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Melin-Hormander inequality in a
Wiener type pseudo-differential algebra

Frédéric Hérau

Abstract. We prove a Melin-Hormander inequality for a Banach algebra of pseudo-differ-
ential operators whose calculus was developed by Sjéstrand. The main new difficulties in the proof
are settled by a stationary phase method tailored to the low-regularity of the symbols.

Introduction and result

In a series of recent papers ([7], [8]), J. Sjostrand studied a Wiener algebra of
pseudo-differential operators. One of the remarkable features of this class is that the
definition does not explicitly involve derivatives of the symbol but only properties
of translation invariance in R?® and Fourier transforms. The definition of this class
¥ could read as follows.

Definition 0.1. (') We denote by ¥ the set of a€S’(R?") such that

(1) sup |pya(X)|€ L' (dX),

Y€R2n
where p€S(R?")\{0}, ¢y (-)=¢(- —Y) for YER?", and a stands for the Fourier
transform of a.

The class ¥ contains the familiar S ; class, and Sjéstrand develops a calculus of
pseudo-differential operators for this class: L? boundedness, composition, adjoints,
sharp Garding inequality, using a version of the stationary phase method. In [8], the
author asks the natural question of Melin inequality for the class £. In the present
paper, we give a positive answer to this question and we obtain in fact Hérmander’s
improvement of Melin’s inequality with a gain of g derivatives for the class X.

Going back to the proof of the sharp Garding inequality in [8], one can note
that the method of proof relies on the Fourier-Bros-Iagolnitzer transform, which

(1) See also Boulkhemair [2] for a different definition, and also Proposition 1 below.
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provides a positive quantization, and also on a careful study of the remainders. It
turns out that the remainders provided by the Fourier-Bros—Iagolnitzer method are
still relevant for the class %, if one starts with a symbol with two derivatives in ¥. We
shall follow an analogous course for our result. Hérmander’s proof involves several
remainders, all of them with an explicit expression as oscillatory integrals. We
shall prove the stability of the class X for these integrals. It would be interesting to
characterize the class of integrals for which this phenomenon occurs. In particular it
seems that the usual proof of the Fefferman-Phong inequality does not provide good
remainders for the Sjdstrand class X. This fact is essentially due to the induction
step and the implicit “bending” of the phase space related to it.

Let us now describe our results. We equip from now on R?" with its canonical
symplectic form 0=Z?:1 d¢;Ndx;. The dual g7 of a positive definite quadratic
form on R?™ with respect to o is defined by g7 (T)=sup,(y)—; o(T, Y)2. We choose
once and for all some positive quadratic form I satisfying I'” =T.

We recall that if ) is a positive semi-definite quadratic form such that its polar-
ized version is given by Q(X,Y)=0(X, FY), then the spectrum of F'/i is contained
in R, and Tr,(Q) is the sum of its positive elements counted with multiplicities.
We can then write the following lower-bound result for second-order real-valued
polynomials. For such a polynomial A, we have (see [6])

(2) ReA(z,D)>0 <= inf(A)+3Tr,(4")>0

The Weyl quantization of a function a€S(R?") is defined by

(3) (a™u) 27r //Rzn elz=v8)q

The Weyl quantization of an arbitrary element a€S’(R?") is the continuous oper-
ator from S(R™) to §'(R™) with distribution kernel given by

(4) (2i)n/"ei(z—y.£) (:c+?l '5) d,

Y €)uly) dyds, ueSR™).

where the integral is interpreted in the distribution sense. We can also define the
#-product, induced by the composition of symbols. For any a; and as in S(R?") we
have (aifa2)* =a}’ -a¥, where

(5) (alﬁa@)(x 7T2n // ~210(X X1.X= X2)G1(X1)d?(X2)dX1 dXs.
R4n

We shall prove the following theorem, with a “gain” of g derivatives, under a weak
regularity assumption on the symbol.
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Theorem 0.2. Let acW3>(R2") be real-valued and such that a®€X. Con-
sider then the semi-classical family of symbols {an}r>1 where for all A>1 we let
aa=A%a(A"Y2.). Suppose that there exists Cy>1 such that for allt>0 and A>1,

(6) ay+t0'>0 = ap+3Tri(a}y+Cotl) >0.

Then there is C{>0 such that a{ +C)HAY/>>0 for all A>1.

The main part of this work is the very precise study of the number of derivatives
of the symbol really needed in the study of remainders. It appears that we only
need three derivatives of a, and that we can assume that ¢® is in ¥, without any
more reference to derivatives. Naturally, here we cannot use the powerful tools of
asymptotic quantization, as in the original paper of Hérmander [5, Theorem 6.2].
Nevertheless, the good behavior of the algebra ¥ under compositions of symbols is
sufficient to get a similar result.

As in [5, Theorem 6.2], we shall use the fact that we can reduce the problem to
the study of three terms associated to the symbol—a commutator term. an integral
remainder term, and an oscillatory term to be treated using (2)—the first two of
them being the remainders. During their study, we will also see the necessity of
tailoring the phase space into conformal boxes of size A0 (in place of A/2 in the
semi-classical metric).

In the first part of this paper we give some properties of the class ¥. In
particular we give alternative definitions of it and we study how its element behave
under f-product. In the second part, we give the proof of Theorem 0.2. At first
we study the integral remainder term, then the commutator term, and eventually
we recall briefly the method employed by Hoérmander in [5, Theorem 6.2} for the
oscillatory term, which can be used here without change.

I want to thank N. Lerner and the referee for useful remarks about this work.

1. Miscellaneous properties of the class

We refer to [7] and [8] for a detailed study of the class X (see also [2] and [3]).
We recall here some properties needed later. Here we first notice that X is a Banach
space for the norm

lallz = / sup |gva(X)| dX,
R2n Y

depending on p€S(R?")\{0}. Since the natural duality on the phase space R?"
is induced by o, we shall use the following definition of the Fourier transform
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on S'(R2")

(7) &(X)z(]—'a)(X):—lg /R . e 20XY)o(Y) dY,

m

where the integral is to be taken in the distribution sense. This twisted Fourier
transform has properties similar to the usual one, in particular we have F2=1Id and
F is unitary on L2(R?").

1.1. An alternative description of the class ¥

The aim of this section is to give other definitions of the class . In particular
we see that its elements can also be thought of as averages of elements in S°=53
multiplied by exponential functions.

