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Unique continuation for parabolic operators 
Luis Escauriaza and Francisco Javier Fernandez 

A b s t r a c t .  It is shown t h a t  if a funct ion  u satisfies a backward  parabol ic  inequal i ty  in an  

open  set f~CI~ n+l and  vanishes  to infinite order  at  a poin t  (x0, to) in fk  t h e n  ~(x ,  t o ) = 0  for all x 

in the  connec ted  c o m p o n e n t  of x0 in f tN(R'~  x {to}). 

1. I n t r o d u c t i o n  

This work is devoted to the study of the unique continuation property for 
second order parabolic operators with time-dependent variable coefficients. 

For second order linear parabolic operators with time-independent coefficients, 
the strong unique continuation property was reduced by F. H. Lin [13] and indepen- 
dently by Landis and Oleinik [12] to the previously established elliptic counterparts. 
In particular, F. H. Lin shows that  a parabolic operator P of the form 

Pu = div(a(x)Vu) +Otu+b(x).Vu+c(x)u, 

where the coefficient matrix a(x)=(aiJ(x)) is Lipschitz and the lower order coeffi- 
cients b and c are bounded has the following unique continuation property: 

I fu  satisfies Pu=O in ST=f~ x (0, T) and at some interior point (x0, to) in ST the 
function u vanishes to infinite order in the space direction (i.e. lu(x, to)l <Cklx-xol k 
for any integer k), then u(x, to)-:O for all xEfL 

The reduction from time-independent parabolic equations to elliptic equations, 
a basic technique used in [12] and [13], relies on the representation formula for 
solutions of parabolic equations in terms of the eigenfunctions of the corresponding 
elliptic operator, and therefore cannot be applied to more general equations with 
time-dependent coefficients. 

Time-dependent parabolic equations with variable coefficients have been treat- 
ed by Saut and Scheurer in [17] and by Sogge in [18], where a weak unique con- 
tinuation theorem is proven using a Carleman inequality. In [17] this is established 
for variable C 1 second order and bounded lower order coefficients, while in [18] 
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unbounded potentials and smooth coefficients are treated, in particular it is shown 
that  if u satisfies 

IAu+O~ul <_V(x,t)lu I in ST, 

where VEL~n+2)/2(dxdt) and u = 0  in an open set kVCST, then 4(.  , s ) = 0  for all 
times sE(O,T) such that  the hyperplane t=8 has a nonempty open intersection 
with W. 

The strong unique continuation property for parabolic equations with time- 
dependent coefficients is treated by Poon in [16], Chen [4] and Escauriaza and Vega 
in [5] and [6]. In [16], the author defined a suitable frequency function measuring 
the space-time vanishing rate of a global solution to the backward heat equation 
and obtaining the following unique continuation property: 

Assume that  for some positive constant N a function u satisfies the inequality 

IA~+0t~I<N(IWI+I~I)  in Rnx(0,  T). 

Then, u - 0  in R ~ x (0, T) if u vanishes to infinite order from above in both the space 
and time variables at (0, 0). 

By the former we mean that  for each k>  1 there is a constant Ck such that 

(1.1) I~(x, t)l _< ok (Ixl+ ~ )  ~ 

for all (x, t), t_>0, in the domain of definition of u. 
In [5] and [6] the authors prove a Carleman inequality arising naturally from 

the frequency function defined by Poon and obtain strong unique continuation type 
properties for global (defined in R ~ x  (0, T)) and local solutions of the inequality 

(1.2) IAu+O~,l ~ y(x, t)M 

for some unbounded potentials V. In particular, they show that  under certain L~L~ 
type conditions for the potential V, all functions u satisfying (1.1) for all k>_ 1 and 
(1.2) in B2 x [0, 2) must vanish identically in B2 x {0}. Moreover, it is shown in [6] 
that  if the potential V is bounded in both variables (weaker conditions on V do 
work as well), there is a constant N depending on n and [IV[[L~(B2x(O,2)) such that  

(1.3) lu(x,t)l ~N~--I/N~IlulIL~(B2• for all (x,t) in B1 x(0,1). 

Aronszajn, Krzywicki and Szarski [3], and independently H6rmander [9], proved 
the strong unique continuation property for solutions to elliptic equations with 
variable Lipschitz second order coefficients using a Carleman inequality derived 
with methods based on the fundamental theorem of calculus (integration by parts). 
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In this work and using again only integration by parts to obtain a suitable Carteman 
inequality, we derive the unique continuation property (1.3) for local solutions to 
parabolic inequalities with time-dependent variable coefficients. 

In particular, if Br denotes an open ball of radius r centered at the origin in 
R ~ and P the backward-parabolic operator 

(1.4) P u =  ~ Oi(aiJ(x,t)Oju)+Otu, 
i , j=l  

where the coefficient matrix a(x, t) = (a ij (x, t)) is symmetric and for all (x, t) CR ~+1 
and ~ in R n satisfies the standard ellipticity condition 

(1.5) A[~I 2 < ~ aiJ(x,t)~i~j < ~l~[ 2, 
i , j=l  

the following results are shown. 

T h e o r e m  1. Assume that there are constants M > 0  and 0</3<1 such that 
one of the following conditions holds for all x and y in R '~ and O<_t, s < + e c :  

(i) la(x , t ) -a(y ,  s)l<_M(lx-yl2 +lt-s l) l /2;  
(ii) [a(x,t)-a(y,s)l<_M(lx-yl~ +lt-sl)3/2 and also IVa(x,t)l<_MIxl ~-~ and 

16a(x, t)l<_Mt ~/2-1. 
Then, if u satisfies (1.1) and 

(1.6) IPul _< M ( I W I +  lul) 

in B2 x [0, 2), it follows that u(x, 0)=0  for all xEB2. Moreover, there is a constant 
N depending on/3, M and n such that, 

(1.7) lu(x,t)l<_Ne-1/NtllullL~(B2x(o,2)) when(x, t )  c B l x ( O ,  1). 

The counterexamples by Plis [15] and Miller [14] establishing the existence of 
elliptic operators with H61der continuous coefficients and having a nonzero solution 
vanishing on an open set, show that  the Lipschitz regularity in the space variable 
required in Theorem 1 is sharp. We do not know whether the �89 regularity 
in the time variable required in Theorem 1 is the best in order to derive (1.7). 

