not  quite standard terminology by 

Definition 1.2. Let B be a Banach lattice and let u be a positive element of 
norm 1. We shall then say that u is a 

K-unit (for Kakutani-unit or Krein-unit) if m(u)=B 
t-unit (for topological unit) or simply unit if I (u)=B 
F-unit (for Freudenthal-unit) if fl(u)=B. 

Since the notion of  a t-unit will be the most useful we shall say that a Banach 
lattice is unital if it has a t-unit. To simplify notations we shall often write (B, u) 
to denote that u is a given t-unit in the unital Banach lattice B. 

We shall in the following need the following well-known 

Proposition 1.3. a) For every element s in the Banach lattice P, the linear ideal 
m (s) can be renormed by 

[If[[., = inf{t[ If[ ~ t-[s[}. 

b) 

With this norm m(s)  becomes an AM-space in the sense of  Kakutani so by the 
Kakutani representation theorem m(s)  is isomorphic to C(X) for some compact 
Hausdorff space X. Under this isomorphism the function lx corresponds to Isl. 
Every separable Banach lattice contains a t-unit. 
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2. A concept which will turn out to be very useful when considering 'simultane- 
ous' representations of a given Banach lattice B and its dual space B '  is given by 

Definition 1.4. Let B be a Banach lattice with dual space B'. A pair (u, u'), 
uEB, u'EB" will be called a dualpair i f u  is a t-unit in B, if u" is an F-unit in B '  and 
if (u, u ' ) =  1. Even if both B and B' are separable so that both have units we do 
not know if they will always have a dual pair. However, it follows from the follow- 
ing proposition that it is no real loss of generality to assume that whenever 
both B and B'  have units (or if  B has a t-unit and B'  an F-unit) then they also 
have a dual pair. 

Proposition 1.5. Let (B, u) be a unital Banach lattice, and suppose that the dual 
space B" has an F-unit v. Let further ~>1 be a real number. There exists then 
a Banach lattice B,, obtained from B by a slight change of norm, and an element 
u" in B'~, such that (u, u') is a dual pair for B~, B~ and such that for all bEB, 
[lb[]<=ilbll~<=o~,llbll (where Ilbll denotes the norm of b in B). 

Proof. Choose ulEB' such that (U, Ul)=I and put u2=u~+(o~-l).v. Let 
further k=(u, u2), and put u '=k -x.uz. Defining now Ilbll~=sup (llblI, ([bl, u')) we 
obviously have llul[~=(u, u ' ) = l .  Furthermore, u" dominates the unit v so u' is 
a unit and since l<_-Ilu'[lB,~, we also have []b[l<=l[blI~.[lbl[ and this proves 
the proposition. 

3. We shall conclude this introductory chapter by introducing a notion which 
was first used in the context of C*-algebras by Dixmier [3], and was then used for 
studying partially ordered spaces by Wils [W]. 

Definition 1.6. Let B be a Banach lattice. The set of all operators z in L(B) 
that are bounded for the ordering of operators by a multiple of the identity is 
called the ideal center of B and will be denoted Z(B). 

The basic properties of the ideal center are given by 

Proposition 1.7. (Wils [W]). Let B be a Banach lattice and let Z(B) be the 
ideal center orB. Z (B ) is then a closed subalgebra of L(B ), and with the order structure 
inherited frorn L(B) it is also a Banach lattice with 1B as a K-unit. Furthermore, Z(B) 
is with respect to both these structures isomorphic to C(X) for some compact 
Hausdorff space X. I f  B has an F-unit u, then the map 

U: Z(B) ~ B defined by 

U(z) = z(u), z~Z(B)  
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is a lattice isomorphism onto m(u), I f  u is a t-unit then B is a cyclic Z(B)-module 
with u a cyclic vector. I f  B ( = E ' )  is a dual space (so that L(B) is the dual space 
to E ~ E ' )  then Z(B) is also a dual space (since it is weak* closed in L(B)). 

Remark. It follows from Proposition 1.6 that if ua and u2 are both (not 
necessarily normalized) F-units in B, then re(u1) and re(u2) are isomorphic vector 
lattices (since both are isomorphic to Z(B)). This fact was used by Hackenbroch 
[3] to obtain intrinsic characterizations of representation spaces for Banach 
lattices. 

