An independence structure
on indecomposable modules

Istvan Beck*)

Introduction

A module A4 is called an Le-module provided its endomorphism ring is local,
and a module M has an Le-decomposition if it is isomorphic to a direct sum of
Le-modules.

In this paper we first give a simple proof of Azumaya’s theorem concerning
Le-decompositions. If M= A4; is an Le-decomposition and 4 is any Le-module,
we show that

4 {i|4; = A} = dim,  F (M),

where F,(M) is a vector space over the divison ring 4. Since F,(M) depends only
on 4 and M the uniqueness of an Le-decomposition follows.

In the second section we show that the family 2(M) of direct summands of
M which are Le-modules can be considered as an independence structure. This
independence structure decomposes into simpler structures £, (M) which are closely
related to the classical independence structure on the vector space F,(M). In par-
ticular, dim, F,(M)=dim £,(M).

Any independence structure has a basis, and in theorem 2.10 we show that
the Le-decomposition M=&); A; complements direct summands iff for any basis
{B,}; for (M) we have that @;B;=M.

Terminology: Our notation follows Anderson and Fuller [1] and we refer the
reader to this book. There is some overlap with results in [3] where some of the
ideas in this paper are more developed.

We are considering left modules over an associative ring R with an identity.

All the maps between modules are R-homomorphisms and map=R-homo-
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morphism. Furthermore, mono=monomorphism, epi=epimorhpism, and iso=
isomorphism.

If f:X->®,Y; welet f;=IH, f where II; is the projection on Y;. Further-
more, if g:®Y;~X, we let g;—gsg, where ¢; is the injection of ¥; into ;7Y

We empbhasize the use of @ in this paper. It is used exclusively on submodules
of a given module (internal sum).

The expression M=N,®N, signifies that N;, N, are submodules of
M, NynN,=(0) and N;+N,=M. An expression P;N;<aM expresses that the
sum >, N, is direct and that >} N; is a direct summand of M. Therefore, @, N1 M
means that the sum >, N; is not direct or > N; is not a direct summand of M.

If M is a module, we let J,, denote the Jacobson radical of End M.

A decomposition M=@; M; complements direct summands if for any direct
summand K of M, M=K&(®; M,) for some subset JCI.

A module M has the exchange property if for any module €, if

Q=M’@L=®Nl
I

with M’=M then there are submodules N, CN; such that Q=M'd(P,;N;).

A finite sum of Le-modules has the exchange property. A simple proof of this
is given in [3] (Remark after Theorem 4). Another proof can be found in [1,
Lemma 26.4].

1.

In this section we give a simple proof of Azumaya’s theorem. Our proof is
a combination of a few elementary observations.

Lemma 1.1. Let f:M-~®;M; and g: D M;~M be maps such that
gf (X)=x for some xcM, x#0. Then g,f;4Jy for some icl.

Proof. For some finite set {i, ..., {,ycI we have that

x=(g,fu+ . +gJi ). Hence g,fi+...+8 fiIu-
Lemma 1.2. Let A be an Le-module and f: A~@; M;. Then f is a split mono
iff f; is a split mono for some i€l.

Proof. If f; is a split mono then trivially f is a split mono. Conversely assume
that fis a split mono and let g: @; M;~A have the property that gf=I,. Hence
g.fi¢J, for some icI. This implies that g;f; is an isomorphism, so f; is a split mono.

For any Le-module 4 and arbitrary module M we let J(4, M) denote the
subset of Homg (4, M) consisting of all maps f: 4A—~M which are not split mono.
One easily verifies that J(4, M) is a submodule of the right End A4-module
Homyg (4, M), and furthermore Hompy (4, M)-J,cJ(4, M). Hence F,(M)=
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Homp (4, M)/J(4, M) is a right 4,-module where 4, denotes the division ring
End 4/J,. We note that F,(4)=4,.

Lemma 1.3. F (L, M)= 1, F,(M}) (4, -isomorphism).

Proof. We have a canonical map ¢: F,(ll; M)~II, F,(M;) defined by
o(f)=(f)) for any f:A-1,M;. Lemma 1.2 implies that @ is 1—1. Trivially
im @D U; F,(M;). Moreover, for any f: A~ I, M;, f; is a (split) monomorphism
for at most a finite set of i€l Hence f;=0 for almost all icl. Hence
im ¢=1,F,(M).

The uniqueness of an Le-decomposition follows from these lemmas.

Theorem 1.4. Let M =@, A; be an Le-decomposition. For any Le-module
4, [Fy(M): A]=#{i]4;=A4}.

Proof. For any indecomposable module B, F,(B)=A, if Bz A and zero
otherwise. The result follows now from Lemma 1.3.

