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Singular measures with
small H (p, q)-projections

Evgueni Doubtsov(!)

Abstract. We construct a singular probability measure p on the complex sphere such that
the Poisson integral of p is a pluritharmonic function in the ball and the Fourier transform of p is

O(1/4/p) as p—oo.

1. Introduction

Let T denote the unit circle and g€ M(T) be a measure. Recall the following
classical observation.

Heuristic uncertainty principle. If the Fourier transform /i is small (in a certain
sense), then g is regular.

For example, by the classical F. and M. Riesz theorem, if i=0 on Z,, then
is absolutely continuous with respect to Lebesgue measure m.

We are looking for phenomena of the opposite nature. If we understand “f
is small” as “pointwise small” and “x is not regular” as “p and m are mutually
singular”, then we obtain the following classical problem.

Definition T. A function h:Z, —R, is said to be T-admissible if there exists
a probability continuous singular measure € M(T) such that f(k)=0O(h(|k])).

Problem. Characterize the admissible functions.

The famous Ivashév-Musatov theorem shows that all of the standard test func-
tions

h(k) = (klog kloglogk ...log,, k)~'/?
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are T-admissible (see [I] for the precise conditions sufficient for admissibility, see
also [K] for a simplified and somewhat different version). We refer the interested
reader to the paper [BH] where other T-admissible functions are obtained and the
history of the problem is discussed.

Often T-admissibility constructions can be carried out for all locally compact
nondiscrete Abelian groups. In the present paper we consider a generalization of a
different type. Namely, we are concerned with an analogue of the above problem
on the complex unit sphere =85, CC", n>2.

Given a measure p€M(S), denote by ppq, (p,q)EZ2, the projection of p on
H(p, q), the space of the complex spherical harmonics (so g is & polynomial on
the sphere; in dimension 1 we just have ppo(2)=/(p)2?, z€T, peZ,).

Definition S. A function h: Z2 —R, is said to be S-admissible if there exists
a probability continuous singular measure p€M(S) such that ||pygll2=0(h(p, q)).

If also h(p,q)=0 for all (p,q)€Z? such that pg#0, then h is said to be plh-
admissible (note that the corresponding u is pluriharmonic, i.e. the Poisson integral
of p is a pluriharmonic function in the ball).

We show that the test function h(k)=k /2 is plh-admissible (without loss of
generality, we always put h(0)=1).

Theorem. Put h(p,0)=h(0,p)=p /2, pcN, and h(p,q)=0 if pg#0. Then h
in S-admissible.

Remark 1. Every pluriharmonic measure u€M(S) is sufficiently regular. In
particular, it is well known that u has the full closed support and |u|(E)=0 if the
(real) Hausdorff dimension of E does not exceed 2n—2.

Remark 2. Obviously, if h€l?, then h is not admissible. Therefore, the the-
orem shows that there is no gap between necessary and sufficient conditions for
S-admissibility in terms of the scale {k*}ren, ¢€R.

Remark 3. The theorem has an R-interpretation since the measure p is pluri-
harmonic. Namely, identify S,, and S CR?", then ||uxlla=0O(1/Vk) where
is the projection of pu on Hy, the space of the real spherical harmonics.

Notation. The notation of the paper is standard. In particular, o is the nor-
malized Lebesgue measure on S, o(S)=1; the symbol | - |, denotes the LP-norm
with respect to o.

To finish the introduction, we give a simple and important example.

Ezample. There exists an h: Z2 - R, such that h¢[? and h is not S-admissible.
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Proof. Put h(0,0)=h(27,0)=h(0,27)=1 for all j€Z, and put h(p, q)=0 other-
wise. Suppose that €M (S) and |/ ppq|l2=0O(h(p, ¢)). We claim that p<o.

This is well known and easy to see. Indeed, the Cauchy projection Clu] is
in the Hardy class HY/?(B). Therefore, C[u]e H*(B) since C[u] has a lacunary
spectrum. Finally, we apply the F. and M. Riesz theorem (on the sphere) to the
measure u—Clulo. O

2. Auxiliary polynomials

Lemma. Suppose that KEN. Then, for all NeN large enough, there exist
polynomials W(N)=W (N, K)€e>",, H(N+1K,0) such that

(1) [W(N)[loo <1,

(2) W (N)]|2 > const >0,
3) [We(N)[loo <1,

(4) IWq(N){2 < const g~ /2,

where Wy (N) is the H(q,0)-projection of W(N).

