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Unique continuation for parabolic operators

Luis Escauriaza and Francisco Javier Ferndndez

Abstract. It is shown that if a function u satisfies a backward parabolic inequality in an
open set QCR™*1! and vanishes to infinite order at a point (zo.tp) in €2, then u(z, t0)=0 for all =
in the connected component of zg in QN(R™ x {¢o}).

1. Introduction

This work is devoted to the study of the unique continuation property for
second order parabolic operators with time-dependent variable coeflicients.

For second order linear parabolic operators with time-independent coeflicients,
the strong unique continuation property was reduced by F. H. Lin [13] and indepen-
dently by Landis and Oleinik [12] to the previously established elliptic counterparts.
In particular, F. H. Lin shows that a parabolic operator P of the form

Pu=div(a(z)Vu)+0iu+b(z) - Vu+e(z)u,

where the coefficient matrix a(x)=(a"(x)) is Lipschitz and the lower order coeffi-
cients b and c are bounded has the following unique continuation property:

If u satisfies Pu=0in ST=Qx (0, T) and at some interior point (xo.%o) in St the
function « vanishes to infinite order in the space direction (i.e. |u(z.t)] <Crlz—mz0l*
for any integer k), then w(z,ty)=0 for all z€.

The reduction from time-independent parabolic equations to elliptic equations,
a basic technique used in [12] and [13], relies on the representation formula for
solutions of parabolic equations in terms of the eigenfunctions of the corresponding
elliptic operator, and therefore cannot be applied to more general equations with
time-dependent coefficients.

Time-dependent parabolic equations with variable coefficients have been treat-
ed by Saut and Scheurer in [17] and by Sogge in [18], where a weak unique con-
tinuation theorem is proven using a Carleman inequality. In [17] this is established
for variable C! second order and bounded lower order coefficients, while in [18]
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unbounded potentials and smooth coefficients are treated, in particular it is shown
that if u satisfies
|Au+du| < V(z,t)|u| in Sr,

where VELI(:cJ"?)/Q(dx dt) and u=0 in an open set W CSr, then u(-,s)=0 for all
times s€(0,T) such that the hyperplane ¢t=s has a nonempty open intersection
with W.

The strong unique continuation property for parabolic equations with time-
dependent coefficients is treated by Poon in {16], Chen [4] and Escauriaza and Vega
in [5] and [6]. In [16], the author defined a suitable frequency function measuring
the space-time vanishing rate of a global solution to the backward heat equation
and obtaining the following unique continuation property:

Assume that for some positive constant N a function u satisfies the inequality
|Au+0su| < N(|Vul+|u]) in R"x(0,T).

Then, =0 in R™ x (0, T') if u vanishes to infinite order from above in both the space
and time variables at (0, 0).
By the former we mean that for each k>1 there is a constant Cy such that

(1.1) u(z. )] < Ci (o +vE )

for all (z,t), t>0, in the domain of definition of wu.

In [5] and [6] the authors prove a Carleman inequality arising naturally from
the frequency function defined by Poon and obtain strong unique continuation type
properties for global (defined in R™ x (0,7")) and local solutions of the inequality

(1.2) |Au+du| <V(x,t)|uf

for some unbounded potentials V. In particular. they show that under certain L7 L]
type conditious for the potential V, all functions u satisfying (1.1) for all £>1 and
(1.2) in B x{0,2) must vanish identically in By x {0}. Moreover, it is shown in [6]
that if the potential V is bounded in both variables (weaker conditions on V' do
work as well), there is a constant N depending on n and ||V|| s (B, x(0,2)) such that

(1.3) |u(z, )] < Ne N ||ul| L By x(0.2)) for all (z,t) in By x(0,1).

Aronszajn, Krzywicki and Szarski [3], and independently Hérmander [9], proved
the strong unique continuation property for solutions to elliptic equations with
variable Lipschitz second order coefficients using a Carleman inequality derived
with methods based on the fundamental theorem of calculus (integration by parts).
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In this work and using again only integration by parts to obtain a suitable Carleman
inequality, we derive the unique continuation property (1.3) for local solutions to
parabolic inequalities with time-dependent variable coefficients.
In particular, if B, denotes an open ball of radius r centered at the origin in
R" and P the backward-parabolic operator
k22
(1.4) Pu=Y" 8i(a"(z.t)8;u)+du,

5,5=1

where the coefficient matrix a{z,t)=(a"(z,t)) is symmetric and for all (z,t)eR"*?
and £ in R™ satisfies the standard ellipticity condition

(15) NeP < Y o (@0 < el

%,5=1
the following results are shown.

Theorem 1. Assume that there are constants M >0 and 0<B<1 such that
one of the following conditions holds for all x and y in R™ and 0<t, s<+oc:

(i) la(z.t)=aly, 5)| < M(Jz—yP +]t—s|)/2:

(ii) |a(z,t)—a(y, s)| <M (Jz—y|?+[t—5|)%/? and also |[Va(z.t)|<M|z|°~! and
|Ora(z, t)| < M1P/2-1,
Then, if u sotisfies (1.1) and

(1.6) |Pu| < M(|Vu|+u])

in By x[0,2), it follows that u(x,0)=0 for all z€ By. Moreover, there is a constant
N depending on 3, M and n such that,

(1.7) lu(z, )| S Ne™YNM|u|l poo (B, x(0.2)) when (z,t) € Byx(0,1).

The counterexamples by Plis [15] and Miller [14] establishing the existence of
elliptic operators with Holder continuous coefficients and having a nonzero solution
vanishing on an open set, show that the Lipschitz regularity in the space variable
required in Theorem 1 is sharp. We do not know whether the %-Hélder regularity
in the time variable required in Theorem 1 is the best in order to derive {1.7).

These results can be carried out up to the boundary under proper Dirichlet
or Neumann boundary conditions, extending and localizing the results obtained by
Escauriaza and Adolfsson in [1] for time-independent parabolic operators to the case
of time-dependent operators.

