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1. Introduction 

The well-known Haviland's solution of the multiparameter moment problem 
for a closed subset V of R d states that a function tp: Nd-,-R is a moment function 
on V if and only if  an appropriate linear functional A, on real polynomials in d 
indeterminates is positive on C(V), the set of all polynomials which are non-negative 
on V. This characterization of moment functions is not satisfactory, because the 
cone C(V) could not be described in terms of the pure algebra. In particular for 
every d_->2, C(R d) is essentially larger than El, the set of all finite sums of squares 
of polynomials in d indeterminates (cf. [2], [5] and [13]). On the other hand positive- 
ness of A, on S~ (read: positive definiteness of q~) is not sufficient for tp to be a moment 
function on R d (cf. [1], [2] and [16]). So the question is what else we have to assume 
to get the solution of the multiparameter moment problem on V. Some answers 
to the question have been found in the case of V being compact (cf. [3], [4], [6], [19] 
and [20]). 

I f  V is a (real) algebraic set induced by a polynomial p, then each moment 
function (p on V satisfies the following condition 

(A) A+l<p) = 0, 

where (p) is the principal ideal of p. Recently in [18] Szafraniec and the author, 
inspired by [14], distinguished a few classes of algebraic sets on which moment func- 
tions could be completely characterized by positive definiteness and condition (A). 
In the present paper we show, among other things, that this is not the case for an 
arbitrary (real) algebraic curve in R ~. Using the terminology from [2] we can say 
that there are positive definite functions <p: N2~R which are neither strictly pos- 
itive definite nor moment functions. To achieve this fact, we consider another con- 
dition 

(B) A+li(v) = 0. 
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where I (V)  is the ideal of polynomials vanishing on V. It turns out that conditions (A) 
and (B) are equivalent for all functions ~o: Na-~R if and only if I (V)=(p) .  Un- 
fortunately we do not know if there exist an algebraic set V of type B, which is not 
of  type A, where "V of  type A" (resp. "V of  type B")  means that all positive definite 
functions rp: N~-+R satisfying (A) (resp. (B)) are moment functions on V. 

2. Necessary conditions of type A and B 

Let Na=R[X1 . . . .  , Xa] be the ring of  all polynomials in d indeterminates 
)(1 . . . . .  X d with real coefficients and let ~d.k be the vector space of  all polynomials 
from ~a d of  degree less or equal to k (k=O, 1 . . . .  ). ~] stands for the convex cone 
of  all finite sums of  squares of  elements of  ~d. Denote by s the vector space of  all 
linear functionals on a real vector space Y'. The space of  all real valued functions 
on N n can be identified with ~n* via one-to-one linear correspondence ~0~-~A~, 
determined by 

~p(i) = A~,(X~'...Xjd), i = (ix . . . . .  in)EN d, 

where N={0 ,  1 . . . .  }. 
Let V be a closed subset of  R d, the real d-dimensional Euclidean space. A func- 

tion q~: Nd-+R is said to be a V-moment function if  there is a positive Borel measure 
p on R d such that 

fv lx l id l t (X)  <,,% iEN a 
and 

~o(i) = f vxi dlz(x), /EN d. 

Denote by M ( V )  the class of  all V-moment functions. Due to Haviland (cf. [ll] 
and [12]), ~pEM(V) if and only if A~,(f)>=O for every f e r n  which is non-negative 
on V. It is clear that each V-moment function ~p: Na-+R is positive definite, i.e. 
Aq,(f)>=O for every fEZ~. Denoting by P(N a) the class of  all positive definite func- 
tions on N n, we can write M(V)C=M(Ra)c=P(N a) for every d:>l.  It is well-known 
that P ( N ) = M ( R )  and that M(R n) is a proper subset of P(N n) for any d ~ 2  
(cf. [2]). 

Recall that a subset V of  R a is said to be (real) algebraic set, if  there exists 
PE.~a such that V=V(p):={xERd:  p(x)=O}. In such a case we say that V is 
induced by p. 

All algebraic sets we consider in this paper are assumed to be properly included 
in R a (the empty set is not excluded). 

The ideal of  all polynomials from ~n vanishing on V will be denoted by I(V).  As 



Moment functions on real algebraic sets 135 

usual ( f )  stands for the principal ideal generated by f in ~d (all facts concerning 
algebraic sets we need in this paper can be found in [5] and [10]). 

The following result presents some necessary conditions for q~: Nd~R to be 
a moment function on an algebraic set V in R d. 

Proposition 2.1. Let V be an algebraic set in R d induced by pE ~a. I f  tpEM(Rd), 
then the following conditions are equivalent 

(A) for eve1T fE(p), A~,(f)=0, 
(B) for every fEI(V),  A~(f)=O. 
(M) ~pEM(V). 

Proof. The implications (M)=,(B) and (B)=,(A) are obvious. If A~,(f)---0 for 
fE(p), then fR~ [P(X)IZdp(x)=A~,(P2) =0, which means that the closed support 
of the measure p is contained in V. 

A question of characterization of algebraic sets for which conditions (A) and 
(B) are equivalent has a simple algebraic solution which is more carefully investigated 
in Section 3. 

