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Abstract

In this paper, results on removable singularities for analytic functions, har-
monic functions and subharmonic functions by Besicovitch, Carleson, and Shapiro
are extended. In each theorem, we need not assume that f has the global property
at any point, so we are able to allow dense sets of singularities. We do not state our
results in terms of exceptional sets, but each one leads to a series of results implying
that certain sets are removable for appropriate classes of functions.

1. Analytic functions

In 1931, Besicovitch obtained a generalization of Painlevé’s theorem: let f be
a bounded function defined on an open set W, and L a subset of linear (i.e. one-
dimensional) measure 0. Assume that at each point z of W—L, fadmits a Taylor
expansion f(z+w)=f(z)+wf’(z)+o(Jw]). Then f can be continued over L to be
analytic. Besicovitch’s theorem is noteworthy in two respects: the set of singularities
is allowed to be everywhere dense, and the concept of holomorphy is replaced by
that of a complex derivative. At present, these hypotheses are further reduced:
differentiability is not required at any point in the domain, and approximate dif-
ferentiability (wherever it is required) is understood in the space L. The difficulties
attendant upon covering a dense set of singularities are finessed (or evaded) with
Whitney’s partition of unity, and line integrals are avoided. In consequence of the
last point, we are able to obtain integrability theorems that are close to best possible
(as in [4]).
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To formulate our theorem precisely, we define the reduced norm N,y(f, B),
for a measurable function f defined on an open ball B: this is the infimum of integrals

ffB |f(2)—g(z)| dx dy,

extended over functions g(z), analytic on B. The infimum is attained. (If necessary
we set f=0 outside W.)

Theorem 1. Let f be measurable on a bounded open set W, and for each e¢=0,
suppose there is a covering

W=U B r) suchthat 37 Ny(f, Bz, 2r))rit <.
1

Then f can be corrected on a set of measure 0, to become analytic on W.

Example 1, Besicovitch’s theorem. Let f be bounded a.e. on W, and suppose
that L is a set of linear measure 0. At each point z in W—L, we suppose

f(z+w) = f(2)+we(z)+o(jw]), for small w.

(Here o(|w|) may depend on z).
Inasmuch as f is bounded a.e., and
No(f, B(z;, 2ri))ri_l =4nr; flle,
the set L can be accounted for. To each ¢=0, we can cover W—L by disks B(z;, r;)
so that
No(f, B(z;, 8r)) = erd,

and we can choose a subsequence B(z, i), still covering W—L, while X7 r} is
bounded by a constant depending only on the area of W.

Example I’. We can add an exceptional set L, to L, provided f is continuous
at each point of L,, or that L, is contained in the set of Lebesgue points of f. Indeed,
we have

No(fs B(Z> 27‘)) = 0(},.2)
at each Lebesgue point z of f. (See Besicovitch [1].)

Example 2. Suppose for simplicity that W is convex, and set
hy(8) = sup |f(z) —f (22,
over the pairs z;€ W with |z;—2z,[=8. (Observe that h,(20)=2h;(5).) If the set L
of Example 1 is allowed to have Hausdorff measure 0 for the measure-function
h(0)=0h,(38), then f is analytic. Indeed
No(f, B(z, 1)) = O(r*h(r))
for any z in W. Compare [2].
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Example 3. Let f belong to L?(|z|<1), and suppose that the exceptional set
L has finite Hausdorff a-measure, with p=>2 and a=1—(p—1)~1. Then fis equal
a.e. to an analytic function on W.

To verify that our theorem can be applied, we cover L by disks B(z;, r))=5B;,
such that X rf=C, while max r; is small. Writing B] for the double of B;, we

have the inequalities
1 1

St [ 0= St ([ 1) mEn T < w3 ()7

This can be handled by Hélder’s inequality, because g(—1+2¢ )=«. The sum
actually tends to zero with max r;, because U Bf has small area when maxr; is
small. With a little more effort we can treat a set L of ¢-finite Hausdorff «-measure.
In the case of sets L geometrically like the Cantor set, each covering is composed
of O(r;®) cubes Q; of side r;, for some sequence r;--0.
Now the set B;= U QF has measure O(r3~%), so what must be proved is that

fEIflzo(m(E))% for sets E, m(E)~0.

But this is nothing but the condition
m{|fl=A}=0("P), A—>+eo.

