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O n  t h e  T i t c h m a r s h  c o n v o l u t i o n  t h e o r e m  

Se~il Gerg~n, lossif V. Ostrovskii and Alexander Ulanovskii 

1. I n t r o d u c t i o n  and  s t a t e m e n t  o f  resul t s  

Let M be the set of all finite complex-valued Borel measures # ~ 0  on R.  Set 

l(#) = inf(supp #). 

The classical Ti tchmarsh convolution theorem (see, e.g. [4], Chapter  VI.F, [6], 
w claims that  if measures ,ul, tt2, ..., #n belong to M and satisfy 

/(#j)  > - o c ,  j = 1 ,2 , . . . ,n ,  (i) 

then 

(2) /(~tl*~t2 * . . .*~tn)  = / (/t 1) -I- / (~2)  ~- ... ~- ~ (~trz), 

where '*'  denotes the operation of convolution. 

Simple examples show that  condition (1) is essential. One may set 

oo 5-kra oo ~ ~m 
(3) ~ I = Z  .~! , ~2= ~ < - 1 )  ~'j .~! , k>0, 

~r~0 ~rt=0 

where 5x is the unit measure concentrated at the point x. Clearly, #1 ,#2=60.  We 

see that  / ( # l ) = / ( # 2 ) = - e c  wh i l e / (#1 ,#2 )= 0 .  
It  was Y. Domar  [2] who first established that  condition (1) can be replaced 

by a sufficiently fast decay of #j at - o c :  there exists a>2 ,  such that  

The best possible condition on decay of #j was obtained in [8]. 
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T h e o r e m  A. ([8]) If  pj E M  and the condition 

( 4 )  ]# j l ( ( -oo ,  x)) = O(exp(-c[x I log Ix[)), x ~ -oc ,  for all c > O, 

holds for j = l ,  2, ..., n, then (2) remains true. 

One can easily check that  the measures #j in example (3) satisfy (4) in which 
'for all c > 0 '  is replaced by ' c=l / k ' .  Hence, condition (4) in Theorem A is sharp. 

It  turns out that  there is a close connection between Theorem A and a certain 
'quasi-analytic '  proper ty  of the second convolutions of measures. 

T h e o r e m  B. ([8]) Suppose " 1 , " 2 E ~  and satisfy (4). If  / ( . 1 ) = - o o  and 
,~*] _ ,2 .1  for some aER,  then "1 : " 2  �9 ( oo,~)-- 2 I( . . . .  ) 2 . _  2. 

Thus, every measure - E M  satisfying the assumptions of Theorem A has the 
property that  the second convolution .2 .  is uniquely determined by its values on any 
fixed half-line ( - c o ,  a). For proof, it suffices to apply Theorem A to the measures 

p 1 = . 1 + . 2  and # 2 = . 1 - . 2 .  

In fact, all n-fold convolutions .~* have a similar property. Moreover, if n_>3 
then restriction (4) can be substantially weakened. 

T h e o r e m  C. ([8]) Suppose n > 3 ,  L/1,-2EM and satisfy the condition 

(5) 1 .3 t ( ( -oo , x ) ) :O(exp ( - c l x l ) ) ,  x ~ - o o ,  f o ra l l c>O,  j = 1 , 2 .  

. . ~ g *  I L/n* / f l ( . z ) = - o o  and P'I l( oc,a)---- 2 l(--oc,a) for some a c R ,  then .~*=--.~* 

Restrictions (4) and (5) in Theorems B and C are sharp (see [8]). 

