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H'-boundedness of Riesz transforms
and imaginary powers of the
Laplacian on Riemannian manifolds

Michel Marias and Emmanuel Russ

Abstract. We prove that the linearized Riesz transforms and the imaginary powers of the
Laplacian are H!-bounded on complete Riemannian manifolds satisfying the doubling property
and the Poincaré inequality, where H' denotes the Hardy space on 1f.

1. Introduction and statement of the results

Let M be a complete, noncompact Riemannian manifold. We denote by d the
geodesic distance on M, by dzr the Riemannian measure, by V the Riemannian
gradient and by A the Laplace-Beltrami operator. For all z€M and all r>0, let
B(z,r) be the open geodesic ball of radius r centered at z and V(z,r) its volume.

Say that M satisfies the doubling property if there exists a positive constant
C such that

(1.1) V(z,2r)<CV(z.r) forallx €l and r>0.

If (1.1) holds, one easily sees that there exist C. D>0 such that for all z€ M,
all r>0 and all 6>1,

(1.2) V(z,0r)<COPV(x.7).

Say that the uniform L?-Poincaré inequality holds on A if there exists a posi-
tive constant C such that, for all €A/ and r>0.

(1.3) /B @ o <O / IV 5 (@)]? de

B(x.2r)
for all feC>(B{z,2r)), where

1
fB(z.r)Zm/B(“) fly) dy.
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It is well known (see [18]) that the conjunction of (1.1} and (1.3} implies the so-
called Neumann-Poincaré inequality: there exists C>0 such that, for all z€ M and
r>0,

(1.4) /B @ fpep P drsOr / IV ()] da

B(z.r)

for all feC>=(B(z,r)).

Since M satisfies the doubling property (1.1). it is a space of homogeneous
type. One may therefore consider the Hardy space H'(M) as defined in [9]. We
briefly recall how H'(M) is defined. Say that a complex-valued function a on M is
an atom if it is supported in a ball B(yp.r) and satisfies

(1.5 lal < o

1
AOORE and /Ma(l")d:r:O.

A function f on M belongs to H*(M) if there exist (A,)n,eNn€!! and a sequence
of atoms (a,)ren such that

(1.6) F=3 Anan.

neN

where the series converges in L*(M). The norm ||fl|g1ayy is the infimum of
Y nen |An] over all such decompositions.

A function u on M is said to be harmonic if Au=0 on A{. For d=1.2,...,
denote by H4(M) the space of harmonic functions on M of growth at most d.
This means that ueH4(M) if u is harmonic and there exist C>0 and poeM so
that {u(z)|<C(1+d(x,po))? for all z€ M. Notice that the celebrated conjecture of
Yau, which states that H,(A) is finite dimensional. is solved by Li and Tam for
d=1, [19], in the case when M has nonnegative Ricci curvature, and by Colding and
Minicozzi for all d>1 on manifolds satisfving the doubling volume property and the
Neumann-Poincaré inequality. [10], Theorem 0.7.

The Riesz transform on M is the operator R=VA~Y2. For ueH,(2), we
define, as in [22], the linearized Riesz transform R, by

(1.7) Ru(f)(@) = (R(f)(2). Vu(x)) = (VA2 f(2). Vu())

for all feC§* (A} and all €M, where (-.-} is the Riemannian inner product on
the tangent space of M at z.
Our first result deals with the H!(Af)-boundedness of R,.
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Theorem 1. Let M be a complete noncompact Riemannian manifold satis-
fying the doubling property (1.1) and the Poincaré inequality (1.3). Then for any
ueHM, (M), R, extends to a bounded operator on H*(M).

Our next result is about imaginary powers of the Laplace-Beltrami operator.
For all B€R, the operator A* is defined via spectral theory, it is L?-bounded and
one has
Az =1.

The following statement holds.

Theorem 2. Assume that M is a complete noncompact Riemannian manifold
satisfying the doubling property (1.1) and the Poincaré ineguality (1.3). Then, there
ezists C>0 such that, for all 3R, A" is H'(M)-bounded and

1AZ 2y <C(14+V/13]e7172).

We first say a few words about the geometric context of these two results.
Assumptions (1.1) and (1.3) are satisfied when A/ has nonnegative Ricci curva-
ture. Indeed, by the Bishop comparison theorem (see [5]). M satisfies the doubling
property. Also, in [6], P. Buser showed that these manifolds satisfy the Poincaré
inequality. Recall that both (1.1) and (1.3) remain valid if M/ is quasi-isometric to
a manifold with nonnegative Ricci curvature, or is a cocompact covering manifold
whose deck transformation group has polynomial growth. [12]. Note that there exist
manifolds satisfying (1.1) and (1.3) and whose Ricci curvature is not nonnegative.