Proposition 2.2. Let V be an algebraic set in R d induced by a polynomial pE ~a. 
Then conditions (A) and (B) are equivalent for all functions ~p: N d-~R i f  and only i f  
I(V)=(p). 

Proof. Assume that conditions (A) and (B) are equivalent for every function 
~p: Nd~R. This means that each functional AE~d* vanishing on (p) vanishes on 
I(V). Suppose for a moment that there is JoEI(V)\(p). Since (p) is a linear sub- 
space of ~a, there exists a functional AE ~d* vanishing on (p) and not vanishing at 
fo. This leads to contradiction. 

Notice that there are infinite bounded algebraic curves V in R 2 induced by 
polynomials pE ~2, for which conditions (A) and (B) are equivalent within P(N2), 
though I (V) \ (p )  ~ 0. 

Example 2.1. Consider the polynomial p=(X~+X~)(X~+X~-I) .  Then the 
algebraic curve V=V(p)  in R ~ has the irreducible algebraic component {(0, 0)} 
and, by Proposition3.4, I (V) \ (p)~O.  It follows from Proposition 5.1 that if 
qgEP(N 2) satisfies (A), then q~EM(V) and consequently q~ satisfies (B). 
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3. When l(V)=(p)? 

In this section we present some necessary and sufficient conditions for an alge- 
braic set V=V(p)  in R d to satisfy equality I(V)=(p). To begin with consider 
the case of p being irreducible. Notice that then equality I(V)=(p) implies alge- 
braic irreducibility of V (cf. [10], Proposition 1.1) but not conversely. 

Theorem 3.1. ([5], Th6or6me 4.5.1). I f  V is an algebraic set in R d induced by 
an irreducible polynomial pE ~d, then the following conditions are equivalent 

(i) the ideal (p) is real, 
(ii) I(V)=(p), 

0p 
(iii) there are iE{1 . . . .  ,d} and x~V such that ~ (x)~O, 

(iv) there are x, yER d such that p(x)p(y)<O, 
(v) dim (V(p) )=d-  1. 

The following proposition enables us to reduce a question of when equality 
I(V)=(p) holds to lower dimensional case. 

Proposition 3.2. I f  V is an algebraic set in R d (d_->2) induced by an irreducible 
polynomial pE ~d, then I(V)=(p) i f  andonly i f  either I(V) c~ ~d-t =(0) or PE ~d-I 
and I(Vd_t(p))= p.  ~d-t, where Vd_t(p):= {xERa-X: p(x)=0}. 

Proof. Suppose that l(V)=(p). If there exists a nonzero f in I(V)c~ ~d-l ,  
then p divides f and consequently pE ~d- 1. Therefore I(V~_ 1 (P)) =P" ~d- 1, which 
proves the "only if" part of the conclusion. 

To prove the "if" part of the conclusion assume that p~ ~d-i and I(Vd_t(p))= 
P" ~d-i.  Take f~I(V).  Sincefcan always be written as the sum ~ = 0  hi. X I with 
hj6~d-i and because V=Va_I(p)• we get hjEI(Vd_t(p))=p. ~d-x for every 
j =  0 . . . . .  k. Thus fE (p). 

Suppose now that I(V)c~ ~'d_t=(0). Let g be a nonzero polynomial in I(V) 
such that degx~ g=n:=min  {deg,~ h: hEI(V), h~0} (deg,, h is the degree of hE ~d 
with respect to the indeterminate Xd). Since I(V) n ~,~_~ =(0), it must be n=  > 1. We 
show that deg, ,p=n.  Applying a division algorithm ([21], Theorem I.17.9) to 
polynomials p and g in ~d_~[Xd], we get q, r~ ' g  and an integer k_->l such that 
de&,~ r<n and d'p=qg+r, where aE ~d_~ is the leading coefficient of g in ~d_~[Xd]. 
This implies that rEI(V). Since deg~, r<n, r must be the zero polynomial. Thus 
akp=qg. Sincep is prime and degx~ d'---0<deg~ g, p divides g and consequently, 
n=deg~p .  

Take now a nonzero f in I(V). It follows from the previous paragraph that 
deg~,f=>n. Applying again a division algorithm to polynomialsfand p in ~d_~[Xa], 
we get q, r ~  d and an integer k=>l such that deg~, r<n and bkf=qp+r, where 
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bC~n-i is the leading coefficient o f p  in ~a_I[Xa]. This implies that r~l(V). Since 
degxd r<n, r must be the zero polynomial. Thus bkf=qp. Since p is prime and 
degxd b = 0 < deg~d p, p divides f and consequently fE (p). 

Let V be an algebraic set in R a induced by the product pl.. .pk of irreducible 
polynomials in ~a. We say that the product p~ ...Pk is V-irre&mdant if no p~ is 
superfluous in the representation V=V(p~ ...Pk). It is well-known that any alge- 
braic set V in R d is induced by some V-irredundant product of polynomials. 