2. Unital Banach lattices and cyclic C(X)-modules 

1. We ended the previous paragraph by stating Wils theorem which implies 
in particular that every unital Banach lattice is a cyclic C(X)-module for some 
C(X)-space. In the present paragraph we shall prove various converses and refine- 
ments of  Wils' theorem, starting with 

Proposition 2.1. Let X be a compact space, let B be a Banach module over C(X) 
and let uEB, tlut1-1 be a cyclic vector in B, i.e. the linear subspace C(X) .u  is dense 
in B. Then B can be given an order structure and becomes with this order a unital 
Banach lattice with u as a t-unit. 

Proof. We define a new norm on C(X) by 

Ilfli'--IIf'ullm 

and we observe that by assumption the completion of  C(X) for this norm is iso- 
morphic to B. (Strictly speaking 1[ I1' need only be a seminorm but it is easy to see 
that the set of  a l l f h a v i n g  l I f I [ '=0 is an ideal I in C(X) so 11 1]' is a norming of  
C(X)/ I~  C(Y)). The positive cone is now defined as the closure of  the positive 
cone in C(X) for the natural order of  C(X). We have then a positive injective 
map h: C ( X ) ~ B  having dense renge. The adjoint of h is therefore  an injective 
map h': B ' ~ M ( X ) .  Since h' is injective we identify B" with a subspace of  M(X). 
It is then clear that the dual order in P '  coincides with the order obtained from 
M(X). We observe next that B '  is a linear ideal in M(X),  in fact B '  is the set of  
all measures #EM(X)  for which 

f xf(x) d#(x) <-_ c(v) . Ilf[[' 

and it is obvious that if  [v[~lp ] and #EB '  then also vEB'. In particular B '  is a 
linear sublattice of M(X) and is with its own norm a Banach lattice. Therefore 
B" is a Banach lattice and then B being the closure of the linear sublattice C(X) 
in B" is a closed sublattice of B" which means that B is itself a Banach lattice. 
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At this point it seems worth pointing out that while we do have an obvious 
inclusion C ( X ) c Z ( B )  it is not  in general true that C(X)=Z(B) .  We have 
in fact 

Proposition 2.2. Let X, B and u be as in Proposition 2.1 and let (B, u) be the 
unital Banach lattice obtained from B when ordered as in proposition (2.1). The 
unit ball U(Z(B)) of  Z (B)  is then lattice isomorphic to the order interval [-u, u] 
in B and may be defined as the completion of  the unit ball of  C(X) for the metric 
given by 11 II, (or equivalently as the closure of U(C(X)) in B).  

Proof. Obvious f rom the Wils theorem. 

2. So far we have proved that every unital Banach lattice can be represented 
as the completion of  a C(X)-space for some modulenorm on C(X). We shall next 
prove that this completion can be represented by functions on X. Towards this 
we shall need 

Definition 2.3. Let X be a compact  space, let (B, u) be a cyclic C(X)-module 
with dual space B ' c M ( X ) .  We shall say that a subset E of X is a B'-null set if 
for every e > 0  there exist an open set 0~, such that E c 0 ~ ,  and such that for 
every positive measure /~ in the unit ball of  B '  

 (o3 < 

I t  is easily seen that  the family of all B'-null  sets is a a-ideal of  subsets of X. This 
a-ideal will be denoted eft, and we shall say that a property holds B'-almost  every- 
where if  it holds outside a B'-null set. 

Besides the concept of  a B'-null  set we shall need the concept of  a B'-measur-  
able function as given by 

Definition 2.4. Let X, B u and B ' c M ( X )  be as in definition (2.3). We shall 
say that a function f defined B' -a lmost  everywhere on X is Lusin B'-measurable 
if  for every e > 0 ,  there exists an open set 0~ which is of  measure less than e for 
all positive # in U(B'), and a function gEC(X) such that  f = g  outside 0~. 

In terms of  the preceding definitions we can now state and prove 

Theorem 1. Let X, B, u and B" c M ( X )  be as in definition (2.3). The elements 
of the space B can then be represented by Lusin B'-measurable functions. Two such 
functions represent the same element of B i f  they are equal B'-almost everywhere. 
Furthermore, the element u is represented by the function 1 and the duality between 
B and B" is given by 

(b, b') = f x b(x) db'(x). 
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Proof Let b6B. By assumption there exists then a sequence {fk}~'=1, fkEC(X), 
such that IlA-bll-*0. Choosing if necessary a subsequence we may assume that 

IIA-A-alI~ < 4-k. 

