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Interior regularity of solutions to a
complex Monge—Ampeére equation

Bjérn Ivarsson(!)

Abstract. We give interior estimates for first derivatives of solutions to a type of complex
Monge-Ampere equations in convex domains. We also show global estimates for first derivatives
of solutions in arbitrary domains. These global estimates are then used to show interior regularity
of solutions to the complex Monge-Ampére equations in hyperconvex domains having a bounded
exhaustion function which is globally Lipschitz. Finally we give examples of domains which have
such an exhaustion function and domains which do not.

1. Introduction

Assume that y is a positive Borel measure on a domain QCC", n>2, and ¢
some function on the boundary of Q. Central to pluripotential theory is the study

of the Dirichlet problem
{ (dd°u)*=p in 9,

U=y on 99.
Here d°=i(0—0) and note that if u€C?(2) then

8%u
) = 47! V.
(dd°u)* =4"n det(@zjazk) av,

where dV = (%i)ndzl AdZA...Adz, AdZ, is the volume form. It is possible to define
(dd“u)™, the complex Monge-Ampere operator, for more general plurisubharmonic
functions. How to define this operator on continuous plurisubharmonic functions
was explained in [2]. It should be noted that Cegrell, see [9], recently has given
a definition of (dd°u)™ which has the optimal domain of definition. In both cases
(dd°u)™ is defined as a positive Borel measure on 2. In this paper we shall always

(1) The author was partially supported by the Royal Swedish Academy of Sciences, Gustaf
Sigurd Magnuson’s fund.
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have u=fdV, where f is a function. We shall be considering the question of how
regularity of f implies regularity of u. In general solutions to (dd°u)"=0 can be
irregular. One realizes this by thinking about a plurisubharmonic function which
depends on n—1 variables only. However, if one demands that the boundary data
be continuous then it can be proved in certain domains, as it was by Walsh in [15],
that the solution is continuous. Put

PB,(z) = sup{v(z) ;v € PSH(Q) and limsupv(2) < ¢(2g) for all zp € 69}.

z—2zp
It had been observed by Bremermann in [7] that if the problem
{ (dd°u)*=0 in Q,
U= on 99

is solvable, then the solution is the Perron—Bremermann envelope

(PB,)*(z) =limsup PB,(().
(—z

The result Walsh obtained is the following.

Theorem 1.1. Suppose that © is a bounded domain in C" and peC(8Q).
Assume that

liminf PB,(2) =limsup PB,(z) =¢(20) for all zp € 62
z2—zo z—r2zg

Then PB,€C(Q).

Higher order regularity is harder for the equation (dd°u)™=0 as the example
u(z1, z2)=max{|z1|2 -1, |z2*~ 3, 0}2 shows. This function is smooth on the bound-
ary of the unit ball, meets (dd°u)?=0 but is not smooth. For more examples of lack
of higher order regularity see Bedford’s and Fornass’ paper [1]. The first result on
higher order regularity was obtained in 1985 by Caffarelli, Kohn, Nirenberg and
Spruck in [8]. The positivity of f is crucial in view of the example above and those
given in [1].

Theorem 1.2. Suppose that Q is a bounded, strongly pseudoconvex domain in
C™ with smooth boundary. Let fEC®(QxR) be a strictly positive function which
is increasing in the second variable. Suppose that o€ C*(0K). Then the problem

&%u
SCACT in Q
det ( 92,55 ) flz,u(z))  inQ,
u=¢ on 09,
uw e PSH(Q)NC(NC(Q),

has a unique solution. Moreover u€ C*({Q2).
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Remark 1.3. When we say that a function g: R—R is increasing we mean a
function with the property that <z’ implies that g(z)<g(z’). If z <z’ implies that
g(z)<g(z’) we say that g is strictly increasing. Finally smooth will always mean
C*°-smooth.

Remark 1.4. Actually Caffarelli, Kohn, Nirenberg and Spruck proved a more
general result than stated in Theorem 1.2. One can in fact allow the Monge-Ampere
mass of u to depend on the gradient of u in a certain way. For details on this see [8].

A domain Q in C" is called hyperconver if it admits a weak plurisubharmonic
barrier at every boundary point, that is, for every z9€9Q there exists ve PSH(Q)
such that v<0 and lim,.,,, v(z)=0. Kerzman and Rosay showed in [13] that
for bounded domains it is equivalent to say that there exists a smooth bounded
strictly plurisubharmonic exhaustion function ¢ in €. This was improved upon
by Blocki in {4] so that we can choose a smooth plurisubharmonic g satisfying

lim,_, ,oca0 0(2)=0 and
det Fe >1
6z,-62k =

If we do not demand that the solutions should be smooth we can get the following,
which was proved by Blocki in [3].

Theorem 1.5. Let Q be a bounded, hyperconver domain in C™. Assume that
f is nonnegative, continuous and bounded in Q. Suppose that ¢ is continuous on
0) and that it can be continuously extended to a plurisubharmonic function on Q.
Then there ezists a unique solution to the following problem

(dd°u)" = f(2) in Q,
u=¢ on 012,
u € PSH(QNC(Q).

Blocki has also given a sufficient condition for smooth solutions in convex do-
mains in [6]. This result has also been announced in [5).

Theorem 1.6. Let ) be a bounded, conver domain in C*. Assume that f is
a strictly positive, smooth function in Q such that
i/n

f
O

sup < 00.

z€Q
Then there ezists a unique solution to the following problem
8%u
det = n )
¢ (azjazk> Iz m,
lim u(z)=0 for all 29 € 092,

z2—2g

u € PSH(QNC™().
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Note that a convex domain is hyperconvex since convex functions are plurisub-
harmonic and also that a hyperconvex domain is pseudoconvex since the function
0(z)=—1log(—p(2)) is plurisubharmonic and lim,_, ,, §(z)=00.