Proposition 3.3. Let V be an algebraic set in R d induced by a V-irredundant 
product P=P~...PKC~d. Then I(V)=(p) i f  and only i f  l(V(Pi))=(pi) for every 
j = l  . . . . .  k.  

Proof Only the case V # 0  needs a justification. The "if" part follows from 
the fact that p~ . . . . .  Pk are pairwise relatively prime. 

To prove the "only if" part, suppose that I(V)=(p), I(V(pO)#(pl) and 
k->2. Take f i n  I(V(p~))\(p O. Then fp2...pkEl(V)=(p). Thus fp2...pk=qpl...p~ 
with some q ~ d .  Consequently fE(pO, which leads to contradiction. 

Proposition 3.4. Let V be an algebraic set in R 2 induced by a V-irredundant 
product p=px ...PkE~2 and let V~ .. . . .  V~ be the irreducible algebraic components 
of  V. Then the following conditions are equivalent 

(i) I(Z)=(p),  
(ii) for every j=  1 .. . . .  k, V(py) is infinite, 

(iii) for every j=  1 . . . . .  m, V~ is infinite. 
Moreover i f  I(V)=(p), then m=k  and {Vx .. . . .  Vm}={V(pO ... . .  V(pm)} 1. 

Proof. Without loss of generality we can assume that V#0.  Since each Vj 
is induced by an irreducible polynomial qjE~2, the product q=q~...q,, is V-ir- 
redundant. It follows from Proposition 3.2 (also from Corollaries 1.1 and 1.2 in 
[10]) that for every irreducible polynomial r ~ 2 ,  V(r) is infinite; if and only if 
I(V(r))=(r). Thus (i)~(ii),  due to Proposition 3.3. 

I f  l(V)=(p),  then, by Proposition3.3, l(V(pj))=(pj) for all j .  Thus 
V(pO ... . .  V(pk) are infinite irreducible components of V.. Consequently {V~ . . . . .  V~}= 
{V(p0, ..., V(pm)}, which shows (i)=~(iii). 

Conversely if all Vj are infinite, then (again by Proposition 3.3) we have I(V) = 
I(V(q))=(q). Since p~I(V), we conclude that q dividesp and, because both products 
P~'"Pk and ql...q,, are V-irredundant, (q)=(p). Thus l(V)=(p).  

1 The last-mentioned statement is also true for algebraic sets in R a for any d>2. 
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4. Characterizations of algebraic sets of type A and B 

Motivated by Proposition 2.1 we say that an algebraic set V in R ~ induced by 
a polynomial pE ~d is of type A (resp. B) if each positive definite function ~0 : N ~ ~ R  
which satisfies condition (A) (resp. (B)) is a V-moment function. It is obvious that 
each algebraic set of type A is automatically of type B. However we do not know 
whether the converse implication is true in general. Also we do not know whether 
the statement "V is of type A" is independent of the choice of pE ~a inducing V. 

In this section we present necessary and sufficient conditions of algebraic and 
topological nature for V to be of type A (resp. B). To begin with fix some notations. 
Let ~" be a set of  real valued functions on a given subset V of  R d and let &r be a 
linear subspace of ~n. Denote by o~+ the set of all non-negative elements of o~ 
and by Her the quotient linear mapping from ~a onto the quotient linear space 
~a/X. Notice that (r is linearly isomorphic to the space {AE~d*: Al~r=0} 
via one-to-one correspondence ~-~-~A determined by A=.~oII~c. Put l-lv:=H1tv) 
and r Writing (~dlV) +, we regard ~n[V as the ring of restric- 
tions of  polynomials to the set V. More generally (~d/Y') + is understood as the set 
of  all I I~( f )  such that I I v ( f ) E ( ~ l V )  +. It is clear that 13er(~)C=Fl~(~+)c= 
(t~a/Yf)+. However the last-mentioned inclusion could not be replaced by equality 
even for Y[=I(V). 

Example 4.1. Let d = 2  and p=X2(X2-X~).  We show that 

r/v (x~)~ (~lv)  +\r/~ (~,+). 

Suppose that there exists fEt~  + such that IIv(X2)=IIv(f) .  Since I(V)=(p) (use 
Proposition 3.4), f - X 2 = h . p  for some h e r a .  Thus x2(l+(x2-x~)h(xa,  x2))=>0 
for x~, x2ER. In particular, substituting x2 for -x~ ,  we get ~ (1-2x~h(xx ,  -x~))<-O 
for x ~ 0 .  This in turn implies that l<=2x~h(xa, - ~ )  for x ~ 0 ,  which leads to 
contradiction. 

A locally convex topology z on a vector space oef is said to be admissible if all 
linear functionals on ~ are z-continuous. It is well-known ([15], Theorem 3.12) 
that if cg is a convex subset of o~, then the closure 7g of cg in any admissible topology 
on ~ is equal to its a(o~f', o~*)-closure. Notice that for each vector subspace Y" 
of  I(V), the convex cone (~at~c) + is closed in any admissible topology on ~a/Y'. 
This follows from the fact that for every zEV, the linear mapping which sends 
Her(f ) into f(z) is well defined on ~a/6f. 