Observe that  

" F  - = ( - 1  - - 2 )  * (L/1 - L/2) * . . . *  ( - 1  - e 

Hence, if n ~ 3 ,  the difference up*-u~*  can be represented as the convolution of 
linearly dependent measures. One may ask if there is an extension of Theorem A 
to linearly dependent measures in which restriction (4) is replaced with a weaker 
restriction (5). It  is established in this paper  that  Theorem C can be easily deduced 
fi'om a general result which extends Theorem A to linearly dependent measures. 
This result will be formulated and proved in Section 5. In our first result we extend 
Theorem A to measures connected by a linear equation. 
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T h e o r e m  1. If pl,P2,... ,p~_l�9 n k 3 ,  are linearly independent over C, 

satisfy (5) and 

#4 = #l +#2+. . .+#n-1 ,  

the statement ceases to be true if 'for all' in (5) is 
then (2) remains true. 

Condition (5) is sharp: 
replaced with 'there exists'. 

We derive this theorem from the following factorization theorem in the class 
H~176 of functions analytic and bounded in the upper half-plane C+. 

T h e o r e m  2. Let h~O belong to H~ Suppose that h=9192...9~ where 
the functions gj, j =  l, 2, ..., n, n> 3, are analytic in C+ and satisfy the conditions: 

(i) there exists H > 0  such that sup{Ejn__l ly j (z) l :o<Im z < H }  <oc; 
(ii) 91, 92, ..., gn--1 are linearly independent over C and 

gn =gl+g2+. . .+gn-1 .  

Then there exist c o n s t a n t s  bj  E R  such that 

(6) 9j(z) exp(ibjz) �9 H~176  j = 1, 2, ... ,n. 

The proof of Theorem 2 is based on two results. The first result is the following 
immediate corollary of H. Cartan's second main theorem for analytic curves. 

T h e o r e m  D. ([1]) Let f l ,  f2 , . . . ,  f~, n_>3, be functions analytic in the unit 
disc whose zeros satisfy the Blasehke condition. I f  f l ,  f2, ..., f,~-I are linearly 
independent over C and f i~=f l+  f~+. . .+ f ~ - l ,  then 

fJ = O  log t - + l ,  j 1,... n - l ,  T r ,  ~ = , 

where T denotes the Nevanlinna characteristic. 

The second result is the following theorem on representation for functions har- 
monic in C+ which we believe is of independent interest. 

T h e o r e m  3. Let u be a real-valued function harmonic m C+ which satisfies 
the conditions: 

r oo (i) there exists a sequence { k}k=l, rk-+oc, such that 

// (7) u+(re i~) sin ~ d~ _< exp(o(r)), r = rk --+ oc; 

(ii) there exists H > 0 ,  such that 

(8) sup [ ~  
lu(x+iy)  l 

dx < oc. 
0 < y < H  J - z c  1 q - x 2  
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Then u admits the representation 

(9) u(z) = y / ~  an(t) 
oo ( t - x ) 2 + Y  2 f-ky, z = x + i y 6 C + ,  

where k 6 R  is a constant and u is a real-valued Borel measure on R such that 

(10) dl-I(t) < oo. 
oc 1 + t 2  

T h e o r e m  3 differs f rom the known results ([6], p. 109, [5], p. 233) since it 
contains a much  weaker  a s sumpt ion  (7) on the  growth  of u + for representa t ion  (9) 
to hold. For instance,  in [5], p. 233, one assumes tha t  u+(z)=O(IzD, Izl--+oc. 

The  rest of the pape r  is organized as follows. In Section 2 we prove T h e o r e m  3 
af ter  two pre l iminary  results  (Lemmas  2.1 and 2.2). These  l emmas  m a y  be of inter- 
est on their  own. Section 3 contains the  proof  of T h e o r e m  2, which can be viewed 
as the  ma in  pa r t  of the  proof  of T h e o r e m  1. In Section 4, we derive T h e o r e m  1 
f rom T h e o r e m  2. Finally, Section 5 contains a general izat ion of T h e o r e m  1 to the  
case when the dimension of the  linear span  of P l ,  ..., P,, is less t han  n 1. 