These results can be carried out up to the boundary under proper Dirichlet 
or Neumann boundary conditions, extending and localizing the results obtained by 
Escauriaza and Adolfsson in [1] for time-independent parabolic operators to the case 
of time-dependent operators. 

In what follows D = { x =  (x', x , )  E R  n :x ,  > ~(x')},  where 4: R " - I  -+R  is a Lip- 
schitz function satisfying p(0)=0,  IIv~II~_<M, and da denotes surface measure 
on OD. 
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T h e o r e m  2. Assume that u satisfies (1.1) and (1.6) in (B2nD) x [0, 2]. Then, 
there is a constant N such that 

�9 N e - : / x t  o ~l (1.8) ] t t ( z . t ) ] ~  UllL~((B2nD)x(O,2) )  when (x,t)  E(B:ND)• 1], 

whenever one of the following conditions hold: 
(1) D is a C 1'~ domain, the coefficient matrix of P satisfies condition (i) in 

Theorem 1 and either u=0  or a V u . n = 0  on (B2NOD) x [0, 2]; 
(2) u=0  in (B2NOD) x [0, 2], the coefficient matrix of P satisfies condition (ii) 

in Theorem 1 and for some A>0 and 0 < 3 < 1 .  

(1.9) x'.Vc2(x' ) - p ( x ' )  >_ -AIz'[  1+3 for [x'[ < 1: 

(3) u=0  in (B2NOD) x [0, 2], the coefficient matrix of P satisfies the first con- 
dition in Theorem 1 and for some A>0 and 0 < 3 < 1 .  

(1.10) c2+A[z~l 1+3 is a convex function for Ix'l < 1. 

Observe that  (1.9) holds when p can be written as the sum of a convex func- 
tion and a C :'~ function, while (1.10) is weaker than being a convex hmction and 
implies (1.9). 

If D is a bounded Lipschitz domain in R ~ with 0ED and u satisfies (1.1) and 
(1.6) in Dx[0,  T], and either u=0  or aVu.n~-O o1: 0Dx[0.  T] for some T>0.  an 
iteration of the results in Theorems 1 and 2 imply that u (x .0)=0  for all xED.  
But once you know this, the standard backward unique continuation property of 
parabolic equations ([13, pp. 133-134], [7, Chapter 3. Theorem 11]) implies that  
u - 0  in D x [0, T]. In fact, if 

T 

o IOta(x' t)l dt 31< +vc. sup  < 
xED 

it is well known that  the function 

/0' e~ t log f u2(x, t) dx+:~I2t, ao(t) = s u p  IOsa(x, s)l ds, 
JD xED 

is essentially nondecreasing, which implies, when 0 < t < T ,  that 

\~(t) \l-~(t) 

where 
a(t)  = f t T  e-~ ds 

f J  e - O ( s ) - M 2 ~  d s  
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In relation to the backward unique continuation property. Miller [14] has a 
counterexample of a parabolic operator P whose coefficient matr ix  a(x, t) satisfies 
a(x, 0) -5[  the identity matrix, a ( . ,  t) E C ~ (R) for all t >_ 0 and 

la(x, t)-a(x, 0)1 _< M t  '/6 

This operator  has a solution u in D x ( - v c ,  T], D = (0, 7r) x (0, 7r), with zero conormal 

derivative on ODx ( - o c ,  T], u is never identically zero on open sets contained in 
D x (0, T) and u--0  for t<_0. 

The proofs of the results in Theorems 1 and 2 are based on a per turbat ion of 
the following identity for the backward heat operator. 

T h e or e m 3. Assume that G is a positive caloric function in R'] +1. Then, the 
following identity holds for all u in p ~ ( ~ , , + z ~  and ~ER.  

/R;+ t l - (~(Otu-VlogG.Vu-~ f t l - a D o V u . g u d X  
2t / Jn$+~ 

=/R t l - c ~ ( O t u - V l ~  )(Au+Otu)GdX' 
2_+ ~ 

where dX=dx dt and T)a is the nonnegative n x n matriz. 

(1.11) ~G = ~--'tZ+D2G - 
V G 3 V G  

G 
In Section 2 we prove some auxiliary lemmas and the generalization of the 

identity in Theorem 3 which appears when one replaces the backward heat operator 
by a general operator P.  In Section 3 we show how to use this identity to find a 
suitable Carleman inequality implying Theorem 1 and in the fourth section we prove 
Theorem 2. 

2. Some auxi l iary lemmas 

Letting P denote the operator in (1.4) and to simpli~- the writing and cal- 
culations we shall use some of the s tandard notation in Riemannian geometry, but 
always dropping the corresponding volume element in the definition of the Laplace-  
Beltrami operator associated to a Riemannian metric. We do this. because it sim- 
plifies the formulae appearing in the proofs of the following lemmas, and especially 
when the metric is allowed to depend on the t ime variable and we make use of 
partial  integration with respect  to this variable. 

In particular, letting g@, t )=(g i i (x ,  t)) denote the inverse matr ix  of the coef- 
ficient matr ix  a(x,t) of P and 9-1=(g~J(x,t)) the inverse matr ix  of g, we use the 
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following notation when considering either a function f or two variable vector fields 
and r/: 

(1) ~.~=Ei~j=l g~j(x,t)~j, 1~12=~.r 
(2) o~f =of  / ox ,  otf =of  /ot, o j = o ,  off  . div =~-2~=1c9~ i, V f =g- lVn f  , 

where V~ denotes the usual gradient in R"  and A f = d i v ( V f ) .  
With this notation the following formulae hold when u, f and h are smooth 

functions, 

Pu = Au+Otu, 

A f  2 = 2 fAf+2lVf[  2, 

/R h A f d x = ~ n f A h d x = - s  "Vhdx. 

By A<B we mean A<_NB, where N depends at most on n and the constants 
A, M, A and/3 appearing in Theorems 1 and 2. 

