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Boundary behavior of the
pluricomplex Green function

Dan Coman

Abstract. Let ©Q be a bounded domain in C". This paper deals with the study of the
behavior of the pluricomplex Green function g (z, w) when the pole w tends to a boundary point
wp of Q. We find conditions on © which ensure that limy —.w, go (2, w)=0, uniformly with respect
to z on compact subsets of 0\ {wg}. Our main result is Theorem 5; it gives a sufficient condition
for the above property to hold, formulated in terms of the existence of a plurisubharmonic peak
function for © at wg which satisfies a certain growth condition.

1. Introduction and statement of results

Let Q be a bounded open set in C™ and let w be a point in Q. A plurisubhar-
monic function v on € is said to have a logarithmic pole at w if v(z) <log ||z—w|| +c,
for some constant ¢ and for z in a neighborhood of w. The pluricomplex Green
function go(z,w) of ) with pole at w is defined by gq(z, w)=supv(z), where the
supremum is taken over the set of negative plurisubharmonic functions v on
which have a logarithmic pole at w. This definition, given by Klimek [K1], is in
analogy to the one dimensional case, where one obtains in this way the (negative)
Green function for the Laplace operator. The function gq(-,w) is negative and
plurisubharmonic in © and it has a logarithmic pole at w. It is also decreasing
with respect to holomorphic mappings, i.e. gos (f(2), f(w))<ga(z,w), where Q' is a
bounded open set in C™ and f:Q— is a holomorphic mapping. It follows that
ga is biholomorphically invariant. If € is a hyperconvex domain (i.e. it is bounded
and it has a negative continuous plurisubharmonic exhaustion funetion) and if for
z€0Q and we we define go(z, w)=0, then go: Qx Q—[—00,0] is continuous. This
result was obtained by Demailly [D].

Let A denote the unit disk in C and let g(z,w) be the Poincaré distance
between z, wEA, o(z,w)=tanh™'(|z—w|/|1—@z|). Let 8q(z, w)=inf o(&,7), where
the infimum is taken over all £,n€A for which there is an analytic disk f: A—Q
with f(§)=z and f(n)=w. In general [K2], for a bounded domain € in C™ one
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has go(z, w)<logtanh éq(z, w); equality holds for all ze€Q) and for a fixed weQ if
and only if the function z—logtanh dn(z, w) is plurisubharmonic. The results of
Lempert [L] show that if Q is a bounded convex domain in C" then go(z, w)=
log tanh 6 (2, w) for all z, weq.

In this paper we study the behavior of the pluricomplex Green function go(z, w)
as the pole w approaches a boundary point wg of €. In the remainder of this
section we state our results. The proofs of these results and an example are given
in Section 2.

Let us start with some definitions. Let  be a bounded open set in C™ and let
wo €.

Definition. We say that Q has the property (P) at wp if for every sequence of
points {wm, }m>0C 2 which converges to wo and for every compact set K CQ\{wg}
one has go(z, wy,)—0 as m— oo, uniformly for z€ KN$.

Definition. We say that wg is a weak peak point for € if there exists a holo-
morphic map h:Q—A such that lim, .., [A(z)|=1 and limsup,_,, |h(z)|<1, for
every qedQ, q#wy. We call wy a local weak peak point for Q if there exists a
neighborhood U of wg such that wq is a weak peak point for QNU.

Our first result is that the property (P) of Q at wo€9€ is local. We have the
following theorem.

Theorem 1. Let §) be o bounded open set in C™ and let wy€0S2. The following
are equivalent:

(i) Q has the property (P) al wo;

(ii) for every neighborhood U of wq, QNU has the property (P) at wo;

(iii) there is a neighborhood U of wqo such that QNU has the property (P)
at wg-

This theorem yields the following corollary.

Corollary 2. If Q s a bounded open set in C™ and if wo€d€ is a local weak
peak point for § then ) has the property (P) at wy.