Defining now g0=fo and gk=fk--fk_a for k=~l we have 

b = .~k=Ogk 
and 

IlgkllB < 4 -k- 
We now define 

an = 2 Z = o  Igkl 

and we obtain an increasing sequence of continuous functions. For every st in 
U(B') + we now have 

(S,, st) < Ilgoll + ~ k = l  4-k 

and this means that the sequence S, is B'-almost everywhere convergent to a 
finite limit. 

It follows that the series ~ g k  is B'-almost everywhere absolutely convergent 
to a limit function b (x). We shall prove that the function b (x) is Lusin B'-measur- 
able. To do this we shall use the truncating function a: R-~R defined by 

t if It[ <_- 1 
a(t) 

sign(t) if Itl--> 1. 
We put namely 

h~ = 2-k.  a (2 k- gk). 

Let now e > 0  be given and choose N such that 2-~r<e. We define 

N Zk=N+I hk ga -~- ,~k=O gk -}- 

Since all gk and all h k a r e  continuous and since [[hkl[~<2 -k  it follows that the 
series is uniformly convergent so that g8 is continuous. We put 

Ok = {Xlgk(X)--hk(x) ~ 0} = {xllgk(x)l > 2-k}. 

It is clear that g~=b outside 
We then have 

f x lg~(x)l dst(x) 

O~=UN+IOk. Now let StEU(B') +. 

= ([g~[, st) ~ II[gk[ll = IIgkll < 4 - k -  

By Tchebycheff's inequality (2-k.st(0D<f Igkldst<4 -k) we then have 
/~(0~)--<~st(0k)<~k~N+12--k<~, and this proves that b(x) is Lusin B'-measur- 
able. That u is represented by 1 is obvious and the integral relation follows from 
Lebesgue's theorem of  dominated convergence. 
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3. So far we have proved that cyclic C(X)-modules are unital Banach lattices 
and can be represented by measurable functions but we have not considered any 
relations between properties of  X and properties of B. We shall in the following 
prove that order completeness properties of  B are related to conneetedness pro- 
perties (or rather disconnectedness properties) of  X and that separability of B is 
related to metrizability of  X, i.e. to separability of C(X). We shall begin by con- 
sidering the Wils representation of  B and we then have 

Proposition 2.5. Let (B, u) be a unital Banach lattice with ideal center Z(B) 
and Wils space W(B). 
Then 

(i) I f  B is countably order complete, then so is Z(B) and W(B) is quasi-stonian. 
(ii) I f  B is order complete, then so is Z(B)  and W(B) is stonian. 

(iii) I f  B is a dual space, then so is Z(B) and W(B) is hyperstonian. 
(iv) I f  Z(B)  is separable then Z(B) is lattice isomorphic to B. 

Proof. O) and (ii) follow from the simple observation that if B is (countably) 
order complete then so is re(u) and therefore also Z(B) combined with well-known 
properties of  the maximal ideal spaces of  (countably) order complete AM-spaces 
(see e.g. [S, p. 107]). (iii) follows from Wils' theorem and the definition of  a hyper- 
stonian space as the maximal ideal space of  a dual C(X)-space. To prove (iv) we 
assume that the norm of  B is not equivalent to the uniform norm in Z(B). This 
implies then that there exist functions fk~Z(B)  k----l, 2 . . . . .  such that fk>=O, 
Ilf~ll~<-2 -~, while Ilf~ll~_->k. We define next w = u + ~ f k .  We consider then 
the linear ideal re(w) with its intrinsic AM-space norm as a Banach lattice in se. 
Since we have I[wllB<-2, it is easy to see that for fEC(X),  

IIf[IB <-- 2 .  [If lira(w) <-- 2 .  Ilfll~. (2.1.1) 

Using Proposition 2.2 we can now determine Z(m(w)) as follows. Let 0 be the 
open set where w<  co, then Z(m(w))~ Cb(O) (the ring of all bounded continuous 
functions on 0. It is well-known that Cb(O ) is isomorphic to C(fl(0)), where fl(0) 
is the Stone--Cech compactification of 0. It follows now from proposition (2.2) 
and the inequalities (2.1.1) that Z(B) = C(He(B)) c Z(m (w)) = C(fl (0)) c Z(B), and 
hence He(B) is homeomorphic to fl(0) and since fl(0) is non-metrizable, Z(B) is 
non-separable. 