Proposition 1.1. Let acS'(R?"). Then a€X if and only if any of the follow-
ing five equivalent conditions is satisfied:
(i) There is a function a*€ LY (R?") and a function p€S(R?™)\{0} such that

lpya(X)| <a*(X),

when X,Y €eR®™, where py (X)=¢(X-Y).
(ii) There is for every p€S(R?*") a function al,€ L'(R*") such that

leva(X)| <al(X),

when X,Y eR?",
(iii) There is a function a*€ LY (R*") such that
a0l 16l )a ),
laj<2n+1
when X,Y €R2" and peS(R?™).
(iv) One may write

a(X)= / e_Zi”(x‘Y)x(X, Y)dy,
R2n

where x is a smooth function such that vfg., supy [0%x(X,Y)|dY <oco for every
acN?",
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(v) There is a measure space Q together with measurable mappings
Q3w— Y, €R™ and Q3wr—a,€S5°

such that [, p(a.) dw<oo for every semi-norm p on S°, and such that

a(X) = /Q eI g (X) do

Remark 1.2. Recall that (i) is exactly Definition 0.1. Moreover, the norm in
¥ is comparable with the norm in L!(R?") of the functions a*, @}, and p(a,) for
suitable p.

Since multiplication of a symbol in S° by the function X e~27(X-¥) where
Y €R?", does not change the norm in L?(R?") of its Weyl quantization, it is im-
mediate from (iv) that a¥(z, D) is continuous in L?(R") (with a norm that can be
estimated by the norm of a in ¥) when a€X.

Proof. We shall prove (i) = (ii) = (iii) = (iv) = (v) = (i).

(i) = (ii) Let peS(R2?"), and consider poeS(R?")\{0} and ajeL'(R*")
such that |pgyal<ay for all YER?". Consider further yp€S(R?*") such that
th Yo dX =1 and such that suppig is contained in the interior of suppo. Let
us first suppose that a belongs to the Schwartz space S(R?"). We can write, for
XeR?™,

1

pva(X)=— / e~20X-D) o (7_Y)a(Z) dZ
R2n

:;rl_n// €_2i0(x'2)¢’(2—y)¢0(2—T)a(Z)deZ,
R4n

Using the condition on the supports, we get

— 1 )
pra(X)=— / /R . e 20 XD (7Y )y(Z—T)o(Z-T)a(Z) dT dZ

1 . -
T an / / / e 2o X=UL) o(Z-Y)y(Z-T)pora(U)dU dT dZ,
RGn

where yo=10/v0 and o r=wo(- ~T). A simple argument of approximation yields
the same formula for arbitrary a in S’(R?") (see the beginning of Subsection 1.3
below). Now choose a symplectic basis of R?" in which R*"3> X =(X, ..., X2,) and
F:Z?Zl |dX;|?. Let us consider for j€N,={1,....n} the differential operators

o1
(8) Pj=l+2—iaz

j+n o

.1
Pitn=1— égazj,
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for which we have,
Pje—Zia(X—U,Z) —_ (Z+XJ _Uj)e-—Zia(X—U.Z)’ ] — 17 e, 2n,

and let us denote by *P; the transpose of P;. Consider now a finite partition of
unity

2n 2
(9) 1=j§z/)j(X—U) for which (14+X7)> %— on supp ¥;,

where (X)=(1+T(X))!/2. Using this and making N=2n+1 integrations by parts
with the operators defined in (8), we can write

— 1
oya(X)=—-

—210'(X U,Z) o
xZ ///R . Ty P e (2T, (X ~U)FTa(U) dU dT .

Since g ra|<ag for all T€R2”, we get that there is a constant C,, n >0 such that

leva(X) |<anZ///RM P elZ Y)ng(z UT>)$J(X DN 417 4 az.

If we integrate over T and then over Z, and since N=2n+1, we get that there is a
constant C, >0 independent of ¢ such that

w  wisa( ¥ el [ S

Ja|<2n+1

The right-hand side a7, of (10) satisfies the conditions of (ii}.

(ii) = (iii) The proof is immediate from formula (10).

(iif) = (iv) Let us choose p€C§(R?") supported in the ball B of radius 1 for
[ and such that [g,.9dX=1. From (iii) we get that there is a;ELl(RQ") such
that |gya|<a}, for all Y eR?". Now consider g€C3°(R?") equal to 1 on B. Then
we can write, for X eR?"

a(X) =/Rzn o X-2)a(X)p(X-Z)dZ

=7rin// e~ 20XV 570(Y)P(X — Z) dY dZ.
Rdn
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Let us define )
xx¥)== [ Fa)px-z)dz.
T R2n

We notice that x(-,Y)eS for fixed Y, and that for all ae€N?", there exists C,
such that [0% x(-,Y)|<Cqa(Y) for all Y, which implies (iv).
(iv) = (v) This is immediate if we take w€Q2=R?"3Y and a,=x(-,w)€S’.
(v) = (i) Let p€S(R?")\{0}. From (v) we can write that

Fra(X)= = / / e 202X =20 (X D) g (Z2)p(Z~Y,,) dw dZ.
7Tn R2'n.
Let us consider the following differential operator acting on Z
1 2n
_ 2
(11) ’P—I—ZZBZ].,
j::l
for which we have *P=7P and, for all X €cR?" and weq,
'pe—2io(X—Yu,Z) — (X—Y >2e—2ia(X—Yw.Z)‘

If we make 2n+2 integrations by parts, we get

1 e~ 2i0(X=Yo.Z)prtl (7 Y, Ya,(Z)
. _1 w W dwdZ.
oya(X) o LG/ (X-Y,)2n+2

If we take the modulus, we get that there is a semi-norm p on S° such that

|Fva(X |</R2n/Q<X”§f“>2n+2( 3 |6gcp(Z—~Yw)|>dde

la|<2n+2
_oplaw) o def
C/ (X _Y,)2n+2 = a’(X).

Obviously a*€ L} (R?"), so we have proved (i) and the proposition. O

1.2. Functional properties and the class X

At first we want to study the behavior of the class ¥ under dilation. This
property, already noticed in [3, Proposition 3.2], will be used as such but is also a
good preamble to the proofs coming later.
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Proposition 1.3. Let us consider acX. Then a(0-)€X for all 6€]0,1], and
a—a(8-) is uniformly continuous with respect to 0€]0.1] in . In a similar way

a(- —Xo)€X for all Xg€R2" and a—a( - — Xp) is uniformly continuous with respect
to Xo in 2.

