The range of vector-valued analytic functions, II

J. Globevnik*

The present paper is a continuation of [2]. We keep the notation of [2]. We write $I = \{t \in R: 0 \le t \le 1\}$.

Theorem. Let F be a pathwise connected set in a separable complex Banach space X and let $O \subset X$ be an open set containing F. There exists a continuous function $f: \overline{A} - \{1\} \rightarrow X$, analytic on Δ and such that

- (i) $f(\bar{\Delta} \{1\}) \subset O$
- (ii) the cluster set of f at 1 is \overline{F} .

The proof of this theorem is almost identical with the proof of Theorem in [2] once we have proved the following lemma which enables to pass from balanced sets to arbitrary pathwise connected sets.

Lemma. Let $f:I \to X$ be a path in a complex Banach space X satisfying f(0)=0. Let $\varepsilon > 0$ and 0 < r < 1. Suppose that E is a closed subset of the boundary of Δ of linear measure 0 which does not contain a point z_0 , $|z_0|=1$. Denote $D=\overline{\Delta} \cap K(r,z_0)$. There exists a continuous function $\Phi: \overline{\Delta} \to X$, analytic on Δ and having the following properties

- (a) $\Phi(\overline{A}) \subset f(I) + B_{\varepsilon}(X)$
- (b) $\|\Phi(z)\| < \varepsilon \quad (z \in \overline{A} D)$
- (c) $||f(1) \Phi(z_0)|| < \varepsilon$
- (d) $\Phi(z) = 0$ $(z \in E)$.

Proof. By the Mergelyan theorem for vector-valued functions [1] there exists a polynomial $P: C \to X$ such that $||f(z) - P(z)|| < \varepsilon/4$ $(z \in I)$. Putting Q(z) = P(z) - P(0) it is easy to see that there exists a neighbourhood U of I such that $Q(U) \subset f(I) + B_{\varepsilon}(X)$. Let $V \subset U$ be an open neighbourhood of $I - \{1\}$, containing the point 1 in its boundary and bounded by a Jordan curve contained in U. By the Riemann mapping theorem there exists a one-to-one analytic map φ from Δ onto V which [4, p. 282] has an extension $\overline{\varphi}$ which is a homeomorphism from $\overline{\Delta}$ onto \overline{V} . Composing

^{*} This work was supported in part by the Boris Kidrič Fund, Ljubljana, Yugoslavia.

it with a Möbius transformation if necessary we may assume that $\overline{\varphi}(0)=0$ and $\overline{\varphi}(1)=1$. By the Rudin—Carleson theorem [3, p. 81] there exists a continuous function $\eta: \overline{A} \to \overline{A}$, analytic on Δ and satisfying $\eta(z)=0$ ($z \in E$) and $\eta(z_0)=1$. Also there exists a peaking function for z_0 , i.e. a continuous function $\psi: \overline{A} \to \overline{A}$, analytic on Δ and satisfying $\psi(z_0)=1$, $|\psi(z)|<1$ ($z \in \overline{A}-\{z_0\}$) [3, p. 81]. There exists a neighbourhood $W \subset V$ of the point 0 such that $||Q(z)|| < \varepsilon$ ($z \in W$). Let $T \subset \Delta$ be a neighbourhood of the point 0 such that $\varphi(T) \subset W$. Multiplying η with a suitable power of ψ if necessary we may assume that $\eta(\overline{A}-D) \subset T$, $\eta(z_0)=1$ and $\eta(z)=0$ ($z \in E$). Put $\Phi = Q \circ \overline{\varphi} \circ \eta$. It is easy to check that Φ has all the required properties. Q.E.D.

Corollary. Given any open connected set F in a separable complex Banach space X there exists an analytic function $f: A \rightarrow X$ whose range is contained and dense in F.

References

- 1. Briem, E., Laursen, K. B., Pedersen, N. W., Mergelyan's theorem for vector-valued functions with an application to slice algebras. *Studia Math.* 35 (1970), 221—226.
- 2. GLOBEVNIK, J., The range of vector-valued analytic functions. Arkiv för Mat. 14 (1976).
- 3. Hoffman, K., Banach spaces of analytic functions. Prentice-Hall 1962.
- 4. RUDIN, W., Real and compley analysis. McGraw Hill 1966.

Received September 24, 1976

J. Globevnik
Institute of Mathematics,
Physics and Mechanics.
University of Ljubljana
Ljubljana, Yugoslavia