2. P r o o f  o f  T h e o r e m  3 

L e m m a  2.1.  Let u be a (complex-valued) function harmonic in C+ and sat- 

isfying 

(11) sup f l ~  lu(t+is)l dt < oo for some H >O. 
0<s<H ~ o c  1 + t  2 

Then u admits the representation 

(12) u(z)  = ~- f _ =  
du(t) 

( x_ t )2+y  2 uu(z), z=x+iy C+, 

where u is a Borel measure on R satisfying (10) and U is a .['unction harmonic in 
the whole plane C such that U ( x ) = 0 ,  x 6 R .  

Proof. Consider  the  family of Borel measures  on R ,  

= f  (t+is) 
Os (J~) T~T5 dr, 0 < s < H .  
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O" oo By (t l ) ,  each sequence { +k}k=~, lim~,_~ sk:-0, contains a subsequence (which 
(7" o0 we also denote by { +k}k=l) weak-star convergent to a finite Borel measure ~r on 

RU{oc}. Hence 

(13) lira y / y  u(t+isk)  y . / y  l i t  2 y 
k - ~  ~r ~ (x_t)2  +y 2 dt = - 

Consider the family of functions 

(14) f f  Wit+s)__ dr, ++ =++++ + c+, o<+<�89 
oc (z--t)24-Y 2 

Every function Us is harmonic in C+, continuous in C+ and Us(x)=0 for xER.  By 
the symmetry principle, it can be harmonically extended to C and Us(z)=-U~ (2), 
zEC.  

The family { Us: 0 < s < 1H } is uniformly bounded in any rectangle H•,H = { z: 
I Re z I<R, I Im zl_< �88 Indeed, (14) and (11) imply that  there exists C > 0  such 
that  

~_ ~ Ig~(x+iy)l d x < C  for ly l< �89 0 < s < l H .  
�9 ~ l + x  2 - _ 

W h e n c e  we obtain, for zEHR.,H, O=IH,  ~=~+irt ,  

lUg(z) 1 < 1 /~i~ "1 ~" IU~(~)] d 

(15) 

-- 7c9 2 d-hr/2 ~ 1+~ 2 -- 7rL 92 

Let {sk}k~_t be a sequence such that  (13) holds. By the well-known compact- 
hess principle for harmonic functions, we can extract a subsequence (which we also 
denote by {sk}~_l) such that  the sequence {U+~}~_ 1 is uniformly convergent on 
any compact subset of the strip { z : l l m z l <  �88 Let g be the linfiting function. 
Clearly, U is harmonic in {z:[ImzI<lH} and U(z)=0 for z E R .  Putt ing s=sk  in 
(14) and letting k--+eo, we obtain (12). [] 

Lemma 2.2. Let u be a (complex-valued) function harmonic in C+ and sat- 
r oo isfying (11). Assume that there exists a sequence { k}k=l, r'k-+oc, such that 

( (16) [u(r@~ sin 0 dO <_ exp(o(r)), r = rk -+ oc. 

Then representation (12) holds with 

(17) U ( z ) = k y ,  y = I m z ,  

where k E C  is a constant. 
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Pro@ We divide the proof into five parts. Without  loss of generality, assume 
that u is real-valued. Then function U and measure ~ in (12) are also real-valued. 

Step 1. First we show that  

/0 (18) [g(rei~ sinOdO <_ exp(o(r)),  r = r k  --+ oc. 

From (12) we get 

[U(re~~ {u(reiO)lsinOdO 

(19/ +/0~ ( ~ / ~  r~ +~d'"' It/_ 2rt cos 0) ~in 0"0 

The first integral in the right-hand side admits the estimate (16). The change of the 
order of integration and simple calculations show that  the second integral is O(r), 
as r - - - ~ .  This gives (18). 

Step 2. Now we show that  

(20) tU(z)l-<exp(o([z[)), [ z 1 : 1 ~ _ ~  oo, 

where o(Izl) does not depend on argz.  Since U(z)=-U(z), it suffices to establish 
(20) for z e C + .  

