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Boundary behavior of the 
pluricomplex Green function 

Dan Coman 

Abstract .  Let f~ be a bounded domain in C n. This paper deals with the study of the 
behavior of the pluricomplex Green function gf~(z, w) when the pole w tends to a boundary point 
w0 of fL We find conditions on ft which ensure that l i m ~  0 gn(z, w)=0, uniformly with respect 
to z on compact subsets of ~t\{w0}. Our main result is Theorem 5; it gives a sufficient condition 
for the above property to hold, formulated in terms of the existence of a plurisubharmonic peak 
function for f~ at w0 which satisfies a certain growth condition. 

1. I n t r o d u c t i o n  a n d  s t a t e m e n t  o f  r e s u l t s  

Let f~ be a bounded  open set in C n and  let w be a point  in ft. A plur isubhar-  

monic  func t ion  v on ft is said to have a logari thmic pole at w if v(z)<log I Iz-wll  +~, 
for some cons tan t  c and  for z in a ne ighborhood of w. The  plur icomplex Green 

func t ion  9a(z,w) of ft wi th  pole at w is defined by ga(z,w)-supv(z), where the 

s u p r e m u m  is t aken  over the set of negat ive p lu r i subharmonic  funct ions v on 

which have a logari thmic pole at w. This  definition, given by Kl imek [K1], is in 

analogy to the one d imens ional  case, where one obta ins  in this  way the (negative) 

Green funct ion  for the Laplace operator .  The  funct ion  g a ( ' , w )  is negat ive and  

p lu r i subharmonic  in ft and  it has a logari thmic pole at w. It  is also decreasing 

with respect to holomorphic  mappings ,  i.e. 9a' (f(z), f(w))-<ga(z, w), where ft '  is a 

bounded  open  set in C n~ and  f :  f~-~ft ~ is a holomorphic  mapping.  It  follows tha t  

ga is b iholomorphical ly  invar iant .  If f~ is a hypereonvex domain  (i.e. it is bounde d  

and  it has a negat ive cont inuous  p lu r i subharmonie  exhaus t ion  funct ion)  and  if for 

z C Oft and  w Eft  we define ga (z, w) = 0, then  ga: ~ x f t -+  [ -  oc, 0] is continuous.  This  

result  was ob ta ined  by Demail ly  [D]. 

Let A denote  the un i t  disk in C and  let O(z, w) be the Poincar6 dis tance 

between z, wEA, Q(z, w)=tanh-l(Iz-w]/] 1-wzl). Let 6~(z, w ) = i n f  0(~, r]), where 

the inf imum is t aken  over all ~, r /EA for which there is an analy t ic  disk f :  A--+f~ 

with / ( ~ ) = z  and  / ( ~ ) = w .  In  general  [K2], for a bounde d  domain  ft in C n o n e  
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has 9a(z ,w)<_logtanhSa(z ,w);  equality holds for all zEf~ and for a fixed wEf~ if 
and only if the function z~-+logtanh6~(z,w) is plurisubharmonic. The results of 
Lempert  [L] show that  if Q is a bounded convex domain in C n then g a ( z , w ) =  

log tanhSa(z ,  w) for all z, wcf~. 
In this paper  we study the behavior of the plurieomplex Green function ga (z, w) 

as the pole w approaches a boundary  point w0 of ft. In the remainder of this 
section we state our results. The proofs of these results and an example are given 
in Section 2. 

Let us start  with some definitions. Let [~ be a bounded open set in C ~ and let 

w0 E 0Q. 

Definition. We say that  f~ has the property (P) at w0 if for every sequence of 
points {w,~}~>0Ca  which converges to w0 and for every compact set K c f i \ { w 0 }  
one has gn(z, w~)--+O as r a - , oo ,  uniformly for zEKCqf~. 

Definition. We say that  w0 is a weak peak point for f~ if there exists a holo- 
morphic map h : a ~ Z X  such that  limz-.~o Ih (z ) l= l  and l imsupz+q Ih(z ) l< l ,  for 
every qEOf~, qv~wo. We call w0 a local weak peak point for f~ if there exists a 
neighborhood U of w0 such that  w0 is a weak peak point for f~NU. 

Our first result is that  the property (P) of f~ at wo~Of~ is local. We have the 
following theorem. 