L e m m a  1. Let ~ = a ( t )  be a nondecreasin9 function satisfying a(O)=O, aER, 
and F and G denote two functions in R+ +1, G nonnegative. Then, the following 
identity holds for all uEC=~(R ~+1~ 0 \ + )'~ 

( R a l - ~  1 OlC~ U'~ G 2 ~-+~ --(7 Otu-VlogG.Vu+-~Fu-  2a ] dX 

/ R  a 1-~ ( 1 c t ( 7 )  = 2  (Au+Otu) Otu-VlogG.Vu+~Fu--~-~u GdX 
;+~ (7 

fR O1-c~ ~ s  O1 a + uVu.VFG d X -  u~M dX 
;+~ (7 :;+~ (7 

~ +~ ;+~ ~ - % 2 ( o ~ a - A a - F a )  d x  

R (71--c~ f ~i-o DcVu.VudX,  ~_+~ (7 [Vul2(OtG-AG-FG)dX-2jR;+~ (7 

where 

M = log a=FG+OtFG+F(OtG-AG-FG ) - V G . V K  cr 
Da=,.Tg and J = ( J i J )  is the n x n  symmetric matrix defined as 

j i j  = g~G+g~lOklGgkJ gikOkGgjlOlG ~OkgilO, GgkJ +~OkgjlOtGgki 
2~ G + 

1 kl i j  - - 5 9  OlGOk9 + l O t g i J G .  
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Observe that this identity contains the one in Theorem 3 when 9(x,t)=Z is 
the identity matrix, a(t)-t and F = 0 .  In this ease Da is given by (1.11), and since 
every nonnegative caloric functions can be represented as the Gaussian extension 
of some positive measure p on R ~, 

G(x,t)= t~/~ /R e-lz-Y[2/4t dlt, 

1 J'R y - x _  VG = ~ ~ - -~i - -e  lx-Yl~/4t  @., 

G 1 D2G= - ~ Z + t ~  ~ fR n (Y--X)| 2 dp, 

and if { E R  n, then tnGDa{.{ is equal to 

Y JR" ((Y-X)'~)2e-lx-y'~/4tdtt 4t2 af ~- '~-~'~/4'dP-(s ~ ,~ (Y-X)~e-lX-Y[2/4tdft " 2t ' 

which always remains positive due to the Cauchy-Schwarz inequality. 

Proof. For oo n + l  uEC o (R+ ) set 

The identities, 

m,)=s and .(,)=s 

O~(u2o) = 2u( Au+Otu)G+ 21Vul2G+u2(OtG - AG)+ [ d i v ( u 2 V G )  - d i v ( G V u 2 ) ] ,  

Ot(IVul2G) = -2( Au+Otu)OtuC+ 2(Otu)2C- 2Vu.V GOtu+lVul2(OtC- AG) 

+ lVul2 /XG+ 2 div( ( OtuC)Vu)+OtgiJ OiuOjuG, 

imply, respectively, together with the divergence theorem that  

(2.1) 

and 

(2.2) 

[I(t) = 2 In" u(Au+Otu)O dx + 2D(t)+/n" u2(O'O- AG) dx, 

~)(t) ~- -- 2 JR n (Att-}-Ottt)OttlG dx Jr- 2 fR,~ [ (0t  t t ) 2 G  - Vtl .  VGOttt  ] dx 

+L, Iwl~(a,O-~O)dx+s lWl2~Odx+s a,r 
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The following Rellich Ne~as identity 

div[(VG)lVu] 2] --5 div[(Vu. V G) Vu] = IVul2 A G -  2V a.  VuAu 

+ gkl OIGOkg iJ OitlOju--2Okg il OiGgkJ OiuOju 

-- 29 il Okl G9 kj Oi uOj u. 

and the divergence theorem gives that 

/R,~ ]Vul2 AG dx = 2 J'Rn V G. ~Yu( Au +Ot u) d x -  2 /R" V G. VuOtu dx 

-t-2/Rn "/~iJ oiuOj~l dx. 

where 

it kj + l okgilOtGgkj -I- �89 k i -  �89 + �89 .MiJ = 90kzGg 

and substituting the last identity for the fourth term on the right-hand side of (5.2) 
it follows that 

D(t) =-2 j( (Au§ IVul2(OtG-AC)dx 
(2.3) 

+2 s E(ot )2-2Vloga WO, Jaex+2 

Next we do the following, first we complete the square in the third integral oil 
the right-hand side of (5.3) by adding and subtracting the integral 

2 s  (V log G. Vu)2G dx, 

and then we subtract and add the term D(t)/t  on the right-hand side of (2.3), 
obtaining the formula 

D(t) = - 2  s  (Au+Otu) (Otu-VlogG.Vu)Gdx+f j  rt,~ IVul2(Ota-AG)dx 
(2.4) 

+2 fl~ (Otu-VlogG.Vu)2Gdx-D:t) +2 s 
where 

gik OkGgJl OlG j i j  = gv G -  2t G +Ad ij for i , j = l , . . . , n ,  



Unique continuation for parabolic operators 43 

is the i j -ent ry  of the n x  n matrix ,7 defined in Lemma 1. Then, defining Dc  as 
in Lemma 1 (i.e. Da=fl9), it follows from (2.4) and the definition of the �9 inner 
product that  t he  following identity holds 

(2.5) 
D(t)=-2/ (Au+Otu)(Otu-VlogG-Vu)Gdx+ f [Vul2(OtG-AG)dx 

,J R n J R n 

+2 f'R (Otu-VlogG.Vu)2Gdx-D(t) fR t +2 . DaVu.Vudx. 