As we have just seen the Wils representation of  a Banach lattice will usually 
represent it as a module over a non-separable C(X)-space. On the other hand it 
is clear that any cyclic C(X)-module over a separable C(X)-space is itself separable 
and we shall presently see that every separable unital Banach lattice can be rep- 
resented as a cyclic C(X)-module over a separable C(X). We state this as 
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Theorem 2. A unital Banach lattice (B, u) is separable iff there exists a metrizable 
compact space M such that (B, u) is represented as a cyclic C(M)-module. I f  B is 
countably order complete then M can be chosen totally disconnected. 

Proof. Since the if part is trivial we let (B, u) be a given separable unital Banach 
lattice and we shall construct a metrizable space M satisfying the assertions of  the 
proposition. To do this we first choose a dense (for the norm of  B) countable subset 
{q~k} of the order interval [t9, u]. Considering the tp k as elements of  Z(B),  that is 
as elements of  C(X), we may consider 

= (qh, q~ . . . .  ) 

as a continuous map of  X into the Tychonov cube [0, 1] +~. We put 

M = Im (~) 

and we see that M is compact and metrizable. Since we have a natural homomorph- 
ism: ~:  C(M)-*C(X)  B is clearly a C(M)-module. Furthermore, M is constructed 
as a subset of  [0, 1] +~ so in C(M) we have in particular the coordinate functions 
tk, and since ~*(tk)=tkO~=Cpk we see that 

~*(C(M)) .u  

is dense in B, i.e. B is a cyclic C(M)-module. If  B is countably order complete, 
then the finite linear combinations of  idempotents are dense in Z(B),  and choosing 
a sequence Jk of idempotents we obtain a map of  X into the Cantor space {0, 1} ~ 
with the same properties. 

w 3. Dual pairs 

1. In the preceding chapter we obtained representations of  unital Banach 
lattices as C(X)-modules and as 'measurable' functions on various compact spaces 
proving in particular that a unital Banach lattice is separable iff it can be represented 
as a C(M)-module for a separable C(M)-space. In this chapter we shall make an 
additional assumption on the lattices under consideration, namely that the pair 
(B, B')  has a dual pair. Since every separable lattice is unital it follows from pro- 
position (1.5) that a separable reflexive lattice may without essential loss of  gen- 
erality be assumed to have a dual pair. We shall see that this assumption leads 
to a very precise and well-known description of the results obtained in the previous 
chapter. We shall begin by proving 

Theorem 3. Let (B, u) be a unital Banach lattice represented as a cyclic C(X)- 
module and suppose (u, u') is a dual pair for (B, B'). Let further #EM(X)  be the 
measure representing u'. Then It is a probability measure and all measures in B" 
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are absolutely continuous with respect to it, so taking Radon--Nikodym derivatives 
we may represent B" by (equivalence classes of) #-measurable functions on X. Further- 
more B'-measurability is equivalent to #-measurability so also B is represented by 
(equivalence classes of) #-measurable functions on X. We have thus natural in- 
clusions 

C ( X ) ~  B c  Li(X,  /t), L=(X, / t )c  B" c Ll(X,  /t) 

and these inclusions are 'adjoints of each other' so that i f  b(=b(x))E B and b'E B" 
then b" E L i (g) and 

(b, b'} = f x b(x)b'(x) all(x). 

Proof. The first assertion is t h a t / t  is a probability measure and this follows 
from the fact that u' is positive so t h a t / t  is also, and that 

l = <u, u'> = f x l d/t. 

To see that all measures in B'  are absolutely continuous with respect to /t 
�9 �9 �9 U t we take b'6 (B')+, and we put b. = mf  (b,  n .  u'). Since is an F-unit the sequence 

b.' order converges to b'. Now the measures b~ increase to the measure b', and 
since all the b~ are absolutely continuous with respect to / t ,  so is (e.g. by the Vitali--  
Hahn--Saks  theorem) b'. As asserted in the theorem we may therefore identify 
B' with a linear ideal in LI(X,/t)  and" using Radon--Nikodym derivatives the 
elements of  B '  are represented by equivalence classes of/ / -measurable functions 
on X. It is worth observing that u �9 is then represented by the function 1. We next 
observe that the unit ball of B'  is a weakly compact subset of L 1 (/l) which is there- 
fore uniformly integrable and this implies that every/t-null set is a B'-null set and 
since the converse holds a priori this proves that the a-ideal of B'-null sets coincides 
with the a-ideal of  /z-null sets. Therefore B'-measurability and /t-measurability 
are also equivalent properties. 