T h e o r e m  1. Let f~ be a bounded open set in C ~ and let woCafL The following 

are equivalent: 

(i) f~ has the property (P) at w0; 
(ii) for  every neighborhood U of wo, f~NU has the property (P) at w0; 
(iii) there is a neighborhood U of wo such that f~NU has the property (P) 

at wo. 

This theorem yields the following corollary. 

C o r o l l a r y  2. I f  f~ is a bounded open set in C n and if  woEO~ is a local weak 

peak point for ~ then f~ has the property (P) at w0. 

The next two results come from the relation between the functions ga and ~ .  

The first one gives examples of domains for which property (P) fails. The second 
result characterizes completely the convex domains which satisfy property (P), and 
it can also be viewed as a partial converse to the first one. 

P r o p o s i t i o n  3. Let ~ be a bounded domain in C n, let woEO~, and assume 

that Of~ is of class C 1 near Wo and that there exists a nonconstant analytic disk 

f:  A-~t2  such that w o c f ( A ) .  Then ft  does not have the property (P) at wo. 
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P r o p o s i t i o n  4. Let ft be a bounded domain in C ~ and assume that g ~ ( z , w ) =  

logtanhS~(z ,w)  for all z ,wEf~.  (By Lempert's theorem this is the case if  ft is 

convex.) For Wo EOft let A~ o be the union of all analytic disks contained in ft and 

passing through wo. I f  {w,~} is a sequence of points in f~ which converges to wo and 

if  K is a compact subset of f~ such that K N A ~ o = 0  then g ~ ( z , w , ~ ) ~ O  uniformly 

on K A f t  as rn--~oo. In particular, i f  A~  o ={w0} then • has the property (P) at Wo. 

Finally, our last result gives a sufficient condition for f~ to have the property (P) 
at w0 E0~  in terms of the existence of a plurisubharmonic peak function p at w0. 
Let us recall first the following definition. 

Definition. Let f~ be a bounded domain in C ~ and let w0E0f~. A function 0 
is called a plurisubharmonic peak function for f~ at w0 if L) is plurisubharmonic in 
ft and continuous on ft, 0(w0)=0 and ~(z)<0 for zEf t \{w0}.  

If L) is a plurisubharmonic peak function for ft at w0 and rE  (0, 1), we define 

No(r ) by 

{ log Iiz l~ I~(z) I ; }  No(r ) max w011:zE~,  r<llz-w0tl_< . 

This number is the smallest exponent N for which the inequality 

~(z) ~-IIz-w011N 

holds for all zE~2 with r<_iiz--woliG�89 We have the following theorem. 

T h e o r e m  5. Let f~ be a bounded domain in C n and let Wo be a boundary 

point of f~. Assume that there exists a plurisubharmonic peak function ~ for f~ at 

Wo such that: 
(i) ~ is HSlder continuous at Wo, i.e. there are constants c>0 and ?E(0 ,  1] 

such that Q(z)>_-cllz-woi] ~ for all zcf~; 
(ii) No(r ) O(loglog(1/r))  as r~-~O. 

Then f~ has the property (P) at Wo. 

The hypotheses of this theorem are satisfied for bounded pseudoconvex domains 
with real analytic boundary (the existence of the required plurisubharmonic peak 
function follows from Theorems 2 and 3 in [DF]). They are also satisfied in the more 
general case when ft is pseudoconvex with smooth boundary and w0 is a point of 
finite type (here plurisubharmonic peak functions exist by a theorem in [C]). In 
both these cases the quantity No(r ) is bounded as r tends to 0. It is not hard to 
construct a bounded pseudoconvex domain ft in C 2 such that  wo-OCOft ,  Of~ is C ~ 
smooth near 0, 0 is not a point of finite type, f~ is not convex near 0 (recall that  
the case of bounded convex domains is settled in Proposition 4), but Theorem 5 
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applies and f~ has the property (P) at 0. This is outlined in the example at the end 
of Section 2. 