In what follows D={z=(z’,z,)ER":2, >p(z')}, where p: R""' >R is a Lip-
schitz function satisfying ¢(0)=0, ||[V¢|l« <M, and do denotes surface measure
on OD.
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Theorem 2. Assume that u satisfies (1.1) and (1.6) in (B2ND)x[0,2]. Then,
there is a constant N such that

(1.8) lu(z, )] < Ne_l/Nt“u“[,oc((BmD)x(og)) when (x,t) € (B1ND)x[0.1].

whenever one of the following conditions hold:

(1) D is a C*' domain, the coefficient matriz of P satisfies condition (i) in
Theorem 1 and either u=0 or aVu-n=0 on (B,NdD) x|[0,2]:

(2) u=0 in (B2NAD)x[0,2], the coefficient matriz of P satisfies condition (ii)
in Theorem 1 and for some A>0 and 0<3<1,

(1.9) o V() —p(z') > —Alr' 17 for |2/ < 1

(3) u=0 in (B2NdD)x[0,2], the coefficient matrix of P satisfies the first con-
dition in Theorem 1 and for some A>0 and 0< 3<1.

(1.10) o+A|z [T s a convex function for |2'| < 1.

Observe that (1.9) holds when ¢ can be written as the sum of a convex func-
tion and a C'# function, while (1.10) is weaker than being a convex function and
implies (1.9).

If D is a bounded Lipschitz domain in R" with 0€D and u satisfies (1.1) and
(1.6) in Dx[0,T7], and either u=0 or aVu-n=0 on 9D x[0.T] for some T'>0. an
iteration of the results in Theorems 1 and 2 imply that w{z.0)=0 for all xeD.
But once you know this, the standard backward unique continuation property of
parabolic equations ([13, pp. 133-134]. [7. Chapter 3. Theorem 11]) implies that
u=0in Dx|[0,T]. In fact, if

T
/ sup [Ocalx. t)| dt <A < +2x.
0 zeD

it is well known that the function

t
POy, 1og / . t) de+ M2t AQ(t) = / sup |0sa(z. s)| ds,
D 0 zeD

is essentially nondecreasing, which implies. when 0<t<T, that

/Duz(:c,t)d:ng(]\[,/\.,T)</Duz(m.O)d:c)O(t)(/DuQ(a:.T)dx)l_a(t).

ftT e—a(s)ﬂu?s ds

foT e—0(5)~A125 gg

where

a(t)=
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In relation to the backward unique continuation property, Miller [14] has a
counterexample of a parabolic operator P whose coefficient matrix a{z,t) satisfies
a(zx,0)=T the identity matrix, a(-,t)eC>(R) for all t>0 and

la(x, t)—a(x, 0)| < Mt/

This operator has a solution v in Dx {(—oc. T}, D=(0. 7} x (0, 7}, with zero conormal
derivative on JD x (—o00,T], u is never identically zero on open sets contained in
D x(0,T) and =0 for t<0.

The proofs of the results in Theorems 1 and 2 are based on a perturbation of
the following identity for the backward heat operator.

Theorem 3. Assume that G is a positive caloric function in R, Then, the
following identity holds for allu in CF(RTH!) and a€R.

1- au? -
/ t a(a,u—wogc:-vu——) GdX+/ 1= D Vu-VudX
R+ 2% -
:/ t1—°(atu—v1ogG-vu—%)(Au+atu)de,
Ri+1 2t

where dX =dz dt and D¢ is the nonnegative nxn matriz.

(1.11) DG:%LLD?G—E%V—G

In Section 2 we prove some auxiliary lemmas and the generalization of the
identity in Theorem 3 which appears when one replaces the backward heat operator
by a general operator P. In Section 3 we show how to use this identity to find a
suitable Carleman inequality implying Theorem 1 and in the fourth section we prove
Theorem 2.

2. Some auxiliary lemmas

Letting P denote the operator in (1.4) and to simplify the writing and cal-
culations we shall use some of the standard notation in Riemannian geometry, but
always dropping the corresponding volume element in the definition of the Laplace—
Beltrami operator associated to a Riemannian metric. We do this, because it sim-
plifies the formulae appearing in the proofs of the following lemmas, and especially
when the metric is allowed to depend on the time variable and we make use of
partial integration with respect to this variable.

In particular, letting g(x,t)=(g;;(z,t)) denote the inverse matrix of the coef-
ficient matrix a(z,¢) of P and ¢g7'=(g%(z,t)) the inverse matrix of g, we use the
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following notation when considering either a function f or two variable vector fields
¢ and 7

(1) €n=3_7 ;21 94 (. )€imy, €2 =E-&:

(2) 0:f=0f]0x;, Bf=0f/dt. 0;f=0,0;f. dive=Y\, dii, Vf=g"Vnf,
where V,, denotes the usual gradient in R™ and A f=div(Vf).

With this notation the following formulae hold when u, f and h are smooth
functions,

Pu=Au+0,u,
AfP=2fAf+2|Vf]?

/nhAfd:c:/anhd:v:—/anVhda:.

By A<B we mean A<NB, where N depends at most on 7 and the constants
A, M, A and § appearing in Theorems 1 and 2.

Lemma 1. Let 0=0(t) be a nondecreasing function satisfying o(0)=0, a€R,
and F and G denote two functions in R, G nonnegative. Then, the following
identity holds for all u€ C3*(RT1Y),

-« . 2
2/ 7 <8tu—VlogG~Vu+1Fu—gu)GdX
R 2 20

g
ol-e 5 5
+ —log —|Vu|*GdX
Ryt O gt
1—-a

1 .
— (Au+dyu) (&u—Vlog G-Vu+—Fu——9£u)GdX
lo4 2 20

Il

n+1
+

2.
R
o,l—a 1 0.170 5
+ uVu-VFGdX—§ u*MdX
+a
2

n+1 O’ n+1 0’
R R’

/ o *u?(8,G—~AG-FG)dX
RL*!