Proof. For {,n€S, put d*(¢,n)=1—-|{(¢,n)|? and Es(n)={¢€S:d(¢,n) <6} for
0<6<1. Recall that d satisfies the triangle inequality and o{Fs)=§2""2.

(1) Construction for K=1 and n=2. Put =N ~1/2. Choose points {n;}*L, C
S such that Es(n;) are mutually disjoint and U]]Vi1 Eys(n;)DS. In particular, Nx<
M=6—2.

Define g;(z)=(z,n;)N*9, 1<j<M, and G(N)=>_ g;. We claim that the prop-
erties (1)—(4) hold for G(N) (up to a multiplicative constant).

Indeed, we have ||g;||5=(N+j+1) ! and Gn+;(N)=g;. Therefore, (3) and (4)
hold. The property (2) is also clear because ||G(N)||2=>" |lg;]|3>M /2N >const.

Finally, we have to estimate ||G(N)||o. Fix a (€S. For k€Z,, define Hy=
{j:k6<d(¢,n;)<(k+1)6}. First, the cardinality of Hj does not exceed (k-+2)2.
Second, if j€ Hy, then |g;(¢)|<exp(—k*/2). Therefore

GINOI<D 191 <D _(k+2)° exp(—k*/2) =% < co.

k>0
To finish the argument, put W(N)=G(N)/X.

(2) K=1 and n>2 is arbitrary. As in the case n=2, put §2=N "' and choose
the points {7}, 1<I<M/N (it is useful to organize the sequence as a matrix).

We have M=<8§~2"12 g0 M=<N""1
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Define f;l)(z):<z,17§->N+j, 1<I<M/N. Now, make a randomization. Namely,
let r;(t) be the Rademacher functions on [0, 1]. Define

I
95(z,t) :Z f;l)(z)rl(t) and h]L :Z f}l)(z)n (t).
1 =1

Then there exists 7=7; €[0, 1] such that [g; (-, 7)[[3>3, Hf;l) 2. Note that Hf](l)[[%x
NY=" thus |lg;(-,7)|3>C/N. We fix such 7 and C, and claim that there exists
Lo=Lg(5)€[1, M/N] such that th“ll%xl/N. To show this, remark that [|Aj/|5=
N'="<C/N (we assume that n>3). If |h}|3<C/N for all L, then we are done.
Else choose such L that ||h [[3<C/N but ||hf+1||§>C/N. Then ||k} ||5<1/N since
L7 I3= N

Finally, put gj:hf‘) and G(N)=>"y,.

As above, the absolute value estimates provide (1) (up to a multiplicative
constant). Since Gy;(N)=g;, (3) is clear also. By the definition of Ly, [g;][3<
const /N, so (4) holds. Since g; are mutually orthogonal, we obtain ||G(N)||3=
S 119;13> N const /N =const>0. This yields (2).

(3) K is arbitrary (to simplify the notation, we assume that n=2). Take a
sequence 0=agp<ai<...<ag=1 such that the sets Sp={z€S:a,<|z1|<ap:1}, p=
0,1,..., K—1, have equal areas (i.e. 0(S,)=1/K).

For p=0,1,..., K —1, define 63:2_1’]\7’1. We take points {n?}jj\i(f’) such that
Es,(n)CSp are mutually disjoint and FEys,(n7) cover S, (we can do this if N
is sufficiently large). Note that M(p)=<2PN/K. It is convenient to assume that
M(p)<2PN/K (we just forget other points).

Finally, we define f}p)(z):<z,nf)2pN+Kj, 7=1,2,...,M(p), g® =", f;p) and
G(N)=5, 9.

Fix (€5, then

GO > gD+ g“)(o’::zlm.
1=0 or 1#£0
lp—1I<1 lp—II>1

First, the estimates given in the case K =1 provide ¥, <43,

Second, put §2=62=N 1. Choose points {n,,}M_, CS such that Es(n,) are
mutually disjoint and UT]\:{:l Eos(nm)DS. Now, ix me{l,...,M} and l€{1,..., K—
1} such that [p—I|>1. Consider the set I(l,m)={j:n}€Eas(nm)} (we suppose that
I(l,m)#0). Clearly card (I, m)<const 2. Since [p—1|>1, we have |((, né»)leN“‘KjS
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const |[{¢ ,nm)|2l*lN if jeI(l,m) (we always assume that N is sufliciently large).
Therefore

1 .
D G hF NHET < comst [(C, mm) Y
JeI(l,m)

for all NeN large enough.
Note that, for every m, Eas{nm) has a non-empty intersection with at most
two sets S;. On the other hand, recall that U%:l Ess5(nm) D S. Hence