Lermna 4.1. Let V be an algebraic set in R a induced by pE ~a and let f be a 
vector subspace of  I(V) such that Rp2=CY ". I f  cg is a convex cone such that IIer(~])c= 
cgc=(~a/Y[)+, then (~a/Y() + =Tg i f  and only i f  the following condition holds 
(i) for every functional ~,E(~a[~s which is positive on cg, there is a positive Borel 
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measure I~ on R a such that 

(4.1) ~(II~r(f)) = f faro fE~d.  

Here the closure refers to any admissible topology on ~d/~s 

Proof. To show the "only if" part, assume that (NJY')+ =~g. Take a functional 
~E (Nd/X)* which is positive on U. Since E is continuous in any admissible topology 
on ~elX, we get that E is positive on (~e/Y') +. Thus ~-(IIjc(f))>=O for every 
fE~d which is non-negative on V. Consequently, by the Haviland criterion, the 
functional SoH~ is represented by a measure/~ via (4.1). 

To show the "if" part, suppose that (i) holds and there exists gENe such that 

H~(g)E(Nd/~;)+\(g. Then, by the Hahn--Banach theorem ([15], Theorem 3.4), 
there exists a linear functional ~E(~e/Y')* such that 

(4.2) E(n~c(g)) < 0 <= =-(h), hEU. 

It follows from (i) that the functional 3o/- / t  is represented by a measure ~l via 
(4.1). Since II~c(p2)---O, we get fp2d~=Z(nz(p~))=O. This implies that the 
measure # is supported by V. On the other hand Hv(g)~(~dIV) +, so ~ (H~(g) )=  
f v  gd# >=0, which contradicts a part of condition (4.2). 

Proposition 4.2. Let V be an algebraic set in R e induced by PE ~d and let ~s 
be a vector subspace of  I (V)  such that RpZ~X. Then I I~(~  +) is dense in (~d/X) + 
in any admissible topology on ~e/X. 

Proof. It follows from the Haviland criterion on R e that condition (i) of 
Lemma 4.1 is satisfied for cg:=H~(N+), which completes the proof. 

Now we can characterize algebraic sets of  type A and B. 

Theorem 4.3. An algebraic set V in R n induced by PE~d is of type A (resp. B) i f  
and only i f  one of  the following two conditions holds widz X=(p)  (resp. Y'=I(V)) 

(i) (~d/~r) + = I-l~c(S]), 
(ii) H ~ ( ~  +) ~ / /~ (2~] ) ,  

where the closure refers to any admissible topology on ~e/Ys 

Proofi It follows from Proposition 4.2 that conditions (i) and (ii) are equiv- 
alent. Noting that V is of  type A (resp. B) if and only if the convex cone cg:=H(p)(2;]) 
(resp. U:=Hv(S~)) satisfies condition (i) of Lemma 4.1, we infer the other part of 
the conclusion directly from Lemma 4.1. 

It is worthwhile to notice that both characterizations of algebraic sets of type A 
appearing in Theorem 4.3 remain true replacing the vector space Y'=(p) by any 
other one such that Rp3~Y'~(p). 
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In all characterizations of algebraic sets of type A and of type B, offered by 
Theorem 4.3, the knowledge of the closure of the set H~r (2~) is required. So it is 
of special interest to know whether the cone 1-I~(S~) is closed. This question is 
especially important for ~r--I(V). In Sections 5 and 6 we answer it in the affirmative 
for some algebraic curves in R ~. Unfortunately we have not been able to answer 
the question in its full generality. 

We finish this section with the following useful observation. 

Proposition 4.4. Let T be an a~ne isomorphism of  R a and let pE ~a. Then 
V(p) is o f  type A (resp. B) i f  and only i f  V(po T) is o f  type A (resp. B). 

Proof. The proof follows from the fact that the mapping r ~a--~a defined 
by ~r  ( f )  =fo T, fE ~a, is a ring isomorphism such that ~r  (2~) = 2~, ~ r  ((P)) = (P~ T) 
and ~r(I(V(p)))=l(V(po T)). 

5. Examples of algebraic sets of type .4 

In this section we present examples of algebraic curves in R a of type A. We 
begin with bounded ones. In [3] Berg and Maserick consider the following question: 

Let PE~d be such that {p->0} is compact. Is it true that ~p: Na---R is a 
(Q) moment function on {p_->0} if and only if ~o and p(E)tp are positive definite, 

where p(E)~o(n)= A , (p .  X~), nEN a. 
Notice that if the question (Q) is answered in the afftrmative, then the set V(p) 
is of type A. Indeed if tp is a positive definite function satisfying (A), then p(E)tp-~O 
is positive definite and, consequently tpEM({p_->0}). It follows from Proposition 2.1 
that ~EM(V), which means that V is of type A. 

In particular using Theorem 5 in [6], which answers the problem (Q) in the 
affirmative for a class of polynomials, we get 

Proposition 5.1. Let V be an algebraic curve in R 2 induced by pE ~ .  I f  the 
homogeneous part o f  p o f  the highest degree is strictly negati~'e on RZ"x.{0}, then 
V is o f  type A. 