Now, given a E R and a = c~(t) rewrite the term Ot u - V log G. Vu appearing in 
the third integral on the right-hand side of (2.5) as 

Otu-VlogG.Vu "Otu_VlogG.Vu_cr6u'~ a& = +-~au. 

and expand the square in the same integral. These two calculations yield the identity 

(2.6) 

D(t) = - 2  s f.. IWl2(o,a-Aa)ex 

,~ ~ + cr , O t u - V l o g G ' V u - ~ u  uGdx 

0~20"2 D~t)+2fRz~GVu.Vudz + -f~s H ( t ) - 

On the other hand, using calculus and integration by parts we have the following 
facts 

d a d 1 /i 
(2.7) d-tl~ a t & 

/o / ( ' (  "" ) T [ 9 ( t ) d t =  ~-g a + ~ - y - 1  D(t)dt, 

~_+1 2o" } JR2+1 Cr 

Then, multiplying the formula (2.6) by o-l--a~# and integrating the outcome over 
(0, +co) with respect to dr, and using the identities (2.8) and (2.9), respectively, 
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in the terms arising after the multiplication by u1-~/6 on the left- and right-hand 
sides of (2.6) (the fourth term on the right-hand side), it follows from (2.7) that 

(2.1o) 

2 -- Otu-VlogG.Vu- u GdX 

s + IVul2G D o V ~ . V u d X  ;+1 -g log~/  JR; +1 

f R  ~yl--c~ +2 ( Au+Otu)(Otu- V log G. Vu)G dX 
;+1 

+c~ u2(O,G-AG) d X -  - - I V u l 2 ( O t O - A G )  dX. 
2+ 1 2+1 (~ 

On the other hand, 

(2.11) fo x f ~  1 -~H(t) dt= a --i-~I-Z(t) dt. 

and multiplying (2.1) by 1 -a 5aa  , integrating the outcome with respect to dt over 
(0, +oc) and using (2.11) it follows that 

a fo~ --~ D(t) dt- ~-~ fo~ - ~ ( r H  (t) dt = -a fR;+l ~-gu(Au+Otu)G dX 
os 1 
-2 ++l u2(OtG-AG) dX. 

Then, replacing the two first integrals on the right-hand side of (2.10) by the right- 
hand side of the previous identity we obtain the formula 

R a a  2 2 ~+~ (71-C~(Otu-~logG.~u---u~GdX+f--~ 2o- / JR; +' a '- '~ - - - - F - ~  log a [Vu l2GdX 

IR (Ta-~(Au+Otu)(Otu-Vl~ )GdX (2.12) =2  
#+~ 6" 

-4- -~a fR~_+l ~ u2(OtG-/kG) dX- s ~ ]Vu]2(OtG-/kG)dX 

fR 0"1 -~ -2 -- DcVu.VudX. ~+~ 
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Now, if F=F(x, t) rewrite the term 

ad~ 
Otu-V log G.Vu- ~ u  

on the l e •hand  side of (2.12) as 

(Otu- V logG.vu+l F u - ~ u )  -~  Fu, 

and after expanding the corresponding square, the left-hand side of (2.i2) is equal 
to 

(2.13) 

. 2 

2 - Otu-VlogG.Vu+-~Fu--~-~u| GdX 

o-l--c~ 
+ s  -~ log~-~ u2F2GdX 

/ R  G l - a (  2 Za 1 a a  ) --2 - Otu-VlogG.Vu+zFu--2-u uFGdX. 
~+1 (7 

Proceeding in the same way with the term Otu-V log G.Vu-a~/2cru appearing 
in the first integral on the right-hand side of (2.12) and rewriting the two terms 
OtG-AG in the second and third integrals in the same right-hand side as 

(Or G -  A G -  FG) + FG, 

it follows from the identity �89 2 that  this right-hand 
side is equal to 

(2.14) 

1 adr 2/R;+I 

- - f R  Gl--c~ ;+~ & IVuI2(OtG-AG-FG) dX 

a s s __(A+Ot)(u2)Fad X +-2 l u 2  FG dX - 1 0 "1-5 

R o'l--c~ -2 - -  DGVu.VudX 
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and from (2.12), (2.13) and (2.14) we have, 

( J 2 
R o'l--a 1 aG "~ 2 - Otu-VlogG.Vu+~Fu--~-~ul GdX 

2-t-1 (~ 

JR ~1-~ ------~ 
+ - I V u l i G d x  ;+1 & log 

/R O "1-~ ( l _ a d S  
(2.15) = 2  ;+1 (5- ( A '~ --+- at ~.~ ) Otu-Vloga.Vu+-~l*u-~-~u)adX 

+I+II+ 2 /R2+I-~2(OtG-AG-FG)dX 

;+~ ~ Ivul2(O'G-AG-FG)dX-2 ~_-p1 --~GV~'~'V"dX'a 

where 

and 

1 fR Gl--a 
l = - ~  2-+~ d 

1 /N  o ' l -a  
2 ~_+~ (5- 

- - u 2 F 2 G d X +  2 /R,2+, ~'u2FGdX 

- - ( A +  Or)(u2)FG dX  

6 1 c~6 X II= 2 /R$+l Gl:'* (Otu-VlogG.Vu+~Fu-~-~u)uFGd �9 

In the final applicat ion of these formulae, F will be a flmction which can be 
differentiated only one time, for this reason we integrate by- par ts  the opera tor  

P=A+Ot which is act ing over u 2 in the third integral of I over FG. but  only using 

one derivative with respect to the space variables of F .  In particular,  

i /R o-l--c~ 
2 :+~ (5- ( A + O ' ) ( u 2 ) F a d X  

f R  "Gl-a  " 

1 / R  ~  - - u  2 d i v ( V G F )  dX 

os 1 ; 
= - 2  ;+~ u2FGdX+ 

o- an;+~ dr 

I /R O" 1 -- ~ 

- -  uVu. VFG dX 

- - u V u . V F G  dX 
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and replacing the right-hand side of this identity by the third integral in the defini- 
tion of I it follows that  

J R  ~ l - a 21/R (2.16) I =  - - u V u . V F G d X + -  

where M is given in Lemma 1. 
Now~ 

c~1-~ uZM dX, 
& 

i 0"l--c~ 
I I  = - - [ O t ( u 2 ) F G - V G . V ( u 2 ) F ]  d X  

JR O'l-c~ /i + - - u 2 F 2 G d X - a  l u 2 F G d X  
;+i ~ ~+~ a~ 

and integrating by parts all the derivatives acting over u 2 in the first integral, 

R 0.1 --c~ I I = -  ~_+1 (7 u 2 A l d X  

We obtain from (2.16) that  

I + I I =  2 +~ --(~ u V u . V F G d X - - ~  2~ +~ ~ u 2 M d X .  