By the Nevanlinna formula ([3]), p. 16; [6], p. 193) we have 
(21) 

1 fo ~(R2-r2)4Rrsin~sinOU(Reio)dO, z=re ~', 0 < r < R ,  0 < ~ < T r .  
g(~) = ~ iRe~o zl2lRe_~o_~12 

Hence 
(/~2 - r 2 ) 4 R r  1 [U(Re~O)lsinOdO. 

Ig(~)l_< (R-~)~ 2~ 

Putt ing R=rk, 1 r=~rk, and using (18), we get (20). 

Step 3. Let us show that  

1 (22) Iu(z)l =o(Iz12), as Izl ~ ,  I Imzl < ~H. 

It follows from (12) that U admits a representation similar to Us in (14) in which 
u(z+is) is replaced with u(z) and u(t+is)dt is replaced with dy(t). Calculations 
similar to those from tl~e proof of Lemma 2.1 establish that  there exists C such that  

(23) F [g(z+iy)l dx<C for lyl < � 8 9  
oc l + x 2  - 
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and 

IU(z)l < l+(Izl+1H)2 [ /~ Re~,<H/4 tu(~+iw)l d~d~. 
--  7C ( 1 H )  2 J J  I r / ] < . / 4  1+~ 2 

The double integral tends to 0, as Re z--+oc, because its integrand is summable over 
the whole strip {( r162  ]rll<�88 as (23) shows. Thus, (22) is valid. 

Step 4. Let G be the entire function uniquely determined by the conditions 
ReG(z)=V(z), G(0)=0. We now show that: 

(i) there exists a sequence {Re}k~_-l, Rk -+oo, such that  

(24) IG(z)l _<exp(o(Izl)) for I~1 = R k + ~ ;  

(ii) 

1 (25) IG(z)l=o(Iz] 3) for I Imzl -<gU,  z--~. 

To verify (24) we use the well-known formula 

1 L 2~ a'(z) = 7~ u(z+o~~ -~~ dO, 

whence 

(26) 
2 

IG'(z)l-<- max Ig(r 
Q [r ~1<o 

We get for Izl=Rk=�89 

s z de la (z) l=  C(r  _<Rk max IC(r189 
I~l<_Rk 

i.e. (24) is valid. 
If I Im z I < 1 _ gH, it follows from (26) and (22) that  IG'(z)l=o(lz]2), z--+oo, whence 

(25) follows by integration. 

Step 5. Let us complete the proof of Lemrna 2.2. 
Applying the well-known version of the Phragm~n-LindelSf principle for half- 

plane (see [7], p. 4a), we conclude that  (25) holds in the whole plane C and, by 
Liouville's theorem, G is a polynomial of degree _<2. Since ReG(t)=U(t)=O for 
tER,  and G(0)=0, we have G(z)=iaz2+ibz, a, bER. Hence U(z)=-2axy-by. If 
at;0,  then (23) could not be valid. Thus U(z)=-by, i.e. (17) holds. [] 
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Proof of Theorem 3. The proof of Theorem 3 differs from the proof of Lemma 
2.2 by only one additional step. Namely, we should prove that,  for a real-valued u, 
the estimate (18) remains valid if the condition (16) is replaced by the less restrictive 
condition (7). 

Note that  (12) implies also that  the inequality (19) remains valid if we replace 
IUI and lul with U + and u +, respectively. Hence, 

f0 c (27) U+(re ~~ sinOdO <_ exp(o(r)),  r =ra: -+ oo. 

Setting z=i in (21) we get 

f0  ~ ( R 2 - 1 )  4 R s i n o  iU(ReiO)ldO 

Taking into account that  

2 j'o ~ (R2-1)4RsinO U+(Re~O)dO_U(i). 
= ~ IRe~~ ~~ 

4(R--1)3 sin0 ( R 2 - 1 ) 4 R  sin 0 4R3 sin0 

(R+ l )4  <-iReiO il21Re_iO il2<- ( R _ I ) ~ ,  

putting R=rk and using (27), we obtain (18). [] 

3. P r o o f  of  T h e o r e m  2 

Proof of Theorem 2. We divide the proof into four steps. 