Now we can pass to unbounded algebraic curves in R ~ of parabolic and hyper- 
bolic type. The case of parabolic ones has been treated in another way in [18]. 

Proposition 5.2, Let V be an algebraic curve in R 2 induced by a polynomial 
p=X~-q(X1)  (resp. p=X~q(X~)- l ) ,  where qE~l (resp. qE~ \{0} ) .  Then V 
is o f  type A. 

Proof. In virtue of Theorem 4.3 it is enough to show that in both cases I(V) = 
(p) and ( ~ l V ) + = l l v ( ~ ) .  The first equality follows from Proposition 3.4 and the 
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fact that polynomials X2-q(X1) and X 2 �9 q (XO-  1 are irreducible in ~2. To prove 
the other one take gE(~2IV) + of the form g=[iv( f ) ,  where fE~2.  In the case 
p=X2-q(XO,  we have h:=f(Xl,  q(XO)E~ +. Consequently, by Lemma6.2.1 in 
[2], there are polynomials hl,h2E#~ such that h=h~+h~. This implies that 

2 2 2 g=[iv(hl+h~)EHv(Sa). Consider now the polynomial p=X2. q(XO-1.  Then one 
can find kEN and a polynomial rE~l  such that r(2)=q(2)Zkf(2, q(2) -1) for 
2ER\V(q) .  Since f (2 ,  q(2)-l)->0 for 2ER\V(q)  and V(q) is finite, we have 
r E ~  +.  Thus, again by Lemma6.2.1 in [2], there are two polynomials rl,  r2E#~l 
such that r=r~+r~. Define new polynomials hl,h~E~2 by hi:=riX ~ for ./ '=1,2. 
Then it is easy to see that - ~ ~ 2 g -  Fly (h 1 + h~)E Hv ('~2). 

The union of two arbitrary real lines in R 2 gives another example of an alge- 
braic set of type A. 

P r o p o s i t i o n  5.3. Let V be an algebraic curve in R 2 induced by a polynomial 
P =PiPs, where Pt and p~ are polynomials of degree 1 in t~z. Then V is of  type A. 

Proof. Assume that V(pl)~V(p2). Since I(V)=(p) (use Proposition3.4), 
the conclusion of Proposition 5.3 will follow from Theorem 4.3 provided we show 
that (~z]V)+=[iv(S~). To prove this take gE(~2[V) + of the form g=[io(f) ,  
where fE ~2. First we consider the case when the lines V(pl) and V(p~) are parallel. 
Without loss of generality we may assume that pl=X2 and p2=Xa-1 (use Propo- 
sition 4.4). Since f(X1,0) and f(X1, 1) belong to ~ + ,  there are polynomials 
rot, to2, rll, rlzE~ 1 such that f(X1, 0)=r021+r~2 and f(X1, 1)=r~l+rt22. Define new 
polynomials hi, h 2 E ~  by hi(X1, Xz)=roj(X1). (1-X2)+rlj(X1).  X2, j =  1, 2. Then 
it is easy to see that - _ ~ 2 2 g--  I-Iv ( f )  - [ iv  (hi + h~)E [Iv (2~2). 

Consider now the other case when the lines V(pO and V(p2) are not 
parallel. Without loss of  generality we may assume that pI=X1 and p.,=Xa 
(use again Proposition 4.4). Since f(Xa, 0)4 ~ +  and f(0, X~)E ~x +, there are poly- 
nomials Ul, u2, IV1, W2E ~1 of the form uj=~'~"=0 ~j,,Xx ~ and wj=~'~,=0 fljmX~' 
( j = l ,  2) such that f(X1, _ 2 2 2 0 ) -  u 1 + u 2 and f(0, )(1) = wx + w2. Define two sequences 
{~,,}"~=0 and {(,,}~,=0 of  vectors in R z by ~m=(~Xlrn, ~X2m ) and (,,=(film, fl,,,)- Then 
f(X1, 0)=~2"=o (~k+,=m ~r Ct))Xt m and f (0 ,  X1)xZm2n=o (2k+l=m ~r r n, 
where ( . ,  - )  stands for the canonical inner product of R 2. Since f(0, 0) = (r ~0) = 
(~0, ~0), there exists a unitary operator T on R 2 such that T~o=r Define poly- 
nomials rl, r2E~ ~ by r j = ~ = o y y , , X  ~' ( j = l ,  2), where Tffm=(~1,.,72,.). Since 
<ff~, ~t)=<Tff~, T~l ) for all k, 1, we have f (0 ,  X1)=~m~n=0 (Zk+l=m <Z~k, T~I))X~ a= 
r~+r~ and u~(0 )=r~(0 ) ( j= l ,  2). Define new polynomials hi,hzE#~z by h~= 
u~(Xa)+r~(X~)-u~(O) ( j =  1, 2). Then one can check that 

g H v ( f  ) ~ 2 a = = Hv (hi + h~)E Hv (Z,~). 
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Assume now that V(pl)=V(pz).  Then, again by Proposition4.4, we may 
assume (without loss of generality) that p=X~. To show that V(X~) is of type A, 
take ~pEP(N 2) satisfying (A) with p=X~. Then, applying the Cauchy--Schwarz 
inequality to the sesquilinear form ~ 2 •  we get 

0 <: A~(U. X2) 2 ~ Ar = O, f6~2.  