11—«

l-o
—/ 7 |Vu12(8tG—AG—FG)dX-2/ — DeVu-VudX,
R1+1 o R1+1 ag
where

e

M=log gFG+8tFG+F(8tG—AG~FG)—VG-VF,

De=Jg and J=(J") is the n xn symmetric matriz defined as

g‘ik{)ngﬂalG 1

. ij . . P .1 . .
JY = %—tG-b—g”Blegk] — G +§8kg”810gk]+~2—8kgﬂ<91ngl

— %g“c‘?lGakgiij %atg”G.
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Observe that this identity contains the one in Theorem 3 when g(z,t)=7 is
the identity matrix, o(t)=t and F'=0. In this case D¢ is given by (1.11), and since
every nonnegative caloric functions can be represented as the Gaussian extension
of some positive measure p on R",

1
G(g;’t) = t”T /R e~|z—y[2/4t du,

_ Y= eyt
VOS T Jpn 3t € i
G 1 (Y—2)8Y—T) _1oyi?/a
DG=—-ZT4——_ M ONT T e—ylt /4t g,
2t +tn/2 R~ 4¢2 ¢ H

and if £ER", then t"GDgE £ is equal to

((y=2)-6° _jomyi/ar oyl /4t W=2)E poyjar g\
/nTG d“/f W\ 2 € )

which always remains positive due to the Cauchy—Schwarz inequality.

Proof. For ue C§°(R71!) set
H(t)=/ w*Gdr and D(t)z/ |Vu|?G dz.
n Rn

The identities,

8, (v*G) = 2u(Au+0,u)G+2|Vu|> G+ u?(8,G — AG) +[div(v*VG) —div(GVu?)],
B (|Vul’G) = =2(Au+0:u) By uG+2(8,u)? G —2Vu-VGou+|Vul?(8;G— AG)
+|Vu2AG+2 div((8;uG)Vu)+ ;9" 8;ud;uG.,

imply, respectively, together with the divergence theorem that

(2.1) H(t)= 2/ w(Au+du)G dz+2D(t)+/ u?(0,G—AG) dz,
n RY’L

and

D) =—2 / (Au+Bu)uG dz+2 / ()2 G—Vu-VGoru] dz

(2.2) »
+/ |Vu|?(6,G— AG) d:c+/ |Vu|2AGd:c+/ 09" 8;u0;uG dx.
n R” R~
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The following Rellich—-Neéas identity

div[(VG)|Vu|?]| -2 div[(Vu- VG)Vu] = |[Vu[?AG —2VG - Vulu
+ 9", G gV Oiudju—2049" 0,Gg™ ud;u
—Qgi[(?legkjaiuaju.

and the divergence theorem gives that

/ |Vu?AG dxr =2 VG- Vu(Au+dwu) dr—2 VG- -Vudyudz
3 Rn. Rn

+2 Mijaiuaju dz,
R»

where
Mij — gilalegkj + %akgilagngj + %akgﬂa{ngi _ %gklalGakgij + %@gijG-,

and substituting the last identity for the fourth term on the right-hand side of (2.2)
it follows that

D(t):—?/ (Au+6tu)(8tu~vlogG-Vu)de+/ VU (8,6 - AG) dz
(2.3) " "
+2/ [(8¢u)? ~2V log G-Vudu)G dr+2 MY oudsudr.
n Rn
Next we do the following, first we complete the square in the third integral on
the right-hand side of (2.3) by adding and subtracting the integral

2 / (Vg G-Vu)?G dz,

and then we subtract and add the term D(t)/t on the right-hand side of (2.3),
obtaining the formula

D(t) = -2 (Au+6tu)(8tu—vlogG~Vu)Gd:r+/ IVul|?(8,G~AG) dzx
(2.4) R D(t) "
+2/ (8tu—VlogG~V'u)2Gdr—T+2/ J90ud;udz,

where y ' _
T = ﬁG— 9*0.Gg’'0,G

= G +MY fori,j=1,....n,
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is the ij-entry of the nxn matrix J defined in Lemma 1. Then, defining D¢ as
in Lemma 1 (i.e. Dg=Jg), it follows from (2.4) and the definition of the - inner
product that the following identity holds

D(t):—Q/ (Au+6tu)(8tu—vlogG~Vu)Gd:c+/ [Vul?(8;G—AG) dx
RTL n

(2.5) D(t)
+2/ (8tu-VlogG-Vu)2de—T+2 DeVu-Vudzr.
T R‘n

Now, given a€R and o=0(t) rewrite the term d;u—V log G-Vu appearing in
the third integral on the right-hand side of (2.5) as

Ou—VlogG-Vu= <8tu—VlogG-Vu—g—§u) +%§u,

and expand the square in the same integral. These two calculations yield the identity
D(t)=-2 / (Au+0u)(dsu—Vlog G-Vu)G dI+/ |Vul?(0:G—AG) dx
" Rn

3 2
+2/ (atu—wogG-w—g—"u) G dx
n ag

(2.6) 200 ac
+T - (8tu—VlogG~Vu—%u)qu:v
a?s? D(t)
Ht)- =Y Vudr.
+53 (t) " +2 - DgVu-Vudx

On the other hand, using calculus and integration by parts we have the following
facts

d o ¢ 1 0o
2.7 4, ,0_ 99 1 0 _
27) ALl
oC l—a . o 1 pat
(2.8) / "d D(t)dt:/ F(a—l—;—g—l)D(t)dt,
0 0

1 : 1
(2.9) 2/ —(atu—vmgc-vu—ﬂu)ucdxz—/ —u(8,G—AG) dX.
R 20'

ntl gX nil X
+ RY

Then, multiplying the formula (2.6) by ¢'~®/& and integrating the outcome over
(0, 4+00) with respect to dt, and using the identities (2.8) and (2.9), respectively,



