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Melin-HSrmander inequality in a 
Wiener type pseudo-differential algebra 

Fr6d6ric H~rau 

A b s t r a c t .  We prove a Melin-H6rmander inequality for a Banach algebra of pseudo-differ- 
ential operators whose calculus was developed by Sj6strand. The main new difficulties in the proof 
are settled by a stationary phase method tailored to the low-regularity of the symbols. 

In troduc t ion  and result  

In a series of recent papers ([7], [8]), J. SjSstrand studied a Wiener algebra of 
pseudo-differential operators. One of the remarkable features of this class is that  the 
definition does not explicitly involve derivatives of the symbol but only properties 
of translation invariance in R 2n and Fourier transforms. The definition of this class 
E could read as follows. 

Definition 0.1. (1) We denote by E the set of a E $ ' ( R  2n) such that  

(1) sup I~-~5(X)I E Ll(dX), 
y E R  2n 

where ~ES(R2n) \{0} ,  ~ y ( .  ) = ~ ( . - y )  for Y E R  2n, and gt stands for the Fourier 
transform of a. 

The class E contains the familiar S~ class, and SjSstrand develops a calculus of 
pseudo-differential operators for this class: L 2 boundedness, composition, adjoints, 
sharp Gs inequality, using a version of the stationary phase method. In [8], the 
author asks the natural question of Melin inequality for the class E. In the present 
paper, we give a positive answer to this question and we obtain in fact H6rmander's 

6 improvement of Melin's inequality with a gain of g derivatives for the class E. 
Going back to the proof of the sharp Ggtrding inequality in [8], one can note 

that  the method of proof relies on the Fourier-Bros-Iagolnitzer transform, which 

(1) See also Boulkhemair [2] for a different definition, and also Proposition 1 below. 



312 Fr~l(!ric H~rau 

provides a positive quantization, and also on a careful study of the remainders. It 
turns out that  the remainders provided by the Fourier-Bros-Iagolnitzer method are 
still relevant for the class E, if one starts with a symbol with two derivatives in E. We 
shall follow an analogous course for our result. Hhrmander's proof involves several 
remainders, all of them with an explicit expression as oscillatory integrals. We 
shall prove the stability of the class E for these integrals. It would be interesting to 
characterize the class of integrals for which this phenomenon occurs. In particular it 
seems that  the usual proof of the Fefferman-Phong inequality does not provide good 
remainders for the Sj6strand class E. This fact is essentially due to the induction 
step and the implicit "bending" of the phase space related to it. 

Let us now describe our results. We equip from now on R 2n with its canonical 
symplectic form ~r----~-~jn=l d~jAdxj. The dual g~ of a positive definite quadratic 

form on R 2n with respect to a is defined by g~(T)=supg(y)= 1 a(T, y)2.  We choose 

once and for all some positive quadratic form F satisfying F~=F.  
We recall that  if Q is a positive semi-definite quadratic form such that  its polar- 

ized version is given by Q(X, Y) =a(X, FY), then the spectrum of F/i is contained 
in R, and Tr+ (Q) is the sum of its positive elements counted with multiplicities. 
We can then write the following lower-bound result for second-order real-valued 
polynomials. For such a polynomial A, we have (see [6]) 

(2) ReA(x,D)>O ~ inf(A)+�89 

The Weyl quantization of a function a C S ( R  2n) is defined by 

(3) ueS(I n). 
2 n  

The Weyl quantization of an arbitrary element a E S I ( R  2n) is the continuous oper- 

ator from S ( R  ~) to S ' ( R  '~) with distribution kernel given by 

1 (4) (,.). 

where the integral is interpreted in the distribution sense. We can also define the 
~-product, induced by the composition of symbols. For any al and a2 in $ ( R  2n) we 
have (al]ja2)W__a lwo a 2~ , where 

(5) (al~a2)(X)= ff ,. .-.,.,x-x, x-x.,.,(x,l~ .x. 

6 derivatives, under a weak We shall prove the following theorem, with a "gain" of 
regularity assumption on the symbol. 
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T h e o r e m  0.2. Let aEW3,CC(R 2n) be real-valued and such that a(3)EE. Con- 
sider then the semi-classical family of symbols {aA}A>I where for all A > I  we let 
aA=A2a(A -1/2. ). Suppose that there exists (70>1 such that for all t>O and A > I ,  

(6) a~+tF_>O ~ aA+�89 

Then there is C~>_O such that a~ +C~A4/5>O for all A > I .  

The main part of this work is the very precise study of the number of derivatives 
of the symbol really needed in the study of remainders. It appears that  we only 
need three derivatives of a, and that  we can assume that a (3) is in ~2, without any 
more reference to derivatives. Naturally, here we cannot use the powerful tools of 
asymptotic quantization, as in the original paper of HSrmander [5, Theorem 6.2]. 
Nevertheless, the good behavior of the algebra E under compositions of symbols is 
sufficient to get a similar result. 

As in [5, Theorem 6.2], we shall use the fact that  we can reduce the problem to 
the study of three terms associated to the symbol- -a  commutator  term, an integral 
remainder term, and an oscillatory term to be treated using (2)- - the  first two of 
them being the remainders. During their study, we will also see the necessity of 
tailoring the phase space into conformal boxes of size A 1/1~ (in place of A 1/2 in the 
semi-classical metric). 

In the first part  of this paper we give some properties of the class E. In 
particular we give alternative definitions of it and we study how its element behave 
under i~-product. In the second part, we give the proof of Theorem 0.2. At first 
we study tile integral remainder term, then the commutator  term, and eventually 
we recall briefly the method employed by H6rmander in [5, Theorem 6.2] for the 
oscillatory term, which can be used here without change. 

I want to thank N. Lerner and the referee for useful remarks about this work. 

1. Misce l laneous  propert ies  of  the  class 

We refer to [7] and [81 for a detailed study of the class E (see also [21 and [31). 
We recall here some properties needed later. Here we first notice that  E is a Banach 
space for the norm 

Ilailz = / sup I~y~(X)l dX, 
JR 2n y 

depending on ~ES(R2n) \{0} .  Since the natural duality on the phase space R 2" 
is induced by a, we shall use the following definition of the Fourier transform 
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on S ' (R 2n) 

(7) 5(X) = (Yra)(X) = -~  /R2, e-2ir a(Y) dY, 

where the integral is to be taken in the distribution sense. This twisted Fourier 
transform has properties similar to the usual one, in particular we have $-2 =Id and 
~- is unitary on L 2 (R2n). 

1.1. An  al ternat ive  descr ipt ion  of  the  class E 

The aim of this section is to give other definitions of the class E. In particular 
we see that its elements can also be thought of as averages of elements in S~176 
multiplied by exponential functions. 