Thus ~p satisfies (A) with p=X2. Since the algebraic set V(X2) is of type A (use 
Proposition 5.2), we get r 

In Section 6 we show that there exist a polynomial pC~ of  degree 3 such 
that V(p) is not of type A. Below we prove that each algebraic curve in R 2 induced 
by a polynomial of degree less than or equal to 2 is of type A. 

Theorem 5.4. Each algebraic curve V in R 2 induced by a polynomial PE ~2 of  
degree less than or equal to 2 is of  type A. 

Proof Basing on the affme classification of algebraic plane curves of order 2 
and using Proposition 4.4 one can show that it is enough to consider the following 
eight cases: (i) p = X ~ + X ~ -  1 (a circle), (ii) p = X 1 X z -  1 (a hyperbola), (iii) p =  
X2-X~ (a parabola), (iv)P=PlP2, where Pa and P2 are polynomials of degree 1 
and V(pl)~V(p2) (a sum of tWO distinct real lines), (v )p=X~ (a real line), (vi) 
p =)(2 (a real line), (vii) p = X~ + X~ (a one point set) and (viii) p = 1 + ~1 X~ + 72 X~, 
where ~ ,  72~0 (the empty set). It follows from Propositions 5.1, 5.2 and 5.3 
that V(p) is of type A in either of the first seven cases. 

Assume now that p is as in (viii) and take ~06P(N "2) satisfying (A). Since ~o 
is positive definite we have 

0 <: A~(I) --<: A~(1 -~- ~ I X ~  ~- ~2~k'r~) = 0, 

This and the Cauchy--Schwarz inequality imply that 

0 <= A~(f)" <: A~(U2)A~(1) = O, f ~ 2 .  

Consequently (p=0~M(V), which completes the proof. 

6. Algebraic curves which are not of  type B 

This section deals with the following question. 

Do there exist algebraic sets #z R a which are not of  type B? 

It turns out that the answer is in the negative for d =  1 and in the affirmative 
for every d=>2. More precisely, each algebraic set in R is of type A (this follows 
from equality P (N)=M(R)  and Proposition 2.1). On the other hand the algebraic 
set V in R 3 induced by a polynomial p = X  a is not of type B. Indeed if we take 
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any function ~bEP(N2)\M(R 2) (cf. 
tp: N3~R defined by 

[1], [16], [2] and [8]), then the function 

~0 if  i, jEN and k > 0  
tp(i, j, k) t ~(i , j)  if i, jEN and k = 0  

belongs to P(NZ)\M(V)  and has property (B). 
The case d = 2  needs more attention. We start with some indispensable lemmas. 

I_emma 6.1. Let V be an algebraic curve in R 2 induced by a polynomial pE ~., 
of  the form p=X~.q, where qE ~z. Assume that (0, O)EV(q), Hv~q)(Xz)E(~IV(q)) +, 
I(V(q))=(q) and polynomials X 2 and q are relatively prime. Then I(V)=(p) and 
I1,1(x~)~(~lv)+\nv(z~). 

Proof. Since l(V(q))=(q) and polynomials X2 and q are relatively prime, 
we have I(V)=(p). Suppose that there exist polynomials J~ . . . . .  f ,E~z such that 

). Since I(V)=(p), there exists a polynomial hE~2 such that 

(6.1) 

This implies that ~ ;= l f j (X1 ,  0)2=0. Thus fj(X1, 0 )=0  for all j and consequently, 
there are polynomials gl ..... g,E~2 such that f j=X2 .gj for all j .  It follows from 
(6.t) that Y~(~)"=ig~)-l=q.h, which contradicts our assumption q(O, 0)=0.  

To show that Hv(Xz)E(~2IV) + take (xl, xz)E V= V(X2. q). Then either x2=0 
or (xl, x~)EV(q). The latter implies that x2=>0, because Flv(q)(Xz)E(g~2lV(q)) +. 
This completes the proof. 

In the next lemma we show that Ilv(S~) is closed for some algebraic curves 
in R 2. 

Lemma 6.2. Let V be an algebraic curve in R z induced by a polynomial PE ~2 
of  the form p=Xz(X2-r) ,  where rE ~l .  Then IIv(S~) is closed in the finest locally 
convex topology on ~21V. 

Proof (In the proof we use some arguments from [1] and [2].) Since for rER, 
(t~zlV) +-~Hv(Z~) (see proofs of Propositions 5.2 and 5.3), we may assume that i" 
is nonconstant. Set ~k:-~--/-/V(~2, k). Notice that dim ~ k  "<~ co and ~2IV=Uk= 0 Yk" 
Thus, in virtue of Lemma 6.3.3 in [2], we have only to prove that for every kEN, 
YEknIIv(S~) is closed in the canonical topology on ~r k. We split the proof of this 
fact into a few parts. 