Definition 1.7. We say that a hyperconvex domain (2 satisfies the nonprecipi-
tousness condition, or for short the NP-condition, if we can find a smooth plurisub-
harmonic function g satisfying lim,—, ;.50 0(2)=0 and

8%p
>1
det(c’)zjaik) =7

;2€Q andj=1,...,2n}<oo.

and the condition

9
sup{‘a—xg_(z)
3

In Section 5 we shall prove Theorem 5.1, which is an extension of Theorem 1.6
to hyperconvex domains satisfying the NP-condition. In Section 2 we collect two
comparison principles which will be used throughout the paper and in Section 3
we prove an interior estimate for first derivatives in convex domains which the
author thinks is interesting in itself. In Section 4 we give a global estimate of first
derivatives in arbitrary domains. This estimate is then used to prove Theorem 5.1
in Section 5. In Section 6 we give examples of hyperconvex domains which satisfy
the NP-condition and hyperconvex domains which does not. Finally, I would like
to mention that this paper is an expanded version of my licentiate thesis [12].

2. Comparison principles

We shall need the following two comparison principles, the first of which was
proved by Bedford and Taylor in [2].

Lemma 2.1. Suppose that 2 is a bounded domain in C* and v,weC(Q)N
PSH(Q). Assume that (dd°v)">(dd°w)"™. Then

min(w(2)—v(2)) = mip (w(z)~v(2))
The following lemma is sometimes useful.

Lemma 2.2. Let Q be a bounded domain in C". Assume that f€C(2xR)
is a nonnegative function which is increasing in the second variable. Suppose that
v, weC(Q)NPSH(Q). Then

(dd°w)" < f(z,w(2)),  f(2,0(2)) < (dd"0)"

and v<w on 90N implies that v<w in Q.
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Proof. Put V{(z)=v(z)—w(z). We want to show that V<0 and do this by
contradiction. Therefore assume that there exists zo €(2 such that V(20)>0. Define
Q= {2€9Q;V (2)>0}. By assumption 2 is nonempty. Let £y be the component of {2
that contains zp. In Qy we have

(dd*w)" < f(2,w(2)) < f(2,v(2)) < (dd°v)",

since f is increasing in the second variable. We have v=w on the boundary of Qg
and an application of Lemma 2.1 tells us that v=w in Qy, which contradicts our
assumption. [0

3. Interior estimates for first derivatives in convex domains

We now prove the following proposition, which is an extension of an estimate
of Blocki, [6, Theorem 2.1].

Proposition 3.1. Assume that Q is o bounded conver domain in C" and
that K is a compact subset of Q. Let p: 32— R be a nonpositive function and g€
C=(2xR) be a strictly positive function which is increasing in the second variable.
Assume that weC®(Q)NPSH(Q) is a solution of

2
det(af—j;i) =g(z,w(z)) inQ,
w(z) =¢(z) on 0.

Let D be the diameter of €,

C dg'/" i di=1,..,2
:sup{\ . (2,t) ,(z,t)eQx[zlgsfzw(z),O] andl=1,..., n}
and
(—z%dqo(2)e }
_ : _ STrddalz)e —1,..,2
M sup{ mln{ (C)H,CE@Q, 2€K,v 2tdal)al andl=1,...,2n3,

where e, ..., eay, is the standard basis in R*™. Then

< 25Up, i [w(2)|+28Up, a0 [9(2)|+2DM +CD?

+CD?
1nsz K dQ(Z)

sup
ZEK

<

forl=1,...,2n.
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Proof. Take o€ K. After a translation we may assume that zo=0. We can also
assume that g€ C(C" xR). Put Q)L =Q—ce; and assume that € >0 is such that 0€
QL. Now choose o such that Q! Ca;Q. We can always choose oy =(dqn(0)+¢)/da(0)
and we see that the choice is independent of I. Thus we put a=(dq(0)+¢)/dn(0).
Now suppose that W is a solution of

*w, .
{ det<3zj3;k> = glztee, Wila) in €,
Wi(2) = p(z+ee;) on 9L,

The functions W; are translations of w. We see that W;(z)=w(z+e€e;). Super-
additivity of the operator
8y 1/n
det
€ (aZjaZk (z)>

on plurisubharmonic functions u gives

det(———aza(j;;z:z)(z)) W1/ (2)+4," ()"

(2

Define w,(2)=a’w(a~1z). We have

62wa 1/n 62w . 1/n
det (8zj82k (z)) =det (6zj82k (o z))

=g(a~ 2, w(a™12))/"
)l/n

(Z)) >y{z), (=12

=g(a 2,0 2wa(2)
> g(a™ 2z, wa(2))/"
> 9(2,wa(2))!/"—Cla™ 2~

> g(z+ee, wo(2))/*—Clatz~2|—Ce.

Below we shall modify w, to a plurisubharmonic function w; which satisfies
*w B .
det(aZj;D;k (Z)) 2g(’?”—i_eelvu)l(z)) n Qi

and @, <W, on QL. By Lemma 2.2 we can then conclude that @w;<W; in Q.. Put

uzz,,:(—z+dg(z)el and ’7<+,z,z= Z,z,z/|"<+,z,1|- Let §t=§+(1—t)e(dg(0)+s)‘1l72,0’l
and

Kfa,l =2D(1—-a 1) sup{

min{ — (ft)}‘;CEGQ anth[O,l]}
Kz (!
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and
Moy = (0®—1) sup{|w(¢)|; ¢ € D\a~10L}).