Pr op os i t i on  1.1. Let aES'(R2n). Then aEE if and only if any of the follow- 
ing five equivalent conditions is satisfied: 

(i) There is a function a*ELI(R ~n) and a function g)ES(R2n)\{0} such that 

I~~(X)l ~ a*(X), 

when X,  YER 2n, where ~ y ( X ) = ~ ( X - Y ) .  
(ii) There is for every ~ES(R 2n) a function a*~ELI(R 2") such that 

IOT"a(X)l < %(X), 

when X, Y E R 2n . 
(iii) There is a function a*ELI(R ~n) such that 

I ~ - a ( X ) l ~ (  ~ Ilq~(~)llL,)a*(X), 
I~l_ +1 

when X, Y E R  2n and ~ES(R2n). 
(iv) One may write 

a(X) = frt~. e-2i~'(x'Y)x(X' Y) dY, 

where X is a smooth function such that vfrt2, supx IO~x(X, Y)I dY  < cc for every 
a E N  2n. 
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(v) There is a measure space l't together with measurable mappings 

~t~w, ) Y ~ C R  2~ and f ~ w ,  ~a~ES ~ 

such that f~p(a~)dw<oc for every semi-norm p on S ~ and such that 

a(X) = f e-2i~ dw. 
Jn 

Remark 1.2. Recall that  (i) is exactly Definition 0.1. Moreover, the norm in 
E is comparable with the norm in L I ( R  2n) of the functions a*, a~ and p(a~) for 
suitable p. 

Since multiplication of a symbol in S o by the function X~-+e -2i~(X'Y), where 
Y c R  2'~, does not change the norm in L2(R 2~) of its Weyl quantization, it is im- 
mediate from (iv) that  aW(x, D) is continuous in L2(R n) (with a norm that  can be 
estimated by the norm of a in E) when aEE. 

Proof. We shall prove (i) ~ (ii) ~ (iii) ::~ (iv) ~ (v) ~ (i). 
(i) ~ (ii) Let ~cS(R2n) ,  and consider ~20ES(R2n)\{0} and a ~ ELI ( R  2n) 

such that  I ~ ] _ < a ~ )  for all Y E R  2n. Consider further ~)oES(R 2~) such that  
fR2n ~0 dX-- 1 and such that  supp ~0 is contained in the interior of supp ~0. Let 
us first suppose that a belongs to the Schwartz space S(R2n). We can write, for 
X ER 2n, 

~ ' h ( X )  = --Tr nl JR:-  e-2i~(x'z)~(Z-Y)a(Z)dZ 

1 / f R  e-2ia(X'Zl~(z-Y)~~ z - -  

~ - n  4 n  

Using the condition on the supports, we get 

~ a ( X )  = 7-- ~ e-2i~(x,z)T(Z-Y),~o(Z-T)~o(Z-T)a(Z ) dTdZ 
4 n  

= ~r 2'~1 f f fR6 -  e-2i~(x-u 'z )~(Z-Y)%(Z-T)~ 'Ta(U)dUdTdZ'  

where 3,0=~boAOo and ~0.T=~0( �9 - T ) .  A simple argument of approximation yields 
the same formula for arbitrary a in SI(R 2n) (see the beginning of Subsection 1.3 
below). Now choose a symplectic basis of R 2" in which R 2n ~ X  = (X1,..., X2,) and 

2 n  F=~-]~j= 1 ]dXj 12. Let us consider for j E N ,  ={1, ..., n} the differential operators 

(8) Pj=i+-~Oz~+., P j + . = i -  Ozj, 
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for which we have, 

"Pie -~i'~(x-U'z) = ( i+Xj-Uj)e -2ia(x-U'z), j = 1, ..., 2n, 

and let us denote by tpj the transpose of Pj. Consider now a finite partit ion of 

unity 

2 n  

(9) I = E @ j ( X - U  ) forwhieh ( 1 + X 2 ) >  (X)2 o n s u p p r  
- 2n j=l 

where (X)=(I+F(X)) 1/2. Using this and making N = 2 n + l  integrations by parts 
with the operators defined in (8), we can write 

1 = 

2 n  SiiR e - - 2 i e y ( X - U ' Z )  x E  6,~ ( i+Xj-Uj)  y tPN~(Z-Y)'7~ 
j=l 

Since [~o,~[_<a~ for all T E R  2'~, we get that  there is a constant C,~.N>O such that  

2 n  

= 6,,  { X  - U) N dU dT dZ. 

If we integrate over T and then over Z, and since N=2n+l, we get that  there is a 
constant Cn > 0 independent of ~ such that  

( ) J R  a~(U) (lo) ICVa(X)l <_ on IIO%ollL, . .  ( x _ v ) 2 n +  , dU. 
1~1<2n+1 

The right-hand side a~ of (10) satisfies the conditions of (ii). 
(ii) ~ (iii) The proof is immediate from formula (10). 
(iii) ~ (iv) Let us choose ~CC~r 2n) supported in the ball B of radius 1 for 

F and such that  fR2n ~dX=l .  From (iii) we get that there is a~ELI(R 2n) such 
~ * that  [~Yai_a~ for all Y E R  2n. Now consider ~EC~C(R 2n) equal to 1 on B. Then 

we can write, for X E R 2n, 

a( X ) = .IR2,, ~o( X - Z)a( X )~o( X - Z) dZ 

a i i R  e-2i"(x 'V)~a(Y)~(X-Z)dYdZ" 
7T rt ,l n 
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Let us define 

x(X,Y) = llr n fit2. ~a(Y)~(X-Z)dZ .  

We notice that  ~:(. , Y ) E S  ~ for fixed Y, and that  for all a E N  2n, there exists C~ 
such that  ]0IX(. , Y)] <_C,~a~o(Y ) for all Y, which implies (iv). 

(iv) ~ (v) This is immediate if we take wEFt=R2~sY and a~=X(" ,w)ES ~ 
(v) ~ (i) Let ~E$(R2") \{0} .  From (v) we can write that  

= s s 
Let us consider the following differential operator acting on Z 

2n 1 

(11) 7 ~ 1 - ~  ~ 2 ~- OZj 
j~-I 

for which we have t'P=7~ and, for all X E R  2n and wE~,  

7)e-2ia(X-Y,~, Z) = ( X -  yw)2e-2ia(X-Y,o,z) .  

If we make 2n+2 integrations by parts, we get 

1 / R  ~ e-2i~(x-Y`~'z)'pn+l~(Z-Y'~ 
~ a ( X )  = 7r--- ~ 2. (X-Y~,)2n+2 dw dZ. 

If we take the modulus, we get that there is a semi-norm p on S o such that 

- (X_yw)2n+2 i,~1<2n+2 

_<C~ ( X _  y~)2n+2 dw d-----el a* (X). 

Obviously a* E LI(R2~), so we have proved (i) and the proposition. O 

1.2. Funct ional  propert ies  and the  class 

At first we want to study the behavior of the class Z under dilation. This 
property, already noticed in [3, Proposition 3.2], will be used as such but is also a 
good preamble to the proofs coming later. 
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P r o p o s i t i o n  1.3. Let us consider aEE. Then a(O. )EE for all 0E]0, 1], and 
a~-~a(O. ) is uniformly continuous with respect to 0El0.1] in Z. In a similar way 
a( . - Xo ) E E for all X o E R  2" and a~-~ a( . - Xo ) is uniformly continuous with respect 
to Xo in E. 