Step 1. For each gE Hv(~) ,  there are polynomials aj, bj~ ~#l, j =  ] . . . . .  n, such 
that g=~'s"=x Hv(ajX2+by  �9 



144 Jan Stochel 

Take fE~2.  Applying division algorithm to polynomials f and p in ~I[X2], 
we get a, bE~l and hE~2 such that f=hp+aX2+b. Thus I-lv(f)=IIv(aX2+b), 
which implies conclusion of Step 1. 

Step 2. I f  g = , ~ ; = l l I v ( a j X 2 + b j ) 2 E ~ k  , where aj, bjE~l, then 

max {deg (a j), deg (bi) } ~ 2-1 k.  deg (r), 

where deg (a) stands for the degree of  aE ~l .  

Let g : I I v ( f )  with some fE~2,k. Then we have 

n (6.2) deg (bin) <- 2 -1 deg ( ~ j = l  b~) : 2 -1 deg (f(X1, 0)) ~_ 2-1k. 

To prove the other part of conclusion of  Step 2, notice that 

n (6.3) deg (am r + bin) -< 2-1 deg ( ~ j  = 1 (ay r + b j) 2) 

= 2-1deg( f (Xl ,  r(X1))) <= 2-~k.deg(r) ,  m : 1 . . . . .  n. 

If  deg (a,~r)_<-deg (bin), then, by (6.2), we have 

deg (am) =< deg (bin) <= 2-1k �9 deg (r). 

If  deg (a,~r)~-deg (bin), then (6.3) implies 

deg(am) <= deg(amr) : deg(amr+b=) <= 2-~k-deg(r) ,  m : 1 . . . . .  n, 

which finishes the proof of  Step 2. 

Step 3. Let t : = k .  deg ( r )+2  and •  (~r). I f  gE~'knHv(Z,]), then there 
exist aj, bjE~l such that g:~y=lIIv(ajX2+bj)2. 

It follows from Step 1 that the function g can be written as the sum 
~'=1 Hv(ajXz+bj) ~ with the smallest number of summands. Step 2 implies that 
Hv(ajX2+bj)~-E~, for ./=1 . . . . .  n. Suppose that n>dim(X,) .  Then there are 
~1 . . . .  , a, ER such that ~']=1 ctjHv(ajX2+bj)2=O. Rearranging, if necessary, we 
may assume that [cql _-< lct2[ <- ... <- I~,[. Thus g = ~ - ~ H v ( 8 j X 2 + f i i )  z, where a j =  
aj I/1-ctj/a~ and bj=bj [ 1-ctj/ct . . This contradicts minimality of  n. 

Step 4. Let to:=deg (r)~ and/el ~-1 . . . . .  ~'oJ+l be distinct real numbers. Then the 
topology re on ~r of  pointwise com'ergence on the set Q= {(21, 0) . . . . .  (2~,+1, 0)} u 
{(21, r()o~)) . . . . .  (2~,+1, r(2o,+l))} coincides with the canonical topology on ~'m for 
et'ery m ~ t. 

It is enough to show that zQ is a Hausdorff topology on ~fm. Take fE~z,m 
such that f ( x ) = 0  for each xEa. Then f ( 2 i , 0 ) = 0  and f (2 j ,  r().j))=0 for every 
j :  1 . . . . .  co+ 1. Since deg (f(X~, O))<-m<-o9 and deg (f(X1, r(X1)))<=m �9 deg (r)-<_o~ 
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(compare with (6.3)), we get f(X1, 0 ) = 0  and f(X~, r(Xx))=0, which precisely 
means that IIv( f)=O. 

Now we show that gfkc~Hv(~) is closed in the canonical topology on ~k. 
Take a sequence {gn}~=xC=~knHv(~,~) converging in ~k to hE~5 k. By Step 3, 
each gn can be written in the form g n = ~ ' Y = l ~ ,  where gj~=Hv(aj~X~+by~) and 
ajn, bjnE~l. Let Q be as in Step4. Then the sequence {g~(x)}~=~ is bounded for 
every xEQ. Consequently, the sequence {gj,(x)}~= x is bounded for all j = l  . . . . .  
and xEQ. Passing to subsequences, if necessary, we may assume that {gj~(x)}~= x 
is convergent in R for all j and xEQ. Since, by Steps 2 and 4, each {gj~}~=~ is a 
Cauchy sequence in the complete space ~t,/zl, there exist functions h~ . . . . .  hxE~,/21 
such that each z ~ ~ Thus the sequence {gj,}~=x converges pointwise on V to hi. 
{gn}n=l converges pointwise on V to ~']=xh~. Consequently, h=~f=xh~EHv(Z~). 
This completes the proof. 

The following theorem, which is a simple consequence of Lemma 6.1, Lemma 6.2 
and Theorem 4.3, shows that the sum of  a real line and a parabolic curve in R 2 
is not of  type B. Thus unions of  algebraic curves of  type B need not be of  type B. 

Theorem 6.3. Let V be an algebraic curve in R 2 induced by a polynomial PE ~2 
of  the form p=X2(X2-r) ,  where rE~l.  I f  rE~ +, r#O and V(r)#fJ, then V is 
not of  type B. 