Proof. Let 6€]0,1]. The proof is immediate from Proposition 1.1 if one makes
use of (iv) to write, for X eR?",

12 a(aX — e—2io(9X.Y) 6X.Y)dY = e—2ia(X,Y’)X0 )(7 Yl) dY/,

X
R2" D

where xo(X,Y")=0"2"x(6X,Y"/6) satisfies

sup / p(xe(--Y"))dY' <0
0€]0.1] JR2n

for every semi-norm p on $°. Therefore a(f-) satisfies (iv) of Proposition 1.1
uniformly with respect to 8. As for the second part of the proposition, it is enough
to write, for all Xy, X €R?",

(13) a(X —Xo) = / T H Y (X,Y) dY,
R n

where xo(X,Y)=e%7Xo.Y)y(X — X,,Y) satisfies the uniform property

sup_ p(xo(-,Y))<ap(Y), a,€L'(R™),
X0€R2n

for every semi-norm p on S°. This is actually a manifestation of the translation
invariance of ¥. It implies in particular the second part of the lemma, and the proof
is complete. O

The following lemma enlightens the behavior of the class ¥ under derivation,
and also clarifies the conditions on a in the main theorem, Theorem 0.2.

Lemma 1.4. Let KeN and assume that ac WK-><(R?") and that a®)€X.
Then a® €L when k<K and for any p€S(R?"), there is an aj ,€ L' (R®") such
that

(14) loya®(X)| < (X)*~Ka; (X), XY €eR™.
Proof. We shall first prove this lemma in the case K=1 (i.e. a’€X). We can
write, for € S(R?™),

T 1 —2ic
<pyct(X)=ﬁ/R2 e~ 2 X2 (7 _Y)a(Z)dZ.
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If we use again the partition of unity {y; }?2 ; introduced in (9), we can write

T =30 L [ oDz )iz
Rﬂ

j=1

If we also use the differential operators {P; }?21 defined in (8) and acting on the
variable Z, for which we have in the related coordinates

Pje—Zio(X.Z) — (2-+X].)e—2iafx~z), j=1,...,2n,

we get
Z 1/’1 X) 1 / e—2ia(X.Z) tPj(goya)(Z) dz.
= i+X; ™ Jron
We first notice that for all €N, the function defined for all X €R?" by
def <X>
(X
500 =, 00 5

belongs to L= (R?")NC>(R2"). We can also notice that for all j€N>,, there is a
function $;€S(R?") such that, for all Y €R?",

“Pipya=@;ya+ypvoja,

where 8;=—(1/2i)3;4n for je{1,...,n} and 3;=(1/28)0j-n for je{n+1,...,2n}.
Therefore we can write

Fva(X) = Zw, (X) [ e ¥ XD(G;va(Z)+pydia(Z)) dZ
R2n
(15) .,
= W"}X) 3 65(X) (FrralX) +oy Bra(X)).

1

I

J

By hypothesis we have sup; y |y d;a|€ L' (R?") so we only have to prove that the
first term in (15) also belongs uniformly to L!(R2"). For this it is sufficient to prove
that aeX. We shall prove this result in Lemma 1.5 below, and therefore the proof
of Lemma 1.4 in the case K=1 is complete.

Let us now suppose that the lemma is proved for K €N, and consider a€
WE+Lo(R2) such that aX*+*VeX. As in formula (15), we can write, for ke

{0,...,K},

(16)  @ya®(X)=

2n o o
7r"(1X> > 6i(X)(Bixa®(X)+ ey 8;a) (X)).
=1
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Now for j€{1,...,2n}, (9;a)¥)€X and d;a€ WK->(R?"), therefore we can apply
the lemma at rank K to dja and we get that for every k€{0,..., K} there is a

function b7,  €L'(R?") such that
(17) oy 9;a9)(X)] <(X)* Kbt , (X), X, YeR™.

Moreover, Lemma 1.5 implies that a{*) €Y. and ac WX->°(R?"), therefore we also

get that for every k€{0,..., K} there is a function ¢}, € L'(R?") such that

(18) 1B, a® (X)| < (X)E=Ket, (X). X,Y €R™

Formulas (16)—-(18) complete the proof of the lemma. O
Lemma 1.5. Assume that a€ W1*(R?") and a’€X. Then a€X.
Proof. We can write, for p€S(R?"),

(19) m(X)=i /R . e 20 (XD (7 -Y)a(Z)dZ.

71—71,

For Y, ZcR?" we can write

a(Z)=a(Y)+ (/01 a(Y+6(Z-Y)) d0> (Z-Y).

Therefore we can split (19) into two terms gy a(X)=1(X.Y)+1:(X,Y) with

0 KLY == [ R XDz y)a(Y)dZ = HENGX)a(Y).
RZn

(21) 12(X,Y)=in/ e‘2i”(x‘z)go(Z—Y)</1a’(Y+0(Z—Y))d0)-(Z—Y)dZ.
s R2n 0

Since a€ L*(R?") and p€S(R?") we get supy |I1(-.Y)|<lall|d|€ LT (R?").

As for I, Proposition 1.3 and the Banach space structure of ¥ imply that
Zl—)fol a'(Y+6(Z—-Y))d9€X uniformly in Y €R?". Using (iv) in Proposition 1.1
we get that, for all Y €R?", there is a function (Z, T)~xy (Z.T) such that

1
/ d(Y+0(Z-Y))do= / e~ 20(ZT)y\.(Z,T)dT,
0 R

2n

where Z— xy(Z,T) is smooth and satisfies the following strong estimate: for every
semi-norm p on S, there is an a}€ L' (R?") such that

(22) pxy (-, T)) <a}(T) forall Y.T €R*".
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Let us denote by & the function R?"3X— (X)X €R?™. We can write, for all
X, YeR?™,

(23) L(X,Y)= 1n / e—%(X‘Z)( / a' (Y +6(Z— Y))de) P(Z2-Y)dZ
R2» 0

(24) == / / ) e~20X=-TZ)y (Z T)-HZ-Y)dZdT.
R n

Let us now again n+1 times use the differential operator P acting on the variable
Z defined in (11), for which we have

Pe-2i0(X-T.Z) _ (X_T)ze—ya(x—T.Z)'
We get, for all X,YcR?",

—2io(X-Y,.Z)pn+l ol Z -
L(X,Y)= / / £ P X ZT)@ZY) yp gy
7w J Jpan (X-T)+

If we take the modulus, we get that there is a semi-norm p on S° such that

|L(X,Y) |</fR4n p)(g‘YT 223( 3 |6§<Z(Z~Y)|> dT dZ

la|<2n+2

ap(T) def
< (= Y A = a* .
<Cs /Rzn (X_T)2n+? ar ay,(X)

Since a;€ L' (R?") we have proved the lemma. O

We summarize, for further reference, some important properties and embed-
dings of the class X.