Remark. Let Q be a bounded domain in C ~ and let ZoCOf~. As in the one 
dimensional case, one can show that  if there exists a plurisubharmonic peak function 
for f~ at z0, then lim~-,zoga(z,w)-O, uniformly for wCKNf~, for any compact  
K C ~ \ { z 0 } .  So when f ~ c C  this is equivalent to proper ty  (P) at z0, by the symmet ry  
of the Green function (gn(z, w)=ga(w, z)). In dimensions n >  1 it is known that  the 
pluricomplex Green function 9a is in general not symmetric,  not even when f~ is 
a smoothly bounded strongly pseudoconvex domain [BD]. Theorem 5 shows tha t  a 
sufficient condition for property (P) can still be given in terms of plurisubharmonic 

peak functions which have some special properties. 

2. P r o o f s  

Proof of Theorem 1. The implication (ii) ~ (iii) is obvious and the implication 
(i) ~ (ii) is clearly true, since ga (z, w) _< ganv  (z, w) for all z, w 6 a N  U. So we only 
need to prove that  (iii) implies (i). 

Let K be a compact  in ~ such that  Wo is not in K and let U be a neighborhood 
of wo such that  f~OU has the proper ty  (P) at Wo. Let r and r t be positive numbers 
such that  B(wo, r)CU and KNB(Wo, r ' )=O;  here B(wo, r) is the open ball centered 
at wo and of radius r in C ~. Let f~--f~nB(wo,r). Then f~C_f~nU, so f~  has the 
proper ty  (P) at wo. We choose R > 0  big enough so that  f~CB(Wo, R). Finally we 
let {w~}~>o be a sequence of points in f~ such that  w,~---~wo as m--~oe. 

We fix two positive numbers r l  and r2 such tha t  

0 < r l  < r 2  < rain{r, rt}, 

and we let sj={zcf~:llz-woll=rj}, j = l , 2 .  Let 

e~ = inf 9a~ (z, Wm), 
z6S1 

where m is large enough so that  IIwm-woll<r~. Let 

 m(Z) = em log(tlz-w0 II/r2). 
log(rl/r2) 

The functions v,~ are plurisubharmonic and 

Vm(Z)=Cm<__ga~(Z, Wm), if Z C Sl, 

V,~(z)=O>gf~,.(Z,Wm), if z6S2. 
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Hence the function 

( 9a~ (z, win), if z E ftrl,  

urn(z)= max{vm(z),gf~(z,w~)}, if z @ f~r2 \ a t 1 ,  

Vm(Z), if z E f~\f~r2, 

is plurisubharmonic in ~ with a logarithmic pole at w,~. Also 

d - l o g ( R / r 2 )  
urn(z )<  m - - C . ~ ~  f o r a l l z C f ~ ,  

so ga(z, w~)>_u,~(z)-dm. If IIz-w011 >r=, hence in particular if zeK ,  then u.~(z) > 
O. We conclude that  

9a ( z, wm ) >_-din for all z E K Nft. 

Since ft,. has the proper ty  (P) at Wo it follows that  c , , -~0  as rn--+co, so d,~--+0 and 
thus 9a(z,wm)-+O uniformly on K N Q  when rn-+oo. [] 

Proof of Corollary 2. Let U be a neighborhood of w0 and let f :  f~NU--+A be 
a holomorphic function satisfying 

(2.1) lim If(z)l =1 ,  l imsuplf (z) l  < 1 
Z~'ql;O Z___+q 

for all the points qTgwo in the boundary  of FtNU. It  is enough to show tha t  ~ N U  
has the proper ty  (P) at w0, so let K be a compact  subset of f tNU which does not 
contain w0 and let {Wm} be a sequence of points in f tNU which converges to w0. 

We have that  

gzx(f(z), f(w~)) = �89 l o g ( l + E ( z ,  w~))  < gancr(z, w~), 

where 
E(z,w.~)= f ( z ) - f (w.~)  2 1 = ( [ f ( z ) 1 2 _ l ) (  1 if(w.~)t2) 

1 -  f(w,~)f(z) [1 f(w.~)f(z)] 2 

Since the compact K does not contain w0 it follows from (2.1) that  there exists 
a positive number a < l  such tha t  I f ( z ) l < a  for all zcKNf~NU. For such z we see 
that  