Notice that none of  the assumptions we have imposed on the polynomial r 
in Theorem 6.3 could be omitted. Appropriate examples can be obtained with help 
of  Proposition 5.3. 

Some arguments of  this section can be used to obtain similar results for some 
other algebraic plane curves. Below we state only the simplest one. 

Theorem 6.4. Let V be an algebraic curve in R 2 induced by a polynomial pE ~ 
of  the form p=X2(X2-r) (X2-s ) ,  where r, sE~x. I f  r, sE~  +, rs#O, deg ( r ) #  
deg(s)  and V(rs)#fJ, then V is not o f  type B. 

7. Applications 

To begin with, consider one parameter complex moment problem. The general 
observation is that any answer to 2-parameter real moment problem has an implica- 
tion in solving one parameter complex moment problem. In particular Proposi- 
tion 5.2 and Theorem 5.4 answer in the affirmative the complex moment problem 
studied in [18] for algebraic curves in R 2 of  parabolic and hyperbolic type as well 
as for those of  order 2. On the other hand Theorem 6.3 leads to the negative answer 
to the problem for an unbounded algebraic curve in R 2. 
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Proposition 7.1. There exists a function ~ : N2-~C satisfying the following three 
conditions 

(i) ~k is not a complex moment function, 
(ii) for any function O: N =-~C of  finite support 

~ , , j  Zk, ,  ~( i+ l , j+k)Q(i , j )Q(k,  1) >= O, 

(iii) for all k, l~ N 

~ ( 3 + k , / ) +  ~/,(2+k, 1 + / ) + 2 i ~ ( 2 + k , / )  + 2i~(k, 2+  0 

= ~ ( l + k ,  2+l)+t~(k,  3 + l ) + 4 i r  1+/). 

Proof. Let p=X2(X2-X~).  It follows from Theorem6.3 that there exists 
q~Ep(N2)\M(R 2) such that A~l(p)=0. Define a function ~: Nz-+C by 

k=0 ~l=0 i m - k ( - i ) " - t q ~ ( k + l , m + n - ( k + l ) ) ,  m, nEN. 

Then ~/, satisfies conditions (i), (ii) and (iii). 

It is well-known (cf. [9]) that operator theory could be applied to solve moment 
problems. Below the reverse influence is indicated. 

Proposition 7.2. Let ~ be a complex Hilbert space, ~ - -  a vector in aft and 
(A, B) - -  a pair o f  (algebraically) commuting symmetric operators in ~ with common 
invariant domain ~ =  {f(-4, B){: fEC[X1, X2]}. Suppose that either of  the following 
two conditions holds 
(i) q(-4)B is the identity operator on ~ for s o m e  qE~i~l, 

(ii) p(-4, B)=0  for some pE~2\{0} of degree less than or equal to 2. 
Then the operator A + iB is subnormal i.e. it has a normal extension in some Hilbert 
space off 2 ar 

Proof. Suppose that (i) holds. Define a function q~: N2-+R by tp( j ,k)= 
(,'UBk{, ~ for j, kEN. Then q~6P(N z) and A~,l(p)=0, where p=X=.q (X1) - l .  
Thus, by Proposition 5.2, q~ is a moment function on V(p). It follows from Theo- 
rem 5 in [9] that there is a pair (,4,/7) of commuting self-adjoint operators in 
some Hilbert space ~ff~ ar such that .g and 17 extend .4 and B, respectively. There- 
fore the operator .g+i/7 is normal and extends .4+iB. Similarly, using Theo- 
rem 5.4, we can prove that (ii) implies subnormality of A +iB. 

Contrary to Proposition 5.2 and Theorem 5.4, Theorem 6.3 leads to examples 
of formally normal operators with pathological properties. A sample of such an 
operator is contained in the following proposition (compare with Proposition 7.1). 
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Proposi t ion 7.3. There ex is ts  a formal ly  normal operator S in a complex  Hilbert  

space ~ such that 

(i) the domain ~ ( S )  o f  S is inrariant f o r  S and S*,  

(ii) ~ ( S ) = { f ( S ,  S*)~ :  fEC[X1 ,  X2]} f o r  some ~ E ~ ( S ) ,  

(iii) $3 + $2 S *  + 2iS~ + 2 i S ' 2 c = s s ' 2  + S ' 3  + 4 i S S  ~ 

and 

(iv) S is not subnormal. 

Not ice  tha t  the  wel l -known examples  o f  fo rmal ly  n o r m a l  opera to r s  S fulfilling 

condi t ions  (i) and  (iv) o f  P ropos i t ion  7.3 (cf. [7] and  [17]) do  no t  satisfy cond i t ion  

(iii). I t  seems tha t  they do  no t  satisfy the equa t ion  f ( S ,  S * ) = 0  for  any nonzero  f 
in C[X1, X2]. 

The  au thor  wishes to express his gra t i tude  to the  referee for several  helpful  com-  

ments  concern ing  the paper .  
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* The problem (Q) has been solved by K. SchmiJdgen in [22]. In particular his result 
implies that each compact algebraic set in R a is of type A (compare with Proposition 5.1). 