The natural representation of B as /t-measurable functions on X gives us the 
inclusions C ( X ) c B c L i ( Z , / t ) ,  and the adjoints of  these inclusions give us maps 

L~(X, ~ ) c ,  B" c ,  M ( X )  

but as we saw above the range of the second map is contained in L ~ (/t). Furthermore, 
C(X) is dense in B and B is dense in L i and therefore the adjoint maps are injective 
and may be written as inclusions. Finally, the assertion about the duality given 
by integration is 'built into the construction'. 

2. We shall presently see that the assumption of the existence of a dual pair 
is really a very strong condition on a Banach lattice. A first result in this direc- 
tion is 
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Theorem 4. Let B, B', u, u', and X be as in Theorem 3 and let P 6 M ( X )  be the 
probability measure representing u'. Then B is separable iff LI(X, P) is separable. 

Proof. If  B is separable, then we may by Theorem 2 assume X to be metrizable 
(otherwise we may replace X b y  a metrizable quotient space) and then L 1 as well 
as B is the completion of the separable space C(X). Assume now that LI(X, P) 
is separable. Imitating the proof of  theorem 2 we choose then a sequence {~Pk}k=~ C 
[0, U] which is dense for the LI(X, P)-norm in [0, u] and we consider 

= (~01' (P2 . . . .  ) 

as a continuous map onto the compact metrizable space M e [ 0 ,  1] " .  Hence ~* 
maps C(M) into B and the problem is to decide whether ~*(C(M))  is dense in 
B. Now we may consider (~*)" as a map from M(X)  onto M(M),  and we observe 
that by construction (~*) 'ILI(P) is injective. But since B ' c L t ( P )  this means 
that (~*)' is injective on B '  and this holds if  and only if Im (~*) is dense in B and 
this proves the theorem. 

An immediate consequence of Theorem 4 is 

Coronary 3.1. Let B, B', u, u', X and P be as in theorem 4, and suppose P is 
a discrete measure. Then B is separable. 

Proof. If  P is discrete then P is concentrated on a countable set D c X ,  and 
then Lt(X, P ) ~ l t ( D )  which is separable since D is countable. 

In order to give a natural interpretation of  the preceding corollary we shall 
say that a Banach lattice is discrete if  the dual space consists of discrete measures. 
It follows from the corollary that if B is discrete, if B has a topological unit, and 
if B '  has an F-unit, then B is separable. A consequence of the corollary is therefore 
that if the Banach lattice B is a sequence space then the dual space is also a sequence 
space, if and only if B is separable, i.e. if B is non-separable then B '  contains 
'singular functionals'. It is also worth remarking that a discrete Banach lattice 
need n o t  be 'atomic' as defined in [S, p. 143]. The space c of all convergent seq- 
uences is probably the simplest counterexample. 
Another consequence of Theorem 4 is 

Corollary 3.2. Let B, B', u, u', X and P be as in theorem 4, suppose P is a con- 
tinuous measure, and suppose that B is separable. Then there exists a function 
~ : X ~ [ 0 ,  1] such that ~P(P) is Lebesgue measure, and hence B and B" can both be 
represented by equivalence classes of Lebesgue measurable functions on (0, 1) and 
the duality is given by the Lebesgue integral. 

Furthermore, Z(B)  .~ Z(B') .~ L~((O, 1), dx). 
Conversely, i f  B is a Banach lattice of (equivalence classes of) Lebes- 

gue measurable functions on (0, 1) containing L ~ then the dual space B" 
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can also be represented by Lebesgue measurable functions i f  and only if  B is 
separable. 

Proof. For  the converse result it suffices to observe that if B '  can be represented 
by measurable functions, then the function 1 is an F-unit for B'  as well as for B. 
We let T:C[0,  1 ]~B now be the natural imbedding, and we observe that the ad- 
joint map T' :  B'-*M[O, 1] is by assumption injective, and this proves the asser- 
tion. (Remark. In a more general setting the same argument proves that the seem- 
ingly more general definition of  a dual pair to be a pair of F-units for B and B '  
is in fact equivalent to our definition.) 