We shall now prove that when a closed set L has positive a-measure, O<a<1,
there is an analytic function f on W—L, such that

m{fl= 1} =007, i—+eo.

Having positive a-measure, L carries a positive measure p, such that u(B(r))=Cr*
for every ball B of radius r. For f we take f ({—2)"tu(dl), so that fis analytic off L,
and admits no extension to an entire function, as its primitive is multiply-valued.
If zeR? and 6=0 is a small number

S, =27 ud) = 0
as can be seen by a Stieltjes integral. Fubini’s theorem shows that

flzlélooflc—zléé | —z|~1u(dQ) dx dy = O(6).
To confirm that
m{|z| <100, |f(2)| = A} = O(1™P),
we choose § a large multiple of 1Y¢~, so that A-16=0(A~?). (For similar results,
see [4, VI].)

Proof of Theorem 1. Before writing the formulas necessary in the proof of the
theorem, we construct a refinement of the covering B(z;, ;) of W. We will be inter-
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ested in covering a compact subset X of W, so we work with a finite set of balls
B(z;, 1), 1=i=N, and assume that r,=r,=...=ry. We expand B(z,,r) to
B(zy, 3r;/2) and discard any ball B(z;, r;), (i=2), contained in this one; that is,
we discard any ball for which |z;—z;|=3r/2—r;,. If any ball B(z;, r;) remains,
we expand the radius of the largest one as before and discard superfluous sets.
We continue this process until no ball remains and obtain a covering B(z;, 3r;/2),
i€T, in which |z;—z;|>r;/2, whenever i<j. We shall work with this covering
only.

Next, we find a function @ in C*(R2), such that 0=¢@=1, =0 on each set
B(z;, r;/8), ®=1 outside the union of all the sets B(z;, r;/4), and [V@|=cr;' on
the annular regions defined by r/8=|z—z]|=r/4.

Let now H be a function of class C1(W), with compact support in W. Then f
is integrable on its support, call it K, and we shall prove that

[/, f@FHE) dxdy =o0.

By a classical method (Weyl’s lemma), f is equal a.e. to a function analytic on W.
Here § is defined by the equations

949 =2

ox’ _‘3y'
ffo5H=0,

we can assume that |H|<1, [0H/dx|<1, |0H/dy|<].
First we estimate

In the proof that

[ [f@H-d(2H)).

We recall that the support of 1—¢@ is contained in disjoint balls B(z;, r,/4) and
|V®|=cr;* on B(z;, r;/4). Hence

OH—O(PH) = O(1) +ert

[f () f(OH—3(PH))

and

is at most
(O(D+cri HYX No(f, B(z;, 2ry).

Summing over i, we obtain a quantity tending to 0 with e.

Now let 1=2Z ¢, be Whitney’s partition of unity for the complement of
the set F={z;, i€ T}. The standard procedure [6] shows that for the support Q,
of ¢, we have diam Q,=3d(Q,, F). We can improve this to d(Q,, F)/4. The
sums @®H=XY ®H, and 5(45[{) =X 0(PHp,) are actually finite, and we shall
now consider some k so that dHe, #Z0. If O, meets B(z;, 3r/2) for a certain i,
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then Q, is entirely contained in B(z;, 1.875r) and Q, is not covered by B(z;, r;/8)
and therefore fails to meet B(z;, ;/16). Letuschoose one i=i(k) sothat d(Q,, F)=
d(Qy, z;). Then each index i occurs at most ¢ times (an absolute constant) in view
of our assertion that Q,% B(z;, 2r)— B(z;, r;/16). In case @, meets some ball
B(z;, r;/4), then r,/16=r;/4, whence [§®|=4cr;*. Now

[ [, 1o@He)

can be evalnated over B(z;, 2r;) and is bounded, as before, by

0 (ri-l)NO(f’ B(Zi ’ 21”,—)).

In view of the remark on the function i(k), this leads to the conclusion that

ffwf5H=0.