(If(z)12-1)(1-1f(wm)l 2) If(Wm)12-1 
O>E(z,w.~)> ( 1_a )2  _> (1_c~)2 , 

so E(z,w,,~)---~O uniformly on zEKNf~NU as m ~ o c ,  hence the same is true for 
ganv(z, w.~). [] 
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Proof of Proposition 3. Let ~ be the inward pointing normal at w0 to 0ft. By 

restricting f around some toEf-l(Wo) we may assume that  there is a 6>0  such 
that  the functions ft=f+tff, O<t<5, carry A into f~. We reparametrize A such 

that  f(O)=q%wo for some qEft. Then there is an c~EA, aG0 ,  such that  f ( a ) = w 0 .  
Hence 

ga(q+tJ, wo+tg) <<_ logtanh 6a(q+tg, wo+tJ) < log lal < 0 

for all t, 0 < t < &  We finally let K={q+tJ:O<t<6} and wj=wo+(1/j)Y. Then 
ga(z, wj) does not converge uniformly to 0 on K N ~  as j--+oc. [] 

Proof of Proposition 4. We assume that  g~(z, Wm) does not converge uniformly 
to 0 on KNf t .  It  follows that  there exists an c > 0  such that ,  after passing to a 
subsequence, there are points z,~EKNft satisfying ga(z,~,w,O<--2c. Since g ~ =  
log tanh 6~ we see from the definition of 6~ that  for each m there is an analytic disk 

fm:A--+ft  such tha t  f,~(O) z,~, .f,~(t,~)=w,~ for some t ,~EA, and l o g ] t m ] < - c .  
Since ft is bounded, K is compact and { t , ~ } c c A ,  it follows that ,  after passing 

to a subsequence, {f,~} converges locally uniformly to a function f :  A--+ft, {z,~} 
converges to some zEK and {t, ,} converges to some tEA.  Hence f(O)=zEK, 
f(t)=wo, so zEKNA~o, a contradiction. [] 

Proof of Theorem 5. We fix R > 0  such that  the diameter  of ~2 is less than R 
and we let {w~},~>lCf t  be a sequence of points converging to w0. For a > 0  we set 
a o = f t n B ( w 0 , a ) .  For rE(0 ,  �89 we define 

(2.2) a ( r ) = l  ~ E ( 0 , 1 ) .  
N~(r) 

Let K be a compact  subset of ~ which does not contain w0 and fix R~=R~(K)> 
1 and KT/B(w0, R ~) =0.  The proof is done by constructing for each 0 such that  R ~ < 

e > 0  and m_>m(e), where re(e) is large enough, a plurisubharmonic function ~,~ on 
f~ such tha t  ~,~(z)<_gn(z,w,~) for zCft,  and ~ , ~ ( z ) > - e  for all zEKnft. 

1 
We proceed in three steps. In the first step, given two radii r, r ~, 0 < r < r r < ~ ,  

we use the function L) to construct a plurisubharmonic function v,~(z; r, # )  which 
satisfies v,~(z; r, r') <g~(z, win) on ft, and v,~(z; r, r')>-h,~(r, r') l og (R /# )  for zE 
ft, IIZ-Woll>>_r'; the number h,~(r,r') is given by 

a ( r )  log - + c +  
(2.3) r ' ) =  r r 

r t 
log - -  

r 

and has the property tha t  O<h, , ( r ,  # ) < 1  if r<<# and m is large enough or m=O. 
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In the second step, given a sequence of radii 0 < rj < rj 1 <... < rl < R ~, we use the 
functions v,~ to construct by induction on k, 1< k < j ,  a plurisubharmonic function 
ca{~ (z) which satisfies coJ (z)<g~ (z, w,~) on a ,  and w j (z)>_-H~,~ log(R/R') for z C ft 
with IIz-w011>R' and for m such that  IIw~-~01l_<lr~. Here H ~  is given by 

(2.~) HJm=hm(Tj,Tj 1 ) h 0 ( r j  1,rj-2)...ho(rl,F~t). 