Let C=C((1—a~")D+¢) and @)(2) =wq (2) + C(|2|> —2D?) — Ny g — M. We have

i, Pwa , V'™ =V
>
det (8zj(92k (z)) > (det (3zj62k (z)) +C’)

> (g(z+eer, wa(2)) /" —Cla~ 22| —Ce+C)"
> g(z+ee;, wa(2))
> g(z+ee, wi(z)).

We now must show that W;(z) > (z) for every €. First observe that if z€9QL
then there is (€€} such that z=(—ce;. We have

Wi(z)—wi(2) = VVl(z)—wa(z)—5(|z|2—a2D2)+]Va,l+Ma,l
> Wi(2) = wa(2) + N+ Mo
:w(()—a2w(a_1z)+§ayz+f\}a,l
=w(()—w(a~((—ce;))—(a®— I)W(a_12)+ﬁa,l+ﬁa,l
> w(¢)—w(¢—e(da(0)+€) v 01) + Nau

_ Elvoq] Ow

- ﬁa >07
da(0)+< 97, (€)+Nas 2

where &, by the mean value theorem, is some point on the line segment
{&=¢+(1-t)e(da(0)+€) e ot €[0,1]}.
It follows that w; <W; where both are defined and we have

w(eer) = Wi(0) > @(0) = wy (0)— Ca’D? = Noy— Moy

=a?w(0)—Ca2D? —1\7&,1 —My,

or, since

_ (da(0)+eYV | 2edg(0)+€?
M‘(«m>)4+ da(0)?
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we get
De 2edq (0)+¢2 )
0)— <CD?| ——— kL '
w(0)—w(eer) < <d9(0) +s) (1+ dn(0)2
2De
+d sup{‘nun{ (&)}‘ ;€0 and t€|0, 1]}
o(0)+ 704
2edn(0)+¢2 Ay —1piy , 2eda(0)+€?
i sup{lu(0):¢ e Do~ 0+ e (o)
2edq (0)+€2 of De 2edq(0)+&2 )
L— _ [ MpmtiatLA AL
S T a0y up |w(z)|+CD da0)+e +e + da(0)?
2De
+— ;¢edand te 0,1}
dQ(0)+€ Sup{ mln{ VC ol (£t)}’ C [ ]
2edq(0)+€2 = -
B sub{1u(0)]:¢ € 0\ da(0)(da(0)+9) ).
Now let 0 and ee; change roles, replace via by ve, =C—2— do(z)e; and v}, ; by
V¢ 2a=V¢ 21/ V¢ ,4], and repeat the argument to get

2
wleer)—w(0) < @;jf(g—‘l){:e— sup [w(z)

De 25d9(561)+£2)
cD? — -
* (dn(661)+€+5) (“ da(cer)?

2D¢ . Sw .
+m sup{ mln{ a}_m l(&t)}‘ ;C€0Q and t€ 0, 1]}

2edq(ee;)+€2

sup{|w(¢)|; ¢ € N\ da(eer)(daleer)+e) 12 }.

da(eer)?
Hence
(0) 2SllpzeK lw(z)l+2suPz€69 |¢(Z)‘+2DM+CD3 CD2
Bxl inf,ex da(z)
or since zp was an arbitrary point in K,
3
sup| 2% (1| < 29Pscxc ()] +250D. cop [p()+2DMCD® s
zeK| 0Ty inf,cx do(2)

If w=0 on the boundary of Q then we can get a better estimate. This is
because the sole purpose of Na ; and Ma ; in the above proof is to make sure that
Wi >w; on 8QL. If w=0 on AN then we can set Na,l—Ma,l—O and still be sure
that w; <0=W; on 89'6. We have thus proved the following corollary to the proof
of Proposition 3.1.
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Corollary 3.2. Assume that 2 is a bounded convezr domain in C™ and that K
is a compact subset of Q. Suppose that gcC>®(QxR) is a strictly positive function
which is increasing in the second variable. Assume that weC®(Q)NPSH(Q) is a
solution of

Ow
det{ ——— } = in
€ (az]82k> g(Z,'LU(Z)) n ?
w(z)=0 on 0.
Let D be the diameter of Q and

1/n
C:sup{\—ag—xl—(z, t)

(2, 8) €% Lnel(fl'w{z),O] end [ = 1,...,2%}.

Then
25up, ¢ [w(2)]+CD?

inf, ek da(2)
If we also assume that g is independent of the z-variable we get the following
corollary.

ow
—m—l(l)

sup < +CD? forl=1,...,2n.

zeK

Corollary 3.3. Assume that Q2 is a bounded conver doman in C® and that
K is a compact subset of Q. Suppose that ge C™°(R) is a strictly positive function.
Assume that we C®(Q)NPSH(Q) is a solution of

Pw :
det (szazk) =g(w(z)) in$,
w(z)=0 on 0S.
Then

o 2
_w(z)‘gwﬁ forl=1,...2n.

sub (9.’1:1 infzeK dQ(Z)

zeK

4. Global estimates for first derivatives in arbitrary domains

We would like to remove the convexity condition in Proposition 3.1. This is
possible to do. However then the estimate changes from an interior to a global
estimate. One would think that Proposition 4.1 is much more useful than Propo-
sition 3.1. This is not necessarily so, since sometimes it is trivial to estimate the
constant M in Proposition 3.1 while an estimate of supcaq {0w(¢)/0z;| might be
harder. It should be noted that the estimate in Proposition 4.1 is very close to
an estimate that was obtained by Bedford and Taylor in {2] by more or less the
same method. A similar estimate was also given by Caffarelli, Kohn, Nirenberg and
Spruck in [8] using different methods.
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Proposition 4.1. Assume that § is a bounded domain in C™ and that g€
C>(QxR) is a strictly positive function which is increasing in the second variable.
Suppose that o€ C(9Q) and that weC®(Q)NPSH(Q) is a solution of