44 Luis Escauriaza and Francisco Javier Fernandez

in the terms arising after the multiplication by ¢'~%/¢ on the left- and right-hand
sides of (2.6) (the fourth term on the right-hand side), it follows from (2.7) that

11—
2/ g <8tu V log G- Vu——u) GdX
RTL+1 2

o g

l—o /\ l—o
+/ 7 log—|Vu| GdX+2/ 7 DeVu-VudX
RrRt! R;‘_“H g

1 o [ 1
Q

-«
+2/ N Ud (Au+Gu)(0u—Vieg G- Vu)GdX
R” 1

1 11—
+a/ L 20,6-06)dX- [ T |VuP(0,6-AG)dX
Rn+1 o RT" ag

On the other hand,

> 1 > 1
2.11 =a — 0 dt.
(2.11) /0 oaH( ) dt a/o UHQUH(t)

and multiplying (2.1) by 1ac~°, integrating the outcome with respect to dt over
(0, +00) and using (2.11) it follows that

o 1 (12 o 1 1
D) dt-% ; = - X
a/o —D(t)di—= /0 o H(t)dt a/m“ —u(Dutdu)Gd

« 1

IV 2 —
_E/Rvyl —u*(0,G—AG) dX

Then, replacing the two first integrals on the right-hand side of (2.10) by the right-
hand side of the previouns identity we obtain the formula

la”\

log —[Vu|2G dX

0.1 o
2/ <6tu V log G- Vu———u) GdX+/
Ri—m a' 20‘

n+1
Ry

O.l

(2.12) =2 : (Au+8tu)(8tu—Vlog G-Vu—gg—u)GdX

+1
R% o

1 l-«
+3/ w*(8,G— AG) dX — 9 |Vulr(8,G-AG) dX
2 R 0'0‘ R G

O_l—a
—2/ i DeVu-VudX.
Rﬂ
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Now, if F=F(x,t) rewrite the term
ag
Ou—VliegG-Vu——u
20
on the left-hand side of (2.12) as

) 1
(@u—Vlog G-Vu-{-lF-u—%u) —=Fu,
2 20 2

and after expanding the corresponding square, the left-hand side of (2.12) is equal
to

- 1 . 2
2/ 7 (8tu—VlogG-Vu+~Fu—9—o—u> GdX
R':H ag 2 20

0.1——01

Ul_a/:? 1 2 2
(2.13) +/ —log — |Vu|2GdX+—/ ——u"F°GdX
RiH O ot 2 Jrrtr O

l—« 1 .
—2/ 7. (atu—v1ogG.Vu+—Fu—-a—"u>uFGdX.
RI*L O 2 20

Proceeding in the same way with the term 8,u—V log G-Vu—ad/20u appearing
in the first integral on the right-hand side of (2.12) and rewriting the two terms
8,G—AG in the second and third integrals in the same right-hand side as

(8,G~AG-FG)+FG.

it follows from the identity 3(A+8,)(u?)=u(Au+8;u)+|Vul? that this right-hand
side is equal to

-« 1 .
2/ T (Au+du) (agu—v1ogGVu+-Fu-93u)GdX
R+ 2 2

& o

1
+5/ —2(8,G—AG—FG)dX
R

2 ntl @
£

-
(2.14) -/ . 2 |\Vu}(8,G-AG-FG)dX
R}

o

1 l1-a
+2 / L 2FPGdx—1 / 2 (A+8)(?)FGdX
R 2 R1+1 a

2 nt1 g )
+

l1-a
—2/ C  DeVu-VudX
R¢+1 g
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and from (2.12), (2.13) and (2.14) we have,

-« . 2
2/ 7 (3tu—VlogGAVu+lFu—gu) GdX
Ri+1 o 2 20

1—a — =
+/ T log Z|VuPGdX
R"+1+1 ot

E
1—a 1 -
(2.15) :Q/RW”& (Au+6tu)(8tu—VlogG-Vu+§Fu—;—gu)GdX
+
1
+1+H+9/ —u(8,G-AG—FG)dX
2 R+ o«
O.l—oz Ul—a
—/ , |Vu|2(8tG—AG—FG)dX—2/ —— DeVu-VudX,
Ri+1 a R:_+1 o
where
1 1o , 1
1:—-/ 7 uQFQGdX+3/ — WFGdX
2 R;L_-fl a 2 R:_*l g%
1 ol-a 9
-5 —(A+0:)(u*)FGdX
2 Ryt O
and

II=2/ o (atu—wogc-vwlFu—a—"u>uFGdX.
R O 2 20

In the final application of these formulae, F will be a function which can be
differentiated only one time, for this reason we integrate by parts the operator
P=A+0; which is acting over u? in the third integral of I over F'G, but only using
one derivative with respect to the space variables of F'. In particular,

1 ol~@ 5
-z —(A+0) (v )FGdX
2 Rt O

1 I—a l—a
:#/ u%(" : FG) dX+/ g WVu-VFGdX
2 R} o R O

1 O.l~a
-3 / —u? div(VGF)dX
R1+1 (22

1 l—a
=#3/ —uQFGdX+/ g WVu-VFGdX
R Rt

2 nt1 g% g
+

————

1 l—«
+—/ Z u2<1oggFG+6tFG+F(8tG—AG)—VG-VF> dX.
2 Ryt G o
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and replacing the right-hand side of this identity by the third integral in the defini-
tion of I it follows that

Ul—a 1 Ul—a 9
(2.16) Iz/ - uVu-VFGdX+§/ —u“MdX,
R} 1!