This completes the proof.
In the proof, we used a quantity N(f) smaller than Ny(f), defined as follows:
| S, 79| = N(f) sup |oh|+ N(f)sup [oh|

for functions A€ C?, vanishing near the boundary of a ball B. The functional N(f)
is genuinely smaller than N,y(f). Indeed, let

J(2)=z["z7%, O=<a<l.
fa(€?2) = e7¥f,(2),
so the best analytic approximation to f, is 0. However, N(f,) is bounded, because
ffﬁh = ——;—far“‘zz‘l(h(z)—h(o)).
If, then, |h(z)—h(0)|=C|z|, we obtain
l f faghl = nC.
The limit as «—>0+, is —n(dA)(0).

Then

2. Subharmonic functions

Let W be a bounded open set with smooth boundary in R* (n=2), L be a
closed set in W. In (3], Carleson proved the following

Theorem (Carleson). Let H, be the class of harmonic functions in WL which
satisfy a Holder condition of order o (0<a<1),

u@)—u(x) = Clx—x'|* whenever x,x ¢W\L.
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Then L is removable for the class H, if and only if L has (n—2+o)-dimensional
measure zero.

The proof is ingenious, however, it does not seem applicable for studying
removable singularities of subharmonic functions. In [5], V. L. Shapiro studied
removable sets for subharmonic functions. After a reformulation to suit our purpose,
one of his results states that

Theorem (Shapiro). Let S,(—(n—2)=a<1) be the class of LY(W\L) func-
tions with property
M WS [ O s (ldy = O ()

0<g=r
as r—0, where up ,(x) is the average on u of ball B(x, ). Then L is removable
Sfor subharmonic functions in class S, if and only if L has (n—2-o)-dimensional
measure zero.

Shapiro’s theorem implies the harmonic result by Carleson. However, the con-
dition (1) seems too restrictive for studying subharmonic functions, because (1) is on
smoothness of a function, which does not hold even for the most fundamental
subharmonic function u(x) = —|x|~®~? (when n=3). Because the sub mean value
property is a one-sided inequality, a one-sided control of u from its mean or a two-
sided control of u from other subharmonic functions would be more natural. Theo-
rem 2 is an analogue of Theorem 1 for subharmonic functions. Theorem 3 shows
how a one-sided control of a function and its mean gives subharmonicity. We observe
that every subharmonic function on W must satisfy (2) and (3). Moreover, the
sufficiencies for Carleson’s theorem and Shapiro’s theorem follow immedicately from
Theorems 3 and 2 respectively.

For a measurable function f defined on an open ball B=B(x,r) we define
N,(f, B) to be the infimum of integrals

S r e —ux)ldx
extended over functions u(x), subharmonic on B.

Theorem 2. Let f be measurable on a bounded open set W and for each &=0,
there is a covering W=J7 B(x;, r;) such that W=\])7 B(x;, 2r;) and

(2) 2;0 r?_le(f; -B(xi7 2ri)) =< &.
Then f can be corrected on a set of measure zero to be subharmonic on W.

Proof. Let H be a non-negative function in CZ(W); the theorem will follow if
we can show that

S SO AH)dy = 0.
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Let K be the support of fand let the covering B(x;, r;) ic T, ® and {¢,} correspond-

ing to K be as in the proof of Theorem 1. Observe that 0=1—-@=1,
We assume that

AH—A@H) = 0()(1+r7% on B(z,r/4), icT.

H|<1

Hence:

Thus if # is subharmonic on W, then

fB (v ,_i)f(y)(AH—A (eH)(y)dy = fB (-.2) (f—u)(AH—A(PH)) dy.

Also, taking infimum over subharmonic functions on B(x;, r;/4), we have

inf | f (f w(AH—A(BH))dy | = Cri=2Ny(f, B(x;, 2r)).

Summing over 7 and noticing that 1 —@ is supported in the disjoint balls B(z;, r;/4),
ic T, we obtain
f o J(AH—A(PH))dy
bounded below by
- CZ;O r?_le(f: B(z, 27’,‘))

which tends to zero with &.
For each k with ®Hp, Z0, we choose i=i(k) as in Theorem 1. Reasoning
similarly as before, we have

S 0y fA@HO dy = = Cri=*Ny(f, B(z, 2r).
Summing over k£ and recalling that each index i occurs at most ¢ times, we obtain

[WfA@H) dy = 0.
Thus
foAde =0

and the theorem is proved.
For an upper semi-continuous function f defined on the closure of the ball
B=B(x, r), we define
No(f, By= sup f(n)—PL . ()

¥
B —_
ven(s

where PI,, . is the Poisson integral on B(x, ) with boundary function f.
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Theorem 3. Let f be an upper semi-continuous function on a bounded open set W
and for each £=0, there is a covering

W=J)B(x;,r) sothat W=|JB(x;,2r)), ri<g,
1 1
and
€)] DL rITENG (fs B(xs, 2":)) <&
Then f can be corrected on a set of (n—2)-dimensional measure zero, to become sub-

harmonic on W.