Proof. Let 0E]0, 1]. The proof is immediate from Proposition 1.1 if one makes 
use of (iv) to write, for X E R  2n, 

(12) a(OX) = fa=, e-ei~(ox'Y)x(OX' Y) dY =/a=, e-2i"(x'r')xo(X, Y ' )dY ' ,  

where xo( X, Y') =O-2nx(OX, Y'  /O) satisfies 

f P(Xo( ", Y')) dY'  < cr sup 
0El0.1] JR2'~ 

for every semi-norm p on S ~ Therefore a(0-) satisfies (iv) of Proposition 1.1 
uniformly with respect to 0. As for the second part of the proposition, it is enough 
to write, for all Xo, X E R  2n, 

(13) a(X -Xo) =/R2. e-2ia(x'Y)xo(X, Y) dY, 

where )/0(X, Y)=e2i~(x~ Y) satisfies the uniform property 

< * ( R 2 " ) ,  sup P()C0( ' ,Y))_ ap(Y), a~ E L 1 
XoER ~n 

for every semi-norm p on S ~ This is actually a manifestation of the translation 
invariance of E. It implies in particular the second part of the lemma, and the proof 
is complete. [] 

The following 1emma enlightens the behavior of the class E under derivation, 
and also clarifies the conditions on a in the main theorem, Theorem 0.2. 

L e m m a  1.4. Let K E N  and assume that aEWK'~C(R 2n) and that a ( K ) E ~ .  
-* r r l ( a 2 n ~  such Then a(k)EE when k<_K and for any ~ES(R2n),  there is an a k . ~  ~ j 

that 

(14) I Ya( )(x)l _< AX),  X, Y �9 R 

Proof. We shall first prove this lemma in the case K = I  (i.e. a'EE). We can 
write, for 7~ES(R2n), 

f = 
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s~.~2~ introduced in (9), we can write If we use again the partit ion of unity t jIj=l 

j = l  71" 

If we also use the differential operators 2~ {PJ}/=I defined in (8) and acting on the 
variable Z, for which we have in the related coordinates 

we get 

"Pie -2ia(X'z) = (i+Xj)e -2ia(x'Z), j = 1, ..., 2n, 

2n Cj(X) 1 f e-2ia(x,z) t ' p j (~ya) (Z)  dZ. 

j=l 

We first notice that  for all j E N 2 .  the function defined for all X E R  2n by 

V7 cx~ ~ r  (x) j, , -  j(Xli+xj 

belongs to L~(R2n)NC~(R2n) .  We can also notice that for all jEN2n,  there is a 
function ~ j E S ( R  2n) such that,  for all Y E R  2", 

t~pjCpra = r + ~yOja, 

where Oj=-(1/2i)Oi+n for jE{1  .... ,n} and Oj=(1/2i)Oj_, for jE{n+l, . . . ,2n}.  
Therefore we can write 

2n 
1 ~ a ( X ) -  ~.(x---~ ~ ~j(x) e-2'~(x'~)(~j.~a(Z)+~o~j~(z))dz 

j = l  ~" (15) ~. 
1 

- ~rn(X) E ~ j ( X ) ( ~ . y a ( X ) + ~ j a ( X ) ) .  
j = l  

A 

By hypothesis we have supj,u ]~vOi a]E L 1 (R 2~) so we only have to prove that  the 
first term in (15) also belongs uniformly to LI(R2n).  For this it is sufficient to prove 
that  aEE.  We shall prove this result in Lemma 1.5 below, and therefore the proof 
of Lemma 1.4 in the case K--1  is complete. 

Let us now suppose that  the lemma is proved for K E N ,  and consider aE 
w K + I , ~ ( R  2n) such that  a(K+I)EE. As in formula (15), we can write, for kE 
{o, ... , K } ,  

2n 

(16) PYa(k)(X) = lrn(X----~ E ~J(X)( ~j'~a(k)(x)+~ybja(k)(x))" 
j=l 
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Now for jE{1,  ..., 2n}, (0ja)(K)EE and OjaEWK':":(R2n), therefore we can apply 
the lemma at rank K to cSja and we get that  for every kE{0,... ,K} there is a 

* 1 function bj,k,~EL (R 2n) such that  

k-K * ( 1 7 )  I YbjaCk (x)l<<x) bj.k,.(X), X, YER 

Moreover, Lemma 1.5 implies that  a(K)ES] and aEWK'~(R2n), therefore we also 
, -* ~LI~R 2"~ such that  get that  for every kE{0,...  K} there is a function cj.k.~= t ) 

x k - - K *  (18) > Cj.k.~(X ), X, Y E R  2n. 

Formulas (16)-(18) complete the proof of the lemma. [] 

L e m m a  1.5. Assume that aEWI'~ 2~) and a'E~2. Then aEE. 
Proof. We can write, for qaES(R2n), 

[ 
(19) ~-~a(X) = jR2. e-2w(x'z)c2(Z-Y)a(Z)dZ. 

For Y, Z E N  2~ we can write 

a( Z) =a(Y)..-I- ( fo 1 a'(Y-.{.-O( Z -  Y) ) dO) .( Z -  Y). 

Therefore we can split (19) into two terms ~- '~(X)=I1 (X, Y)+I2(X, Y) with 

(20) I1 (X, Y) = 1_7r n fR2- e-2i~'(x'z)F(Z- Y)a(Y) dZ = e-2i'(x'v)~(X)a(Y). 

(21) I2(X,Y)= 1/R2,, e-2w(x'z)~(Z-Y)(fola'(Y+O(Z-Y))dO)'(Z-Y)dZ" 

Since a E L ~176  2") and ~ E S ( R  2") we get sup v 111(" ,Y)[<-[[aII~I~[ELI(R2") �9 
As for /2, Proposition 1.3 and the Banaeh space structure of 5] imply that  

Z~-+f~ a'(Y+O(Z-Y))dOEE uniformly in Y E R  2". Using (iv) in Proposition 1.1 
we get that,  for all Y E R  2", there is a function (Z, T)~+xv(Z,T) such that  

fo' a'(Y+O(Z-Y))dO= frt=. e-Zi~ 

where Z~xv  (Z, T) is smooth and satisfies the following strong estimate: for every 
semi-norm p on S ~ there is an a ; ,ELI(R 2") such that  

(22) P(Xv(',T)) <a;(T) for all Y. T E R  2". 
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Let us denote by ~ the function R2"gX~-+~(X)XER ~.  We can write, for all 
X, Y E R  2'~, 

(23) 

(24) 

I2(X,Y) 1 fR  e-2ia(x'z)(f01 ) = - -  a'(Y+O(Z-Y)) dO .~ (Z-Y)  dZ 
'T( ~ 2 n  

1 ffR e-2i~ 
7r n 4 n  

Let us now again n + l  times use the differential operator P acting on the variable 
Z defined in (11), for which we have 

7:~e-2ia(X-T, Z) ._~ {X_ T)2 e-2ia(X-T.Z). 

We get, for all X, Y c R  2n, 

I2(X, Y)= 7r-- ~1 I/R4" e-2i'7(x-Y~"z)7)n+IxY(Z'T)'~(Z-Y)(x - T) 2n+2 dT dZ. 

If we take the modulus, we get that  there is a semi-norm p on S o such that  

(X-T)2n+2 [a[_<2n+2 

fR a;(T) . < C~ 2, { X - T )  2n+~ dT = a~(X). 

Since a ~ E L I ( R  2~) we have proved the lemma. [] 

We summarize, for further reference, some important  properties and embed- 
dings of the class E. 