First considered in R™, the issue of Riesz transforms on Riemannian manifolds
has been raised in [32]. Note that Riesz transforms have been studied in vari-
ous geometric contexts, such as Riemannian manifolds (see [20], {3]), Lie groups
(see [21], {27], [1]), discrete groups (see [17]) and graphs {see [25], [26]). See [2]
for an extended bibliography on the subject. Here. we concentrate on the case of
Riemannian manifolds. Under very weak assumptions on M (namely, under (1.1)
and an on-diagonal upper bound on the kernel of e~2). it is proved in [11] that
|[VA~Y/2| is LP-bounded for all 1<p<2 and weak (1.1). When A/ has nonnegative
Ricci curvature, the Riesz transform is LP-bounded for all 1<p<+oc ((3]). Its H!-
L' boundedness is proved in [7] on Riemannian manifolds with nonnegative Ricci
curvature, and in [26] under the assumptions of Theorem 1.

If one looks for an H'-boundedness statement for Riesz transforms on mani-
folds, a new difficulty appears. Indeed, VA~/2f is a vector-valued function, and it
is not clear how to define a vector-valued H! space in this context. To overcome this
difficulty, we take the scalar product of the Riesz transform with the gradient of a
function in H;(M). Thus, one obtains a scalar-valued operator, called the linearized
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Riesz transform, which was first introduced in [22]. where the H'-boundedness of
the linearized Riesz transform on Riemannian manifolds with nonnegative Ricci
curvature is established.

In the Euclidean setting. the operators A? are H!-bounded, (this is a con-
sequence of the classical Calderén-Zygmund theory. see e.g. [31]). When M is a
Riemannian manifold, a universal multiplier theorem of Stein ([30]. Corollary 4.
p. 121) shows that A" is LP(M)-bounded for all 1<p<+nsc. The H'-L! bound-
edness of A on Riemannian manifolds with nonnegative Ricci curvature is shown
in [23]. For other geometric settings. see for example [8] and [29].

The proofs of Theorem 1 and Theorem 2 are similar. They go through a duality
argument, which we quickly explain for R,. In fact. to prove the H!-boundedness
of R,, it is enough to show that there exists C'>0 such that. for all atoms a and
peCe(M),

(1.8) <Clollpio-

/ Rya(z)o(z) dx
M

(see Section 2.2 for the definition of BMO and further explanations).

To prove (1.8), one first introduces a truncated version R, -, £>0. of R, and
proves that, for all atoms a and all £>0. R, .a€L!(}) and R, -a has integral
0 over M, which is a consequence of the harmonicity of u. Then. thanks to the
L?-boundedness of R, .. weighted L?-estimates for the gradient of the heat kernel
(see Section 2.1) and some classical estimates for BNO functions. one proves (1.8)
with R, . instead of R,,, with a constant C>0 independent of . Letting £ go to 0
yields (1.8).

The paper is organized as follows. In Section 2. we recall some known facts
about the heat kernel of M (Subsection 2.1) and the BMO space on A/ (Subsec-
tion 2.2). In Section 3, we first prove that R, .a has integral 0 and then that (1.8)
holds true. Finally, Theorem 2 is proved in Section 4.

Throughout this article the different constants will alwavs be denoted by the
same letter C. When their dependence or independence is significant. it will be
clearly stated.

2. Preliminaries

2.1. Heat kernel estimates

In the sequel, we denote by p; the heat kernel on A, i.e. the kernel of eTtA,

Moreover, if y and yo are two fixed points in Af. define. for all x€M and all £>0.

qt(x) = pe(z.y)~pe(T-Yo).
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When M satisfies (1.1) and (1.3}, it is proved in [28] (see also [16]) that there exist
¢1, C1, ¢z, O >0 such that, for all z, yc M and all >0,

G izt <pilay) < Co o ca ()t

Moreover, the parabolic Harnack inequality holds on A/ (actually. it is proved in [28]
that the conjunction of (1.1) and (1.3) is equivalent to the parabolic Harnack in-
equality on M, which is itself equivalent to (2.1)). As a consequence of this inequal-
ity, one easily obtains that p, is Holder continuous (see [26]).