Finally, plugging the last identity into (2.15) yields the formula in Lemma 1. [] 

L e m m a  2. Assume that c~ and G are as before. Then, the following identity 
holds when u E C ~ ( R ~  +1) and c~ER, 

log ~[~( Au+Ot~) + [Vul2]a dX 

o-12a l o g ~  2 (o~G- Ac) d X  

1 - - - ~  2 

Proof. This follows upon multiplying the identity 

( A + 0 d u  2 = 2 ~ ( A u + 0 , ~ ) + 2 [ w r  2 

by (c~ 1 ~/(~)log(a/~t)G and integrating by parts the operator A+Ot acting on u 2 
over the other terms in the corresponding integral. [] 
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O<O<N,  

for some constant N.  

L e m m a  3. Given m > 0  there is a constant Cm such that for all y>O and 
0 < E < I ,  

Proof. The maximum value of the function g(y) = y - E e  y on R+ is bounded by 
log ( l /e ) ,  proving the case m =  1. The other cases follow from this, the convexity of 
ym when r e > l ,  and the fact that  (a+b) m < a ' + b  m when m < l .  [] 

L e m m a  4. Assume that 0: (0, 1)--+R+ satisfies 

/o'( ItO(t)J < N0(t) and 1+log 1"~ O(t) dt < N 
- t )  t - 

Then, the solution to the ordinary differential equation 

d 
l o g  ( ~ ) - -  O(~,'t) or(0) =0 .  0 ( 0 ) =  1. 

d-~ VJ - - - 7 - '  

where "y>0, has the following properties when 0<q , t< l .  

t e - "  < (7(t) _< t, 

e -N < d(t) < 1, 

(7log ~ + ~rlog a _< 3N, 

I~o~ ( 1 lo-~-~ ~ o(~/t) 
\ J ~  <-aNeN t 

Pro@ The solution of the ordinary differential equation is 

and the verification of the properties is straightforward. [] 

From now on 0 < 5 < 1  denotes a small number to be chosen later, and c~ and 
two numbers satisfying a_> 1 and 0 < J_< 1. 

L e m m a  5. Let G ( x , t ) = t - ' / 2 e  -Ix12/4t and (7 denote the function defined in 
Lemma 4 for ~/=c~/6 2 and 

/ 1\1+3/2 
O( t )= t21~( logy )  . 
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Then, there is a constant N depending on ~ and n such that the following inequalities 
hold for all functions u c C ~  (R ~ x [0, 1/2"/)), 

/R,~_+, -lo~u2 ( lx~lt~ A - ~  +t~/2-1)G dX < NeNa) a+N /R2+l u2 dX 
+N62 [ 10(Tt)u2GdX" 

jH~+ ~ ~a t 
1 /3 2+2 1+2 

<NeN~ ~+N [ tlVuI~dX+N~/R ~-~O(~t) lWl2GdX. 
- j a ; + ~  ~+~ t 

Pro@ From Lemma 3 with m = � 8 9  and taking a=(^tt) n/2+1-3/2+c~ and y =  
]xl2/4t we have that for x C R  n and 0 < 2 7 t < 1 ,  

Ixl9 G = 23t3/2-1-n/2 ( I xl2 "13/2e_lx12/4t 
t \ 4 t J  

Thus, 

(2.17) ItlgG < 7~+Nt ~ +620(~tt) G. 

Using again Lemma 3 with m = l + � 8 9  and the same value of e. 

]x]2+~t-~-G _< N @/~/2+l-2/2+atc*-l-(~log l ~ -~j  t ~/2-1 G) , 

and in particular 

Ix] 2+z 
(2.18) t 2 G<')'~+Nt~+a520(~/t) 

Multiplying (2.17) and (2.18) by cr-~u 2 and recalling that a(t)>e-Nt when 
0 < T t < l ,  the first inequality follows. The proof of the second inequality is simi- 
lar. [] 
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L e m m a  6. Let D be as in Theorem 2 and 0 < 3 < 1 .  Then, there is a constant 
N depending on/3, n and IIVpU~ such that the inequality 

/D kCl~2-2 f2 dx <_ N / ;  Ixl31Vfl = dx 

holds for all f E C ~ ( D ) .  

Pro@ When D={z:x~  >0} the lemma follows from the identity div(xlxl ~-2) = 
(n+~-2 ) lx l~ -2  and the observation that the boundary term arising from an ap- 
plication of the divergence theorem is identically zero. In general, flattening the 
boundary of D using the change of variables y' =x ' ,  y,~ =xn +~(z ' )  and undoing the 
change of variables we find tha.t 

/D[I x'I2+(Xn - : ( x ' )  )2](~-2)/2 f 2 dx <_ N/D[Ix'12 + (z,1-:(x'))2]3/21vfP dx, 

and the lemma follows because v / I x , [Z+(x ,~ -~(x ' ) )  ~ _<Nlml in D and 0 < ~ < 1 .  [] 

3 .  I n  t h e  i n t e r i o r  

To prove Theorem 1 we use the following Carleman inequality. 

T h e o r e m  4. Define G, 0 and ~ as in Lemma 5 and take 2=1 when the 
operator P satisfies the first condition in Theorem 1. Then, there are numbers 5o 
and N depending on )~, M, n and 9 such that if ~>>_2, 3=a /d  2 and 5<_50, the 
following inequality holds for all uEC~: (R n x (0, 1/22,)), 

f a  10(Tt)  
c~ u~G dX + GI_a O(~'t) IV,,I~G dX < N s 

t - ;+~ 

+eNcY'~ c~+N /R,~+~ 
+ 

Gl-~lPul2GdX 

(u 2 +tlV-,,I 2) dX. 