Lemma 1.6. The following embeddings are continuous:
(25)
SR 80, > E—=COR™)NL>(R*™) and F(L'(R™)) T — L(L*(R")).

All these properties are immediate except for the last one: it means that the
Weyl quantization of an element ¢ in ¥ is a bounded operator a* on L?(R®). More-
over this quantization is continuous from ¥ to £(L?(R™)). We refer to Section 3
of [7], and also Proposition 1.10 below or Remark 1.2 for details. We shall use these
results in the study of the remainders introduced in (46). We now want to study
the behavior of the class ¥ under the #-product.
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1.3. Symbolic calculus and the class X

The aim of this section is to prove Proposition 1.10 below. Let us first recall
some results: In [7], Sjéstrand notices that S(R?") is not dense in X for the norm,
and introduces the notion of narrow convergence in X. We say that a sequence
a, €X converges narrowly to a€ X if and only if a,—a in S'(R?"), and if there is a
function a*€ L' (R?") and a function p€S(R?*)\ {0} such that

[ovan (X)) <a*(X) forallv,

when X,Y €R?", where gy (X)=p(X-Y). It appears that S(R?") is dense in &
for the narrow convergence. Let us write

a(X)= /R ] e 20(XY)y (X Y)dY, XeR™,

where x satisfies the hypothesis of (iv) in Proposition 1.1. As in [7], let us choose
S(R?")3a,: X=(X/v)(®,*a)(X) for vEN, where ¥, eS(R™), [p., PdX=1,
¥(0)=1 and ®,=v?"®(v-). We can then write, for all v,

(26) a(X)= [ eH I (xy)ay,

where one possible choice for y,, is

(27) XX )= [ e2i<'<Z~Y>w(§)¢>u<2>x<x—zx> iz,
R2» 14

It is then easy to check that
(1) a, converges narrowly to a€X,
(ii) x, belongs to L*(R*") and x,(-,Y)€S° uniformly with respect to Y,
(iii) for every semi-norm p on S°, there exists a semi-norm p’ such that

(29) [ ot ynars [ g v)ay. ven.

We have the following result.

Theorem 1.7. (Theorem 1.1 in [8]) Assume ® is a non-degenerate quadratic
form on R?™. Then the convolution operator ar—e'® xa is bounded from X to ¥ and
18 continuous in the sense of narrow convergence.

Remark 1.8. Following [8] we can notice that the tensor product of two func-
tions in L=X(R2") is in the corresponding Sjostrand class £(R4"), and that the
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restriction to an (even-dimensional) subspace F'CR?" of a function in ¥ is also
in the corresponding Sjéstrand class. Using this and Theorem 1.7 we get that
ab=(a®b)|piag €L and afb=7"2"(e~ 2" %(a®b))|piag €L. where o is considered as a
function on R?? x R?". We therefore get that ¥ is an algebra for the usual product
and for the f-product defined in (5).

We now want to state some results about the asymptotic expansion of (5). Let
us first define F=F®F, the twisted Fourier transform on S&’(R?" x R?"). We have
the immediate properties
eZia/ A

(29) Flusv)=r"FuFv and F(e 2*9)= NGk

when AeR\ {0}, where * is the usual convolution on R*", and ¢ is considered as a
function on R?" x R?". Using this we can write, for a;,a;€S(R?") and X eR?",
1 . o
(a1fa2)(X) = ﬁ(e_%’*(al Ra2))(X, X) = (F(e* (a1 ®a2)) (X, X).

If we observe that (1/2i)o(dx,0y)F=Fs(2ic), where o to the right is the mul-
tiplication operator, and perform a Taylor expansion of the exponential at order
m—1, we get

(30)
(a1fa2)(X) = Z l,(%a(axpaxz)) a1(X1)az(X2) +Rm (a1, a2)(X),
pam PP\t Xi=X2=X
where
1(1_6)m—1 T 2100 (o, M~ -
Rn(a1,a2)(X) = A W(}'(e (2io)™ (4, ®a2)))( X, X) db.

Using (29) we can write

1 1—-6 m—1
Ru(on,a2)(X) = [ 0S8

% // e—2io‘(X—X1~,X—X2)/9 (%U(axl , axz)) al(Xl)GZ(X2) Xm dXz db.
R4n 1
It is natural to introduce the following expression, for €]0,1] and X eR2",
1 A
(31)  (arfeaz)(X) = (Om)2n // e~ 2o (X=X X=X2)/00, (X))az(X2) dX1 dX,.
R4

Using the change of variables Y1 =X +(X; —X)/6, Yo=X>, we also get
1

(32) (a1ﬁ9a2)(X)=ﬁ / / e B XN X-V2)y (X +0(Y) — X))az(Ys) dY; dYs.
R4n

For further reference we now state some properties of the symbolic calculus in
S9=53,.
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Lemma 1.9. Assume a1,a3€S°. Then we have the following estimates:

(i) For any semi-norm p on S°, there is another semi-norm p’ on S° such that
p(aifloaz) <p'(a1)p’(az) for any 6€]0,1].

(ii) If az€S(R?™), then atgas €S(R?™) and for any semi-norm g on S(R?"),
there is another semi-norm q' on S and a semi-norm p’ on S° such that q(a,feaz)<
p'(a1)¢'(az) for any 6€]0,1].

(iii) If we set Tya(X)=e~20XY)q(X) when X,Y €R?", then

(33) (trya)lle(Ty, a2) = €207 Y2)gy, Ly (a1(- +6Y2)Hean(- —6Y1)),

when Y1, Y,€R?*™ and 0€]0,1].