2
{ det(@i;}fk) =g(z,w(z)) inQ,
w(z) =p(2) on OfL.
Let D be the diameter of  and

dgt/™ ‘ }
= )5 (2,t) €Q f , dl=1,..,2n53.
C sup{‘ o (z,8)]; (2,1) €Qx [zuelﬂ w(z2) (Seua%(p(g)] an
Then
ow ow 5
—(20)| < sup | —(}|+CD* forallzgeQ andl=1,...,2n.
oz ceon| 0z

Proof. Take zp€ K. After a translation we may assume that zp=0. We can
also assume that g€ C>®{(C" xR). Let ey,...,ea, be the standard basis in Rz
C". Put Q! =Q—ce; and assume that €>0 is such that 0€QL. As in the proof of
Proposition 3.1 let W; be the solution of

2
{ det(aijg;lk) =g(z+ee;, Wi(2)) in U,
Wi(z) = p(z+ee;) on QL.
Study w(z)—W;(z) on 8(QNQL). We have

w(2)~Wi(z) = w(z) —w(z+eer)
0
2 —€ S“P{»a—:;(ﬁt)
Therefore, if we define

W) =Wl(z)—esup{‘§—;‘j<a)

(€= z+tee, z€3(QNQL) and €0, 1]}

& = z+tee, 2€(QNNL) and t€ 0, 1]}

we have w>W; on 8(QNQL). I we modify W, to @;(z)=Wi(z)+Ce(|2[2~D?) we
still have w>w;. We have

az’u‘/’l 1/n 62"Vl 1/n
det (azjazk (z)) = det(azjazk (z))

= g(z+eer, Wi(2))"/ " — (2, Wi(2)) /" +g(z, Wi(2)) /"
> gz, Wi(2)V/" ~Ce
> g(z, Wi(2))V/"—Ce
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and

oo 250 > (a0 25 ) ")

> (g(z, Wi(2)) /" —Ce+Ce)™ = g(z, Wi(2)) > g(z, Wi(2)).

By Lemma 2.2 we see that w; <w where both are defined and because of this
w(0) > @;(0) = W;(0) —CeD?
=w(ee;))—CeD?—¢ sup{ I g—:(gt)' €& =z2+tee;, 2€B(QNNL) and t€]0, 1]}
1
and we have

wlee))—w(0) < C€D2+ssup{‘37w(§t) & =z+tee, 2€d(QNQL) and t €0, 1]}
!

Now let 0 and ee; change roles and repeat the argument to get

w(0)—w(ee;) SCeD2+5supHg—;v-(§t) 1€, = 2+tee;, z€H(QNNL) and te [0, 1]}
1

Thus we can conclude that

Is;
\—w(O)‘ < sup —(()‘-l—C’D2 a
Oz, ceon| 0
If we assume that g is independent of the z-variable we get the following corol-
lary.

Corollary 4.2. Assume that € is a bounded domain in C™ and that g C*°(R)
is a strictly positive function which is increasing. Suppose that o€C(99) and that
weC®(Q)NPSH(Q) is a solution of

2
{ det(a—f;alzk> =g(w(z)) inQ,

w(z) = ¢(2) on 0.
Then s 5
—w(zo) < sup —w-(g“)\ forall 0 €Q and 1=1,...,2n.
oz cesl 0
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5. Smooth solutions to the Dirichlet problem in hyperconvex
domains satisfying the nonprecipitousness condition

Theorem 5.1. Assume that §) is a bounded hyperconvez domain in C" and
that feC™(QxR) is a strictly positive function which is increasing in the second
variable. If Q1 satisfies the NP-condition, see Definition 1.7, then the problem

8%u )
det(azjazk) = f(z,u(z)) inQ,

lim u(z)=0 for all z € 092,

zZ—20

has a unique smooth strictly plurisubharmonic solution u, which moreover satisfies

sup{

Conversely, if there is a smooth strictly plurisubharmonic solution u to the problem

ou
%(Z)

;2€0 andl:l,...,Zn}<oo.

det( Pu ): flz,u(z)) inQ,

6Zj82k
lim u(z)=0 for all 20 €0Q,
z—=rz9
which satisfies
sup{ _c')_u(z) ;2€Qandl=1,... ,2n} < 00,
8(1,'1

then €1 satisfies the NP-condition.

Before we prove this theorem we state two propositions which we shall use in
proving Theorem 5.1. In [14] Schulz established the following result.

Proposition 5.2. Assume that Q is a bounded pseudoconver domain in C"
and that ge C°(QxR) is an increasing function in the second variable which satis-
fies g(z,t)>0 for all 2€Q and teR. Suppose that we C=(Q)NPSH(Q) is a solution

of "
{ det( 5 o k) —g(z,w(2)) inQ,
w(z)=0 on 9Q.

Then for any e>0 there is a constant C which depends only on n, ¢, [|w(2)llc1(q),
(inf.eq g(z, w(2))) "1, lglz, w(2))lcr(qy and the diameter of €1 such that

forj,k=1,...,n.