The next two results come from the relation between the functions gq and éq.-
The first one gives examples of domains for which property (P) fails. The second
result characterizes completely the convex domains which satisfy property (P), and
it can also be viewed as a partial converse to the first one.

Proposition 3. Let € be a bounded domain in C™, let woed2, and assume
that 0K is of class C' near wy and that there exists a nonconstant analytic disk
f: A—Q such that wo€ f(A). Then 2 does not have the property (P) at wg.
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Proposition 4. Let Q be a bounded domain in C™ and assume that go(z,w)=
logtanh éa(z,w) for all z,weQ. (By Lempert’s theorem this is the case if £ is
convex.) For wo€dQ let Ay, be the union of all analytic disks contained in Q and
passing through wo. If {wm} is a sequence of points in Q which converges to wy and
if K is a compact subset of Q such that KNA,,=0 then go(z, wm)—0 uniformly
on KNQ as m—oo. In particular, if Aw,={wo} then Q has the property (P) at wq.

Finally, our last result gives a sufficient condition for  to have the property (P)
at wped) in terms of the existence of a plurisubharmonic peak function g at we.
Let us recall first the following definition.

Definition. Let £ be a bounded domain in C™ and let wgedf2. A function g
is called a plurisubharmonic peak function for Q at wqg if g is plurisubharmonic in
 and continuous on Q, p(we)=0 and p(z) <0 for 2€Q\ {wo}

If p is a plurisubharmonic peak function for Q at wy and re (O, %), we define
Ny(r) by
log |o(2)|

— 1
: Q r<ilz— < — .
IOg”Z*’LUOH FAS ’ 7"*112 wOH— 2}

Ny(r)= max{
This number is the smallest exponent N for which the inequality
o(2) < —|lz—wo || ¥

holds for all 2€Q with r<||z—wo||< 3. We have the following theorem.

Theorem 5. Let Q be a bounded domain in C™ and let wo be a boundary
point of . Assume that there exists a plurisubharmonic peak function g for € ot
wg such that:

(i) o is Holder continuous at wo, i.e. there are constants ¢>0 and y€(0,1]
such that o(z)>—cllz—wol|” for all 2€Q;

(i) Ny(r)=O(loglog(1/r)) as r™\,0.

Then Q has the property (P) at wy.

The hypotheses of this theorem are satisfied for bounded pseudoconvex domains
with real analytic boundary (the existence of the required plurisubharmonic peak
function follows from Theorems 2 and 3 in [DF]). They are also satisfied in the more
general case when 0 is pseudoconvex with smooth boundary and wq is a point of
finite type (here plurisubharmonic peak functions exist by a theorem in [C]). In
both these cases the quantity N,(r) is bounded as r tends to 0. It is not hard to
construct a bounded pseudoconvex domain 2 in C? such that wy=0€0%, 9 is C>
smooth near 0, 0 is not a point of finite type,  is not convex near 0 (recall that
the case of bounded convex domains is settled in Proposition 4), but Theorem 5
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applies and 2 has the property (P) at 0. This is outlined in the example at the end
of Section 2.

Remark. Let Q be a bounded domain in C™ and let 20€9. As in the one
dimensional case, one can show that if there exists a plurisubharmonic peak function
for © at zo, then lim,_,., go(z,w)=0, uniformly for we KN§?, for any compact
KcO\{z}. Sowhen QCC this is equivalent to property (P) at zg, by the symmetry
of the Green function (go(z, w)=ga{w, 2)). In dimensions n>>1 it is known that the
pluricomplex Green function gq is in general not symmetric, not even when 2 is
a smoothly bounded strongly pseudoconvex domain [BD]. Theorem 5 shows that a
sufficient condition for property (P) can still be given in terms of plurisubharmonic
peak functions which have some special properties.

2. Proofs

Proof of Theorem 1. The implication (ii) = (iii) is obvious and the implication
(i) = (ii) is clearly true, since gao(z, w)<gany(z,w) for all z,weQNU. So we only
need to prove that (iii) implies (i).