L e m m a  1.6. The following embeddings are continuous: 
(25) 
$ ( R  2n) ~ S~ ~ ~ ~-+C~ zn) and ~-(LI(R2n)) ~-+ E ~-+ E(L2(Rn)) .  

All these properties are immediate except for the last one: it means that  the 
Weyl quantization of an element a in E is a bounded operator a w on L2 (R ' ) .  More- 
over this quantization is continuous from E t o / : (L2 (Rn ) ) .  We refer to Section 3 
of [7], and also Proposition 1.10 below or Remark 1.2 for details. We shall use these 
results in the study of the remainders introduced in (46). We now want to study 
the behavior of the class E under the fi-product. 
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1.3. Symbo l i c  calculus  and t h e  class 

The aim of this section is to prove Proposition 1.10 below. Let us first recall 
some results: In [7], Sj6strand notices that  S ( R  2n) is not dense in E for the norm, 
and introduces the notion of narrow convergence in E. We say that  a sequence 
a . E E  converges narrowly to aEE  if and only if a~-~a in S'(R2~), and if there is a 
function a* EL 1 (R 2n) and a function ~aES(R 2n) \ {0} such that  

l <a ' (x )  for 

when X, Y E R  2~, where ~ y ( X ) = ~ ( X - Y ) .  It appears that  S ( R  2n) is dense in 
for the narrow convergence. Let us write 

a(X) =/R2, ~ e-2ia(x'Y)x(X, Y) dY, X E R 2n, 

where X satisfies the hypothesis of (iv) in Proposition 1.1. As in [7], let us choose 
S(R2n)Bau: X~--~r for yEN,  where ~b, (I)ES(R2n), fa2. ~pdX=l, 
~(0)=1 and ~v=u2"'h(u . ). We can then write, for all u, 

(26) a.(x) = fR . e-2'=(x Y)x (X' r) dY, 

where one possible choice for X, is 

(27) x~(X ,Y )=  /R2 e 2 ' ~ ( z ' v ) ~ ( X ) ~ u ( Z ) x ( X - Z , Y ) d Z .  

It is then easy to check that  
(i) a~ converges narrowly to aEE,  
(ii) X~ belongs to L I ( R  4~) and X~(',  Y)E S~ uniformly with respect to Y, 
(iii) for every semi-norm p on S ~ there exists a semi-norm p~ such that  

(28) fR~p(x~(.,Y))dy<fa2p'O~(.,Y))dY, y E N .  

We have the following result. 

T h e o r e m  1.7. (Theorem 1_1 in [8]) Assume �9 is a non-degenerate quadratic 
form on R 2n. Then the convolution operator a~-+eir *a is bounded from E to Z and 
is continuous in the sense of narrow convergence. 

Remark 1.8. Following [8] we can notice that  the tensor product of two func- 
tions in Z = E ( R  2n) is in the corresponding SjSstrand class E(R4"), and that  the 
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restriction to an (even-dimensional) subspace F c R  2n of a function in F~ is also 

in the corresponding SjSstrand class. Using this and Theorem 1.7 we get tha t  
ab = (a| l Diag E E and a~b= ~r- 2,~ (e-2ia, (a | b))[ Diag E ~ where (7 is considered as a 
function on R 2'~ • R 2n. We therefore get that  E is an algebra for the usual product  
and for the ~-product defined in (5). 

We now want to s tate  some results about  the asymptot ic  expansion of (5). Let 
us first define 5~=Y@9 v, the twisted Fourier t ransform on S ' ( R  2" x R2n). We have 
the immediate  properties 

(29) ~(u*v)=Tr2'L~u~v and ~ ( e - 2 i ~ ) -  e2w/~ i~12., 

when AER\{0} ,  where �9 is the usual convolution on R 4", and a is considered as a 
function on R2~x  R 2n. Using this we can write, for a l, a2 E S ( R  2~) and X E R 2n, 

(al~a2)(X) = ~--~n(e-2ia*(al | X) -- (.~(e2ia (61 |  X) .  

If we observe that  (1/2i)a(Ox,O~)o.T'=.To(2ia), where a to the right is the mul- 
tiplication operator,  and perform a Taylor expansion of the exponential at order 
m-1,  we get 

(30) 

1 ( 1 1 ~ xL=x2=x (at~a~_)(X)= Z -~. ~a(Oxi,Ox,) al(X1)a2(X2) +Rm(al,a2)(X), 
p <m  

where 

Rm(a~, a~)(X) = (1-0) ~-~ (~(~o~,(2i~,)~ (a, | X) dO. 
(~-1) !  

Using (29) we can write 

L~ (1-0) ~-~ 
Rm(al,a2)(X) = ( m _  1)!(0~r)2 ~ 

)" [2iotux~,Ox2) a,(X,)a2(X2)dXidX2dO. 

It  is natural  to introduce the following expression, for 8El0, 1] and X E R  2n, 

1 i i R  e-2i"(x-x~'x-x2)/~ dX1 dX2. (31) (al~oa2)(X) = (O~r)2---------- ~ ~,~ 

Using the change of variables Y1 = X + ( X 1  - X ) / &  Y2=X2, we also get 

1 SiR e-2i"(x-Y~'X-Y2)al(X+t?(Y1-X))a2(Y2)dY1 dY2. (32) (al~oa2)(X) = ~ 4. 

For further reference we now state some properties of the symbolic calculus in 
S o = So~ o. 
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L e m m a  1.9. Assume al ,a2ES ~ Then we have the following estimates: 
(i) For any semi-norm p on S ~ there is another semi-norm p' on S O such that 

p(al~oa2) <_p'(al)p'(a2) for any 0E]0, 1]. 
(ii) If  a2ES(R2n), then al~oa2ES(R 2n) and for any semi-norm q on S(R2n),  

there is another semi-norm q' on S and a semi-norm p' on S O such that q(al~oa2)<_ 
p'(al)q'(a2) for any 0E]0, 1]. 

(iii) / f  we set Tya(X)=e-2w(x,Y)a(X) when X, Y E R  2n, then 

(33) (Tylal)~O(TY2a2) :e2iOa(Yx'Y2)Ty,+r2(al( �9 +0Y2)~0a2(" -0111)), 

when ]I1, Y2ER 2n and 0E]0, 1]. 

Proof. Let us first prove the first estimate. We shall use formula (32): Consider 
al and a2 in $(R2n),  and a E N  2n. For all X E R  2n and 0E]0, 1] we can write 

Co, ffR (-2ia(Y1 Y2))a-~e -2ia(x-Y''x-v2) O~(al~oa2)(X)= ~ 7r2. 
i~l_<l~l 4n 

(34) x (O~xal)(X +O(Y1 -X))(1-O)I~Ia2(Y2) dY1 dY2, 

X a-112n  X~ j and a(Y)=(-Thy  ) when Y=(y,~/). We can integrate by where - -  1 l j =  1 

parts both in Y1 and in Y2 using the differential operators 

1 (1- �88  7~2 1 (1_  �88 
(35) • 1 -  ( X _ Y 2 }  2 ( X _ Y 1 )  2 

If we denote the phase - 2 o ( X - Y 1 , X - Y 2 )  by (I)x, then we get 

(36) 7~lei'~X=e iCx and ~2e iCX=e  ~ x .  