(2.1)

Lemma 1. There exist c3.C3>0 and ~€]0.1[ such that. for all x.y.yo€M
and all t>0 satisfying d(y, yo) < V1.

C3 d(yy()) 7€—C3d2(\1‘.y)/t
< V(:c, \ﬁ) ( Vit ) .

As a consequence of Lemma 1, we have proved the following estimate in [26].

lg: ()

Lemma 2. For any a<2c3. there exists C!, >0 such that. for all y.yo€M and
all t>0 satisfying d(y, yo) <V,

Recall (see [11]) that, as a consequence of the upper estimate of p, in (2.1), one
also has the following estimate.

Lemma 3. There exists §>0 such that. for all ye M and all t>0.

V 2P T,y t 266 r C
' t( * ) l 4 'y)/td‘r<______.
M

T tV(yVE)

2.2. A few facts about BMO

Say that a locally square integrable function o on M is in BMO(A[) if
. 1 .
2.2 |- - _ 2dr < .
(2.2) l9ll5n0 = sup VB) /B lo(z) —op|” dz < +oc.

where V(B) is the volume of the ball B and the supremum is taken over all the balls
of M. Since M satisfies the doubling property (1.1), Af is a space of homogeneous
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type and the general theory of BMO developed in [9] holds. Using (2.2). one proves
the classical inequality

o —o28| < ClloliBrto-

which yields, as in [14], p. 142, that there exists C'>0 such that, for all ©o€BMO(M),
all k>1 and all balls BC M,

(23 TEET ., 0@)~usl dr < CRlol o

Define VMO(M) as the closure in BMO(Af) of C(3M). the space of continuous
functions on M with compact support. In the sequel. we also use the fact that the
dual of H*(M) is BMO(M) ([9]. Theorem B. p. 593) and that. as a consequence,
HY(M) itself is the dual of VMO(M) ([9]. Theorem 4.1). The duality implies the
following characterization of H'(M): feHY (M), if feL'(M) and if there exists
C>0 such that, for all functions o€ C.(A),

<Clo|Bro-

. f(z)o(r)dz

Furthermore, in this situation,
I fllerrany < KC.

where K >0 only depends on M.

3. H!'-boundedness of R,,

For all £>0, define the truncated operator R, . by

dt

1/e
Rufsf(I)I%/ (Voe 2 f(x). Vu(z)) 7

FeCE(M).

The following holds.

Lemma 4. For all feC5(M).

lim Ry.f=R.f in L*(M).
=0
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Proof. The proof relies on H> calculus for A (see [24] and (33]). Fix p€]0. ],
and set

I',={zeC:|argz| <p}.
For all z€l',, and all >0, define

1 [ dt
Q/)&_(2’,):\/_7?/ 6_6221/2%‘

For any function g€ D(A'/?) and all £>0, define

Lo fYE A1 dt
Ue = —= e IAY2g — |
~ \/7?/5 v

ue. = (A)g.

so that

Observe that
lim v.(z) =1
£—0
uniformly on all compact subsets of I',. By H> functional calculus for A, one

therefore has
lim [|AY 2y, — AY2g||, =0.
e—0
The L%-boundedness of VA~!/2 yields
lim |Vu, —Vg|s = lim |[VA™Y2AY 2y, - VATY2AY g,
£—0 £—0

< Clim §AY 20, —AY2gll, =0.
e—0
Applying this with g=A~1/2f, one obtains

lim
e—0

1 e —~tA dt —-1/2

:0’
2

which proves the claim. O

Observe that the kernel of R, . is given by

1 Ve dt
- / (apila ). Va@) .

As in [26], the L?-boundedness of R, .. Lemma 3 and Lemma 2 show that, for all
€>0 and all atoms a, R, .a€L'(M). The computations are analogous to those
in [26], except that the integrals with respect to ¢t are computed on ]e, 1/¢[ instead
of |0, +o0].

Using the fact that v is harmonic, we prove the following result.
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Proposition 1. For any atom a aend any >0,
(3.1) / R, .a(z)dr=0.
A

Proof. The proof follows the lines of the one of the corresponding statement
in [22], Section 4, and we give it for the sake of completeness. Let us assume that
a is supported in B{yg.r). For K>2. let ox(x) be a € function on A/ with
0<¢x <1, which is equal to 1 in B(yy. K—1) and to 0 outside B(yo. K+1). and
satisfying ||V g ||s <C, where C'>0 is an absolute constant. Define

1/e )
I:/j\[ |a(y)|/: [1 |<V1:Pt(:r. y)Vu(l)>| ‘OK(I)| dx \_/_tz dy

By the boundedness of [Vu| and the L%-estimate of ¥V, p(z.y) given in Lemma 3.
one has, for all y&€ A and all t>0.