Let K be a compact in Q such that wy is not in K and let U be a neighborhood
of wg such that QNU has the property (P) at wy. Let r and ' be positive numbers
such that B(wg,)CU and KNB(wg, r')=0; here B(wg, ) is the open ball centered
at wo and of radius r in C™. Let ,=QNB(wp,r). Then Q,.CQNU, so £, has the
property (P) at wo. We choose R>0 big enough so that QC B(wyg, R). Finally we
let {wm,}m>0 be a sequence of points in  such that w,, —wy as m— oo.

We fix two positive numbers r; and r9 such that

0<ri <1y <min{r,r'},
and we let S;={2cQ:||z—wo||=r;}, j=1,2. Let

Cm = ziél.; 90, (2, Wm),

where m is large enough so that |Jw,, —wol|<ri. Let

tos(llz—woll/r2)

= g1 72

The functions v,, are plurisubharmonic and

'Um(z):Cm SgQT(Zawm)a ifZESh

vm(2) =0>gq, (z,wn), if z€ 8.
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Hence the function

g, (z, W), if z€ Q.
um(2) = ¢ max{vm(2),90.(z, wn)}, if z2€Q,\Q,
fuvn(z)7 if ZEQ\QTQ,

is plurisubharmonic in 2 with a logarithmic pole at w,,. Also

log(R/r2)

Um (2) < dpm =Cm
( ) log(Tl/TQ)

for all z €,
80 ga(z, W) >Um(2) —dpm. If ||z—wp||>ra, hence in particular if z€ K, then u,,(z)>
0. We conclude that

gz, W) > —d,, for all z€ KNQ.

Since Q, has the property (P) at wy it follows that ¢, —0 as m— o0, so d,, —0 and
thus go(z, wm)—0 uniformly on KN when m—oo. O

Proof of Corollary 2. Let U be a neighborhood of wg and let f: QNU—A be
a holomorphic function satisfying

(2.1) lim |f(2)]=1, limsup|f(z)|<1

Z—Wwg z—q

for all the points g#wp in the boundary of QNU. It is enough to show that QNU

has the property (P) at wy, so let K be a compact subset of QNU which does not

contain wg and let {w,,} be a sequence of points in 2NU which converges to wy.
We have that

9a(f(2), f (wm)) = 3 log(1+E(2,wm)) < gonu (2, wm),

where ) ,
B m 2_1 1— m
o) — | LA 1) P (P D))
1= f(wm)f(2) H—f(wm)f(2)]?
Since the compact K does not contain wy it follows from (2.1) that there exists
a positive number a<1 such that |f(2)|<a for all z€ KNOQNU. For such z we see

that ) ) )
(SAF=DA=1f(wm)®) o | (wm)[*~1

(1-a)? (a3

s0 E(z,wm)—0 uniformly on ze KNQNU as m—o0, hence the same is true for

gQﬁU(Z)wm)' (i

0> E(z,wpy) >
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Proof of Proposition 3. Let ¥ be the inward pointing normal at wg to 9. By
restricting f around some o€ f!(wy) we may assume that there is a §>0 such
that the functions f;=f+iv, 0<t<§, carry A into Q. We reparametrize A such
that f(0)=g#wy for some g€Q. Then there is an a €A, a#£0, such that f(a)=wq.
Hence

ga(g+t7, wo+t7) <logtanh b (g+tv/, wo+tv/) <log |a| <0

for all ¢, 0<t<4. We finally let K={q+t7:0<¢t<§} and w;=wo+(1/7)¥. Then
ga(z,w;) does not converge uniformly to 0 on KNQ as j—oo. O