Finally, in the third step we use hypothesis (ii) of the theorem to show that  for 
any c>O we can choose an integer j large enough and radii rj<<rj l<<...<<rl<<R ~ 
such that  if IIw,~-w0 II <- ~rj then HJ~ < s / l o g ( R / a ' ) .  To complete the proof we just 
set r  

Step 1. We fix two radii r and r ~ such that  0<r<r~< �89  and we define for m_>0 

um(z;r,r')=log ] ] z~  w~dl + l ~ ( z ) - a ( r )  log l r  

where z C a  and c~(r) is defined in (2.2). Since I log(l+x)l_<21xl for all real numbers 
x with Ixl<_�89 we note that  for z with IIz-woll>_r we have 

logllZ-W'~llr logllZ ~w~ = log(l- t  HZ-WmlI-IlZllz woll woll) 

2 211u,~-woll 
_< - ] l l z - ~ l l - I I ~ - ~ o l l l - <  - - ,  

r r 

provided that  m is sufficiently large. It follows that  

(2.5) Uo(z;r,r') 411w'~ woll <u,~(z;r,r') 211w'~-w~ <_uo(z;r,r') 
r r 

for z as specified above. The functions Um are plurisubharmonic in ~t and for m > 0  
they have a logarithmic pole at w,~. We claim that  u0 is negative in f~l/2. This is 
obvious for z with IIz-~011_<r and if we set x=llz-~011, for [Iz-~01p>r, and use 
the definition of No(r ) we see that  

~0(z; r, r') _< f(x) = log ~- ! S o ( ~ ) _ ~ ( r )  log 1. 
r r "~ r 

But f has an absolute maximum on the positive real axis at the point x0 given 
by xN~ a n d / ( x 0 ) = - ( l + l o g  No(r))/No(r ) <0, so the claim is proved. 
We also note that for zC~  with IIz-~oLL=r hypothesis (i) yields 

1 
~o(z; r, r') _> ~(r) log - - ~  

r 
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and hence 

uo(z;r,~') 4tlwm-woll ~ -~ (r ) log - -c l  411Wm--W011 
T 9" T 

By (2.5) and by the above relat ion it now follows tha t ,  for m = 0  or for m such 

tha t  IlWm--WoII~ 1 ~r, the function ~,~ defined below is p lur isubharmonic  in fh 

(2.6) 

{ ~(z), 
~m(z;r,r ')  = max{zt(z)'hm(r'r')l~ [lz-w~ } 

hm(r,r ')  log IIz~oll 

if z E ftT, 

if z E f t <  \f tT,  

if z C f t \ f t~ , .  

Here ~(z)=Um(z;r, rO-21lWm-Woll/r and hm(r,r') is defined by (2.3) for m as 
specified above. We note  tha t  ~m( ' ;  r, r ' )  is negative if IIz-wo[[<r' and positive if 

I Iz-w0 II > r '  but  the funct ion 

(2.7) R 
v~(z; ~, ~') = ~..(z; ~, ~')-h~(~, ~') log 7v 

is negative and plur isubharmonic  on ft. Also, for m > 0 ,  vm has a logari thmic pole 
at Wm and by (2.6) we have tha t  

(2.8) v~(~; ~, ~') _< -h.~(~, ~')log ~, 

for z E f t  with IIz-woH<_r'. As Uo(z;r,r')<O for all zEftl/2 it follows by (2.5) and 
(2.6) tha t  there  exists a positive number  u(r, r ' )  such tha t  

(2.9) 
IIz-woll ~(~;~,~') =h~(~,r')log r' 

provided tha t  zCft ,  I I z - w 0 1 t > r ' - - ( ~ ,  ~'), and m is as specified above. 

Step 2. Let  us fix a positive integer j and a sequence of radii rl,r2,...,rj 
satisfying 0 < rj < rj_ 1 <..-  < $'1 < Rt. We also fix an integer m such tha t  II w m -  w0 II -< 
�88 For kc{1, ... ,j} we set 

[tk = { hm(rj,rj-1), if k =j,  
hm(rj,rj-1)ho(rj-l,rj-2)...ho(rk,rk 1), if l < k < j - 1 ,  
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where r0 is taken to be R'. Note tha t  i~ 1 =HJn, where H ~  was defined in (2.4). By 
induction, we construct for each k C {1, ..., j} a negative plurisubharmonic function 
Ck on f~ with a logarithmic pole at w,~ and such that  if zEf~ then 

(2.10) Ck (z) = Hk log R 

(2.11) Ck(z) _<--Hk log R 
7"k 1 

(2.12) Ok(z)_> --Hk log R 
Tk 1 

for IIz-w011 ~ k  ~--~(~'k,rk-~), 

for IIz-w0tl ~ k - 1 ,  

for IIz-~011 >_~k 1. 