Proof. Let us first prove the first estimate. We shall use formula (32): Consider
a1 and ay in S(R?"), and a€N?". For all X €R?" and 0€]0, 1] we can write

Cﬂ y a—0_-2ic(X-Y1,X -
0% (a1tigaz)(X) = Z wa//m (=2i0 (Y1 —Y3))*Fe 2o (X ~Ya.X=¥2)
1B8<lal "

(34) x (B a1)(X +8(Y1 - X))(1-6)ay(Y;) dY1 dYa,

where X":H?:l X;’j and o(Y)=(-n,y) when Y=(y,n). We can integrate by
parts both in Y3 and in Y5 using the differential operators

1

1
e

(35) Pr= &AL

1-1Ay), Po= 1-1Ay,).

If we denote the phase —20(X Y7, X —Y2) by ®x, then we get
(36) Piet®x =¢'®X  and  Poei®x =X,

Using each operator N times in (34), we get

—_g8l )
(37) ag‘((alﬁgaz)(X) = Z M // e—Zw(X—Yl,X—Yz)
BI<lal Rén

x P EPY (= 2i0(Y1 - Ya))* P (8% a1) (X +6(Y1 — X))az(Y2)) dY1 dYa.

Since (Y1 —Y2) <vV3 (X —Y1)(X —Y,), we get that for any |y|<|a|, there is a constant
C such that

(38) [(—=2i0(Y1—Y2))"| < C (X Y1) (X — o).
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Using this in (37) and choosing N>n+1+1|al, we get that for all a, there is a
semi-norm p’ (independent of ) on SY such that

p'(a1)p'(a2)
39 8% X)|< dY; dYs,
39 et [[ R v an,
and therefore the wished estimate.
The second estimate (ii) is also immediate from formula (37). Indeed, for all
N’eN and BeN?", there is a semi-norm ¢’ on S(R?") such that

|07, a2(Y2)| < Y(a2)
(X=Yo)N' = (X)N"

Using this result and (38), we get from (37) that for all t€N?" and N'€N, there is
a semi-norm p’ on S° and a semi-norm ¢’ on S(R?") (independent of §) such that

(40) \aX(alﬁea?) (X) ‘ / /R e Y2>2fi3‘<’)§“2’y1> _dY; dYs.

As for the third result (iii), the proof is due to a simple change of variables.
Thus the proof of Lemma 1.9 is complete. 0O

A version of the following proposition is established in [8]. We here give a proof
adapted to our methods of calculus.

Proposition 1.10. The operation fy is uniformly continuous with respect to
0€]0,1] from LxX to .

Proof. In the spirit of Remark 1.8, we have, for a;,a2€X and 6€]0, 1], aiffgaz=
(O7) 2 (e /0% (a, ®a2))|piag €L, Where o is considered as a function on R?" x
R?". Theorem 1.7 implies that fg is continuous for the narrow convergence from
Y x ¥ to ¥. We want to prove that it is uniformly bounded with respect to #€]0,1].
For this let us first choose a1, a,€S(R?") and x;, x2€ L} (R*") such that

w0 = [ e SN yay, j=12,

and satisfying [g.. p(x;(-,Y))dY <Cp(a;) for any semi-norm p on S9. We can
write, for X eR?" and 6€]0, 1],

(41) (a1ﬂeaz)(X)

= o ////8 TR =X X=X 0y 31 (X1, Y1) Ty, X2( X2, Ya) @Y1 dYa d X, dXs.
R8n
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Fubini’s theorem implies then that

(a1teaz)(X) = f fR (- Vel Ya) dY: da,

where 1y is defined in (iii) of Lemma 1.9. The same lemma gives

(42) aifeas(X) = / / ) e~ 2o M +Y2X)y (X, V1. Ys) dY1 Y,
R n

where Xg(X, Y17Y2)=e219”(Y1*Y2)X1( . +0Y2 Yl)ﬁo)(g( . “0Y17 Yz) From part (l) of
Lemma 1.9, we get that for any semi-norm p on S°. there is a semi-norm p’ on S°
such that

(43) p(xe(-,Y1,Y2)) <p'(xa(-,Y1))p (x2( -, Y2)) for all Y3,Y2,6.

In (42) we recognize the form (v) of Proposition 1.1 with Q=R*"*, w=(Y1,Y>) and
Y,=Y1+Y>. Since the estimate in (43) is uniform in 8, we have proved that the
mappings

S(R*™)xS(R®™) 3 (a;,a2) — aiflpaz €T

is uniformly continuous (in 8) when S(R?") x S(R?") is equipped with the topology
from X xX.

Now let us choose sequences a; ,,, as, €S(R?") converging narrowly to a;,a2€
X, respectively, and x;.,,x2., € L*(R*") related to a;, and az,. respectively, as
in (26) and (27). From (42) and (43) applied to @y, and az,, and (28) in the
beginning of Section 1.3 we get that a; ,lpas, converges narrowly to aiflpaz€X,
and

farfeazlls < Cllaillzllazllz

with C>0 independent of §. The proof of Proposition 1.10 is now complete. {1

2. Proof of the main theorem
2.1. Beginning of the proof

Let a€ W3°°(R2") such that a(® €X. Consider the family of symbols {aa }a>1,
where we write ap=A2a(A~1/2.) for A>1. Now, for €€]0,1] to be chosen later, let
us introduce a continuous partition of unity of the phase space R?" for the semi-
classical family of metrics depending on A>1,

(44) ge = A_QEF-
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More precisely, as I' we choose a non-negative even function ¢ supported in the ball
of radius 1 such that [g,. p?(s) ds=1, and we write

(45) pez(X)=p(A7(X - 2)).

We shall use the following important property established in [5, Lemma 6.6}, for
which we give a direct proof.

Lemma 2.1. Let 3,y €S(R?*") with $.z and Vez associated in the same way
as in (45). Then we have [g,. (Pezttbez ) (X)A~2"E dZ = (1, §) 2(R2n) for X ER?*™.

Proof. Let us first make the following simple observations:

(1) Jren(a1ta2)(X) dX = [iz. a1(X)az2(X) dX for all a;,a2€S(R?™);

(ii) the mapping (a1,a2)—a;fla; commutes with translations.
The second result is due to a simple change of variables. As for the first one, we
can write

(arfas)(X) dX = —— / / / 2o (X=X1.X=X2) g (X )ao(X) dX1 dXo dX
RGn

R2n 7T2n

= Win / / e~ 20X X=X2)5 (X — X3)aa(X2) dX2 dX.
RA4n
If we use the change of variable Y =X — X, we get
/ (arfiaz)(X)dX = ln / / e~ 2 (X5, (V)az(Xz2) dX2 dY
R2n s RAn
=/ al(X)ag(X) dX.
R2n
Now assume 3,1 eS(R2"). We can write, for all X eR?",
| Gatiponeaz= [ GA( - 2D (-~ 2N az
n R2n
= [ B ) (X - 2N dz
from (ii), and if we let Y =X —Z we get
/R . (Peztbez)(X)AT2"* dZ = . (BA™)P(A™))(Y)ATe dY
n R n
= / PATY)Y(AY)A 2 dY
R2»
- [ amienay
R2n

= (%, P)L2man),

where the second equality is due to (i) above. The proof is complete. [
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We can then apply this lemma to the function ¢, and we obtain that, for all
X,
49)  an(X)= | (anbpeztiocr) (XA dZ = R (X)+ SA(X)+ AN(X).
The term Sy is a commutator,
(47) SA(X)= [ ((antoez—petan)bocs) ON dz.