Proof. Corresponding to a fixed ball B(x, 2r) for which N,=N,(f, B(x, 2r))
is positive, we define a subharmonic function u as follows:
u(y) = 2N,log ly—x|, if n=2
u(y) =—2N,r"2ly—xP-", if n=3
The Poisson integral of ¥ on B(x, 2r) exceeds u by at least N, on B(x, r). Thus

C)) S +u(y) = Pl o0y s (¥), yEB(x, 7).
Let {B(x;, 2r;)} be a covering of W for which

2 r?—zNz(fa B(x;, 2";'))
is finite, and construct the corresponding functions #;. The sum X;u, converges
in L' on any bounded set, and for n=3 each term is negative, so the sum is again
subharmonic. When n=2 we can use the fact that log |y—x|=C when x, y€W,
and X N,<+ oo to conclude the subharmonicity.
For each positive integer k, choose a covering

{Bk, i} = {B (X, 55 T, i)}f’
corresponding to ¢=k~2, with the properties stated in the theorem, in particular
i1 "l'c',_i2Nz(B(xk,i, 2ry, :)) <k™2
Construct the corresponding function #, ; and let

Uk = ik Diet Ui
For each k the series converges everywhere to a function, finite or —e<o, and
the double sum X X [i ;| converges in L1(W). Moreover, v,~0 in L! as k—co.
We intend to show that f+4v, is subharmonic for each k, and the case k=1 is
typical.
For each x¢ W there exist {B, ;4,} so that x€B, ;;, and 7y ;)0 as k—eo.
In view of (4), we have

f+uk, i(k)(x) = Pka,i(k)’z"k,i(k)’f"’"k,i(k) (x)
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From the subharmonicity of u, /s, it follow that

(5 fHo = Plxk,t(k)’ 2, i, S+ vl(x),
that is, for each x€ W there exists a ball in W containing x with arbitrarily small
radius so that f4wv,(x) is no greater than the value of the harmonic function in
the ball, with boundary values f+uv,, evaluated at x. Let B be any ball with BS W
and g be any harmonic function on B with boundary values no less than f+»; on
dB. To show f+uv, is subharmonic it suffices to show f4+v,—g=0 on B. Let 4
be the closed subset of B, where
max {f+v,~g(x) x¢B}

is attained and x, be the point in A4 closest to dB. If x,¢ B, in view of (5) and the
extremum at x,, there exists a ball B, containing x,, with B,S B and 0B,CA.
This contradicts our choice of x, as the closest one in 4 from B. Thus x,€0B.
Therefore

ftv—gx) =f+0v,—g(x) =0 for x€B.
This shows that f+wv, is subharmonic.

The sum
2; Zk 1uk,i;

belongs to L1(W) and also to L!(do), o being the surface measure of any ball. Thus
v, —~0 in L'(do) as k—+ . We know also that there is a subharmonic function
f1 on W, equal to f almost everywhere on W. When B(x, r) is a ball contained
in W

[ =mBE ) [ [ fo)av;
letting r—0+4 we obtain f,(x)=f(x), because f is upper semi-continuous. Using
the mean-value inequality for the functions f+v, and making k—- we find that

fe=mBe ) [ [ AV

if 2 2 i) < + e

Thus f=f, everywhere and f=f; except on the set where XX |u ;(x)|=+ oo
But if y€B(x,r), then

f(y) = N2+P1x,2r,f(y) = N2+P1x,2r,f1(y)'
We find that if y belongs to a sequence of balls B(x;, r,) for which
lim inf No(f, B(x;,2r)) =0,

then f(y)=f;(»). Consequently f=f; except on a set of Hausdorff (n-2)-dimen-
sional measure 0. The proof is complete.

Observe that if Fis a closed set in W of (n—2)-measure 0, y fulfills the hypoth-
eses of the theorem, as does yr+g, whenever g is subharmonic.
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