g Ri+1 g

where M is given in Lemma, 1.
Now,

11—
II:/ 7 [8,(W})FG-VG -V(u?)F|dX
R1+1 a

ol 1
+/ . u2F2GdX—a/ — W FGdX
Rt @

g Ri+1 g

and integrating by parts all the derivatives acting over u? in the first integral,

o.l—a
II=- / M dX.
Ri+1 a

We obtain from (2.16) that

1-o 0.1-04

1
I+II:/ 7 uVu~VFGdX——/ 7 2MdX.
R1+1 o 2

n+1 g
R+

Finally, plugging the last identity into (2.15) yields the formula in Lemma 1. O

Lemma 2. Assume that o and G are as before. Then, the following identity
holds when ucCe (R and a€R,

e — i—a —

1
(a—l)/ L g2 uzngZQ/ 7 log Zu(Autdeu) +|Vul?|G dX
R o¢ ot Rt O ot

ol-a 5 9
RO at

1 —
+/ om0, (flog i)ﬁc dx.
R1+1 (o2 ot
Proof. This follows upon multiplying the identity

(A+0,)u® = 2u(Au+,u)+2|Vul?

e—

by (617%/&)log(c/5t)G and integrating by parts the operator A+§, acting on u
over the other terms in the corresponding integral. O

2
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Lemma 3. Given m>0 there is a constant C,, such that for all y>0 and
O<e<l,
1 m
ye V< Cp [54— <log :) e_y} .

Proof. The maximum value of the function g(y)=y—<ce? on R, is bounded by
log (1/¢), proving the case m=1. The other cases follow from this, the convexity of
y™ when m>1, and the fact that (a+b)™ <a™+b™ when m<1. U

Lemma 4. Assume that §:(0,1)—= R, satisfies

0<H<N, [tO(t)|<NO(t) and /1(1+log%>0—(tt2dt§N
0

for some constant N. Then, the solution to the ordinary differential equation

e (5) ="

a(0)=0, (0)=1,
where v>0, has the following properties when 0<~t<1,

te™™ <o(t)<t,
e N <o(t) <1,

—

ologi( <3N,
o

){SSN@N@.

—
olog — ‘ +
ot

e—

1
o(‘)t <—10g
(22

o
ot

Proof. The solution of the ordinary differential equation is

o(t)ztexp{— /0”(1—exp<— /{:@du)) %‘5}

and the verification of the properties is straightforward. U

From now on 0<4 <1 denotes a small number to be chosen later, and « and 3
two numbers satisfying a>1 and 0<3<1.

Lemma 5. Let G(z,t)=t""/2¢"15I"/4 gnd o denote the function defined in
Lemma 4 for yv=a/? and

1+3/2
o(t)=t3/? (log %) .
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Then, there is a constant N depending on 3 and n such that the following inequalities
hold for all functions we C§*(R™ x[0,1/2%)),

|$|6 |z[2+7 B/2-1 Na,o+N 2
——u —+——+t GdX < Ne™" %y u“dX
R 0% t at? RO+

+N& / 1808 26 4x.
R

ntl ag® t
B 2+3 1+3
T | x| T
/ 1 a|v |2<| | ' | - I l~ tB/Q—l)GdX
R+ at to

6
§NeNO‘7a+N/ tIVuI2 dX+N65/ al“a~(3—t)|Vu|2GdX.
R T!

n+1
+

Proof. From Lemma 3 with m=234 and taking e=(yt)"/?*1=9/2+® and y=
|z|? /4t we have that for z€R™ and 0<2yt<1,

|z 1 P G —9B48/2~1-n/2 |$|2 |I|?/4z
4t

1 V%1
<N 7"/2+1_-’3/2+C't0+53 ~ytlog — -Gj.
= vt t
Thus,

lel?

(2.17) :

G <otV 69 (Zt) G.

Using again Lemma 3 with m=1+ % 3 and the same value of ¢,

Il.|2+5

1\ /2
G<N( ”/2+1_5/2+°'t0‘+(a10g 7) t3/2‘1G>,
v

and in particular

|.7:|2+'6

t
(2.18) G<’)/D‘+Nt°‘+a63-m—’ty—)(}.

12 ~

Multiplying (2.17) and (2.18) by o~°u? and recalling that o(t)>e ™t when
0<vyt<1, the first inequality follows. The proof of the second inequality is simi-
lar. O
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Lemma 6. Let D be as in Theorem 2 and 0<3<1. Then, there is a constant
N depending on 3, n and |V||s such that the inequality

/|$|'3_2f2d:c§N/ |z|? |V £|? dz
D D

holds for all f€C§°(D).

Proof. When D={z:z, >0} the lemma follows from the identity div(z|z|"~2)=
(n+8-2)|z|°~? and the observation that the boundary term arising from an ap-
plication of the divergence theorem is identically zero. In general, flattening the
boundary of D using the change of variables y' =2, y, =1, +¢(2’) and undoing the
change of variables we find that

/[lﬂf’l%r(vcn—<ﬂ(:1ﬂ'))2]('3_2)/2f2 dJ:SN/ /)P + (20— (")) 2|V £ 2 da,
D D

and the lemma follows because \/|z’|2+(z, —(z'))2 <N|z| in D and 0<f<1. O

3. In the interior
To prove Theorem 1 we use the following Carleman inequality.

Theorem 4. Define G, 8 and o as in Lemma 5 and take 3=1 when the
operator P satisfies the first condition in Theorem 1. Then, there are numbers dg
and N depending on A, M, n and 3 such that if a>2, y=a/6% and §<&. the
following inequality holds for all ueCZ (R x(0,1/2+)).