2w
05 )| < oy

We shall also use the following result which was proven by Blocki in [6].
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Proposition 5.3. Let w be a C* plurisubharmonic function in an open set Q
in C" and ¢(z)=det(8%w(z)/02;0%). Assume that for some nonnegative Ko, K1,
b, By and B, we have

lwllcr oy < Ko, sug Aw(2)<K;, b<y¥(2)<By and ||1/)1/”(z)||01(9) <B.
z€

Then for any Q' €2 there are two constants a and C where a€(0,1) depends only on
n, Ko, K1, b, By and By, and C depends, besides those quantities, on inf,cq’ do(2),

such that
sup{

Proof of Theorem 5.1. Assume that ) satisfies the NP-condition and let p
be an exhaustion function satisfying the conditions in Definition 1.7. We shall now
construct a sequence (2,,,)%°_; of hyperconvex sets with smooth boundary such that
Q. €Ny and U§=1 Q,,=0Q. By Sard’s theorem there is a sequence a,, >0 such
that lim,, ;. am=0 and the sets Q,,={z€Q;0m(2)=0(2)+a, <0} have smooth

boundary and Q,€Q,,11. Let u,, meN, be the solution of

FPw

3Zj6§k

;j,k=1,...,n} <C.
Ce ()

Pup, |
det(aZjazk) —f(Z,um(z)) in Q,n,

lim um(2)=0 for all 2y € 0Q,,.,
Z—r20

which by Theorem 1.2 is smooth. By Lemma 2.2 we have that tmt+m'+1 <Umtm’
in ©,, for meN and m’€Z,. Now let Br(zo) be a ball that contains 2 and put
K=sup,.qg f(z,0). For v=K/"(]2—29|?— R?) we have

0%v
det{ —— | =K,
¢ (azjazk)
and Lemma 2.1 assures that v<u; on §;. Suppose that Q' €Q”€Q. There is an
NEN so that if m>N then Q"€Q,,. Put u(z)=limy, 00 um(z) for z€Q. This
makes sense since |J,._; 2m=0, and since lim,_,,, v(2)=0 for all 20€0Q we get

lim,_, ., u(2)=0 for all 20€8Q. Our task is to show that the sequence (up)S., is
uniformly bounded in C%%(’) for some a>0. We have

sup{|um(z)|;2z €Y and m € N} < sup |[v(z)| < co.
zeQ)

If we let D be the diameter of 2 and

1/n
C= sup{ ) agm {z,1)

iz, eQdx Lnelgv(z),o] and £=1,...,2n},
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then by Proposition 4.1 we have

sup 6 —=(z)| < sup (‘ZL—"'(C)‘+CD2 fori=1,...,2n.
2| Oy ¢ceadny;| 0Ty
Let
Cr =sup{|1V/"(2,1)]; (2, 1) €2 x [ziggv(z),o] and [=1,...,2n}.
Then

8201gm . 8 Qm . _ aQ'U»m
det (W(Z)>’:Cl det( (Z)) 2 CT 2 f(2,um(2)) = det 0z;0% =))

and hence C)0m <u<0 in Q,,. If we let ey, ..., €2, be the standard basis in R?" it

follows that
Oe

axz

Oum
8.’13[

for points z€0%),, such that
{z0+te;;te RINQ,,NB.(20) #0 for all £ >0.
We need to pay special attention to boundary points zo where we have
{zo+te;;t e R}NK,,NB:(20) =0 for some € > 0.

The function u,,(20+te;) is nonnegative as a function of ¢ and zero when ¢=0. This
shows that du,,(2)/0z;=0 and as a result the inequality

Oun| _ [ 92
3.1'1 ! (9.731
holds for all boundary points. Since 2 is assumed to satisfy the NP-condition we
have
Ouy, , do
sup (2)|;2€Q and me N } <Cjsup —(z) 00.
612; z€Q 8

Using Proposition 5.2 we get, for a fixed £>0,

u,,
YW A

<&(me (nf £z (@) M7 wm(Dlor @ lumllor @us D)

|um (2)[***
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for k,1=1,...,n. We have proven that (u,,)3S_, is uniformly bounded in C1(Q). It
follows that C'<o0o. Since Q' €Q” €y we have

%u,, C
( 2+¢ < 2+¢e "
02,.0%; lu ( z) | ay

We can now use Proposition 5.3. All the constants in Proposition 5.3 are under
control since inf.eq da,, (2) 2inf.cqr dor (2) >0, so we see that (um)oe—; is uniformly
bounded in C%°(QY') for some a€(0,1). We can now use the Schauder theory
described in Gilbarg and Trudinger’s book [11] to establish that ueC*(€?’), and
since ' was arbitrary we get uc C°(€)). We also see that in arbitrary compact '
we have

a—(z)

sup
zeQ

<G sup < 00,

Ou
c‘)z, (Z)

and again since )’ was arbitrary

ou
P l(z) < 00.

sup
z€Q

Uniqueness follows from Lemma, 2.2.
Conversely, if we have a smooth plurisubharmonic solution « to the problem

o%u :
det<82j82k> = f(z,u(z)) inQ,
lim u(2)=0 for all z € 042,

z—r2o

which satisfies

o
sup{]a—;‘—,(z)
J

;2€€Q andj:l,...,2n}<oo

we see that this solution satisfies all the conditions in Definition 1.7, at least after
multiplication by a constant, and hence 2 satisfies the NP-condition. [

Corollary 5.4. Let Q be a bounded hyperconvez domain in C™ and f€C>®()
be a strictly positive function. If Q satisfies the NP-condition, see Definition 1.7,
then the problem

5u ,
det(azja_k> =f(z) in$,

lim u(z}=0 for all zg € 39,

Z—Zg
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has a unique smooth strictly plurisubharmonic solution u, which satisfies

du
Sup{‘a_xl(z)

;2€80 andl=1,...,2n}<oo.

Conversely, if there is a smooth plurisubharmonic solution u to the problem

8u .
det(azjazk) =f(z) inQ,

lim u(z)=0 for all 20 €09,
zZ—29
satisfying
sup{ aa—;l(z) ;2z€Qandl=1,.. 7271} < 00,

then Q satisfies the NP-condition.