Pro@ We begin by assuming that the coefficient matrix of P satisfies the 
second condition in Theorem 1 for some 0 < 3 < 1. Without loss of generality we may 
assume that a(0, 0)=Z. Defining r(x) = Izl and F = r e ( 1 - I V r l 2 ) / 4 t  2, a calculation 
shows that 

O t G - A G =  ( r2(1 -IVrl2)4t z m IVrl2-12~ + *'/xr- (~- a)) G 2 t  
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(3.2) 

Because, 

and 

(3.1) IFI <min { Ix12t2 , (Ix12+t)x+~/2}t2 , IOtG-AG-FG]< (Ixl2+t)~/2G.t 
Fixing c~_>2 and with 7=c~/6 2, 0 being defined as in Lemma 5 and a denoting 

the corresponding solution in Lemma 4. we have from the identity in Lemma 2, 
(3.1), the bounds for a in Lemma 4 and the first inequality in Lemma 5 that for 
ueC~(R ~ x (0, 1/27)), 

s l O(,~t) ~/I~ s  o(~,t) f ct u2GdX < [Vul2GdX+ ~rl-a[pu[2GdX 
~+~ a m t ~+1 t aR;+l 

+eN%~+~,. f~ u2dX+ad3 s 10(Tt)uzGdX, 
;+1 !;+~ cr~ t �9 

and choosing 6 sufficiently small 

s 1 s o.l__a 0(')'t ) a 0(Tt) u2 G dX < IWl2a dX 
~+~ a ~ t ~+1 t 

4-/R at-~lPu]2GdX+eX~'l~+N f u2dX. 
;~11 J R;4-1 

@t G+O~jG O~GOjG G = 0  for all i,j= 1,...,n 
and IVGI<lxlG/t it is simple to verify that  

(3.3) IDGW-Vul < (Ix12+t)3/2 IVul2G, 
t 

and from Lemma 4 and (3.1), 

(3.4) [o'VF] < (Izl2+t)(l+~)/2t and ]~ml ~< (Iz12+t)a+3/2t2 G. 
Now, using the Cauchy-Schwarz inequality to handle the first term on the right- 
hand side of the identity in Lemma 1. it follows from the identity in Lemma 1, the 
bounds (3.1), (3.3), (3.4) and Lemma 5, that  

s lvul2GdX< [ al_olpu12GdX+c~63 s 10(~t)uzGdX 

+~3 s s o(~t) IV~12adX 
;+1 t 

1 ([zl2+t) (a+3~/2 
(3.5) + - - lu l  IVul GdX 

;+i cr~ t 

+eNaTa+N JRf;+l (u2 +tlVul2) dX. 
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Using again the Cauchy-Schwarz inequality, we have 

t aa2-+l t2 GdX 

(3.6) + fa;+  ~1-~ IVuI2 (Ixl~ +t)~/2a dX, 

and thus (3.2), (3.5), (3.6) and Lemma 5 imply that if 5 is sufficiently small the 
inequality in Theorem 4 holds for all flmctions u cC~ ( R n x  (0, 1/23)). 

When the operator P satisfies the first condition in Theorem 1, the operator 

i,j=l 

satisfies the second condition in Theorem 1 with .3=1. Thus, the inequality in 
Theorem 4 holds if we replace P by Q and consider this value of fl in the definition 
of 0 and o. On the other hand, 

Q( (Oku) 2) = 20~ (akuQ(~)) + 20~ (O~uO~a ~J O~) - 2OkkuQ(u) 
-- 2C~kaiJ c~jttOik~l-~- Bu iJ OiktlOjk U, 

for k = l ,  ... ,n. Then, multiplying this identity by a2-~G and using again partial 
integration we have that  

n 

+s247 ~2-~ d X  

(3.7) +fa;+ 1 c,2-~ 1~TGI IO(u)l+lVul21VGI)dX 

+ fR:+, ~-~ IQ(u)l+pvul IVOkuI)GdX, 

where Q* G '~ ( )=~-~i,j=l Oi (a iJ (x ,O)OjG)-Ot  G. Using that 7<O(Tt)/t to handle the 
first integral on the right-hand side of (3.7), that 0_< 1/7 in the support of u and 
the bounds 

\ t 2  a, IVal~< t 
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to handle the other terms, it is simple to derive from (3.7), the second inequality in 
Lemma 5 wi th /3= 1 and the Cauchy-Schwarz inequality that  

(3.8) +/n .2+ 1 ryl-alQ(u)12G dX-t-eNaTa+N J'R~_+ ~ t lVu[ 2 dX. 

This inequality and the fact that  the inequality in Theorem 4 holds for the 
operator Q give that  

1 /R ~r2_alD2ul2GdX+afR 10(~/t)u2GdX 
5 2 ;+~ ~+~ a ~ t 

+ / R  crl-~ O(~tt)IVul2GdX 
;+, t 

(3.9) ~ JRf~t +1 ~ ' - ~  IQ(u) 12G dX +e:~'%'~+N JRf; +~(u2 +t lVul2)dX.  

Finally, since la(x, t)-a(x, o)I<_M~, it is possible to replace P by Q in the 
first term on the right-hand side of the last inequality choosing d > 0 sufficiently small 
and hiding the corresponding error terms on the left-hand side of the inequality, 
which proves Theorem 4. [] 

Proof of Theorem 1. Proceeding as in [5] and [6], if u satisfies the conditions in 
Theorem 1 in B2 x [0, 2], given an integer k_> 1 we apply the inequality in Theorem 4 
with a = 2 k  to u~=u~(t)w(x), where W E C ~ ( R  n) and ,% ~C~:(R) satisfy ~ = 1  for 
Ixl<l ,  ~ = 0  for Ixl>~, c;e=l when e < t < l / 4 7  and Fe=0 when t_<�89 or t_>1/27. 
Because 5-Z<O(Tt)/t when 0 < 2 7 t <  1, choosing ~ sufficiently small it is possible to 
hide in the standard way the term M(IVu~ I+lu~ I) arising on the right-hand side of 
the inequality 

IPu~ I -< M(IVu,  I+ lu, I) + / t l lu~V~)]  + l u ~  AWl + lu~'Ot~e I+ ]~Vu-V~P[, 

and since u satisfies (1.1) and e-Nt<~r<t when 0 < T t < l .  after letting e tend to 
zero it follows that  

--k I/2 t G UllL2(Bl• L2(Ba,2x(O.1))+IlUlIL2(B2• ) 
(3.10) gk -k 1/2 + e  (I]~ G 21 L2((B2\B1)x(O.1/27)) 

+llt-kG1/2ullL2tB2x(1/4~,,1/2~))). 
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On the other hand, t-kG1/2<_eNkk k when either t>0  and [x]_>l or t>_1/47. Also, 
from Stirling's formula kk<_eXkk! for all k > l ,  [2]. These two facts, (3.10) and 
standard estimates for subsolutions of parabolic inequalities imply that  there is a 
constant N depending on n, A, ,,3 and M such that u satisfies 

1 - l + k  I [[t--kuG1/2IIL2(Blx(0.2)) < ( , ~ ' )  k. lltlllL~<B2x(0,2)> for all k > 0 .  