Theorem 1.4 implies that if M=@; 4,=@, B; are two Le-decompositions of
M, then we have a bijection o:I-J such that 4;> B, for all i€/ To complete
the proof of Azumaya’s theorem we need two more simple lemmas.

Lemma 1.5. Let f: M—~N and g: N—~M be R-homomorphisms. Then ly+fz
is an isomorphism iff l,,+gf is an isomorphism.

Proof. (Iy+fg)*=Iy—f(y+gf)~*g whenever 1,+gf is an isomorphism.

Lemma 1.6. Let {1 A~M and g: M—~A be R-homomorphisms. Suppose that
A is an Le-module and fg¢ Jy;. Then f is a split mono and g a split epi.

Proof. If fg4Jy then lj,+hfg is not an isomorphism for some %4€ End M.
Hence 1,4ghf is not an isomorphism (lemma 1.5), so ghf is an isomorphism. This
proves lemma 1.6.

We are ready to prove the remaining part of Azumaya’s theorem.

Theorem 1.7. (Azumaya) Let M=@,; A; be an Le-decomposition and let
X®L=M, X(0). Then

1) X contains a direct summand A which is isomorphic to A; for some i€l.

iy If X is indecomposable, then for some i,cI, M=A4;, ®L=XS(D,;, A).

Proof. Let f: P; A;—~X be the projection on X along L, and let g: X~ P; 4,
be the injection of X into M. Then f;g;¢ J, for some i€I, hence (lemma 1.6) f; is
a split mono and g; a split epi. This proves i).

Assume now that X is indecomposable and that fi, is a split mono and g;
a split epi. Since both X and 4;, are indecomposable it follows that f; and g; are
isomorphisms, and this proves the second statement in Theorem 1.7.

Remark. Lemma 1.6 has several other interesting corollaries, (see [3]).
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2.

Let M be an R-module. We define £(M) to be the set of direct summands
of M which are Le-modules. For any Le-module 4 we let &,(M) be the subset
of #(M) consisting of those elements which are isomorphic to 4. We let supp M
be a set containing one representative from each isomorphism class in £(M).
Hence L(M)={sppn La(M).

Independence structures arise when one considers abstract properties of linear
independence of vectors in a vector space.

Definition. Let E be a non-empty set. A non-empty collection & of subsets
of E is called an independence structure if it satisfies the following three axioms.

Il1. If Xe& and YCX then Y€é.

I2. ¥f X, Y are finite members of € and |X|=]Y|+1, then there exists an

element x€X such that Yu{x}€é.

I3. A set X€ & iff any finite subset of X is in &.

The members of & are called the independent subsets. A maximal independent
subset is called a basis for E. Anytwo bases have the same cardinal number
(R. Rado), and we let dim E denote this cardinal number.

For each R-module M we shall define an independence structure on Z(M)
and &L, (M). We let £=&(M) be the following collection of subsets of £ (M):
A set #¢& iff for any finite subset {4, ..., 4, }JCH, A;®D...94, <M. For any
Le-module 4 we similarly define &,=8&, (M)={L nLy(M)} cean-

Proposition 2.1. a) & is an independence structure on £ (M)

b) &, is an independence structure on £,(M) (A€supp M).

c) Let EC¥(M). Then Ec& iff EnZ,(M)cé, for all Acsupp M.

d) 4 set ECL(M) is a basis iff EnZ,(M) is a basis for £,(M) for all
A€supp M.

Proof. a) 11 and I3 are trivially satisfied. We need to show I2. Let
X={4,,...,4,4,}€€ and Y={B,,...,B}cé. Let 4,®...®4,,,®C=M. Since
B,®..®B,<«M and B;®...®»B, has the exchange property, we have

(B1®...0B)B(A1®...DA4,,.,.86C') = M.

If Aj=A;=...=4,,,=(0) we would get that B;®...0B,=4,D...84,,,6C".
Hence A4;=A; for some 1=i=n+1 and therefore {B,, ..., B,, 4;}€8.

b) The restriction of an independence structure to a subset is again an in-
dependence structure.

¢) By definition E€E=EnZ,(M)c&,. Conversely, let EcCF(M) and
assume that En%,(M)¢c&, for all A¢supp M. To show that Ecé it can be
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assumed that E is a finite set. Let
E={4y1,...; A1 1> As1s ooy Aoyrgs oo Ag1s ooy Asr )}
where 4;;=4,, iff i=k. Hence
B,=A4,,®..04;,, <M
B, = A2,1$...@A2,,2< M

B, = A4,,®...04,, < M.