Let now B, B',  u etc be as above with P continuous and B separable. We 
shall begin by determining the ideal center Z(B). Towards this we observe that 
b y  proposition (2.2) U(Z(B)) is the closure of U(C(X)) in B and since U(C(X)) 
is convex the norm closure and the weak closure coincide. Since furthermore 
B ' c L I ( X ,  P), the weak topology from B'  is weaker than the weak topology from 
L 1, but in fact on the unit ball of  C(X) even the weak topology from C(X) (as a 
subset of  L 1) is just as strong. Hence all these weak topologies coincide, and since 
the weak closure of  U(C(X)) in LI(X, P) is U(L~(X, P)) we have Z ( B ) ~ L = ( X ,  P). 
We let I now be the set of all idempotents in L, and we let {Jk}k=~ be a sequence 
in I which is dense in I for the B-norm. It follows that the finite linear combinations 
of the Jk's are dense in B. 
Defining now 

0: X---[0, t] 
by O(x) = 2. ~ = z  3-k "jk(x) 

we get a measurable function from X into the Cantor set D. It also follows from 
the construction that C(D) is dense in B. Furthermore O(P) is a continuous measure 
on D, and defining F(t)=f'od(O(P))(u) we have a continuous map of  D onto 
[0, 1] such that F(O(P)) is Lebesgue measure on [0, 1], so we define thus 7J=FoO. 
The remaining properties asserted follow from the construction and theorem 3. 

3. So far we have considered lattices with dual pairs under the assumption 
that the dual unit is either discrete or continuous. However, it follows from the 
following proposition that the general case can be reduced to a sum of  the preced- 
ing cases. 

Proposition 3.3. Let B be a Banach lattice and suppose (u, u') is a dual pair 
for (B, B'). Then B can be decomposed as a sum of two projection bands Bc and Be 
where Bc is the continuous part of  B and B e is the 'discrete' part. 

Proof. We represent (B, u) as a cyclic C(X)-module and we let P be the measure 
representing u'. Writing 

P = i~d+p~, 
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where Pa is the discrete part and/~c the continuous part of P we may write the 
elements of B' uniquely as a sum of a discrete measure (absolutely continuous 
with respect to Pa) and a continuous measure absolutely continuous with respect 
to /t c. This decomposition is in fact a decomposition of B' into the sum of two 
projection bands naturally denoted B~ and B~. Writing Bc for the annihilator 
(B'~) ~ and Ba for the annihilator (B'~) ~ it is obvious that B r  Ba=O and that B~ 
and B~ are bands in B. It is however not a priori clear that Bc+Ba=B.  This is 
in fact true (as is easily proved by standard arguments of functional analysis) if 
and only if both B~ and B~ are weak* closed. It follows from the Krein--~mulian 
theorem that this holds if the unit balls are both weak* compact. Now the unit ball 
of B' is a weakly compact subset of LI(P)  and is therefore uniformly integrable. 
Consequently, the discrete parts as well as the continuous parts are uniformly 
integrable with respect to P, but then the discrete parts are also uniformly integrable 
with respect to/~d, while the continuous parts are uniformly integrable with respect 
to Pc- Therefore, U(B'~) is relatively weakly compact in L l(p). But then the weak 
closures are still contained in the proper L~-spaces and this means that e.g. the 
weak* closure of U(B'd) is contained in B~ and this implies the weak* closure of 
B~. By the same argument the same holds for B~ and this proves the propos- 
ition. 

4. Using the preceding results we obtain the following representation for 
separable reflexive Banach lattices. 

Theorem 5. Let B be a separable reflexive Banach lattice. There exist then an 
atomic Banach lattice Ba, a dense reflexive linear ideal B c in LI((O, 1), dx), and a con- 
tracting linear lattice isomorphism B: B ~ B  a 17-[ Bc (the product o f  Ba and Be) such 
that 110-111 ~2.  

Proof. Since both B and B' are separable they both have units. By proposition 
(1.5) we may after a slight change of norm assume the existence of a dual pair. 
By proposition (3.3) we can then decompose B as a sum of Bc and a discrete lattice 
B a. Since both of these are separable we apply corollary (3.2) to the lattice B c 
and corollary (3.1) to Bd. However if Ba is reflexive then it must also be atomic 
(in fact it is easily proved that otherwise Bn would contain the non-reflexive lattice 
c (of convergent sequences) as a sublattice. This proves the existence of the lattice 
isomorphism 0. That 0 is contracting follows from the fact that band projections 
are contractions, and from properties of the product norm. That 0 -1 has norm 
_~2, follows most easily from the fact that 0 -1 factors over Bo//Be,  and is a con- 
traction from that space, while the imbedding of B~ ]-/Bc into B~/ /B  c has norm 2. 