Note that  (2.12) is an immediate consequence of (2.10). 
We start with k=j  and we set Cj(z)=Vm(Z;rj,rj 1). By (2.8), relation (2.11) 

holds for by and (2.10) is also satisfied, as it is easily seen from the definition of vm 
(relation (2.7)) and from (2.9). 

We assume now that  for kE{1, ... , j - l }  we have constructed a negative pluri- 
subharmonic function Ck+l on ft, with a logarithmic pole at wm and such that  0k+1 
satisfies (2.10) and (2.11). Then for zEft  with IIZ--WoIl>_rk--U(rk+l,rk) we note by 
(2.10) and by the definition of Uo that  

/? +Hk+l @ -  ~(~k)Hk+l log i = Hk+~0(z; ~k, ~k-~). Ck+~(z)+Hk+~ log r~ r k rk 

Let E(z) denote the left-hand side of the above equality. It follows from this and 
from the definition (2.6) of v0 that  the function 

E(z), if tlz-woll <rk,  
Sk(z) = ~Ik+l~o(Z;rk,rk-1), if [[z--w0[{ >_rk, 

is well defined and plurisubharmonic in ft, with a logarithmic pole at win. Inequality 
(2.11) for Ck+l shows that  Ck is negative for zEf~ with tJz-woll<_rk, and by the 
definition (2.6) of ~0 it follows that  ~k is negative for zEf~ with rk < IlZ-Wo li <rk-1, 
and is increasing in Ilz-w011 for zEf~ with IIz woll>_rk-1. We set 

~k(z) = ~k(z ) -G log n - - ,  z C f L  
r k - 1  

The ffmction Ck is then negative and plurisubharmonic on ~, with a logarithmic 
pole at win. Equality (2.9) for ~o(z; rk, rk  1) and the definition of/4k show that  
(2.10) holds for Ck- Since Ck is negative for zEft  with ]lz-woll<rk_l, it follows 
that  r satisfies (2.11) as well. 
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We conclude by induction that  coJ~(z)=r ) is a negative plurisubharmonie 
function on f~ with a logarithmic pole at w,~ and such that,  by (2.12) (recall that  

H1 = 

_> -HT. log 

for all zCf~ with IIz-w011 _>R', and thus for all z c K A f L  The definition of the Green 
function 9a(z,  w,~) shows that  9a(z,  wm)>_cvJ(z) for all zErO. 

1 We first note that  if m=0 ,  Step 3. Let us fix again two radii r, r/, 0 < r < r ~ < ~ .  
or if m is such that  Ilw~-w0ll 1 _< ~r, then 

1 
a(r)  log - + e +  1 

(2.13) h,,~(r, r') <_ l(r, r') = r 
r t 

log -- 
r 

We claim that for a n y / > 0  the inequality 

(2.14) l(r, r') _< 1 7 
2Xo(r) 

holds provided that  r is sufficiently small. Indeed, the above inequality is equivalent 
to 

r 1 ' 7 ( 1  +log 1 ) log lo37  ;v , 

which holds if and only if No(r)=o(tog(1/r) )  as r 'N0. Thus hypothesis (ii) shows 
that  our claim is true. 

Next, we will construct a decreasing sequence of radii {rj}j>0, 0<. . .<r j<  
rj_ 1 <... < rm < ro = R ~, by choosing rx << R ~ and then inductively defining rj << rj_ 1 
such that  for each j inequality (2.14) holds with r = r  d and / r j-1.  In view of the 
above, it suffices to choose rj <<rj-1 such that  

(2.15) log 1 + c + 1 <  "Y ( _  ~ l+ log  1 ) 
rj 1 2Ne(rj )  l ~  rj I 

$ 

Since Ne(r )=O( log log(1 / r ) )  as r~,~0 we can find a positive constant p such 
that  No(r ) <p log log(i / r )  for all r sufficiently small. We define rj by 

1 
log log --  = 2( j+j0)  log(j+j0)  

rj 

for all j > l ,  where j0 is a fixed large integer such that r l < R ' .  Then log(1 /r j )= 
e2(j+jo) log(j+jo) so (2.15) holds if the following inequality is true: 

e2(j+jo L) log(j+jo-1) + c +  1 < 7(e2(j+J~ +e2(j+jo-m) ]og(j+jo-1)) 
4p(j + jo ) log(j+jo)  
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This last inequality is equivalent to 