[{Vape(z,y), Vu(@))| |0k (z)] dx
M

12
<cpvale( [ - );v.l.pfu.y)ﬁdx) VU2, K+1)
yo.K+1

) 1/2 »
§C|||Vu|l|x</ SN NG py (2. )P dl‘) VY2 (yo. K+1)
B(yo.K+1)

V<yo,f<+1>>“‘“-’
tV(y.vt)

This estimate and the fact that |ja]|; <1 vield

/= Vv(yOK—+1) 1/211:
I<ClVullx /B oy 17! / (’W) a

SCrna.X{l, <%)D}|§|Vu”|x/3(y0” la(y)I/;/f Eit—tdy<+oc.

By the harmonicity of u and the Fubini theorem. applicable by (3.2). one obtains

< CJVullx (

(3.2)

1/=
/M¢K<x>Rutaa<a:>d:c: L[ o) / /_u<vl»p,<.r.y>.Vu<x>>a(y>dyd—’;czx

N Vi
1 /= dt
(3.3) == [ aw / / (Vaplo.y). Vu(e)ox () dr T dy

1 Ve ) it
:_ﬁ Ma(y)/z /M<VO}((3:).Vu(a.))pg(:r.y)d:c\/Zdy.
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Proposition 1 will therefore be a consequence of

1/e
ah  gim [ gaw) [ ] 9.0k Ve de S a=o

Indeed, if (3.4) is proved, then, since R, .a€L!(1/). (3.3) and (3.4) yield

/Rufa(a:)dx: lim ok (z)Ry a(x)dz=0.
A

K=+ far

To prove (3.4), set

v dt
IK:/M Ia(y)I/E /M|<VIoK(a:).vu(x)>|pt(x_y) da;%dy_

By the boundedness of [Vu] and |Vog|. the fact that o is equal to 1 on B(yp, K —1)
and the upper bound in (2.1), one has

1/z dt
IKSCf la('g)lf / plx.y)dr —dy
i B(yo K+ D\ B(ya K—1) Vi

1/« )2 ‘(y() K+1) dt
<C —L(K 1—r)=/t = d
/'a '/ Vi) i

SCHa])l/E/ (el —1-r) /tmax{L(%i) }%

which goes to zero when K goes to +oc¢ by the dominated convergence theorem. O

Proof of Theorem 1. Let a be an atom supported in B=B(yg.r) and consider
p€C.(M) such that ||¢||svo<1. Proposition 1 vields. for all >0,

/ R, a(z)é(x) dx :/ R, -a(z)(o(x)—o02p) dx.
M A
Decompose ¢—@op as

¢— 25 = (¢—028)x2B +(0—02B)X(28): = 01+ 02.

and write

(3.5) R, .a(x)p(x)dz = / R, .a(z)oi(z)dz+ | R, .a(z)o2(x)dr=E1+E;.
M A A
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By Cauchy—Schwarz and (2.2),
/ |Ru.ca()] |61 (2)] dx < || Ry -all2|(0—028)x28]l2 < [ Ru.call2V (2B) /2.
M

We now deal with the term involving ¢, in (3.5). Observe that, since a has mean
value zero, one has

[ e apite.). Vuta)) dy= [ aw)(Voa(a). Tu(w) v
B B
with g (z)=pi(x,y) —pe(z,y0). Write

Eg:/M R, ca(x)do(z) dz

:Z/Q R, .a{x)os(z)dx

k>172FT1B\2* B

1 r? dt
“ X @@ [ [ (Fepte ). e v e

k>1
1 / / /1/5/ dt
+— oo(x Vg (). Vu(z))aly) dy — dx
ﬁkz iy 20 [, [ (Vaa@) Vu(@) 7
:Zlk+ZJk’
k>1 k>1

Fix k>1. When y€B(yo,r) and 2¥r<d(zx.yo)<2**!r. one has 28 1r<d(z.y)<
2%+2p which implies

, o , dt
mse [ el [ [ ) Su) o) dy Fodo

r , dt
<CIVullx / la(y)| / / Vape(z. )| é2(@)] de 2 dy.
B e J2k-lr<d(z.y)<2k+2r \/t_

The Cauchy-Schwarz inequality, Lemma 3, (2.3) and the doubling property yield
(Vepi(z. y)l |o2(x)| dx

1/2
< (/ (Vapr (. y)2e 01 d”““)
2k~1pld(x.y)<2k+2r

1/2

x (/ f02(1)|26“5d2(1'y)/t dx)
2k —1r<d(z.y)<2k+2r

/Qk_lrﬁd(m,y)<2k+2r
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Therefore,

/T2
€ /Qk‘lrgd(:v,y)<2k+2r

which shows that

since |lall; <1.