Let B,®X;=M. The module B, has the exchange property so B,®B;®X,=M,
B;cB, and X,cX,. Hence B,~B;/®X; where B;®B/=B; and X ®dX,=X,.
The Krull—Schmidt theorem implies that B;=(0), hence B;®B,®X,=M. We
now use that B; has the exchange property. Since no direct summand of B;® B,
(different from (0)) is isomorphic to a direct summand of B, we get that B, @& B,®
B;dX;=M etc.

d) Follows from b) and c).

Since the independence structure on #(M) is the disjoint sum of the independ-
ence structures on %,(M) we may concentrate on these structures.

Theorem 2.2. Let A be an Le-module and let {f;},., be a family of split mono-
morphisms from A to M. Then the family {f(A)}; is independent in L, (M) iff the
Samily {f}; is independent in F,(M). Furthermore, {f,(A)}; is a basis for L,(M)
iff the family {f;}; is a basis for F,(M).

Proof. We want to show {fi(4)}; independent<{f;}; independent We can
assume that |I|<oo. Let fj, ..., f, be an independent set in F,(M) and let 4;=f;(4)
(I1=i=n). Let 1=k=n—1 and assume that 4,8... 04, <M.

Let 4:®...94,9X=M and let x,, ..., m, n, be the projections associated
with this decomposition. Hence n,+...+m+n,=1,,. Therefore,

Jer1 = forat AT S T fis-

Since im m;=imf; (1=i=k) and the fs are monomorphisms, we have maps
¢;€End 4 (1=i=k) such that =;fi.1=Sfp; (1=i=k). Hence

Jer1 =h01+ . o0+ T fraa

Since the set {f,, -+, fi» fes1} is lin. independent it follows that 7 f;,,=0. Hence
Ty fr+1 15 a split mono. Therefore n,(4;,,) is a direct summand of X and =, re-
stricted to 4.y is a monomorphism. Let n,(4,,,)®X =X. Then one easily
proves that 4,®...4, DA, DX =M, hence A,D...®A4;,, <M. Since A,<aM,
we can conclude that A,®...®A4,<M which shows that {4,,..., 4,} is in-
dependent.
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Conversely assume that 4,5..04,0X=M. We claim that {f}-., .
are independent. Let ny, ..., ,, 7, be the projections associated with the decom-
position A4,®..®A4,&X=M, and assume that f=fip,+...+f,0,6J(4, M)
Then 7; f=f.p0;€J(4, M). This implies that ¢; is not an isomorphism in End 4,
hence ¢,€J,. Hence @,=...=®,=0 in 4. Therefore {f,, ..., f,} are independent
over 4,.

It is now trivial that {f(4)};, is a basis for Z,(M) iff {f};¢, is 4 basis for
F(M).

Corollary 2.3. dim &, (M)=[F,(M):4,]).
Corollary 2.4. Let {B,}; and {C;}, be two bases for Z(M). Then &;B;=@,C;.

Proof. Let B={B;};. Then Bn %,(M) is a basis for £,(M). Hence
# {i|Bi=A}=[F,(M):4,]. This shows that &;B;=®,;C;.

Let A, ..., 4, be Le-modules and M=A4,®...0A4,. Then {4;,...,4,} is
trivially a maximal independent set in &£(M); in other words {4,,...,4,} is a
basis for #(M). Let {By, ..., B,} be another basis. Then B;®...®B,<M. If
B, ®...®B,#M, theorem 1.7i implies that {B,, ..., B,} is not a maximal inde-
pendent set.

We have shown

Theorem 2.5. Let Ay, ..., A, be Le-modules and let M=A4,80...®A,. Then
dim #(M)=n, and {B,, ..., B,} is a basis for (M) iff B,®...®B,=M.

Proposition 2.1, Theorem 2.2 and Theorem 2.5 reduce combinatorial problems
on finite decompositions M=A4,®... 4, to similar problems on finite dimensional
vector spaces over division rings.

As an example let us prove

Proposition 2.6. Let X={x, ..., x,} and Y,={yy, ..., ¥,} be two bases for
a vector space V over a division ring D. Then there exists a permutation 6€ S, such
that (Y—{y,u ) v {x;} is a basis for all 1=i=n.

Proof. Any element x€V is a linear combination x=ryy;+...+r.y, (r:€D).
Let supp x={y;€Y|r;#0}. Then (Y—{y;})u{x} is a basis iff y;€supp x. Since
x€{supp x), we note that

# (supp x;, Usupp x;, U ... usupp x,) = k

for any set 1=i <i,<..<p=n. From Hall’s theorem about distinct represent-
atives it follows that the sets supp x4, ..., supp x, have a distinct system of represent-
atives, say, Vsay, ---» Yomy» and this proves Prop. 2.6.