1 ;
a/ —mu2adx+/ UI’QMWuFGdXSN/ o' Pul? G dX
R+ o% t Riﬂ t RZH

+eNayatN / (u? +t|Vul*) dX.
Rn+1
"

Proof. We begin by assuming that the coefficient matrix of P satisfies the
second condition in Theorem 1 for some 0< 3<1. Without loss of generality we may
assume that a(0,0)=Z. Defining r(z)=|z| and F=r?(1—|Vr|?)/4t?, a calculation
shows that

0,G—AG = (T2(1‘|V7|2) n |Vr2—1 N rAr-(n—l))G

412 2t 2t
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and

31)  |F|<min W_w
2 32

Fixing a>2 and with y=a/4§?, 6 being defined as in Lemma 5 and o denoting
the corresponding solution in Lemma 4. we have from the identity in Lemma 2,
(3.1), the bounds for ¢ in Lemma 4 and the first inequality in Lemma 5 that for
weCe(R™ x(0,1/27)),

a/ iMuQGdX,S/ al_aM|VUIQGdX+/ ol " PulPGdX
R R} t RT!

ntl 0% ¢
+

2 t,ﬁ/?
(E

}, 10,G—AG—FG| <

. (4
eyt / u? dX +ad” / 901 2,
R Rn+1 0' t

and choosing ¢ sufficiently small
0 t
a/ i@zﬁcdxg/ s1-af0 )|v 2Gdx
R Ry

nt+1 g% f
"
(3.2) +/ 01_“|Pu12GdX+e‘V°”/"+N/ u?dX.
Ri+1 Rn.+1

Because,
i 0,GO;G
2—tG+BUG— e
and (VG| <|z|G/t it is simple to verify that
(|l +)72
t

=0 foralli.j=1.....n

(3.3) IDeVu-Vu| < IVu|2G,

and from Lemma 4 and (3.1),

(lz>+6)+2)72 (2> 48)1+572
t

(3.4) loVF|< and JoM|<

Now, using the Cauchy—Schwarz inequality to handle the first term on the right-
hand side of the identity in Lemma 1, it follows from the identity in Lemma 1, the
bounds (3.1), (3.3), (3.4) and Lemma 5, that

10
/ UI‘QMWUIQGng/ 01—01pu|2GdX+a53/ — 008 26 ax
R t Ri_H R:fl o t
+65/ Ul_aqu!QGdX
R+! t
24 4\(1+8)/2
(3.5) +/ i|u,||vu;“—$|ir—)—cdx
R loaa t

feNayotN / N (w2 +t|Vu|?) dX
R}
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Using again the Cauchy—Schwarz inequality, we have

1 2 4\(1+8)/2 1 2§\ 1+8/2
/ —Jul |Vu|MGdX§/ —|u|ZMGdX
R+ oo t R
+

ntl OO 12
+

(la]*+t)°72

(3.6) +/ o172 Vul? GdX,
R1+l

and thus (3.2}, (3.5), (3.6) and Lemma 5 imply that if § is sufficiently small the
inequality in Theorem 4 holds for all functions ue Cg°(R™ % (0,1/27)).
When the operator P satisfies the first condition in Theorem 1, the operator

n

Qu= Z di(a" (z,0)8;u)+0,u

ij=1

satisfies the second condition in Theorem 1 with 3=1. Thus, the inequality in
Theorem 4 holds if we replace P by Q and consider this value of 3 in the definition
of 8 and o. On the other hand,

Q((@ku)Q) = 28k(8kuQ(u))+28g (&Caakaijf)ju) ——23kkuQ(u)
—28kaij8ju(9,-ku+2aij6,-ku8jku,

for k=1,...,n. Then, multiplying this identity by ¢>~*G and using again partial
integration we have that

Z/ 02_°‘|V8ku|2GdX§a-/ o=\ Vu2GdX
k=1 /R R}

+/ o> Vul*|Q*(G)| dX

R1+1

(3.7) +/ o?=(|Vu] VG| |1Q(u)|+|Vu2|[VG]) dX
Rn+1

+

4 (V0 Q)+ VUl VoG X,
Ry*!

where Q*(G)=3_7._, 8;(a"(z,0)9;G)~8,G. Using that v<6(vt)/t to handle the
first integral on the right-hand side of (3.7), that <1/ in the support of v and
the bounds

ol ke
t2 t

@wms( )G vas e
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to handle the other terms, it is simple to derive from (3.7). the second inequality in
Lemma 5 with 8=1 and the Cauchy-Schwarz inequality that

1 "
—2/ 02—a|D2u|2GdX5/ 01_0M|Vu|2GdX
) R+ R+ t

t|Vul? dX.
+1

(3.8) +/ 01_Q|Q(U)|2GdX+eNa’ya+N/

R1+1 R”

This inequality and the fact that the inequality in Theorem 4 holds for the
operator () give that

1 ~
—/ 02_"‘|D2u|2GdX+a/ 100 2 4x
42 R7H R g% i

0 ,
+/ =208 GG ax
Ri+l t

(3.9) 5/ N al_a|Q(u)|2GdX+eN°‘A,"‘+N/ (u?+t|Vul?) dX.
R}

n+1
R+

Finally, since |a{z,t)~a(z,0)|<M+/t, it is possible to replace P by @Q in the
first term on the right-hand side of the last inequality choosing 4 >0 sufficiently small
and hiding the corresponding error terms on the left-hand side of the inequality,
which proves Theorem 4. O

Proof of Theorem 1. Proceeding as in [5] and [6]. if u satisfies the conditions in
Theorem 1 in B, %[0, 2], given an integer k>1 we apply the inequality in Theorem 4
with a=2k to u.=up.(t)y(z), where weC§*(R") and £. € C3*(R) satisfy ¢=1 for
|z| <1, =0 for |x|2%, we=1 when £<t<1/4v and .=0 when tgée or t>1/2v.
Because § 7% <6(t)/t when 0<2yt< 1, choosing 4 sufficiently small it is possible to
hide in the standard way the term M (|Vuc|+|u.|) arising on the right-hand side of
the inequality

[Puc| < M([Vue|+[ue|)+ Mup: Vil + [upe Avl+ [uvdyoe | +|pe Vu- Vi,

and since u satisfies (1.1) and e"Vt<o <t when 0<~vt<1, after letting ¢ tend to
zero it follows that

875G 20l LBy x 0,1/ S €V RE (162 V| 128, o 0.0 F 1l L2(Ba x 0.2)))
(3.10) +eMF (RGPl L2 B\ By x (0.1/24)
+t7*G 2 ul| 2By x (17471 /24)))-
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On the other hand, t=*G/2<eN¥EkF when either t>0 and |z|>1 or t>1/4~. Also,
from Stirling’s formula k*<e™*k! for all k>1, [2]. These two facts, (3.10) and
standard estimates for subsolutions of parabolic inequalities imply that there is a
constant N depending on n, A, 5 and M such that u satisfies

— ~1+A
1t *uGY? || 1208, x(0.2)) < (AN) T K ul[ = (B, x 0.2y for all k>0.