z - i  
C- z+i 

Step 1. Let us show that  

Cr Cr 
(28) log + f a ( r d ~ ) l - < - - l o g  : , 

sm ~ sm 

where C is a positive constant. 
Map C+ onto D={~:141<1 } by 

(29) 

and set 

r e ~ f f C + ,  r > l ,  j= i , . . . , n ,  

(30) i~(~) = h(z),  ~j (r = g j (z), j = 1, . . . ,  ~. 
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Then 

(32) 0,r~(O = 01 (4) +... +0,~-1 (4). 

Moreover, hCH~ and gl,...,.0,~ 1 are linearly independent over C. Since the 
zeros of l~ satisfy the Blasehke condition, equation (31) implies that  the zeros of 
each ~j, j = l ,  2, ..., ~, also satisfy this condition. Applying Theorem D, we get 

(33) 

Using the properties of the Nevanlinna characteristic (see, e.g. [3], Chapter 1, 
w [7], Chapter 6, w and taking into account that hEH~176 we obtain 

T(r, 9~) = lT(r ,  l~) +O(1) <- lnT(r, ~ )  +O(1), 

whence, using (31) and (33), we conclude 

1 ( ~ 1 . . . ~ , , ) + O ( 1 )  

<-;Ezl'n-i ( [?J)+o(1)=O( ~-rl  ) r - - + l . ,  
j=l 

Using (33) once again, we get 

(9~ )+T(r ,~ )=O( lOg l@r)  t-+i, j 1,... n. (34) T(r,~j) <_T r, , = , 

The well-known inequality 

4 ~ / 1 + ~  ~ l~ 1-~ t - ~ - , g J ) ,  

where M(r ,  ~j)--max{lOj (()l: 141 < r}, allows to derive from (34) that there is a pos- 
itive constant C1 such that 

C1 log+ l/~j (4) l _< logl_lr  ~ ,  r  j= l , . . . ,~ .  

U~ing (29), we get (2S). 
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Step 2. Let us show that  

(35) sup{/~~176 1+X2 

where H is taken from the condition (i) of Theorem 2. 

(36) 

j=l , . . . ,n ,  

We need the following simple known lemma (see, e.g. [8]). 

L e m m a  3.1. If a.function Q~O belongs to H~ then for any K >O  

{ J ~  l~ dx:O<y<K} <oc. 
sup 1 + x 2 

O O  

To prove (35), write 

f ~ lloglgj(x+i~)ll ~ x = F  log+lgs(x+iy)l ~x+ f ~ log+ll/gj(x+i~)l d.. 
oc 1+ x2 oc 1+ x2 -oc 1+ x2 

The first integral in the right-hand side is bounded for 0 < y < H  by condition (i) of 
Theorem 2. Using condition (i) once again, we get 

1 1 C 
- Ih(x+iy)l I I  lgk(x+iy)l_< Ih(~+iy)l' o < y < H ,  Igj(x+i~)l k#j 

where C is a positive constant. Hence, the boundedness of the second integral in 
the right-hand side of (36) is a consequence of Lemma 3.1 with Q=h. 

Step 3. Denote by By the Blasehke product formed by the zeros of gj and set 

(37) uj(z)=log ~ , j = l , . . . ,  n. 

This is a harmonic function in C+. Let us show that  it satisfies the assumptions of 
Theorem 3. 

We have 
(38) 

~(~)sin~a~<_ log+ i g j ( ~ ) l  sing)dg9 + f log + , ,  l i ~ ,  sin~dq2. 
�9 ]0 I Djl re Y) 

Estimate (28) implies that  the first integral in the right-hand side is O(r log r), as 
r-+oc.  To estimate the second integral, we need the following lemma. 
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L e m m a  3.2. If a function Q~O belongs to H ~ ( C + ) ,  then 

fo ~ ~ d~ = O(r), r --+ oc. 
1 

(39) log + s i n  

This lemma can be easily derived from the Nevanlinna formula ([3], p. 16; [6], 
p. 193) or the Carleman formula ([3], p. 19; [6], p. 188), therefore we omit the proof. 