Then, multiplying this inequaliW by 2k/Nkk! and summing over k, 

[[e2/N~t-'ff4e-lxl2/StullL2(Bl• <_ XllullL~(B2• 

Using this inequality and the observation that  1/Nt> I z 1 2 / s t  - Ix-yl2/8t when t>0  
1 and lyl <8/N one gets that  , Ixl_<~ 

(3.11) Ilt-~/4e-lx-yl~/StullL2(B~• < e-~/X~llullL~(B~ • 

when lyl<-S/N, o < s <  1. Finallb# standard estimates for subsolutions of parabolic 
inequalities [11] imply that with constants depending on A, n and M, 

1 ~2sj(  F 1 a n d 0 < s <  1 (3.12) lu(y,s)]<s~/2+l ~ B~(u) lu]dX when]y]<_~ ~, 

and from (3.11) and (3.12), 

8 and 0 < t < l .  lu(x,t)l <_Ne--t/N~IlUlIL~(m• when I x] _< N 

proving Theorem 1. [] 

Remark. If one replaces the condition (i) in Theorem 1 by 

]a(x,O)-a(O,O) I <_Mlxl ;3, [Va(x,0)[<_ Mlxl 3-1 and [a(x,t)-a(x,O)[ <Mx/t 

for some 0 < ~ < 1 ,  the result in Theorem 1 still holds. This follows because the 
inequality 

~ ,  'x'l-2f2 dx< /R, ]x'l]Vf'2 dx, 

holds for all />0  and f E C ~ ( R  '~) (div(xlxll-2)=(n+l-2)lxll-2). With this it is 
possible to handle the corresponding terms arising in (3.7), though in this case, (3.8) 
and (3.9) hold for functions uEC~:(B~o x (0, 1/2"))), where r0 is sufficiently small 
depending on n, ,X, M and 3, and this suffices to prove the unique continuation 
property. 
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4. At the boundary 

Proof of Theorem 2. Assume tha t  D = { ( x ' ,  x,~):x~ > p ( x ' ) } ,  where p: R r~-I -+ 
R is a C i,i function satisfying ~ (0 )= 0  and Vp(0 )=0 .  I f u  satisfies (1.6) and (1.1) in 

(B2ND) • [0, 2] and either u or its conormal derivative is zero on (B2NOD)• [0, 2], 
then using standard methods it is possible to flatten the boundary of D by means 
of a C 1'1 change of variables, in such a way that  after the transformation the 

composition, also denoted u, satisfies (1.1) and (1.6) in (BroAR~)•  [0,2] for some 
r0 >0  mid with a new parabolic operator P2 whose coefficient matr ix  a(x, t) satisfies 
the first condition in Theorem 1 for x, yEB~oAR+, tE[0, 2] and 

(4.1) ~ ( x ' , 0 , t ) = 0  f o r i = l  .... , ~ - <  Ix'l_<~0 andt>_0. 

Extending u for x n < 0  as an odd function in the x,, variable when u vanishes on 
the lateral boundary or as an even function when its conormal derivative is zero, 
one gets a function u satisfying (1.1) and (1.6) in a neighborhood of (0, 0) in R ~+l 
with a new parabolic operator Pa, which due to (4.1) satisfies the first condition 
in Theorem 1. These s tandard arguments reduce the proof of the first case in 
Theorem 2 to Theorem 1. 

When D is a Lipschitz domain in R ~ and if we carry out the calculations in the 
proof in Lemma 1 over D x [0, +oc)  with a function uEC x (D x (0, +vc))  satisfying 

u = 0  on OD x [0, +oc),  one gets exactly the same identity except for a boundary 
term arising on the right-hand side and given by 

(4.2) /o ~ - ~  D• ~ VG.NIVul 2d$, 

where n denotes the unit exterior normal to OD. N = g  - i  (x, t)n and dS= dcr dr. This 

is because u = 0  on OD and the fact that  from all the integration by parts carried 
out in the proof of Lemma 1, there is only one which generates a nonzero boundary 
term. This occurs in applying the Rellich-Ne~.as identity in order to find the value 
o f / ) ( t )  (see (2.2), (2.3) and (2.4)). In particular, in this case 

.o(t) = - 2  f IVul2(O,a-AC)dz 

+2 fz)DcVu'Vudx- foDVG.NlVu,2 dm 
To derive this formula, we have used 

( V a n )  I W l  ~ - 2 V C . W ( W , n )  -- - V C . N l V u (  ' 
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whenever  u ( . ,  t)-=0 on OD. Here ({rl) denotes  the  usual inner p roduc t  on R ~ of 
wi th  r/, while the  �9 p roduc t  of two vector  fields and the gradient  of a funct ion was 

defined at  the  beginning of Section 2. 

In this case, L e m m a  2 also remains  invariant .  For these reasons, to prove 
T h e o r e m  2 when OD satisfies (1.9) it suffices to find a funct ion G so t ha t  the bounds  

(3.1), (a.3) and (3.4) hold on (BroND)• [0, ro 2] and  VG.N<_O on (B~oNOD) • [0, rg] 
for some r0 >0.  Here  we take G=t- ' /2e -r(z't)2/4t, where 

,-(~, t) = I~l- 2(a + M>,,,(Ix? +t) ~/~, 

and F = r 2 ( 1 - I V r [ 2 ) / 4 t ,  and with  these choices it is easy to verify tha t  provided r0 

is sufficiently small  this G satisfies the  previous requi rements  and 

~lxl  ~ ~(x, t) ~ Nlxl for all (x, t) E (B~ o ND)  x [0, r~]. 