Then, multiplying this inequality by 2¥ /N*k! and summing over k,

_ 12 -
”ez/mt n/4e=lel /8t’u||L2(le(o.2)) SJ\'||“”L°C(BQX(O.2))~

Using this inequality and the observation that 1/Nt>|z|?/8t—|z —y|?/8t when t>0
. |z|<3 and |y|<8/N one gets that

— lr—ayl? . C e
(3.11) [t~/ 4e el /StuHLQ(Bl/Qx(O.s))Se VN4 Null L= (B x(0.2))

when |y|<8/N, 0<s<1. Finally, standard estimates for subsolutions of parabolic
inequalities [11] imply that with constants depending on A, n and Al

1 2s
(3.12) [u(y, $)| < W/ / [ujdX when |Jy|<3 and 0<s< 5
s s VB 5 ()

and from (3.11) and (3.12),
—1/Nt 8
|u(z, t)| < Ne lullz>(Byx(0.2yy when |z[< N and 0 <t <1,
proving Theorem 1. [
Remark. If one replaces the condition (i) in Theorem 1 by
la(z,0)—a(0,0)| < M|z|?, |Va(z.0)|<M|z|°' and |a(z,t)—a(z.0)] <MV

for some 0<3<1, the result in Theorem 1 still holds. This follows because the

inequality
/lel‘gfzde/ |z|'|V f|? de,
RTL Rn

holds for all I>0 and feC§(R™) (div(z|z!~2)=(n+1-2)|z|'"?). With this it is
possible to handle the corresponding terms arising in (3.7). though in this case. (3.8)
and (3.9) hold for functions ueC§® (B, x (0,1/27)), where rg is sufficiently small
depending on n, A, M and 3, and this suffices to prove the unique continuation
property.
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4. At the boundary

Proof of Theorem 2. Assume that D={(z'.z,):x,>p(z')}, where p: R"" 1
R is a C*! function satisfying ¢(0)=0 and Vp(0)=0. If u satisfies (1.6) and (1.1) in
(B2ND)x0,2] and either u or its conormal derivative is zero on (B2NadD) %[0, 2],
then using standard methods it is possible to flatten the boundary of D by means
of a C!'! change of variables, in such a way that after the transformation the
composition, also denoted u, satisfies (1.1) and (1.6) in (B,,NR?)x[0,2] for some
79>0 and with a new parabolic operator P, whose coefficient matrix a(x, t) satisfies
the first condition in Theorem 1 for z, y€ B,,NR", t€[0.2] and

(4.1) a™(2/,0,8)=0 fori=1.....n—1, |/ <ryp and t>0.

Extending u for z, <0 as an odd function in the x,, variable when u vanishes on
the lateral boundary or as an even function when its conormal derivative is zero,
one gets a function u satisfying (1.1) and (1.6) in a neighborhood of (0.0) in R™*!
with a new parabolic operator Pj, which due to (4.1) satisfies the first condition
in Theorem 1. These standard arguments reduce the proof of the first case in
Theorem 2 to Theorem 1.

When D is a Lipschitz domain in R™ and if we carry out the calculations in the
proof in Lemma 1 over D x [0, +oc) with a function u€C> (D x (0. +2c)) satisfying
u=0 on 8D x[0,4+c0), one gets exactly the same identity except for a boundary
term arising on the right-hand side and given by

1~a
(4.2) / 7 9G-N|Vu2ds,
8Dx(0,4) O

where n denotes the unit exterior normal to dD. N=g~!(z.t)n and dS= do dt. This
is because u=0 on 9D and the fact that from all the integration by parts carried
out in the proof of Lemma 1, there is only one which generates a nonzero boundary
term. This occurs in applying the Rellich-Necas identity in order to find the value
of D(t) (see (2.2), (2.3) and (2.4)). In particular, in this case

D(t):—Z/(Au+8tu)(6tu—vlogG~Vu.)Gda:+/ Vul(8,G—AG) dx
D D

+2/ (8tu—VlogG-Vu)2de—D—t(tz

D

+2/ DeVu-Vude— | VG N|Vul?do.
D aD

To derive this formula, we have used

(VGn)|Vul* -2VG-Vu(Vun) = —VG-N|Vu|?
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whenever u(-,t)=0 on D. Here (£n) denotes the usual inner product on R™ of §
with 7, while the - product of two vector fields and the gradient of a function was
defined at the beginning of Section 2.

In this case, Lemma 2 also remains invariant. For these reasons, to prove
Theorem 2 when 8D satisfies (1.9) it suffices to find a function G so that the bounds
(3.1), (3.3) and (3.4) hold on (B,,ND)x[0,72] and VG-N <0 on (B,,N8D) x [0, 73]
for some ro>0. Here we take G=t""/2e="(=:)*/4t where

r(z,t) =|z|—2(A+ M)zn (|2 +1) 777,

and F=r%(1—|Vr|?)/4t, and with these choices it is easy to verify that provided rg
is sufficiently small this G satisfies the previous requirements and

1
7\7‘95' <r(z,t)<N|z| for all (z.t) € (B,,ND)x[0,75].