Proof of Proposition 4. We assume that gq(z, wy,) does not converge uniformly
to 0 on KNE. It follows that there exists an £>0 such that, after passing to a
subsequence, there are points z, € KNQ satisfying ga(zm, wn)<—2¢. Since go=
log tanh éq we see from the definition of ¢ that for each m there is an analytic disk
Jfm: A—Q such that f,(0)=2m, fm(tm)=w, for some t, €A, and log |t,|<—e¢.
Since € is bounded, K is compact and {t,,} CCA, it follows that, after passing
to a subsequence, {f,,} converges locally uniformly to a function f: A—Q, {z,}
converges to some z€K and {t,,} converges to some t€A. Hence f(0)=zcK,
F(t)=wy, so z€ KNA,,, a contradiction. I

Proof of Theorem 5. We fix R>0 such that the diameter of € is less than R
and we let {wm }m>1CQ be a sequence of points converging to wy. For a>0 we set
Qa=0NB(wp,a). For re(0,3) we define

v
Ny(r)

(2.2) a(ry=1— €(0,1).

Let K be a compact subset of Q which does not contain wy and fix R’ =R/(K)>
0 such that R'<1 and KNB(wo, R')=0. The proof is done by constructing for each
e>0 and m>m(e), where m(e) is large enough, a plurisubharmonic function ,, on
Q such that ¥, (2)<ga(z,wy,) for z€Q, and ,,(2)>—¢ for all ze KNAQ.

We proceed in three steps. In the first step, given two radii r, v/, 0<r <r'<%,
we use the function ¢ to construct a plurisubharmonic function v, (z;r,7’) which
satisfies vy, (z;7,7") <ga (2, wm) on Q, and vy, (2;7,7) > —h,y (r,7) log(R/7") for z€
Q, ||z—wo||>r'; the number h,,(r,r’) is given by

a(r)log 1 +c+ —*“”wm —wol
(2.3) P (r, 7)) = T o
log ”

and has the property that 0<h,,(r,r’})<1 if r<r’ and m is large enough or m=0.
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In the second step, given a sequence of radii 0<r; <r;_; <...<r;<R', we use the
functions v,, to construct by induction on k, 1<k<j, a plurisubharmonic function
wi (2) which satisfies w, (2) <gq(z,wm) on Q, and wi, (z)>—HJ, log(R/R’) for z€Q
with ||z—wp||>R’ and for m such that ||w,, —wo||<3r;. Here HY, is given by

(2.4) H,Jn = hm(”l“j, ijl)ho('rjfl, lez) ho(’/’l, RI)

Finally, in the third step we use hypothesis (ii) of the theorem to show that for
any £>0 we can choose an integer j large enough and radii r; <r; 1 <...<r <R’
such that if [{wm—wel|< ir; then HI <e/log(R/R’). To complete the proof we just
set Yy =w? .

Step 1. We fix two radii r and 7’ such that 0<r<r'< %, and we define for m>0
llz—wml 1

1
um(z;7r,7") =log -T—+T—79(z) —a(r)log o

where 2€Q and a(r) is defined in (2.2). Since |log(1+z)|<2|x| for all real numbers
z with |z|<1, we note that for z with ||z—wp|[>r we have

log ||Z—‘U)m” ~log ”Z*UJOH _ ’10g<1+ Hz—w|r;”:u|(|)z”w0” )\
e

provided that m is sufficiently large. It follows that

Allwm —woll 2fjwm —wol|

(25) UO(Z;Ty 7'/)_ Sum(z;r, 1"’)7 SUO(Z;T, 7'/)

r r

for z as specified above. The functions u,, are plurisubharmonic in  and for m >0
they have a logarithmic pole at w,,. We claim that ug is negative in €;/5. This is
obvious for z with ||z—wp|<r and if we set z=|]z—wy||, for ||z—w|/>r, and use
the definition of N,(r) we see that

z 1 1

uo(z;r,7") < f(z) =log ;—T—vaQ(T) —a(r)log -
But f has an absolute maximum on the positive real axis at the point xy given
by mévQ(T):r'y/Ng(r) and f(zo)=—(14log N,(r))/N,(r)<0, so the claim is proved.