It would be desirable to describe the hyperconvex domains Q for which it is
possible to solve the problem

8?0 )
>
det(@zjazk) >1 inQ,

lim o(2)=0 for all zg € 951,
z—>zg
do
sup|=—(2)| < oco.
zeg aml( )

Blocki’s result on defining functions for hyperconvex domains shows that
8%p
d >1 inQ
et(azjazk) 21 1nf§}
li_)m o(z)=0 for all zo € 652
z—r29

is a natural condition. If we combine this with the condition that the defining
function should satisfy

Jo
6—931(2)

sup <00

Z€N

we get an interesting class of domains which deserves study.
If one wants existence results for

0?u .
det (W) = f(Z,U(Z)) mn Q,
lim u(2)=0 for all zp € 892.

Z—r20
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in general hyperconvex domains one would need to obtain other estimates than those
in Propositions 4.1, 5.2 and 5.3. To control the constants in these propositions we
need global estimates of the first derivatives. Note that Propositions 5.2 and 5.3 are
troublesome only if f(z,t) really depends on the t-variable. If f is constant in the
t-variable only Proposition 4.1 is troublesome. So in order to obtain an existence
result we would need to get interior versions of Propositions 4.1, 5.2 and 5.3. If it
were possible to somehow remove the convexity condition in Proposition 3.1 this
would settle the matter when f only depends on the z-variable.

6. Which domains satisfy the nonprecipitousness condition?

In this section we shall give examples of domains satisfying and not satisfying
the NP-condition. See Definition 1.7 for the definition of the NP-condition.

Proposition 6.1. Assume that Q,,...,Qn are hyperconvex domains satisfying
the NP-condition. Then ﬂfil Q, satisfies the NP-condition.

Proof. As Q,, satisfies the NP-condition we can write Q,, ={2€C";pn(2) <0},
m=1,...,n, where p,, is a smooth plurisubharmonic function satisfying

det & om (2)}]>1 forzeQ
(9Zj82k - ™

lim,_, ., om{2)=0 for all 2p€8Q,,, and

00m
sup{[aixl(z)

Let f:{yeR%;y:<0, y2<0}>R be given by f(y1,y2)=max{y;,y2} and fbea
smooth convex strictly negative approximation of f satisfying f(y1,0)=/(0,y2)=0
for 4, <0 and y»<0. We can choose f so that fgf and 8f/6y1>0 for 1=1,2, and
we shall do so.

We have 2;NQ,={2€C";max{p;, 02} <0}. Put o(z)=F(01(2), 02(2)). This is
a smooth plurisubharmonic function. We see that lim,_, ., g(2)=0 for zo€9(1NQ5)
and since max{g1, 02} <p it follows that

3 2€Qm, andl=1,...,2n}<oo.

Sup{ 3%%(2) ;2 € QNN and l=1,...,2n} < oo.

We claim that

B0 .
det — } >C>0 in Q.NNs.
8zjazk
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One way of proving this claim is to use that for a Hermitian matrix B we have
1/n 1.
(det B)'/™ == inf Tr(AB),
n AcA

where A denotes the family of all Hermitian matrices A with det A=1. For a proof
of this equality see [10] or [4]. We have

629 _gf_ 8291 B_f 3292 82f691691

82,0z, Oy1 02,02 = Oyz 02,02 = Oy? 9z Oz
_O*f 802801 o1 . 8*f 00100;  0°f Doz Boe

Bylayg 8z] 0z Oy10y2 Bz] XA Jy3 0z; 9z

Therefore we have

( 8% af( ) +6_f< %02 )
3Zj6§k 83;1 82‘.,621C Oy BZjafk

%é_)—l g—?z if- 32f Jo1 o1

N a0 oy Oyidy, 821 " Oz
: : *f 9 f 902 902

8z, 0z, Oy20y1  Oy; 2 "

In view of the convexity of f we get

620 1/n ) 32
"det(azjazk> ‘i’éarﬁ( (az,azk))

of . 5201 ) of ( ( %02 ))
> Ir Ir| A
~ oy /{2& <A<32j(92k) 8y2 Aet.;l szazk

6f af
+
a311 dy2’

Multiplying ¢ by a constant if necessary we see that ;M€ satisfies the NP-
condition. The proposition follows by induction. O

Proposition 6.2. A strongly pseudoconver domain QEC™ with smooth
boundary satisfies the NP-condition.

Proof. Take a smooth plurisubharmonic defining function g for the strongly
pseudoconvex domain. It is a standard fact that this defining function can be
modified to a defining function which is strictly plurisubharmonic on the closure of
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the domain and hence the domain satisfies the NP-condition. The modification is
done as follows. Let ¢y=p+ Ap? for an A>0. Then

n

> 55

j.k= J

do
at

ttk—(1+2A ) Z 5 a ttk+2A

On 09 we have

i &y tife = Z 652 titk+2A

B

and for nonzero tE{wEC";ZLl dow;/8z;=0} the first term is strictly positive
and for other nonzero t the second term is strictly positive so if we choose A large
enough then we can conclude that v is strictly plurisubharmonic on a neighbor-
hood of 9Q. Now choose an £>0 such that 1 is strictly plurisubharmonic on the
component of {z€C";|y(z)]<2¢} which has nonempty intersection with 9Q. Call
this component U. Suppose that ¢: R—R is a smooth convex function satisfying
p(z)=z if |z|< 3¢ and p(z)=—¢ if z<—2¢. Let K be a compact subset of € such
that {zeC";|y(z)|<2e}\K=U. Now put

(z)—{ pop(z), if z€(QUU)\K,
HE= =,  ifzek.