It is also well known that the standard estimates for subsolutions to parabolic
inequalities hold near the boundary when u has either zero Dirichlet or Neumann
data on the lateral boundary [11]. In particular, if u satisfies (1.6) in (B2ND) x [0, 2]
and either 4=0 or Vu-N=0 on (B2NdD)x [0, 2], then

1 2s
luly, s)}] < 7E / / luldX when (y,s) € (B12ND)x (O, %)
8 s JB z(y)ND

and with a constant depending on A, n, M and ||Vl x.

From the above discussion, it is clear that the same argument can be repeated
again to obtain the second case in Theorem 2 when the boundary of D satisfies the
condition (1.9) for some A>0 and the coefficients of P satisfy the second condition
in Theorem 1. Observe that under the condition (1.9) we cannot expect to control
the second derivatives of u near the boundary when u has zero Dirichlet data on
the lateral boundary, and this forces us to have to work out the proof with the full
operator P when its coefficients depend on the time variable.

To prove Theorem 2 when the convexity condition (1.10) holds and in order to
simplify and make the arguments more clear we assume that a{z.0)=Z (Q=A+0,
is the backward heat operator on R™). Under this assumption, (1.10) implies that
with r(z)=|z|—48Az,|z|® and G=t="/2¢=7(=)"/4t we have

12 Vle!)— pla)

2% i IVeR

VG-N=- G§~Jx]1+ﬁ%G on (B,,NdD)x|0,2],
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and the arguments up to (4.2) imply that the following inequality holds with con-
stants independent of a>2 and § <& for all uc C3°((B,,ND)x (0,1/2y)) satisfying
u=0 on (B,,NID) x(0, 2),

, t
—/ ol_"‘VG'N|Vu|2dS+a/ —I—MUQG’dX+/ ol_aMWuFGdX
8D, p, 0% t Dy t
(4.3) 5/ al_“|Q(u)|2GdX+eN°7a+N/ (u? +t|Vul?) dX,

where 0D =08D x (0, +o0) and D;=Dx (0, +oc).

When the integration by parts carried out in the derivation of (3.7) is done over
D with veC§((Br,ND)x(0,1/27)), u=0 on dDx[0,2] and G defined as above,
one gets the following boundary terms on the right-hand side of (3.7),

(4.4) —/02‘°‘|Vu12VG-N d8+/02_"[V|Vu|2~N—2Vu-NQ(u)]GdS,
8D, 8D+

where now the symbols - and V denote, respectively, the usual product and gradient

in R™. Observe that the first term in (4.4) can be controlled by 1/v times the

“good” boundary term appearing in (4.3), and from (3.7), (4.3) and (4.4) we get

that with constants independent of a>2 and d<Jg the following inequality holds

for all ueC§°((B,,ND)x(0,1/27)), u=0 on (B,,NdD) x (0, 2),

/ 02_a|D2u|2GdX§52/ ol 7YQu)|?’G dX

+62eNaqyatN / (w2 +t|Vul?) dX
Dy

(4.5) +/3D 0?=2[V|Vul?- N —2Vu-NQ(u)|G dS.

Well known calculations {8, Theorems 3.1.1.1. 3.1.1.2 and 3.1.2.1] show that
the following identity holds when u(-,t)=0 on 8D,

2 n. X7
(4.6) V|Vu|2~N—2Vu~NQ(u):—(8nu)2(A¢—DTi|—VViQ—|V2€>\/1+[V¢|Q.

The convexity condition (1.10) implies that D?¢>-3(1+8)A|z'|°~'Z, and
since the matrix ZT—Vp®@Vy/(14|Vp|?) is positive and the identity

D2pV -V VRV
Ap——"" % —trace| D%p| T— —L =X )|
LT ‘"ace{ *9( 1+1W|2)
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holds, it follows that

(4.7) /w oz‘a{V[Vu[QAN—QVu-NQ(a)]GdS§/aDv o222~ VuPG dS.

Integrating over D the Rellich-Necas identity
div(Y |Vu|?) =2 div[(Y - Vu)Vu] = |Vu > div Y =2V - VuAu—2;y;0;ud;u.

with vector field Y =|z|*~1Ge, and using the Cauchy-Schwarz inequality we get
/ 02-a|x|ﬁ—1|vu|2c;d85/ 027 2)? 2| Vul’ G dX
a + D+
+/ o2-al2l” | |V[GdX
+/ o2~ %z|?|D*u|G dX,

and using Lemma 6 to handle the first term on the right-hand side of the previous
inequality it follows that

/ 02‘a|x|’3“1|Vu|2GdS§/ o?7°|z]?|D*u|G dX
0Dy

. 3 243
+/ o? ('”"}' +|““"| )[Vu|2GdX.
D

(4.8)

The second inequality in Lemma 5 gives that the second term in the previous
right-hand side is bounded by

(49) 52/ 0,1— 9( )|v | GdX+02 Na_ a+\/ t|Vu|2dX.
Dy

and from (4.3), (4.5), (4.7), (4.8) and (4.9) it follows that if r¢ is sufficiently small,
there is a constant independent of a>2 and & <4y such that the inequality

1 ~ vt
—2/ 02_"|D2ul2GdX+a/ imuz’cd)n/ -a 8y )av PGdx
0 Dy Dy o t Dy

[ orrlRuPGax e [ val?)ax
D,

Dy

holds for all functions u€ C§*((B,.,ND) x(0.1/2~)) satisfying ©=0 on (B,,NID) x
(0,2).
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In general, when @ is a backward parabolic operator with time-independent
Lipschitz coeflicients, the same calculations can be carried out [8. Theorem 3.1.3.1],
and the analogous boundary terms to those appearing in (4.4) and arising in the
calculation (3.7) can be handled in a similar way. These arguments finish the proof
of Theorem 2. O
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