Using each operator N times in (34), we get 

( 3 7 )  O~(al~oa2)(X)= ~ co (l f f  e-- 2ia( X--  Y1,X-- Y2 ) 

i~l_<l~l 4n 

x tpN tpN( (_2 ia (y  1 _y2))a-~(O~xal)(X+O(y 1 -X))a2(Y2)) dY1 dY2. 

Since (]I1 - Y2) _~ x/~ (X - ]11) (X - Y2), we get t hat for any ['y[ _< l a I, there is a constant 
C~ such that 

(38) I (-2ia(Y~ - Y2))~ I _< C.y(X _y~)H ( X _  y2)l~l. 
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Using this in (37) and choosing N>n+l+�89 we get that  for all el, there is a 
semi-norm p' (independent of 0) on S o such that  

(39) iOk(al 0a )(X)l < JfR  P'(al)p'(a2) dY1 dY2, - 4. (X-Y2)2n+2(X-Y1)  2n+2 

and therefore the wished estimate. 
The second estimate (ii) is also immediate from formula (37). Indeed, for all 

N ' E N  a n d / 3 ~ N  %, there is a semi-norm q' on 8 ( R  ~n) such that  

IOnv2a2(Y2)l < 
- (x)N'" 

Using this result and (38), we get from (37) that  for all a E N  2n and N ' E N ,  there is 
a semi-norm p' on S O and a semi-norm q' on S ( R  2n) (independent of 0) such that  

(40) ]O~(al~~ f i r  P'(al)q'(a2) (X)N, < dYi dY2. 
- -  4 n  (X-Y2)2n+2(X-Y1) 2n+2 

As for the third result (iii), the proof is due to a simple change of variables. 
Thus the proof of Lemma 1.9 is complete. [] 

A version of the following proposition is established in [8]. We here give a proof 
adapted to our methods of calculus. 

P r o p o s i t i o n  1.10. The operation ~o is uniformly continuous with respect to 
0C]0, 1] from E • E to E. 

Proof. In the spirit of Remark 1.8, we have, for al,a2EZ and 0E]0, 1], alcoa2= 
(Oze)-2n(e-2ia/~ | where a is considered as a function on RUn• 
R 2n. Theorem 1.7 implies that  t~0 is continuous for the narrow convergence from 
E x E to E. We want to prove that  it is uniformly bounded with respect to 0E]0, 1]. 
For this let us first choose al,  a2ES(R 2n) and Xx, x2ELX(R 4n) such that  

aj(X) = JR2, ~ e-2ia(x'Y)xj(X , Y) dY, j = 1, 2, 

and satisfying f R 2 ~ P ( X j  ( �9 ,Y))dY<Cp(aj) for any semi-norm p on S ~ We can 
write, for X E R  2n and 0E]0, 1], 

(41) (all~aa2)(X) 

' l l l i .  = zr ~n 8. e-2i~'(x-x~ ,x -x2 )/OTy ' X 1 (X1, 1"1 ) TY2 X2 (X2, }'2 ) dY1 dY2 dX1 dX2. 
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Fubini's theorem implies then that  

(a l~oa2)(X)  = f fR'  m x~ ( . . Y1)~0TY~X2( " , ]I2) dY1 dY2, 

where Ty is defined in (iii) of Lemma 1.9. The same lemma gives 

(42) al ~oau( X )  = I / R 4 "  e -  2ia(Vl + Y2"X) xo( X ,  ]I1, ]I2) dY1 dY2, 

where xo(X, ]11,Y2)=e2ie'~(Y1'Y2)Xl(" +0Y2. Yt)~8)C2(" -0111, Y2)- From part (i) of 
Lemma 1.9, we get that  for any semi-norm p on S ~ there is a semi-norm p~ on S o 
such that  

(43) P0/0(" ,Y1,Y2))~P'(XI(" ,Y1))P'(X2(" ,Y2)) for all Y1,Y2, O. 

In (42) we recognize the form (v) of Proposition 1.1 with f ~ = R  4n, w=(Y1, ]I2) and 
Y,~=YI+Y2. Since the estimate in (43) is uniform in 0, we have proved that  the 
mappings 

•(R 2n) x S ( R  2n) D (al, a2) ~ alcoa2 e E 

is uniformly continuous (in 0) when S ( R  2") • S ( R  2~) is equipped with the topology 
from Z •  

Now let us choose sequences al.~, a2.~ E S ( R  2n) converging narrowly to al,  a2 
E, respectively, and Xk~,,X2.vELI(R 4n) related to a l . ,  and a2.., respectively, as 
in (26) and (27). From (42) and (43) applied to al., and a2.~, and (28) in the 
beginning of Section 1.3 we get that  al.~oa2.~, converges narrowly to al~ea2EE, 
and 

llallIea2lls < cII.xllslla211x 

with C > 0  independent of 0. The proof of Proposition 1.10 is now complete. [] 

2. P r o o f  of  the main theorem 

2.1. Beginning of  the proof  

Let aEW3'~ such that  a (3) EE. Consider the family of symbols {aA}A_>I, 
where we write aA=A2a(A-1/2. ) for A_>I. Now, for cE]0, 1] to be chosen later, let 
us introduce a continuous partition of unity of the phase space R 2n for the semi- 
classical family of metrics depending on A > 1, 

(44) g~ = A-2~F. 
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More precisely, as F we choose a non-negative even function ~ supported in the ball 
of radius 1 such that  fR2. ~2(s) ds=l, and we write 

(45)  Ez(X) = Z ) ) .  

We shall use the following important property established in [5, Lemma 6.6], for 
which we give a direct proof. 

L e m m a  2.1. Let ~, ~)eS(R 2n) with ~Ez and ~ez associated in the same way 
as in (45). Then we have f a 2 ~ ( ~ z ~ z ) ( X ) A  -2n~ dZ=(~, ~)L~(R2,~) for X e R  2n. 

Proof. Let us first make the following simple observations: 
(i) fR:n (aa~a2)(X) dX=fR2, al(X)a2(X) dX for all al,  a2eS(R2~); 
(ii) the mapping (al, a2)~-+al~a2 commutes with translations. 

The second result is due to a simple change of variables. As for the first one, we 
can write 

1 /R2, (al~a2)( X) dX = ~-~ / / /R6"  e- 2ia(x- x~,x-X2) al ( X1)a~( X~) dX1 dX~ dX 

1 e-2~'~x'x-x2)al(X-X2)a2(X2) dX2 dX. 
7(  n 4 n  

If we use the change of variable Y = X - X 2  we get 

JR 1 ffR e-2ia(x'Y)al(Y)a2(X2)dX2dY (a,~a2)(X) dX -= 7r-- s 
2 n  4 n  

= fR2. al(X)a2(X)dX. 

Now assume ~, ~ES(R2~).  We can write, for all X E R  2n, 

= / n 2 .  (~(A-~")~)(A-~" ) ) ( X - Z ) A  -2"~ dZ 

from (ii), and if we let Y = X - Z  we get 

= _~2. ~(A-eY)5(A-~Y)A-2n~ dY 

= / , ~  -~(Y)r dY 

= 

where the second equality is due to (i) above. The proof is complete. [] 
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We can then apply this lemma to the function ~, and we obtain that, for all 
X, 

(46) aA(X)=/R~ (aA~eZ~ez)(X)A-2ne dZ----RA(X)WSA(X)WAA(X ). 