I t  is also well known tha t  the  s t andard  es t imates  for subsolut ions to parabol ic  
inequalit ies hold near  the bounda ry  when u has ei ther  zero Dirichlet  or N e u m a n n  
da t a  on the  lateral  bounda ry  [11]. In par t icular ,  if u satisfies (1.6) in (B2AD) x [0, 2] 

and ei ther  u - 0  or Vu.N=-O on (B2AOD) x [0, 2], then  

[u(y,s)]<~ 1 fs2s/B .Sn/2+ 1 lul dX when (y, s) E (B1/2AD) • (0, 1), 

and with  a cons tant  depending on A, n, M and [[V~[[~:. 

F rom the above discussion, it is clear t ha t  the  same a rgumen t  can be repea ted  
again to ob ta in  the  second case in T h e o r e m  2 when the bounda ry  of D satisfies the 
condit ion (1.9) for some A > 0  and the coefficients of P sa t i sD the  second condit ion 
in T h e o r e m  1. Observe  tha t  under  the  condit ion (1.9) we cannot  expect  to control  
the  second derivat ives of u near  the bounda ry  when u has zero Dirichlet da t a  on 
the  lateral  boundary,  and this forces us to have to work out  the proof  wi th  the  full 

ope ra to r  P when its coefficients depend on the  t ime variable.  

To prove T h e o r e m  2 when the  convexity condit ion (1.10) holds and in order to 
simplify and make  the a rgumen t s  more  clear we assmne t h a t  a(x, 0 ) ~ Z  (Q=L+Ot 
is the  backward  heat  opera to r  on R'~). Under  this assumpt ion ,  (1.10) implies tha t  
wi th  r(x) = Ixl-43Ax~ Ixl ~ and G=t-' /2e -r(z):/4t we have 

VG.N - 
1 x ' . V ~ ( x ' )  - ~  ' 1 v(X ) G , . ~ - l x l l + 3 - G  

2t v / l + l V ~ l  ~ t 
on (B,.onOD) x [0, 2J, 
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and the arguments up to (4.2) imply that  the following inequality holds with con- 
stants independent of a _> 2 and 5_< 50 for all u E C ~  ((Br0 N D) x (0, 1/23`)) satisfying 
u = 0  on (Br o nOD) x (0, 2), 

fo /,~ l O(3 t̀)~2adX+fD ax-~O(3`t)lVul2GdX -- D+ aa-~VG.NIVu[2 d$+a + a ~ t + t 

(4.3) < ~  ~I-~IQ(U)]2GdX+eN~3̀~+N f (u2+tlVul2)dX, 
+ JD+ 

where OD+ =OD x (0, +oc) and D+ =D x (0, +ac). 
When the integration by parts carried out in the derivation of (3.7) is done over 

D with uEC~((B~oAD ) x (0, 1/23`)), u-=0 on ODx [0, 2] and G defined as above, 
one gets the following boundary terms on the right-hand side of (3.7), 

(4.4) - f ~2-~IWl2Va.N~+f ~-~[VlWI~.N-2W.NQ(~)]adS, 
JOD+ JOD+ 

where now the symbols �9 and V denote, respectively, the usual product and gradient 
in R n. Observe that the first term in (4.4) can be controlled by 1/3' times the 
"good" boundary term appearing in (4.3), and from (3.7), (4.3) and (4.4) we get 
that with constants independent of a>_2 and 6<50 the following inequality holds 
for all uEC~((B~oAD ) x (0, 1/23`)), u = 0  on (B~oAOD) x (0, 2), 

+ 52 eNC~ 3`a+ N __/D + (u2 +t[Vul2) d X  

(4.5) +s ~2-~ [VlVul 2 N -  2Vu-NQ(u)]a d8. 

Well known calculations [8, Theorems 3.1.1.1. 3.1.1.2 and 3.1.2.1] show that 
the following identity holds when u ( . ,  t) =0  on OD. 

(4.6) VIVu[2.N-2Vu.NQ(u) = - ( 0 ~ u )  2 ( A p  D 2 p V ~ ' V ~ ' ~  
l + l V ~ l  2 ] ~ 2 "  

The convexity condition (1.10) implies that D2c2>_-3(l+3)A[x'[3-1Z, and 
since the matrix 27-V~o|162 2) is positive and the identity 

[ (  At2 l+ [Vp[  ~ -- trace D2~ Z I+IVc212]j ,  
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holds, it follows that  

(4.7) fOD+a2-~[VlVul2.N-2Vu.NQ(u)]GdS ~ tD+a2-~lxlz-llVul2Gd$. 

Integrating over D the Rellich Ne~as identity 

div(YlVul 2) - 2  div[(Y.Vu)Vu] = IW, I 2 div Y-2Y. VuAu-2EyjEuOju, 

with vector field Y=lxI3-1GeT, and using the Cauchy-Schwarz inequality we get 

fOD+ Cr2-'~[x[~3-1]Vu[2G d$ ~ /D+ a2-~[x]3-2]Vu]2G dX 
X 3 

+ /D+ C~2-a [--~ 'Vu[2G dX 

+ /D. ~2-~lxl31D2ula dX, 
and using Lemma 6 to handle the first term on the right-hand side of the previous 
inequality it follows that  

  -~  ,2- lxl"lv  la dx  
(4.8) 

The second inequality in Lemma 5 gives that the second term in the previous 
right-hand side is bounded by 

(4.9) 52~ s176 fD tlVu]2dX. + t = 

and from (4.3), (4.5), (4.7), (4.8) and (4.9) it follows that if r0 is sufficiently small, 
there is a constant independent of a,_>2 and d_~6o such that the inequality 

~ }2 ~2-aID2u'2GdX-H(~ { {yaI O(2't)u2GdXA-/Dt ~l-a O(~/t)[~t'2Gdx 
+ JD+ + 

</D+ ~I-~[Q(u)I2G dX +e:;%, ~+v /D_ (U2 +tlVul2)dX 

holds for all functions ttEC~ ((B~ 0 riD) x (0.1/22.)) satisfying u = 0  on (B~ 0 AOD) x 
(0,2). 
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In general, when Q is a backward parabolic operator with tiine-independent 

Lipschitz coefficients, the same calculations can be carried out [8, Theorem 3.1.3.1], 

and the analogous boundary terms to those appearing in (4.4) and arising in the 

calculation (3.7) can be handled in a similar way. These arguments finish the proof 
of Theorem 2. [] 
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