As for the other ones, the sum Ax(X)+Ra(X)=Jgan (vezlanlipez)(X)A™?" dZ is
a splitting according to a Taylor expansion of ay at order 2: let us write, for all
X, ZeR?",

arz(X) =an(Z)+d\(2)N(X - 2)+ 3} (2)(X - Z)?,

48 1
48 RA,Z(X)=%/ a®N(Z+0(X - 2)) (X -2Z)3(1-6)*db.
0
We define
49) ANX)= [ (pezonzboez) (XA a2 (oscillatory term)
R2n

(50) RA(X)=/ (PeztiRA z0ez)(X)A™2€ dZ (integral remainder term).
R2n

Expressions (47), (49) and (50) lead to formula (46). We shall begin with studying
the remainders Sy and Rj.

2.2. Study of the integral remainder
We shall establish the following result.

Lemma 2.2. The remainder Ry defined in (50) belongs to the class ¥.. More-
over there is Cy such that we have ||Rplls <C1AY2+3¢ for all €]0,1] and A>1.

Proof. By fa,z we denote, from now on, the function
1
(51) X —s faz(X) :A‘I/Q% / (1-6)2aP(Z+0(X - 2)) do
0

which is uniformly in ¥ with respect to A>1 and Z€R?", by Proposition 1.3 and
the fact that ¥ is a Banach space. We can therefore write

(52)  Ra(X)=A/2+3 /Rz"(‘f’ezn(fA,Z(')(A_E(-—Z))3)ﬁ(pez)(X)A_2"€ dz.

To obtain the result it is sufficient to study the term inside the preceding integral.
Let us state a first lemma.
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Lemma 2.3. Let b€S'(R?"), a,ccS(R?"). Then, for all X eR?",
(afbic)(X) = /mn T, (X—3Y,Y)b(X-Y)dY,
where the integral is interpreted in the distribution sense, and ¥, .€S(RA™") is de-

fined by

1

(53) VooU,T) =

/ 2 TY V(U Y )e(U+Y')dY".
R2n

Proof. 1t is sufficient to prove the preceding decomposition for b€ S(R?"). We
can write, for all X;cR?",

(alb)(X4) = in / / e 20(Xa— X1 Xa=X2) o X' )b(X2) d X dX >
R4n

_1 e 20(X2. X g( Xy — X5)b(X2) dXo,
T JRran

therefore, for all X €eR?", letting Y7 =X4— X>,
1 .
(afibic)(X) = o / / e~ 210(X=Xa. X=X3) otb( X 4)e(X3) d X3 d X4
R4n
- / / / e~ 2o (X=Xa, X=Xa)=2i0(X2:Xa) g( Xy — X,)b(X2)c(X3) dX2 d X3 d X4
RGn

1

B ﬁ J[ [ et x X ;oo X Xa XXy xg)o( Xa) Vi d X2 dXe
RS»

- / / a(Xa+ X — X3)e~Bo(X=Xo.X=Xs)p( X0Vo( X4) dXy d X,
If weset Y=X—X5 and Y'=X3—1(X+X3), we get
aliblie(X) = / Vo o(X—1Y,Y)b(X—Y)dY,
R2n

where ¥, . has the desired form (53). O
Now we can use this lemma to transform the integrand in (52):
(54)  (@ezt(fa,z(-)AT(- = 2))*Mpez)(X)
= [ Bonios (X BV ) (X YA (XY =2)) ¥
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in the terminology of Lemma 2.3 for ¥,_, ., ,. If we set =W, ,,, a simple compu-
tation gives, for all U, T, ZeR?",

(55) Vo s 05U, T)= N2 U(A~S(U~Z), A°T).

We know that fa z is uniformly in ¥ with respect to Z €R?” and A>1, but in fact
we have a much stronger result: following (iv) in Proposition 1.1, we can write

(56) fA’Z(X)=/2 e_ZiU(X.YI)XA‘Z(nyl) dY’,
R2n

where x4z €S° and where, for every p semi-norm in S% and A>1, there is a function
a3 €LY (R?") such that p(xa.z(-,Y’))<a} A(Y') and suppy; Jgan a5 2 (V) dY'<
oo. We can then write from (54), (55) and (56),

(57) (pezbl(fnz( JA~( = 2))hoez) (X / / e ANV D) (XY, Y")
X (A S(X-Y-2))*¥( 1Yy —Z),A°Y)A%" e dY dY".
Since ¥€S(R*"), we get that for all NeN there are two constants Cy and Cly
such that
Cn
T (A (X-Lly-2Z )>N+3<A5Y)2N+3
Cn
< s
S A XY= 2P (AT (A (X - Z)

(58)

where the second inequality comes from the immediate inequalities
(A5 (X=3Y =2))(A°Y) 2 C(A(X -2Z)),
(A (X -3Y -Z))(AY) 2C(A*(X~Y -2))
with C'>0. Hence
(59) %Y xp 2(X =Y, Y)(A™(X =Y - 2))°U(A™* (X —3Y - Z),A°Y)|

L @A)
= A A (X =27

We can therefore write

(60) /RZn(%zﬁ(fA,z(')(A’f(-—Z))3)ﬁ<pez)(X)A—2n€ dz

=/ e—2io’(X,Y')’X"A(X, YI) dY,,
R2n
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with, for all X,Y’eR?"” and A>1,

Xa(X,Y') = / /R . 2oy AX =Y. YA (X =Y -2))°
XW(A™(X-1Y~Z),A°Y) d(A™°Z) d(A°Y).