The term SA is a commutator, 

(47) SA(X) = /n~-  ( ( a A ~ Z - - ~ Z ~ a A ) ~ z ) ( X ) A  -2n~ dZ. 

As for the other ones, the sum AA(X)+RA(X)=fR2,  ( ~ z ~ a h ~ z ) ( X ) A  -2~ dZ is 
a splitting according to a Taylor expansion of aA at order 2: let us write, for all 
X, Z G R  2n, 

aA,z(X) = aA(Z)+atA(Z)(X_Z)+ ~aA(Z) ( 1  ,, X -Z)2 ,  

(48) RA,z(X)= ~ fo la (3 ) (Z+O(X-Z) ) (X-Z)3(1 -O)  2 dO. 

We define 

(49) AA(X) JR X A -2n~ Z = 2n(~Z~aA.Z~Z)(  ) d 

(50) RA(X) = /R2n(~cz~Rh.z~cz)(X)A-2n~ dZ 

(oscillatory term), 

(integral remainder term). 

Expressions (47), (49) and (50) lead to formula (46). We shall begin with studying 
the remainders SA and RA. 

2.2. S t u d y  of  the  integral  remainder  

We shall establish the following result. 

L e m m a  2.2. The remainder RA defined in (50) belongs to the class E. More- 
over there is C1 such that we have HRAIIE~_Ci A1/2+3~ for all ~E]0, 1] and A_>I. 

Proof. By fA,z we denote, from now on, the function 

(51) X. > f i , z (X )  = A -1/2 1 f l  (1-O)2 a(h3) ( Z +O( X -  Z) ) d9 

which is uniformly in E with respect to h>_l and Z E R  2n, by Proposition 1.3 and 
the fact that E is a Banach space. We can therefore write 

(52) RA(X) = A 1/2+3~ .fn2, (~O~z~(fi,z(')(A-e( " - Z ) ) 3 ) ~ z ) ( X ) A  -2n~ dZ. 

To obtain the result it is sufficient to study the term inside the preceding integral. 
Let us state a first lemma. 
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L e m m a  2.3. Let beSt(R2n), a, eeS(R2~). Then, for all X e R  2n, 

(a~b~c)(X) =/R2, ~.r  X -  �89 Y, Y )b (X-  Y) dY, 

where the integral is interpreted in the distribution sense, and ~a,cE,S(R 4n) is de- 
fined by 

(53) 1 ~ R  " t ! t~a,c(U, T) = - ~  2n e2*~ )a(U-Y')c(U+Y ) dY'. 

Proof. It is sufficient to prove the preceding decomposition for bES(R2n).  We 
can write, for all X 4 c R  2n, 

1 //R e-2i~(x4-x~'x4-X2)a(X1)b(X2) dX1 dX2 (a~b)(X4) -~- - ~  4n 

1 /R e-2i~(x2'x4)~t(X4-X2)b(X2)dX2, 
.]~n 2n 

therefore, for all X E R  2~, letting YI=X4-X2, 

1 / / R  (a~b~c)(X) = ~ 4, e-2i~(x-x4'x-X3)a~b(X4)c(X3) dX3 dX4 

= 7c 3nl fffRoo e-2i~ -X2)b(X2)c(X3) dX2 dX3 dX4 

_ 7c 3~1 f f /R6" e-2i~ 

_ 7c 2nl //R4'~ a(X2+X-X3)e-2i'7(x-x2"x-x3)b(X2)e(X3)dX2dX3" 

If we set Y = X - X 2  and Y'=X3-�89 we get 

a~b~c(X) =/R2, ~a,c(X- �89 Y ) b ( X - Y )  dY, 

where ~ , c  has the desired form (53). [] 

Now we can use this lemma to transform the integrand in (52): 

(54) �9 

----/R2, g2~r162 z ( X -  �89 Y ) f A . z ( X - Y ) ( A - ~ ( X - Y - Z ) )  3 dY 
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in the terminology of Lemma 2.3 for ~z ,~Ez .  If we set k o = ~ , ~ ,  a simple compu- 
tation gives, for all U, T, Z ER 2n, 

(55) ~Ez ,~z  (V, T) = A 2 n ~ ( A - ~ ( U - Z ) ,  A~T). 

We know that  fA,Z is uniformly in E with respect to Z E R  2n and A > l ,  but in fact 
we have a much stronger result: following (iv) in Proposition 1.1, we can write 

(56) f A,z ( X ) =/R2n e-2ia( X'Y') XA.z( X, yt) dY', 

where XA,Z ES ~ and where, for every p semi-norm in S o and A> 1, there is a function 
* 1 2n , Y ))_%.A(Y') and SUPA> 1 fR2n ap A(Y') dY'< ap,A EL ( R )  such that  P(XA.Z(" ' < * 

oc. We can then write from (54), (55) and (56), 

= f /o , .  (5r) (~sz~(fA,z(" )(a-~(.  

• ( A - ~ ( X - Y - Z ) ) 3 ~ ( A - e ( X  - �89  A~Y)A 2"~ dYdY' .  

Since ~ES(R4~),  we get that  for all N E N  there are two constants CN and C~v 
such that  

CN 
_< 

( A - * ( X - 1 y - z )  )N+3(Ar 

(58) < (A_, (X _ y _  Z))3(A,y)N (A_,( X _  Z) )~ ,  

where the second inequality comes from the immediate inequalities 

( A - ~ ( X - � 8 9  )(A*Y) >_ C(A-*(X-Z)) ,  

(A-~ (X - �89  )(A~Y) >_ C ( A - ~ ( X - Y - Z ) )  

with C>0.  Hence 

(59) ]e2i*(Y'Y')XA,z(X-Y, Y ' ) ( A - * ( X - Y - Z ) ) a * ( A  - * ( X -  1Y-Z) ,A~Y)I  
* t 

a0.A(Y ) < 
-- (A,y)N(A-E(X_Z))N" 

We can therefore write 

(60) ./o2 (Wez~(fA,z(. )(A-*(. -Z))3)~Wez)(X)A -2n* dZ 

= JRf2~ e-2i*(X'Y')xA(X' Y') dY', 
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with, for all X, Y ' E R  2n and A>I,  

I / R 4  n XA 'Z  k A (61) XA(X, Y') : e2W(v.Y'). , v _ y .  y , ) ( A - ~ ( X _ y _ z ) ) 3  

x g2 (A -* ( X -  � 8 9  Z), A'Y) d(A-~Z) d(A*r). 

Now (59) with N = 2 n + l  shows that Y%-~supx ]~A(X, Y')I belongs to LI (dy  ') uni- 
formly with respect to A>_ 1. An analogous study gives the same result for any 
derivative with respect to X of XA. We recognize the fourth characterization in 
Proposition 1.1. This completes the proof. [] 

2.3. S t u d y  of  the  c o m m u t a t o r  t e r m  

Let us now study the commutator term SA in (46). We shall establish the 
following result. 