We also note that for 2€€Q with ||z—wqg||=r hypothesis (i) yields

1
up(z;m,7') > —a(r)log = —c
r
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and hence
4”me’U)0H Z—a(?") _4||wm_w0||

ugp(z;r,r') — "

1 1
og——c¢
gr T

By (2.5) and by the above relation it now follows that, for m=0 or for m such
that ||wm—wo| <3r, the function ¥, defined below is plurisubharmonic in €2:

(z), if z€9Q,,
(2.6) O {257, r') = max{ﬂ(z)’ b (r, 7"} log HZ—T—;on}, if z€Q\

||z —wol|
r

B (r,7") log if ze Q\ Q.

Here @(z)=um(2;7,7")—2||wm—wo||/r and h,(r,r") is defined by (2.3) for m as
specified above. We note that o,,(-;7,7’) is negative if |z—wp||<r’ and positive if
|lz—wgl||>r" but the function

(2.7) v (237, 7) = T (257, 77) — A (1, T')logg

is negative and plurisubharmonic on Q. Also, for m>0, v, has a logarithmic pole
at wy, and by (2.6) we have that

R
(2.8) (257, 7") < =B (r,7") log i

for 2€Q with ||z—wo||<r’. As ug(z;7,77)<0 for all €€, it follows by (2.5) and
(2.6) that there exists a positive number v(r,7’) such that

lz—wol|

(2.9) Tm (237, 7") = hyn(r,7") log

provided that z&€€Q, ||z—wol|>r'—v(r,r'), and m is as specified above.

Step 2. Let us fix a positive integer j and a sequence of radii ri,rg,...,7;
satisfying 0<r; <r;_1<...<r;<R'. We also fix an integer m such that ||w,, —wol| <
irj. For ke{l,...,5} we set

i {thpW—ﬂ, if k=7,
k= . .
hm(’l"j,’/'j_l)ho(’f’j_l,rj_g) ho(’r‘k, ’I“kfl), if 1 S k S]—l,
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where rg is taken to be R’. Note that H;=HJ,, where HJ, was defined in (2.4). By
induction, we construct for each k€{1,...,j} a negative plurisubharmonic function
¢, on Q with a logarithmic pole at w,, and such that if 2€£} then

(2.10) qﬁk(z):ﬁk logﬂLn)OH for ||z —wol| > re_1—v(rk, re—1),
(2.11) di(z) < —Hy log " for ||z—wol <rg-1,

k-1
(2.12) ¢ (2) > —Hy log . for ||z—wpl|| > re_1.

k-1

Note that (2.12) is an immediate consequence of (2.10).

We start with k=3 and we set ¢;(z)=vp(2;7j,7;-1). By (2.8), relation (2.11)
holds for ¢; and (2.10) is also satisfied, as it is easily seen from the definition of v,
(relation (2.7)) and from (2.9).

We assume now that for k€{1,...,7—1} we have constructed a negative pluri-
subharmonic function ¢y 1 on , with a logarithmic pole at w,, and such that ¢g1
satisfies (2.10) and (2.11). Then for z2€Q with ||[z—wg||>7% —v(rk41,7k) We note by
{2.10) and by the definition of ug that

~ R ~ z ~ 1 ~
Pr41(2)+ Hyyt log T_k+Hk+1%“a(rk)Hk+l log e Hi 1o (2578, Tho1)-
k
Let E(z) denote the left-hand side of the above equality. It follows from this and
from the definition (2.6) of Uy that the function
~ E(z), if ||z—wo|| < 7,
o) ={

ffk+11~10(2;7”k71”k—1)1 if | z—woll > 7,

is well defined and plurisubharmonic in §2, with a logarithmic pole at wy,. Inequality
(2.11) for ¢p,1 shows that ¢y, is negative for 2€Q with ||z—wo||<rj, and by the
definition (2.6) of @ it follows that ¢y is negative for 2€Q with ry <|jz—wo | <rk—1,
and is increasing in ||z—wyp]| for z€Q) with ||z—wo||>7r—1. We set

¢k(z)=<z>k(2)—ﬁk log zeQ.

b
k-1

The function ¢ is then negative and plurisubharmonic on €2, with a logarithmic
pole at w,,. Equality (2.9) for ¥y(z;rs,r4—1) and the definition of H, show that
(2.10) holds for ¢j. Since ¢y, is negative for z€§Q with ||z2—wo| <rg_1, it follows
that ¢y, satisfies (2.11) as well.