1 § (c+ 1)e -2(j+j~ --1) log(j+j0 --1) < "~[1 -~ e 2(j+j~ log(j+jo/j+jo--1) (j +Jo -- 1) 2] 
- 4p(j+jo) log( j+j0)  

which is clearly satisfied for all j_> 1 provided that  J0 is large enough. For  {rj} 
defined in this way we have by (2.13) that  

7 7 7 hm(r j , r j_ l )  <_ 1 - -  < 1 = l -  
2g~ - 2ploglog I 4p(j+jo) log( j+j0)  

rj 

for all j > 1. Hence for such j we have 

H j < 1 4p(k+jo)log(k+jo) ' 

We finally note that  1-Ik~_~ (1 - 7/4pk log k) = 0, since Eke=2 1/k log k = oo, and 
the proof is complete. [~ 

Example. For z = (zl, z2) C C 2 we write zj = x j  + iy j ,  j = 1, 2. Let f ,  9: R--~ [13, oc) 
be C a even functions vanishing to infinite order at 0 and satisfying 

(i) f " ( x ) > 0 ,  f ' ( x ) > 0  for all x r  
(ii) g ' (x2)>f" (x )  for x>0;  
(iii) f(x)>_x l~176 for 0 < x < 5 ,  where 5 is some positive number. 
We set 

r  z2) = f ( x l ) § 2 4 7 2 4 7  

�9 (zl,  z2) = x2 + r  z2). 

A simple computation of the Levi form of ~5 shows that for z , t E C  ~ 

(L~(z) t ,  t} >_ �88 ~, 

where a(z )=min{max( la l l ,  IYll), max(Ix21, ]Y2 I)}. Thus �9 is plurisubharmonic on 
C 2, and actually it is strictly plurisubharmonic at all the points z with Zx#0 and 

z2 # 0 .  
The open set { z c C 2 : ~ ( z ) < 0 }  is pseudoconvex, it contains the origin on its 

boundary, and its boundary is C ~ smooth near the origin. So we can choose a 
constant a > 0  such that  the set f~ defined by f~={zCB(0,  a ) :~ (z )<0}  is a bounded 
pseudoconvex domain and 0f~ is a C ~ smooth hypersurface near 0E0f~, described 
by the equation ~ (z )=0 .  
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Let z = ( z l ,  z2), with Z l = X l ( 1 - i ) ,  be a point on the boundary of ft (note that 

one can choose points of this form arbitrarily close to 0). Since if, g ~ are odd 

functions we have (OO/Ox~+O~/Oy~)(z)=O, so the vector v (1, 1 , 0 , 0 ) c R  4 is in 

the real tangent plane of Oft at z. Using again the fact that  f ' ,  g ~ are odd functions 

and f " ,  g" are even functions, we see that the real Hessian of 4) evaluated at z and 

v is 

<Hq~(z)v, v> = 2[f" (xl ) - g '  (x~)] < 0, 

so ft is not convex near 0. 

We note that r since f ,  g are nonnegative, and r  if and only if 

z=0 .  Hence the function Q(z i , z2 )=Rez2+ 1 ~r is a plurisubharmonic peak 
function for gt at 0. Indeed, for zCft  we have 

(2.16) = Re z2 + �89 , ( z )  _< - �89 r  

As f is even, convex and increasing for x > 0  and g_>0 we have 

f ( x l ) +  f ( y l ) + g ( x l y l )  ~ 2f(~(Ixll+lyll)) 2 2f(�89 

and hence 

v~(z~, ~2) _> 2[f(�89 _> 4f (�88 > 4f(�88 

By the choice of f and by (2.16) we get 

~(z) < -2f(l l lzll)  < - 2 ( 1 t l z t 0  l~176 , 

so No(r)=O(loglog(1 /r ) )  as r~-~O and Theorem 5 applies. Finally, by considering 
the analytic disks %~(~)=({, {m), for r n = l ,  2, ..., we see that the vanishing order 

of @o%~ at ~ 0 is m, so 0 is not a point of finite type of 0f~. 
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