L e m m a  2.4. The remainder SA belongs to the class Z. Moreover there exists 
C2 such that we have IISAIIE~C2A 1-2e for all r 1] and A>_I. 

Proof. Let us recall that the symbol of SA is defined in (47) by the formula 

(62) SA(X) : / R 2 ,  ((aA~eZ --~r -2he dZ. 

We start using the asymptotic formula (30) at order 2 and get 

1 {aA, ~ez}+UA,z, (63) aA~eZ--~zZ~aA = - 
Z 

where {- , .  } is the Poisson bracket, and where, for all Z, X c R  2n and A>_I, 

f l  l-O ffR e-2i,,tx-x,.x-x2)/o UA,z (X) = 2 Im (rr0)2 n ,,, 

1 2 
(64) x (-~za(Oxl,0x2)) aA(X1)~z (X2)dXl  dX2dO 

/ol = 2 I m  Z co.  
J~l+l~l=2 

for some constants C~,~. We can therefore split SA into two parts 
(65) 

SA(X)---- 1 fR fR 2. ({aA'Wez}~WeZ)(x)A-2ns dZ+ 2n (UA'z~q#ez)(X)A-2ne dZ" 

For the second term of the sum, we shall prove the following lemma. 
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L e m m a  2.5. The term UA=fR2, U n . z ~ z A  -2"~ dZ belongs to the class E. 
Moreover there is C~ such that IIUhlIz<_C~A 1-2~ for all eE]0, 1] and h > l .  

Proof. Using Lemma 1.5 and the definition of the rescaling, we have, for all a 
and/3 with la1+1/3I=2, and uniformly with respect to A, r and Z, 

(66) A-10x~O~aA E ~] and A2e0x~O~ez E ~. 

Proposition 1.10 then implies that  the function fA.z=A-I+2eUA.z belongs to E 
uniformly with respect to A and Z. From (iv) in Proposition 1.1, we can write, for 
all Z and X, 

(67) fa,z(X) ~- f e-2ia(x'Y)Xh,z(X , Y) dY, 
J R 2n 

where XA,z satisfies the following uniform properties induced by (64) and Propo- 
sition 1.10: for every p semi-norm on S ~ and A>I, there exists a~, A uniformly in 
LI(R 2n) such that P(XA,z(', Y))<a~,A(Y) for all Z and Y. We can then write, for 
all Z, X and A, 

( f h , z ~ , z ) ( X )  = JRf 2,, ((e-2i~'("Y)xh'Z( " Y))~e,z) (X)  dY 
(68) y 

= ]R2n e-2ia(X'Y)(xA,Z(', Y)~e,Z(" -Y))(X) dE, 

according to an easy computation yielding (rya)~b=Ty(a~b(.-Y)) when a, b6E, 
where Tya(X)=e-2i"(x,Y)a(X). From arguments similar to those in the proof of 
Lemma 1.9, and the fact that  ~ commutes with the translations, we easily get that  
for all N E N  and a E N  2n, there exists p' and q' semi-norms on S o and S(R2n), 
respectively, such that,  for all X, Y, Z and A, 
(69) 

P'(XA,z( ", Y))q'(~2) a;',A(Y)q'(~P) 
la~(xA,z(., v )~c , z ( .  - Y ) ) ( x ) l  < ~ - ( - ( - ( ~ L - ~  < ( A - e ( X _ y - Z ) ) N "  

Now we can apply the Fubini theorem and we get from (69) that  if N = 2 n + l ,  the 
function defined for all Y by 

(70) X~--+ ~A(X,Y)= { (XA,Z(',Y)~PE,Z("--Y))(X) A-2"e dZ 
JR2~ 

is in S O and satisfies supA_> 1 fR~-P(XA(', Y ) ) d Y < c c  for any semi-norm p on S ~ 
Therefore X~-+A-I+2~UA(X)=fR~, e-2i~ Y) dY belongs to the class 
uniformly in A. The proof of Lemma 2.5 is complete. [] 

In order to conclude the study of the commutator term SA (and Lemma 2.4), 
let us have a look at the first term in the sum (65). 
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L e m m a  2.6. The term VA=(1/i) fR2,{aA, ~eZ}~q0EZ A-zne dZ belongs to the 
class ~. Moreover there is C~ p such that [[ VA [[ n _< C~th 1-2~ for all A >_ 1 and r E]0, 1]. 

Proof. Let us write a(T)=(--T, t) when T=(t, v), and define, for all Z, X E R  2n 
and A_>I, 

VA,z(X)= ( l {ah,~eZ}~ez)(X)= (~(alAO'(~'EZ))~ez)(X) 
(71) 

1 / / R  - -  iTr 2 n  4,~ dA(Y1)a(~tez(Y1))q~ dY1 dY2. 

In order to separately consider the derivatives of order 1 an the one of order 2 of 
aA, we perform a Taylor expansion of ak with respect to X, 

aX (Y1) ---- a~h(X)+ aX(X+O(Y1 - X)) (Y1 -X )  dO. 

We can then write 

VA,z(X) = la~h (X)(a(~Jez)~ez)(X)+ i ~  fol/fR, a'~ (X +O(Yl--X) )(Y~--X) 
(72) xa(~'~z(Y1))qO~z(Y2)e -2i'(x-v''x-v2) dY1 dY2 dO. 

As already noticed in the original paper of H6rmander [5], Lemma 2.1 implies that 
the first term disappears when we integrate over Z, since ~ is even. Therefore we 
only have to deal with the second part of (72). Let us denote it by WA.z(X). We 
first notice that  

(73) (yl_X)e-2i~(x-vl,x-v2)_ l r r { m  v ] ~ , - 2 i a ( X - V l , X - V 2 )  

It allows us to write 

(74) WA,z(X)= 1 fo~//R 27r 2 ~  4, ath(X+O(Y1-X))a(~'~z(Y1))a(~'~z(Y2)) 

• e-2ia(X-Y1 ,X--Y2) dYa dY2 dO. 

We shall again use the characterization of the class E given in (iv) of Proposition 1.1. 
We first notice that  the functions 

(75) fA=A- la~(  and ~cz=Aea(~O'ez(.)) 
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are in ~ and S(R2n),  respectively, uniformly with respect to A. We can write 

f h (X)  = s e-2i (xY)XA(X' Y) dY, 

where X~-+XA(X , Y) is in S o and is such that  for all semi-norms p on S ~ and A>_ 1, 
there is a function ap, h uniformly in L I ( R  2~) such that  p(XA(-,Y))<_ap.A(Y ) for 
all Y C R  2'~. We can then write 

WA,z(X)= A1-2E 1 fo~/ /R 27r2 n e -2ia( X -  Y' "x- Y2) f A ( X + O( Y1 - X ) ) 
4 n  

• ~ez(Y1)~I~z(Y2) dY1 dY2 dO 

= A  1-2E 12~_2 n fo ffs 
• XA(X+O(Y1 - X ) ,  V)k~Ez(Y1)glez(V2)dV, dV2 dY  dO. 

If we choose XI = X - Y 1 ,  X 2 = X - Y 2 ,  then we have 

WA'z(X)=A1-2 Ifo ///R--271 "2n 6 .  e - 2 i ~  

• XA ( X -  OXI, Y) ~ z  (X - XI) ~ez (X - X2) dX~ dX2 dY  dO. 