__Cl+?)

IVapi(z, y)[ [02()]

VI/Z(y. 2k+2r)e—52?<*—1)r2/2t
ViViy. vi)

ok+2y,
Vit

(k+2)e_"322k’"2/t.

D/2
(k+2)< ) =0T /2

dr-g£~§(?k

2
/r —32%%,2 )¢ dt

e i

Vi 0 t

dt

+
<Ck / et
22k t

ZU}JSC-,

k>1

The treatment of Ji is similar. One has

1/e dt
Tkl < CIVul / la(®)| / / Vau(2)] [02(a) de 2L dy.
B r2 J2k—1lr<d(z.y)<2h+t2r \/'E

When ¢<2%%+472 yse Lemma 2, (2.3) and the doubling property to write, for an

a<cs,

Lklrgd(z,y)<2k+1r

Vi (z)] |02 ()| d

<

1/2
(/ Vel e
2k —lrld(x.y)<2k+2r

1/2
</ |02(l,)'2€—20d2(.t.y)/t d.l’)
2k-1r<d(z.y)<2k+2r

C(k+2) (L>‘:e_a22{k~1>,.2/tvl/2<y.2k+2r)
Vi

\/tlf(yj\/f)

X

< (er2) <i > (2’~"+2r )D/2e""22“‘”*2/ t
Vit Vit Vi

C T U 2k .2

— k+2 o —32°%r /t
()

125

<Ck272%F,
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When ¢>226+4r2  just write that V(y.28*2r)<V(y.vt) and the result still
holds.
As a consequence,

/1/5/% < d(eg) <2 IVQt(SE)IIOg(:r)Idr7<C A+2)/ o825 2/3(\'/Z> ait

22k

Ck+2)2™ e /21 gy

+ <
2)27 "A/ —Iv /21 gy,
0

é“‘\

Thus,

ZUHSC-

k>1

using the fact that |jal; <1 again.
Finally, we have proved that. for all functions o€ C.(}M).
(3.6)

/M Ryca(z)d(z) dz| < [ Ry cal|2V(2B)?[[6]lprio +Clollsro

for all £>0. Since R, .a converges to R,a in L?()) when = goes to 0. (3.6) vields

< ||Ryall2V(2B)Y2|ollgraio +Cllolsaio < Cllollsaio-

/A, Rya(z)6(x) dz

In the last inequality, we use the L?-boundedness of R,. (1.1) and the fact that
llallz<V(B)~1/2. Therefore. (1.8) and Theorem 1 are proved. [J

4. Imaginary powers of the Laplace operator

We now prove Theorem 2. The arguments are analogous to those used in the
proof of Theorem 1.
For all B€R, set Ts=A*. For all £>0. define

1 e i3-1_—tA
T3.==—— tT7 T e 2 dt
- 1"(—2'3) /: ‘

For all feL?*(M), T f converges to Tsf in L?(Al) by H> functional calculus.
Fix BeR. One first proves the following result.



H'-boundedness of Riesz transforms and imaginary powers of the Laplacian 127

Proposition 2. For all ¢>0. T3, is H'(M)-LY()M) bounded.

Proof. Let a be an atom supported in a ball B=B(yo.r). Then, since e~*2 is

a Markov semigroup, i.e.

(4.1) /Mp,(x.y)dx:l

for all y€Af and all £>0 (see [15]), one has
1/«
T, do = ——0n0 fW*/ r.y)a(y) dy dt| dzx
]\jl 3ga($)| T |r(_23)i \ /; \ pt( y) (y) Y

1/= dt
<c [ a [ [ ey
Al £ A

4.2 1/¢
) ~Clali [ e

1/«
gc/ Lat

_ 1
~c(e)

by the fact that ||a|;<1. O

1

We now state the following cancellation property (cf. Proposition 1).