(61)

Now (59) with N=2n+1 shows that Y'+ssupy |Xa(X,Y")| belongs to L}(dY’) uni-
formly with respect to A>1. An analogous study gives the same result for any
derivative with respect to X of x5. We recognize the fourth characterization in
Proposition 1.1. This completes the proof. O

2.3. Study of the commutator term

Let us now study the commutator term S, in (46). We shall establish the
following result.

Lemma 2.4. The remainder Sp belongs to the class . Moreover there exists
Cy such that we have ||Sa|lzs<C2A'=2¢ for all £€]0,1] and A>1.

Proof. Let us recall that the symbol of S, is defined in (47) by the formula
(62 SAX)= [ ((@ntivez—peztan)ipe) CON dz.
R2n
We start using the asymptotic formula (30) at order 2 and get

1
(63) aplpez —pezlian = E{a/\wpsz}-i-UA.z,

where {-,-} is the Poisson bracket, and where, for all Z, X €R?" and A>1,

U X)Y=2Im —216(X -X1.X~-X2)/8
A’Z( ) /0 (7['0 2n //1‘411

(64) ( o(9x,,0x, )) ap(X1)pez(X2) dX, dXo do

=2Im Y caﬂ/ (1-6)(820 antedg B2 pez)(X) df

lal+|8]=2 0

for some constants C, 3. We can therefore split S, into two parts
(65)

S\ =7 [ (anpez o) GO dz+ | U ztoe) 0N a2

For the second term of the sum, we shall prove the following lemma.



332 Frédéric Hérau

Lemma 2.5. The term Up=fp,. Ur z8pcz A" dZ belongs to the class .

Moreover there is C} such that |Up||ls<CLAY™% for all €]0,1] and A>1.

Proof. Using Lemma 1.5 and the definition of the rescaling, we have, for all o
and 8 with |a|+|8]|=2, and uniformly with respect to A, £ and Z,

(66) AT'0200ap €T and A*O20fp.z €X.

Proposition 1.10 then implies that the function fy z=A"'*%U, z belongs to X
uniformly with respect to A and Z. From (iv) in Proposition 1.1, we can write, for
all Z and X,

(67) frzlX)= [ e A (X Y)Y,
R n

where xa z satisfies the following uniform properties induced by (64) and Propo-
sition 1.10: for every p semi-norm on S°, and A>1, there exists a;, o uniformly in
L'(R?") such that p(xa z(-,Y))<a} o(Y) for all Z and Y. We can then write, for
all Z, X and A,

(fa,zlpez)(X) = ((e727C Vxp z(-, Y )Wpe.z)(X) dY
(68) R2ﬂ

= Ah 6_2ia(X‘Y)(XA.Z( . 7Y)ﬁ<Pe.Z( . _Y))(X) ay,

according to an easy computation yielding (7ya)jb=7y (afib(- —Y)) when a,be¥,
where Tya(X)=e~29(X:Y)o(X). From arguments similar to those in the proof of
Lemma 1.9, and the fact that } commutes with the translations, we easily get that
for all NeN and a€N?", there exists p’ and ¢’ semi-norms on S° and S(R?"),
respectively, such that, for all X, Y, Z and A,
(69) ,
/ . g ar, MY
95 (x| s LAZCIN) a0

Now we can apply the Fubini theorem and we get from (69) that if N=2n+1, the
function defined for all Y by

(10) X+ RalX, Y)szn(XA~Z('vY)ﬁWE,Z(' Y))(X)A dz

is in S° and satisfies supy>; fpz. P(XA(-,Y))dY <oo for any semi-norm p on S0.
Therefore XA~ 12 UL (X)= [, 672X YIF5(X,Y) dY belongs to the class X
uniformly in A. The proof of Lemma 2.5 is complete. [

In order to conclude the study of the commutator term S, (and Lemma 2.4),
let us have a look at the first term in the sum (65).
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Lemma 2.6. The term VA=(1/i) [p2. {a,A,gosz}ﬁcpsZA_%e dZ belongs to the
class £. Moreover there is CY such that ||V ||s <C§A'=%€ for all A>1 and £€]0,1].

Proof. Let us write o(T)=(—7,t) when T=(¢,7), and define, for all Z, X eR?"
and A>1,

1 1
7 s (X) = —,{0, » Pe }ﬁ‘pe (X) = _-(a, 0-(50,5 ))ﬁ‘PeZ (X)
(71) A,Z ( A zZ Z) (Z A zZ )

= a2n // )0 (97 (Y1))pez(Ya)e 20X Y0X=Y2) gy, dY,.
R4n

In order to separately consider the derivatives of order 1 an the one of order 2 of
ap, we perform a Taylor expansion of a), with respect to X,

1
ay (Y1) =a§\(X)+/O ay (X +6(Y1—X))(Y1-X)db.

We can then write

VA,Z(X):%aA( Ho(oz)wez) (X mzn///mn A(X+0(1 - X)) (V1 - X)
(72) x 0 (gL 7 (Y1))pez(Ya)e~ 20X —Y1.X=Y2) gy, 4y, df.

As already noticed in the original paper of Hérmander [5], Lemma 2.1 implies that
the first term disappears when we integrate over Z, since ¢ is even. Therefore we
only have to deal with the second part of (72). Let us denote it by Wx z(X). We
first notice that

(73) (Yl _X)e—2ia(X—Y1,X—Y2) — _%J(Dyz)e—ma(x—ybx—n)‘

It allows us to write

Waz3)= g [ [ k64005 X0)otel s 0506l 32)
R4n
x e~ 2o (X=Y1.X=Y2) gy, dY; d.