350 Dan Coman

We conclude by induction that w, (z)=¢1(2) is a negative plurisubharmonic
function on Q with a logarithmic pole at w,, and such that, by (2.12) (recall that
H,=H}),

J > J R
win(2) 2 —Hi, log &
for all ze€Q with ||z—wyg|| >R/, and thus for all z€ KNQ. The definition of the Green

function go(z,wp,) shows that go(z, wn,)>wi, (z) for all zeQ.

Step 3. Let us fix again two radii r, 7', O0<r<7r'< % We first note that if m=0,
or if m is such that ||w,, —wp]|| < ir, then

(213) hm(r, T/)SZ(T‘, ’I"/):——-—;,—

We claim that for any v’ >0 the inequality
Y
2N,(r)

holds provided that r is sufficiently small. Indeed, the above inequality is equivalent
to

(2.14) I(r,rY<1—

lo —1 c+1< 1 lo 1
+ 0 +

which holds if and only if Ny(r)=o0(log(1/r)) as »\,0. Thus hypothesis (ii) shows
that our claim is true.

Next, we will construct a decreasing sequence of radii {r;};>0, 0<...<7;<
ri—1<..<ri<ro=R', by choosing r1 < R’ and then inductively defining r; <r;_;
such that for each j inequality (2.14) holds with r=r; and 7'=r;_;. In view of the
above, it suffices to choose r; <r;_1 such that

1
(2.15) log ——+et+1<

1
< log -+log )
73* 2N9( T;) ( Fi-1

Since N,(r)=0(loglog(1/r)) as 7,0 we can find a positive constant p such
that N,(r)<ploglog(1/r) for all r sufficiently small. We define r; by

1 . ..
loglog — = 2(j+Jo) log(j +3jo)
J

for all j>1, where jo is a fixed large integer such that r1 <R’. Then log(1/r;)=
2 +io) log(i+io) 56 (2.15) holds if the following inequality is true:
ry(e2(j+jo)108;(j+j0)_}_62(j+j0—1) 10g(j+jo—1))

2(j+jo—1) log(j+7o—1)
e +c+1< P —
4p(j+jo) log(j+jo)
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This last inequality is equivalent to
{1420 Hd0) Yogli+io/d+do~1) (4 jo —1)2]

14+(c+1 6—2(j+jo—1)10g(j+jo”1) < - —
(e+) 4p(j+ 7o) log(j +1o)

7

which is clearly satisfied for all j>1 provided that jy is large enough. For {r;}
defined in this way we have by (2.13) that

Y <1 Y —1_ v
2Ny(ry) — 4p(j+jo) log(j +Jjo)

fbm(Tj,Tjﬁl)Sl— — 1
2ploglog —
5

for all j>1. Hence for such j we have

5
: v

o, <[] (1- : ).
" k:l( 4p(k+jo) log(k+Jo)>

We finally note that [];=,(1—-/4pklogk)=0, since Y ro, 1/klog k=00, and
the proof is complete. [

Ezample. For 2=(2, 25)€ C? we write z;=x; +1y;, j=1,2. Let f,g: R—[0, c0)
be C™ even functions vanishing to infinite order at 0 and satisfying

1) f(2)>0, ¢"(z)>0 for all z£0;

(i) ¢'(z?)>f"(z) for z>0;

(i) f(z)>2'08'08(1/%) for 0<z <6, where & is some positive number.