This is a plurisubharmonic defining function for 2 which is strictly plurisubharmonic
near 9Q. Let x€C§°(Q) be such that x~1(1)2Q\U. Put n(z)=p(z)+dx(2)|z|?. For
4 small enough this function gives us the exhaustion function we need. O

Ezample 6.3. Now we shall show that the bidisk D?={z€C?;|2;|<1 and |z2|<
1} in C? does not satisfy the NP-condition. Define E={zcR?;r,;<0 and z,<0}
and f(x1,r2)=—1; log(—z1)~— 2 log(—z2)+(x1+x2) log(—z1—z2) on E. The func-
tion f is convex, homogeneous of degree 1 and zero on OF. Since f is homogeneous

of degree 1 we have
& f
=0.
det (3.’1,‘ 5 oz k )

This function is not quite the function we need for our construction since f is not
globally bounded. We therefore modify it as

f(z1,x22), when —1<z;<0and —1<z,<0,
f(z1,—-1), when —1<z; <0 and 22 < -1,
f(—1,z2), whenz;<—-1and —1<z;<0,
f(=1,-1), when z; < -1 and x5 < —1.

g(iL‘l,.’Eg) =
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ObViOU.Sly g(l']_, z2):max{f(‘rlv *7;2)7 f(xly _1)7 f(_l) 1‘2), f(_17 ~1)} and therefore
it is convex. Now define u: D?— R as u(z1, z2)=g(log |21],1og | 22|). At points where
u is smooth we have

&%y 1 82g
i _ 1
det(@zjaik (21, 22)) 61212 det(@zjamk (log |21], log |z2|))

we see that

2
det(—a—ﬁ_—(zl, zz)) =0 on D*\{z€C?;log|z;| =log|z|=—1}.
0z;0%

The Monge-Ampere mass of u is concentrated on the set {z€ D?;log |z1|=log |z2|=
—1}. In order to use the comparison principles, i.e. Lemmas 2.1 and 2.2, we need
to examine globally defined smooth regularizations of u. We need to conclude
that when we apply the Monge-Ampere operator to these regularizations we get a
function that is bounded as we approach boundary points. In order to achieve this
we need to be a little careful when we regularize u.

Let ¢y, (2) be the Mébius transformation that is a bijection of D={2€C;|z|<1}
onto itself, send 0 onto w and leaves w/|w| invariant. It is easy to see that

Put ¢, (2)=¢(z, w) and let (=¢(z,w). For every w€D there is a function 1,, such
that @(z,%,(z,¢))=¢. One sees this by solving

z+w

2w+l ¢

for w. Taking real and imaginary parts we see that this equation has the same
solution as the system

{ (1-Re(2¢)) Re(w) —Im(2¢) Im(w) =Re(¢) —Re(z2),
~ Im(2C) Re(w)+ (1+Re(2¢)) Im(w) = Im(¢) ~ Im(2)
which is uniquely solvable since 1—(Re(2¢))?—(Im(2¢))?>>0 when z,(€D. Take a

nonnegative x € C5°(D) such that [, x dA=1. Write ®(z,w)=(p(21,w1), (22, w2))
and define

ux(@)= [ u(®(z w)xwn)x(we) dN(wr) dAws).

This function is globally defined. If we write ¥(w, z, ()= (¥w, (21, (1)s Yuw, (22,2))
we get

() = [ O (o1, e o ) et G 02,00 ) A NG
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Now we can differentiate with respect to z without any problems and u,, is smooth.
What remains to be shown to conclude that u, is plurisubharmonic is the sub-
mean value inequality. Note that, for fixed w=(wy, w2), the function u(®(z,w)) is
plurisubharmonic. Because of this and Fubini’s theorem we get, for zeD?, C602
and TER,

2
%/0 uy (z+7¢e) df
= /D (.2_1; /21r u(<I>(z+TCei9,w) de)x(wl)x(wz) dA(w1) dA(w2)
2 0
> [ (@) x(n)xten) dA ) dA(w2)
D2
=uy(2)

for 7 so small that u,(z+7(e®) is defined for all 8€[0,2n] and we see that u, is
plurisubharmonic.
We shall now estimate

%u,
det ( 92,07 ) .
First note that o2 o2 52
u U U
det X )< X X
€ (azjazk> = 32,107, 02207,

‘We have

0?u, 8?
= d\ dX
821(921 /Dz (621821 u(‘P(zhwl)’ (,0(2’2,11)2))))((’(111))((1112) (wl) (w2)
and similarly for 62ux /0228%,. Using the chain rule we get

2 9%
92,071 (p(z1,w1), (22, wy))

ulp(en, w1), (e, w2)) = | 222 ()
92107, P\21, W), PlRe,w2)) = 92 1

O 2 1 8y
8211 (21) 4|Zl !2 @(log I‘P(zh wl)i? 10g IW(Zz, w?)l)

at points where u is differentiable, which is almost everywhere. We do not need to
worry about what happens when |z,|=0 since 8%g/8z?=0 when z; <—1 and since
x1=log |z1]| we see that the apparent singularity is nonexistent.

Now let us examine which sets (z1,supp x) appear for different z;. In order
to make this analysis simple let us pick a x such that supp x={wEC;lw|§%}.
Obviously (0, supp x)=supp x. If z; #0 then we can write

et arg(wi+1/%1) |zll2_1

Ple,w1) = z |21 @01 +21
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When we have rewritten ¢(z;,w;) in this form, it is possible to interpret the map-
ping as a composition of translations, dilations and inversions in the circle. Viewing
¢(z1,w;) in this way lets us conclude that, if we put

1 2(|z)*-1)

alz1)=—+

1 2|zP-1)
|21 |21](2+]21])

and B = It e —Ta)
then
@(21,5upp x) C {w1 € C; B(z1) < |lwr| < a(z1)}-

We are now ready to begin our estimation of the integral

32
[ (523 oten ) )t ) ) ).