Applying Lemma 3.2 to Bj(z), we get that the second integral in (38) is O(r), 
as r-+oc.  Hence, uj satisfies the condition (i) of Theorem 3. 

Further we have 

/ i  ~ ,uj(x+iy), dx< / /  II~ ,gj(x+iy), ' d x + / ~  l~ , l /Bj(x+iy) ,  dx. 
oc l + x 2  - -  oc l + x 2  - o c  l + x 2  

Using (35) for the first integral in the right-hand side and Lemma 3.1 for the second 
one, we see that condition (ii) of Theorem 3 is also satisfied. 

Step 4. Let us now complete the proof of Theorem 2. 
Applying Theorem 3, we get the representation 

d~j(t) 
7c oc ( ~t--xj2+Y 2 +kjy' z = x + i y E C + ,  

where k s is a real constant and ~,j is a real-valued Borel measure satisfying (10). 
Set 

( 1  / _ _ ~ (  1 t )d~ j ( t ) )  
~ j ( z ) = e x p  ~ o~ t - -z  l §  2 

Then, according to (37) we have 

Let us show that 9j(z)exp(ikjz) belongs to H~ Clearly, this function is 
bounded in {z :0<Im z<H} by condition (i) of Theorem 2. For y>_H and any fixed 
N > 1 we have 

log + I < Y_ 
du+ (t) 

- 7c ~ ( z - t )2+y  2 

i / f f  2(x2+y2) ~ &,+(t) 
< &'f(t)d z=x+iy .  
- -  ~ - H  N Y I > N  1 +  t2 ' 

Since N can be taken arbitrarily large, we get 

log +lgj(z)eik~z l=o(Izl~), Izl-~o~, I m z > H ,  
1 log § 1�89 < 

Applying the Phragm~n LindelSf principle we conclude that (6) holds. [] 
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4. P r o o f  o f  T h e o r e m  1 

Theorem 1 will be proved if we prove the following fact. 

T h e o r e m  l q  Under the hypotheses of Theorem 1, the following implication 
holds: 

(40) l( ,l*]~2*...*~tn) >--CX) ~ l (~ j )>- -OO,  j = l , . . . , f t .  

Pro@ Without  loss of generality one may assume that  l(t~l*l~2*...*#n)=O. 
The last equality implies that  the Fourier transform/2 of the measure #:=#1 *...*#~ 
belongs to H ~ ( C + ) .  

For z E R ,  we have 

(41) p(~) = pl  (~)p2 (~)  ... p,~ (~ ) ,  

(42) ~j(~)  = ~iz~ d , j ( t ) ,  j = 1, 2 , . . . ,  ~.  
oo 

Condition (5) implies that  the integral in the right-hand side of (42) converges 
absolutely and uniformly on any compact subset of C+. Hence,/2j can be extended 
to C+ as a function analytic in C+ and continuous in C+. Then equation (41) 
holds in C+, and, moreover, for any H > 0  we have sup{ i f t j ( z ) i :O<Imz<H}<c~.  
By Theorem 2 we obtain that  [tj (z) exp(ibj z)E H ~ (C+), j = 1,. . . ,  n. Using the well- 
known corollary of the Paley-Wiener theorem we get l(pj) > - ] b j ] >  -cx~, j = l ,  ..., n. 