We set

P21, 22) = f(z1)+ f(y1) +g(m1y1) + f(22) + f (y2) +9(z2y2),
D(21, 22) = T2+ P21, 22).

A simple computation of the Levi form of ® shows that for z,t€C?

(Lo(2)t,t) > 1 " (a(2) L],

where «(z)=min{max(|z1}, [y1]), max(|z2, |y2|)}. Thus & is plurisubharmonic on
C?, and actually it is strictly plurisubharmonic at all the points z with z; 0 and
Z2 750.

The open set {z€C?:®(z)<0} is pseudoconvex, it contains the origin on its
boundary, and its boundary is C'* smooth near the origin. So we can choose a
constant >0 such that the set Q defined by Q={z¢ B(0,a):®(z) <0} is a bounded
pseudoconvex domain and 99 is a C° smooth hypersurface near 0€0€, described
by the equation ®(z)=0.
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Let 2=(z1, z2), with z;=x;(1—1%), be a point on the boundary of Q (note that
one can choose points of this form arbitrarily close to 0). Since f’, ¢’ are odd
functions we have (0®/0x;+0®/0y;)(z)=0, so the vector v=(1,1,0,0)eR? is in
the real tangent plane of 02 at z. Using again the fact that f’, ¢’ are odd functions
and f”, ¢" are even functions, we see that the real Hessian of ® evaluated at z and
v is

(HO(2)v,v) =2[f"(z1) g (21)] <0,

50 ) is not convex near 0.

We note that ¢(z)>0, since f, g are nonnegative, and ¢(z)=0 if and only if
z=0. Hence the function p(z1,z2)=Re 22—‘—%(15(21,22) is a plurisubharmonic peak
function for Q at 0. Indeed, for zc) we have

(2.16) 0(z) =Re zo+3¢(2) < —16(2).
As f is even, convex and increasing for >0 and g>0 we have

J@)+fy)+g(eryn) 2 2f (521l +wl)) 2 2f (51l),

and hence

(21,22) 22[J (5l21]) + 1 (51221)] 2 4F (G (|1l +1220) 247 (7112])-

: ChOiC; Of f a‘Ild by (2-16) we ge
E) z -Zf 1 2 2 log 10g(4/[ z

so No(r)=0(loglog(1/r)) as r\,0 and Theorem 5 applies. Finally, by considering
the analytic disks v,,({)=({, (™), for m=1,2,..., we see that the vanishing order
of ®oxy,, at (=0 is m, so 0 is not a point of finite type of Jf2.

References

[BD] BEDFORD, E. and DEMAILLY, J. P., Two counterexamples concerning the pluricom-
plex Green function, Indiana Univ. Math. J. 37 (1988), 865-867.

[C] CHO, S., A lower bound on the Kobayashi metric near a point of finite type in C",
J. Geom. Anal. 2 (1992), 317-325.

[D] DemaiLLy, J. P., Mesures de Monge-Ampere et mesures plurisousharmoniques,
Math. Z. 194 (1987), 519-564.

[DF] DIEDERICH, K. and FORNAESS, J. E., Proper holomorphic maps onto pseudoconvex
domains with real-analytic boundary, Ann. of Math. 110 (1979), 575-592.



Boundary behavior of the pluricomplex Green function 353

[K1] KriMEK, M., Extremal plurisubharmonic functions and invariant pseudodistances,
Bull. Soc. Math. France 113 (1985), 231-240.

K2] KrmMEK, M., Pluripotential Theory, Clarendon Press, Oxford, 1991.

[L] LeEMPERT, L., La métrique de Kobayashi et la représentation des domaines sur la
boule, Bull. Soc. Math. France 109 (1981), 427-474.

Recetved April 30, 1997

Dan Coman

Department of Mathematics
“Babes—Bolyai” University
RO-3400 Cluj-Napoca
Romania

Current address:
Department of Mathematics
University of Notre Dame
Notre Dame, IN 46556-5683
U.S.A.

email: Dan.F.Coman.2@nd.edu