(74)

We shall again use the characterization of the class ¥ given in (iv) of Proposition 1.1.
We first notice that the functions

(75) fa=A"ta{ and .z =Aa(pl,(-))



334 Frédéric Hérau

are in ¥ and S(R?"), respectively, uniformly with respect to A. We can write

f‘,\()():/R2 e—2i0(X~Y)XA(X,Y)dY,

where X+—xa(X,Y) is in S? and is such that for all semi-norms p on S, and A>1,
there is a function a3 , uniformly in L'(R?") such that p(xa(-,Y))<ap A (Y) for
all Y eR?™. We can then write

1
WA,Z(X)=A1_2E—7:2—n /// e—2ia(X—Y,.X—Yz)fA(X+0(Yl_X))
R4n
X‘Ilez(Yl)\IJEZ Y2 le de de

//// —210'(X Y1.X—Y3)-2ic(X+6(Y1—-X),Y)
7-‘-211 Rén

XxXA(X+0(Y1~X), Y)W z(Y1)¥.2(Ys) dY; dYa dY db.
If we choose X;=X-Y;, Xo=X-Y5, then we have

w X Al —2 //// —210’(X1 X2)—2i0(X~8X,.Y)
A Z( 27-r27l R6n

XXA(X—0X1, V)V 2(X - X))V 2(X —X32)dX,dX,dY db.
Now we can integrate by parts with respect to X; and X3 in the preceding equality,
using the following differential operators
1
76 =————(1-1Ax)), 1-
( ) P <X2—9Y>2( 2 Xk) Pe= (X >2( X2)

where Ax;, j=1,2, is the Laplacian in the X; variables. If we by ®x denote the
phase function
‘I)X =-20’(X1,X2)—20’(X—0X1,Y),

we have P;e'®x =¢!®x for j=1,2. We can therefore write

1
WAZ(X):AI—%L//// e1<I>x
’ 27(2" Ron

x PPHIPIH YA (X —0X1,Y)We2(X = X1)¥ez(X — X2) dX, dXo dY db.

It is easy to check that for all ®€N?" and A>1, there is a function a, , in L!'(R*")
uniformly with respect to A such that, for all X,Y;.Y5.Y, Z€R?" and 6€]0, 1],

(77) 0% PP IXA(X —0X1, Y)W, 2(X — X)) z(X — X2)|

a A(Y)
<X2 0Y>2n+2<X1)2n+2(A (X—X1 _Z)>2n+2'
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Let us first recall that VA (X)=fg.. W, z(X)A™2"¢ dZ and then set

- I . :
XA(X,Y) — P /O///l;sn e—2w(X1.X2)+2w(0X1.Y):PIL+1:P;+1XA(X_0X1’Y)

XWez(X —X1)Wez(X —X3)dX, dXoA™ 2" dZ db.

We notice that Vi (X)=A'"2% [¢., e~ 27XY)¥,(X,Y)dY. Moreover, (77) implies
that Xa(-,Y) isin S° for all Y and A, and for all semi-norms p on S°,

sup / p(Fa(-,Y)) dY <oco.
AZ] R2n

This implies that V) € X with the estimate of Lemma 2.6. The proof is complete. [

2.4. Study of the oscillatory term and the end of the proof

The study of the two remainders Ry and Sp and the continuous embedding
Y= L(L?*(R™)) (see Lemma 1.6) allow us to write the following lemma.

Lemma 2.7. For 52'116’ there is C3>0 such that we have ||RY+SY | cz2)<
C5AY/5 for all A>1.

Proof. The result is immediate if we optimize the bounds inherited from Lem-
mas 2.2 and 2.4. We write
2e = 3 +3¢,

1—
and get s=% and 1—262%-{-35:%. The study of remainders is complete. []

We have now to deal with the oscillatory part of the symbol in (46),
(18) A= [ (pertonzbon) N dZ, X ERP AL,
R2n

where ay z is the polynomial in the Taylor expansion of order 2 at Z of a,, already
defined in (48). Hormander’s study in [5] and, in particular, Lemma 6.4 can be
applied without change. It is an analytic lemma about the lower bound of a function
in C3(R?"). Since L—C°(R?") (see Lemma 1.6) we can write the following lemma,
assuming [|al|3,00 <1 and |a® (X; Y7, Y, ¥3)| <6 for [(X)<1and I'(Y;) <1, j=1,2,3.

Lemma 2.8. ([5, Lemma 6.4]) Consider the semi-classical family an, defined
in Theorem 0.2. Then for all ZER?", there exists s€[0,A'/?] and Y eR*™ with
(Y —Z)=s? such that

(79) an(Y) <apz(X)+(3sT(X —-2Z)—2s3)AY2, X eR?",
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(80) aj 7 ~6sA/’T <aj(Y) <af z+6sA/?T.

This lemma implies that the quadratic form as (Y')+12sA'/?T is non-negative.
Therefore, using (6), we obtain that the second-order polynomial

(81) B(X)=ap z(X)+(6sCol (X — Z) —25°)A/?

satisfies inf(B)—l—% Tr, (B")>0, and B¥ >0 follows from (2). This gives

(82)  0<plza% 7ol 7+ (pe 2H(6sCLh 2D (X — 2) 25N pe 7).

When u€S(R™) we therefore have

(83)

(R 2270, 2 zu) 2 28° A2 || P 7ul® ~6sCoAY P+ 2T (A5 (X = 2)) 02 71, 02 7.

Using (30) at order 2, we get that there is a function v, in S(R?") uniformly with
respect to A, such that

(84) (CA™(X = Z)ipe.z = (A~ (X = 2)) E 7e.2(X).
Using (83) we get
(85) (aR zPe zu, Pe zu) > —3802/\1/2”6("90?2“"2+||"/gfzu”2)-

Now we can notice that for s>0,
3AL/2), w 2 1/2+42¢ w w 9022 1/2+4ey, w 2
(86) 25°AV/2 g 7ull2—65CoA /22 g pul |02 gl + 52 AY/2H 4 2 pu
2
3C,
=262 (sl ul -0 L2 gl ) 0.
Using (83) again we therefore get

9C?2
(aX zP% zU, Pg zu) > —2—51\1/2“8(”7?2“”2)

ocs

(87) 2 2
2 AV 2 gl + e gul).

>_
- 2

Moreover, we can notice that there exists C3>0 such that

(88) min 9—0221\1/2"'45 3sC,A /22 =C'3A1/2+35.
s€]0,A1/2]\ 2s 1 Oo2
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From (85) and (87) we get

(89) (aX 2% zu, @¥ zu) > —C3AY 23 (|ly2 L ul 2+ ¥ zull?),
hence
@e,z8an zie z > —C3AY 23 (ve 28ve 2 +0e, 2Hpe 2)-

Using %+3€=% and integrating over Z yields
(90)

/ (Pe,ZﬁaA,ZﬁgOEzA_Q"e dz > _C3A4/5 / (e.zlpe z +7s.Zﬁ'Ys,Z)A_2nE dz.
R2» R2n

According to Lemma 2.1 we have

(/2 (’osvzﬁaz\,zﬂ%‘zl\-znsdz) 2—03A4/5(ll¢||%2(R2n)+ll'yAlliz(Rzn))
Rn

> —C3A*/5.

(91)

The proof of Theorem 0.2 is complete. [
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