First it is obvious that (4]z;|2)~! is bounded when |z;|>e~!. We see that

8cpwl (Z ) wh 1—|w1|2

dzy V7 Jwn| Ttz fwi])?

and because of this we see that |0p(z1,w1)/8z|? is bounded when |w;|<} and
|21|<1. Since also x is bounded we have established the following inequality

52
/Dz <6z1 5% ul{p(z1, w1 ), (22, wz))) x(w1)x(w2) dA{wy) dA(ws)
5?
< C/ Tg(log l(21, w1)l, log |@(22, wa)]) dA(w1) dA(w2).
supp xxsupp x L1

Calculations give
—z2/z1(21+72), when —1<z;<0and —1<z2<0,

0%g 1/z1(x1—-1), when —1<1z; <0 and z2 < -1,
a—ﬁ($1,$2)= 0, when z1 < —1 and —1 <z5 <0,
0, when z1 < -1 and 25 < -1,

and the inequality )

Il"ll IZL‘2|
=51, T2 <
a 21( 1 ) | 1|

lr1+z2| ~ |21]?

follows. Hence we have

Fe
[, (Gt eten,wa) xtunxm) (1) ()

1
<c / log lp(es, walll_ 4y, aa(uy)
supp xxsupp x (108 |¢(21, w1)])

1
:C/ lo 2o, wa) || dA(w /
SUPDX| gl(p( 2 2)” ( 2) supp x (10g|80(21,’w1)|)2




Interior regularity of solutions to a complex Monge-Ampére equation 297

In a similar fashion we get

d%u,, 1

z21,22) <C lo z1, w1)|| dAM(w dA\(w2).
6226_ ( 1 2)—— suppxl gIQD( 1 l)ll ( 1) supp x (10g|§0(22,w2)|)2
Setting a=¢(21,w;) we get
| oloter, )] axwn <c [ jlog al| dA(@)
supp x #(z1,5upp x)
a(z1) 2 21 a(z1)
<C —rlogrdr= [r__r ;gr] =A(z1).
en) 4 B(s1)
We also get
/ = d\(w1) < C / L dx\a)
w —_
supp x (loglso(zl7w1)|)2 V= ©(z1,8upp x) (log|a|)2
a(z1) r
<C 5 dr
B(z) (logr)
1 a(z1)
= [——+2log|logr|+§(logr)] = B(z),
logr B(z1)

where ¢ is a smooth function satisfying £(0)=0. Now this implies that

Puy  OPuy
<CA(z)B(z
021071 8290z — (21)B(21)
near boundary points z such that |z;/=1. The terms in A(2;)B(z;) that are trou-
blesome are

(a(21)*~B(21)?)(log [log e(z1)| —log Jlog B(z1)1)

1 1
(a(21)* = B(21)?) (log B(z1) loga(z1) )

As we have a(z1)? —B(21)%=(a(z1)+8(z1))(a(z1)—B(21)), a(z1)—B(21)=0(|z1|—
1), log|loga(zl)|=log|log|z1|[+0(1) and log|logﬂ(zl)|=log[log|z1||+0(1), as |z1|
tends to 1, one sees that the first term tends to zero as |z;| tends to 1. The second
term is bounded since

. 1 1
|z111lrgl(a(21)2—ﬂ(a)2) (log 8(z) loga(zl)>

lim Ki(lal=1)2+0((|z1|-1)%)
" 11151 (log e1]+ Ko (21|~ 1)) (log |21 [+ Ka([za| - 1) +O((za |- 1)?)

and

=K,
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for some constants K, K, K3 and K. Of course similar estimates with 2; replaced
by 29 holds. Thus
%u
lim det X
220 < 020z >
is bounded when 2,€0D2.

Let us now examine the boundary behavior of the first derivatives of u,. We
have

qu(Z-FC)—ux(Z)l=/D2 [u(@(2+C, w)) —u(® (2, w)) Ix(w1)x(w2) dA(w1) dA(w2)

=/D2 |u'(2(2, w)) ¥’ (2, w)CIx(w1)x(w2) dA(w1) dA(w2) +o(|C])
>C inf (|[u'(2(z,w))] (2, w))I¢]+o(I])-

[w|<1/2

Since we have lim,_, ., inf|,,|<1/2(||t/ (®(z, w))|| |@' (2, w) ) =00, if 20€DD?, we see
that lim,_, ,, [|u} (2)||=co0.

Now let us compare u, with a smooth plurisubharmonic function g: DR
satisfying lim,_, ,,cap2z 0(2)=0 and

8%
>1.
det(azjazk) =

After multiplication with a constant if necessary we can assume that

82u,
<1.
det(azjazk) sl

Now Lemma 2.2 implies that o<u, and we get

- 7’ > . 7 —
Jim {lo'(2)ll 2 Tim |lu; (2)}f =00
and therefore the bidisk does not satisfy the NP-condition.

Observe that it is possible to use the fact that the bidisk does not satisfy the
NP-condition to show that any hyperconvex domain QCC? such that D?CQ and
dNNHD? contains a nonempty relatively open set does not satisfy the NP-condition
either. Assume that  satisfies the NP-condition. Then there is an exhaustion
function u for €2 such that

&u )
det(azj82k> =1 in©,
lim u(2)=0 for all zg € 892,

zZ=>29

< 00.

ou
55;(2)

sup
zeQ
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We know that for D? there is an exhaustion function v such that
6%
det =1 in D?
¢ (azjazk> e
lim v(z)=0 for all z9 € 8D?,

Z—r20
ov

oz, %)

sup
z€D?

=0Q.

Now by the comparison principle it is clear that «<v in D? and hence

Du

(9xl

sup
z€Q

=00

which contradicts the assumption that  satisfies the NP-condition. In fact, it
is enough to assume that D2CQ, 9QNAD?*=90NT,(D?) and that 6QNTS(D?)
is relatively open. Here Tf(Dz):{z€C2;Z?=1(6v(p)/8zj)zj =0} and pedD?\
{2€C%;|21|=|22|=1}.
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