For arbitrary reflexive lattices we have a similar theorem though necessarily 
less precise as follows. 
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Theorem 6. Let B be a reflexive Banach lattice. There exist then complementary 
projection bands B~ and Br such that Bo is atomic and B~ is non-atomic. Furthermore 
we have the following descriptions of  B a and B c. 
(i) There exists a set A (the atoms of  B) and lattice homomorphisms l i ( A ) c B o c  

co(A) and by transposition l i (A)cB'~co(A) .  
(ii) There exists a set F, and Banach lattices By, yEF, such that each By is a pro- 

jection band in B~, and 

I_[r~r B r c  Bcc l-[~r Br (and likewise Hr~r B~C B'~c [ I ~ r  B~), 

and each By has a representation as Py-measurable functions on a compact space 
X r, such that 

L ~0 (Xr, Py) c By ~ L ~ (Xy, Pr) and L = (Xy, Py) c B' c L 1 (X~, ey). 

Finally the ideal center Z(B) of  B is the product Z(B,) [[ Z(B~) of  the ideal centers 
of  each of  the projection bands, and Z(B,).~I=(A), while Z(Br is the dual space 
to the AL-space Ll(1_[ Xy, Z P,) 

Proof. We start by writing B~ for the band generated by all atoms in B. Since 
B is reflexive this band is a projection band. There is then trivially a lattice homo- 
morphism 

I i (a) c B,. 

If  now Bo was not contained in co(A), then B a would contain the characteristic 
function of some infinite subset E c A ,  and then "over E "  the B-norm and the 
sup norm would be equivalent, and this contradicts the reflexivity of B. That the 
ideal center of B, is l = (A) is obvious (given zEZ(Ba), define {f,}El = (A) by f~=z(a),  
c~EA, (we identify A with the set of normalized atoms) and given {f,}El=(A) we 
can define z~Z(B,) by z(a)=f,.c~). 

For the asserted representation of Bc we start by choosing a maximal orthogonal 
system {uy}~cr in B c. We write then By to denote the band generated by uy, Since 
B is reflexive each By is a projection band. Furthermore, each uy is by construction 
an F-unit in By, but since By is reflexive, every F-unit is in fact a t-unit (this follows 

t e.g. from [S, p. 91, Th (5.11).]). It follows then that also By has a t-unit so that 
By, B~ may be assumed to have a dual pair u~, u~. Representing now By as a cyclic 
C(X~)-module and denoting the measure in M(X~) representing u~ by Py, we get 
the asserted representation of B. The inclusions ] IBTCBc~I IBy  are trivial con- 
sequences of the universal properties of "sums" and "products". Finally, for every 
By, we have Z(By) ~L=(X~, P~), and then Z(Bc) ~HZ(B~)  .~I-IL=(X~, P~) ~. 
(LX(IIX~, Z Pr))'. This proves the theorem. 



Some representation theorems for Banach lattices 193 

w 4. Concluding remarks 

1. This paper  grew out of  an at tempt to rewrite in a more legible form some 
of the results proved in [4]. In that paper  I define a "local operator"  on a Banach 
lattice to be an operator T such that x l y = z T x l y .  One of  the results of  that 
paper  is that  the set of  all local operators is in fact the ideal center of  the lattice. 
The main result obtained in [4] is however a very general version of  the following 

Theorem 0. Let (B, u) be a cyclic C(X)-module. Then the "'module tensor 
product" 

B Q B "  
c(x) 

is an AL-space in the sense o f  Kakutani, and its dual space is the ideal center o f  B'.  

Using theorem 0 I then consider various aspects of  the relations between 
Banach lattices and C(X)-modules, in particular the result that every separable 
Banach lattice is a cyclic C(M)-module  is proved in [4]. The measurability results 
of  this paper  proved by using Tchebycheff 's inequality are however not  proved 
in [4]. Some consequences of  the relations between lattices and modules that I 
have not studied either in [4], or in the present paper  are connected to inter- 
polation of  Banach lattices and constructions of  lattices out of  say "partially order- 
ed function spaces". 

I intend to rewrite the more algebraic results proved in [4] in connection with 
a more general study of  Banach modules. 
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