Proposition 3. For all £>0 and all atoms a
/ T3.a(x)dr=0.
A
Proof. Let us assume that a is supported in a ball B=B(yg.7). From (4.2) we

have that
L/ dt
[ratn [ ] ptrvyar Fay<es.
J B B Af

This allows us to apply Fubini and get

1 1/¢ s
T5.¢ dr = ——— ro)tT T dtdydx
oot gg [ fyoo [ e
—#/l/at‘”_l/ a(y)/ pi(x.y)dedydt
- T(=i3) ). s ST

I /1/5 gl dt/ a(y) dy
B F(—“ZB) 5 B

since (4.1) holds and a has mean value 0. [
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Proof of Theorem 2. It is enough to show that there is a C>0, such that for
all p€C.(M) and all atoms a,

C ,
< w0l BMO -

Tsa{x)o(x) dx -
J, Tooeete) e =
Let a be an atom supported in B=B(yp.7) and 0o€C.(M). Write

¢—dop =(¢—d28)x2B+(0—02B)X(2B)c =011 02.
Then, for all £>0,

/ Tgyea(x)cz’)(x)d:r:/ Tsca(x)ér(z) d$+/ T5..a(z)oz(x)dr=E1+E,.
M 2B (2B)°

The Cauchy—Schwarz inequality vields

Byl < / ITs ()61 (z)| de < | Ts.call2lo- 2512
2B

<||Ts.ca]2:V2(2B) | ollByo-

(4.3)

We now treat the term involving ¢,. We write

E, :/ T3ca(z)p2(z)dx
(2B)¢

2

o1 T st [ o al
ST gy @ [ [ et v

k>1 €

L Ve e /
FEVEY-TY " T, dydtd
+F(_ZB) Z ‘/2k+1B\2"'B OQ(-T) /,,2 t Bpt(l.' y)a(y) y o

E>1
1
== ) (Ix+Jk).
I'(—iB) ;
By the estimates (2.1) of pi(z,y) we obtain that for all k>1. all yeB and all
o<t<r?,

e—-cd(At.y)Q/t

pe(z, y)| o2 (z d:z:gC/ ————|02() | dz
/zk“B\sz t( y)I 2( ) 2k—1p<d(z.y)<2k+2r V(y,ﬁ)

e—c(27 1)/t

degseearr V(v Vi)
V(y. 2k+27’) e_CQQk r2/t
V(y.vt)

< C(k+2)e_‘:/22kr2/t llollsato-

<C |oa(z)| dz

<Clk+2) lollBao
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where the last line follows from the doubling property. Thus

o S
Ii| € ———(k+2)}i6]lB d —em @/t
141 < g+ Dlelovio [ lawldy [ e

2

44 _¢ . R PRIy
(44) < I]j‘(_iﬁ)l(k_*'Q)”OHB.\IO[ te dt
< ok
= |F(,i13)|(k+2)2 lellBao-

where C'>0 only depends on M.
Let us now deal with Jy. Since a has mean value 0. one has

/ o2(x) / pelz, y)aly) dy dx
2k+1B\2k B B
-/ 02(2) [ (i) =pi(ewo))aty) dy da
2k+1B\2k B B

-/ 02(0) [ aehaly) dy .
2k+1B\2k B B
When d(y, y0)<vt, Lemma 1 yields

r Y 1
lgt(z)| SC(:/?) W

oed?(ry0)/t

So, when r<v/t <251y one has

e—c22kr2/t

, r Y\
/2 ey HO 2 < c(%) / N e
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k+1)(%> ety 2:\/?; Il
<C'( k+1)<—% e ¢ 22k'z/t||0||B\10
When v/t >2%1r, just write that V(251 B)<V (yo. Vt) and the result still holds.
Therefore,
< e Dlolaotal [ (2 ) e g

C
< - —kYif .
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which, combined with (4.4), gives,
(4.5) DLl < “i“HO”BRIO Y (k27 k27 < —————{lolBato-
2 T(=i9) 2 i)

From (4.3) and (4.5), it follows that, for all >0,

. C
<O\ Ts.2al2V2(2B) |0l srio+ == lollBaio-

IT(=i3)|

[ Th.atwote) ds
M

Since T .a converges to Ta in L2(AM) when = goes to 0. ||T3]2m2=1 and |lafl2<
V(B)~Y/2, one obtains

/M Tza(z)o(x)dx §C<1+ >||O||BM()-

1
IT(=23)|

which completes the proof of the H!-boundedness of T.
Finally, recall that, for 3eR.

IT(=i3) = \/ 3sinh73 "’

||Ai3||H1_,H1 < C(1+\/ |3|6ﬁ!3‘/2).

which completes the proof of Theorem 2.

see [13]. Therefore,
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