M
Y5 < const Z (¢, ) |V < comst 2.

m=1

Therefore, we have ||G(N)||c <const.
Note that fj(p) are mutually orthogonal and Hf](p) 13=<(2°N)~ 1, so [lgP)3>
const /K and we obtain (2). The properties (3)-(4) are clear. U

3. The proof of the theorem

Let Pr: L*(S)—{feL?(S):P[f] is a pluriharmonic function} be the orthogonal
projection. Given a polynomial ¢ on S (a symbol), the corresponding operator of
the Hankel type is defined by the equality H,[f]|=¢Pr[f]—Pr(¢f], f€L?*(S). Then
H,:C(8)—C(S) is a compact operator. Therefore

6)  [lfillcsy <1 and f; >0 weakly in L*(S)] = [|Hyfillces) —0.

The property (5) leads to the definition of the pluriharmonic Riesz product
based on a sequence of Ryll-Wojtaszczyk polynomials (see [D]). In the present
paper we use the polynomials W{N) provided by the lemma. Since the spectrum
of W(N) is not the only point, our measure is the pluriharmonic version of the
classical generalized Riesz product.

Generalized pluriharmonic Riesz product construction.
Step 1. Fix N1eN and put ¢ =1+W(Ny,1)/2, p1=Re; >0.

Step k+1. Assume, as induction hypothesis, that a holomorphic polynomial
=1y is constructed and p=¢r=Reyy, ¢>0. Put K=2degp+2. Suppose that
B={B(N)} is a sign sequence (i.e. B(N)e{£1}) and U={U(N)} is a sequence of
unitary operators on C™. Then put W(N)=13(N)W (N, K)-U(N), NeN.

Let o=} ;.7 fi and W(N):Ej€Z+ W;(N) be the homogeneous decomposi-
tions (i.e. f;€H(j,0)if j€Z, and f;€H(0,j) if —j€Z.). We assume, as induction
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hypothesis, that || fi[lc(s)<1 for all I€Z (this property trivially holds in step 1).
Now define
O(N):=Pr(p[l+Re W(N)])=p+(pRe W(N)—H,[Re W(N)]),
g91;(N) = fiW;(N)— Hp, [W;(N)].
Note that, for N >degp, ®(N)=Re ¥(N), where U(N)=¢+Pr(eW(N)) is a
holomorphic polynomial.

Claim. There exist sequences 3 and U such that the relations

(6) spec(y) Nspec(P(N)—p) =0,

(7) ®(N) >0,

(8) g5 (Nl < 2[[W; ()2 < const j /2,
9) lgi;(Mllees) < fillegs) <1,

(10) [@(N)]f1/2 < (1—const)||¢ll1/2

(11) [C(N)=Dll1y2 <ll@ll1/2

obtain for all Ne€N large enough (of course, 8 and U depend on k).

Proof of the claim. Using (1) and (2) we construct (and fix) the sequences 3
and U such that (10) holds (we proceed as in [D]).

2
To ensure (6), we just consider sufficiently large N €N. Remark that W (N) wk,
0 and ¢>0, therefore, (1) and (5) give (7). On the other hand, ||fillcs)<1,

[W;(N)|los)< 3, and Wj(N)w—>L20 as N—oo. Thus, (1) and (3)-(5) provide (8)
and (9). Finally, ¥(N)—p=¢W (N)—H,[W(N)] and |W(N)lc(s)<35, so we use

(5) and obtain (11) for all sufficiently large N€N. This finishes the proof of the
claim.

Fix N 1€N such that the above properties hold and define g1 =V (Ng11),
respectively ¢g41=®(Nky1). By the definition of K, the H(p,q)-projections of
Yr+1—¢k (the “new H(p, q)-projections”) are g;;(Nx41)/2 or gi;(Ne+1)/2, there-
fore, (9) guarantees that the induction construction proceeds.

By (6) and (7), oo i*»u for a probability measure g which is said to be the
generalized Riesz product based on the polynomials W(N).

By (10) and (11), ||1/;k+1—¢k||1/2§(1—const)k_1||<p1|[1/2. Therefore, the se-
quence {1} converges in H'/?(B) to a function f. Since pr=Rey, (10) gives
Re f*=0 a.e., where f* stands for the boundary values of f. On the other hand,
Re f is the Poisson integral of p, so p is a singular measure.
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Finally, consider the new H(p,g)-projections g;;(Ng4+1)/2€H (j+1,0). Since
j+1<3j/2, the estimate (8) gives ||gpoll2<const p~/2. The proof of the theorem
is complete. [
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