Now we can integrate by parts with respect to X1 and )(2 in the preceding equality, 
using the following differential operators 

1 1 1 t 
(76) P~-- <X~_Oy>20-~•  P ~ = ~ U ~ ( 1 - ~ x ~ ) ,  

where Axj ,  j----l, 2, is the Laplacian in the Xj  variables. If we by (I)x denote the 
phase function 

(I)X ---- -2o'(X1, ) ( 2 ) - 2 a ( X - O X 1 ,  Y), 

we have 7~je i'~x =e i~x for j = l ,  2. We can therefore write 

WA,z(X)= AI-2  I fo'//s _ _  eiqSx 
271" 2n a~ 

• P~+ lT~+lxA (X-OX1,  Y ) ~ z ( X - X a ) ~ z ( X - X 2 )  dXa dX2 d Y  dO. 

It is easy to cheek that  for all ~ G N  2~ and A > I ,  there is a function a~. A in L I ( R  ~ )  
uniformly with respect to A such that,  for all X, Y1, ]I2, Y, ZE R2~ and 0El0, 1], 

(77) IO~c"p~+I"p~+IxA(X--OX1, Y)~ez(X-X,)~cz(X-X2)[ 

< 
- < X : _ O y > = . + 2 < X I > ~ . + 2 < A - ~ ( X _ X , _ Z ) > 2 . + 2 "  
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Let us first recall that  VA(X)=fR~n WA,z(X)A -2no dZ and then set 

XA(X,Y)= 1 ~o l f / fR  ~--~ e-Zia(X1 .X2)+2ia(OX1 ,r)~O~+ 1 p~+ 1XA ( X - O X l ,  Y) 
6 n  

• ~ z ( X - X 1 ) ~ z ( X - X 2 )  dX1 dX2A -2n~ dZ dO. 

We notice that  VA(X):A 1-a~ fR2~ e-2i~(x'Y)XA(X, Y) dY. Moreover, (77) implies 
that  XA(', Y) is in S ~ for all Y and A, and for all semi-norms p on S ~ 

sup / P(~A(' ,  Y)) dY  < oc. 
A_>I JR ~n 

This implies that  VA E ~ with the estimate of Lemma 2.6. The proof is complete. [] 

2.4. Study of  the oscil latory term and the end of  the proof  

The study of the two remainders RA and SA and the continuous embedding 
~r163 (see Lemma 1.6) allow us to write the following lemma. 

L e m m a  2.7. For c--=1A-6, there is C3>0 such that we have IIR~ A-S~IIL(L2) < 
C3A 4/5 for all A > I .  

Proof. The result is immediate if we optimize the bounds inherited from Lem- 
mas 2.2 and 2.4. We write 

1-2~ = �89 

and get ~= 1 and 1 - 2 ~ :  1 4 + 3 E : ~ .  The study of remainders is complete. [] 

We have now to deal with the oscillatory part of the symbol in (46), 

(78) AA(X)=/R2(99~z~aA,z~ , z ) (X)A-2n~dZ , X E R  2n, A > I ,  

where ah,Z is the polynomial in the Taylor expansion of order 2 at Z of aA, already 
defined in (48). HSrmander's study in [5] and, in particular, Lemma 6.4 can be 
applied without change. It is an analytic lemma about the lower bound of a fimction 
in C3(R2n). Since ~'--~C~ 2n) (see Lemma 1.6) we can write the following lemma, 
assuming [[all3,or _< 1 and [a (3) (X; Y1, Y2, Y3)[- < 6 for F(X) _< 1 and F(Yj) < 1, j = 1, 2, 3. 

L e m m a  2.8. ([5, Lemma 6.4]) Consider the semi-classical family aA, defined 
in Theorem 0.2. Then for all Z c R  2", there exists sE[0, A 1/2] and Y E R  2~ with 
F ( Y -  Z)=s 2 such that 

(79) aA(Y) <_ a h , z ( X ) + ( 3 s F ( X - Z ) - 2 s 3 ) A  1/2, X E R 2n, 
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(80) a~( , z -6sA V2V _< a~ (Y)  <_ a~t,z +6sA1/2F.  

This lemma implies that the quadratic form a~(Y)-4-12sAI/2F is non-negative. 
Therefore, using (6), we obtain that the second-order polynomial 

(81) B ( X )  = ah,z (X )  + ( 6 s C z F ( X -  Z) - 283)A 1/2 

satisfies inf(B)+�89 Tr+(B")>0 ,  and Bw>_o follows from (2). This gives 

(82) 0 < ~,za~,z~,z+(qa~,z~(6sC2A1/2F(X-Z)-2s3AU2)l l~.z)W. 

When u E S ( R  n) we therefore have 
(83) 
( a ~ , z ~ , z  u, ~ , z  u) > 2s3 A1/2H~.zUH2-6sC2A1/2+ 2~F( A-~( X -  Z) )W ~ . z U  , ~ . z  u. 

Using (30) at order 2, we get that there is a function 3'A in S ( R  2n) uniformly with 
respect to A, such that 

ZX\ def /XX (84) ( r ( A - ~ ( X - Z ) ) ) ~ , z  = ' y A ( A - ~ ( X  - )) : % , z t  )- 

Using (83) we get 

w w w 3sC_A1/2+2etll,~W ~tl2 ~_ll^,w UII2 \ (85) (aA,z~ , zU,  ~;~,zU) >_ - .~ ~,v~.z ,~,z J. 

Now we can notice that  for s>0,  

(86) 3 1/2 ~ 2 1/2+2~ w 9C~A~/2+4~I^,w o 112 
28 A II~,zull -6sC2A II~.z~llll'r:.zull+~-s.- , , . ~ . z ~ . .  

=2sA~/2(sll~v,[.zull A2~3C2 w ~2 - ~ %.zUl l )  > 0 .  

Using (83) again we therefore get 

2 
9C~ A1/2+4etllTw ul12 ~ (a~,z~W,z ~, ~ z ~ )  >- --~-~ ~,, ~ . z  ,, 

(87) 
> 9t~A1/2+4~(,~2 ~ u 2+ ~ u 

- I I~.z II I I~.z  112)- 
- -  2s 

Moreover, we can notice that there exists C3>0 such that 

(88) rain (9C~ A1/2+4e,3sC2A1/2+2 ~ _-C3A1/2+ae. 
selO,A1/21 \-~-s 
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From (85) and (87) we get 

w w w 1/2+3e w 2 
(89) (aA,Z~,zU, ~ , Z  u) > - C 3 A  (ll'~,zull + II~zull=), 

hence 

~z,Z~aA,Z~Oc,Z >_ - C 3 A  1/2+3~ ('~e.z~"/~,z +~e,z~O~.z ). 

Using 1 4 + 3 r  g and integrating over Z yields 
(90) 

According to Lemma 2.1 we have 

(L Y --2n~ 4/5 2 2 
(91) 2~Pe,Z~aA,z~z,zA dZ > - C 3 A  ( II ~Pll L2 (R2n) "[- II"/A II L2 (R2,~)) 

>_ -C~A 4/5. 

[] The proof of Theorem 0.2 is complete. 
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