Proposition 2.1, theorems 2.2 and 2.5 now imply
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Theorem 2.7. Let M=4,0..®A4,=B,®...®8, be two Le-decompositions.
There exists a permutation o€S, such that B,;,®...0B,4-1, Q4D B,+1,D-..
D B,my=M for all k,1=k=n.

Proof. We leave it to the reader to verify the simple reduction to proposi-
tion 2.6.

Remark R. A. Brualdi [4] has shown that if B, and B, are bases of an independ-
ence structure then there is an injection ¢:B;—~B, such that (By—{o(e)}u{e} is
a basis for all e€B;. The theorem of Brualdi together with Proposition 2.1 and
Theorem 2.5 therefore imply Theorem 2.7

We shall extend theorem 2.5 to arbitrary Le-decompositions.

Definition. Two direct summands X and Y of a module M are equivalent pro-
vided they have identical sets of complements in M, and we write X ~ Y.

Lemma 2.8. Let Ay, A,€ L (M). Then A,~A, iff A,®Ay<]aM.

Proof. Lemma 2.8 is proved in [3], but we repeat the simple proof.

Let 4,9X,=A4,®X,=M and assume that 4,BX,#M. Since A, has the
exchange property, we get that 4, A4,DX, =M. Hence A, DA, <M.

Conversely, assume that 4,®4,<aM and let 4,04,BX=M. Then A4,06X
is a complement of 4, but not a complement of A,.

Lemma 2.9. Let X<1M and let A¢L(M). Then X® A<M iff A~A’ for some
A'cX.

Proof. Assume first that 4 ~4’CX. Let A/®X’ =X and let XdADY=M.
Then A’®X ®ADY, and lemma 2.8 implies that 4 +A". Hence XD A<ja M.

Conversely, assume that X®A<aM. Let X®Y=M and let ngytny=1,.
Let i: A—~M be the injection of A into M. Then i=nyi+nyi. If nyi is a split
mono it is easily seen that XY@ A<M (see proof of theorem 2.2). Hence we know
that nyi€J(A4, M). Since i¢ J(4, M) it follows that nyi is a split monomorphism.
Furthermore i=nyi in F,(M), and therefore i(4) and my(i(4)) are dependent
(theorem 2.2), i.e., A®nyx(A)<ja M. Therefore 4 ~nx(4)cX (Lemma 2.8).

We are now prepared to state and prove the generalization of theorem 2.5.

Theorem 2.10. The following properties for a module M are equivalent
1) For any basis {4;}; in L(M) we have that M=@; A;.
2) M has an Le-decomposition that complements direct summands.

Proof 1)=2). Since any independence structure has a basis we may assume
that M has an Le-decomposition M=¢D, 4;. Let {B;};, be any set of direct sum-
mands of M for which B;~4; for all icl. We shall show that ¢, B;=M and
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the implication 1)=2) follows then from theorem 18, [3]. It therefore suffices to
show that {B;}; is a basis for #(M).

For any finite subset {i;, ..., I we have (Ail@...@Aik)eB(@je,, A4)=M,
and since B; ~4;, ..., B, ~A4, we get that (B, ®...0B,)®(®D, 4;)=M. Hence
the family {B;}, is independent, and since B,®..©B, ~4,®...04; one ecasily
proves that {B;}; is a maximal independent set.

2)=1). Assume that M=, 4; complements direct summands and let {B;},
be a basis for ZL(M). For each icI, the set {4;}u{B;}; is dependent, so
(B;,®...®B,;)®A;<aM for some finite subset {jj,...,j}<J. Hence 4;~C,c
B; ®...0B; (Lemma 2.9). Therefore @;B;>@®;C; where C;~4; for all i€l
Theorem 18 [3] implies that @; B;=M.

Remarks. L. Let R be a local ring with maximal ideal m and let P=R" be
a free module. We see that

Fp(P) = Hom (R, P)/J(R, P) = P/mP.
Theorem 2.10 in this case says that P=R" complements direct summands iff
mP is small in P. (Anderson and Fuller [1]).

IL. Let {E;}, be a family of injective indecomposable modules and let E=@, E;.
We observe from lemma 2.8 that two injective indecomposable submodules of
a module M are equivalent iff they have a non-zero intersection. From lemma 2.9
we see that a family {F;}, of injective indecomposable modules is a basis for E
iff @,F;~E and the extension @, F;CE is essential. In particular, we get from
theorem 2.10 that an Le-decomposition of an injective module complements direct
summands (Warfield [6]).
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