It remains to prove that  the condition (5) in Theorem i cannot be weakened 
by replacing 'for all' by ' there exists'. For this, we consider the measures #1, P2, P3 
defined by the Fourier transforms 

1 ( l + i z / c )  2 
/ ~ l ( Z ) -  lq- iz /c '  /~2(Z)-  (1--iz/c) 4' / t3(Z)=/ t l (Z)q- / t2(Z) '  

where c is a positive constant. A direct calculation of the inverse Fourier transfbrm 
shows that  the condition (7) is satisfied with the given fixed c>0,  and l (#1)=l (#2)=  
l ( ]z3)=-oo.  Nevertheless, / ( # 1 . # 2 . # 3 ) = 0 .  [] 

5. A g e n e r a l i z a t i o n  o f  T h e o r e m  1 

Equality (2) is not true for arbitrary linearly independent measures pj satisfy- 
ing (5). Indeed, if n is even, we define #1 and #2 by (3) and set 

1 #2~ l ( d x ) = p l ( s d x ) ,  #2s (dx )=p2( sdx) ,  s : l , 2 , . . . , ~ n .  
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Then  #1, ... , #~  satisfy condi t ion (5) and l(]~l*...*]Zn)=0 while l ( # j ) = - o c  for all 
1 and j = l , . . .  ,n .  An example  in which #2s_1=#1  and #2~=#2,  where  s = l , . . . ,  gn  

#1 and #2 are defined by (3), shows tha t  T h e o r e m  A is also not t rue  for a rb i t r a ry  
collections of l inearly dependent  measures  sat isfying (5). We now give necessary 
and sufficient condit ions on the  linear dependence of measures  #j  for (2) to remain  

true.  
Let  {#1, . . . ,  #~}, n_>2, be  a collection f rom measures  f rom M sat isfying (5). 

Let  A be the  linear span  of the  collection, p = d i m A .  We assume tha t  l<_p<_n-1. 
One m a y  reorder  #j  so t ha t  the  first p measures  #1, -.., #p form a basis of A. T h e n  

we have 
P 

]~k ~- ~ -~  C k , j ~ j ,  p+ l < k < n, 
j = l  

where Q . j ' s  are constants .  Consider  the  ( n - p ) x p  mat r ix  

c :  / ... 
\ On,1 Cn,2 ... Cn,p / 

We say t ha t  the  collection { # 1 , . . . , # ~ }  is admissible if C satisfies the following 

condit ions (c~) and (/~): 
(c~) Each  co lumn of C contains  a t  least  one non-zero element.  
To in t roduce the second condition, observe t ha t  in some cases it is possible to 

delete some rows of C wi thou t  violat ing condit ion (c~). Let  us denote  by C any 
s u b m a t r i x  of C with  the  min imal  number  of rows t h a t  still satisfies condit ion (c~). 

The  second condit ion sounds as follows. 
(/3) Any ma t r i x  C either consists of one single row, or each pair  {~, R} of rows 

of C can be embedded  in a set {~1, ..., L)~} of rows of C, such t ha t  ~h =~), ~ , ~ = R  
and,  for each t, l < t < m - ] ,  cgt and 0t+~ have non-zero e lements  in the  same column 

(depending on t). 
Observe  t h a t  if p = l ,  t hen  C consists of one single co lumn and the  collection 

{#1,--. ,#n} ,  n>_2, is always admissible.  If  the assumpt ions  of T h e o r e m  1 are sat- 

isfied, then  p = n - 1  and C = C  consists of one single row (1, 1, ..., 1) and hence is 
admissible.  Therefore,  the  following t heo rem can be viewed as a general izat ion of 

T h e o r e m  1. 

T h e o r e m  4. Let {#1, I~2, ..., #~}, n>_3, be a collection of measures of M sat- 
isfying (5). I f  this collection is admissible, then (2) holds. 

One can check tha t  assumpt ions  (a)  and (/3) hold when #j =~1-exp(2~rij/n)~,2, 
j = l ,  ..., n, where  ~1 and Y2 belong to M and satisfy (5). This  shows t h a t  T h e o r e m  C 
follows f rom T h e o r e m  4 in the  same way as T h e o r e m  B follows f rom T h e o r e m  A. 
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Note that  the notion of admissibility can be extended in an evident way to 
collections {gl,g2,... ,g~}, n>_2, of functions analytic and 5 0  in C+. Theorem 4 
can be derived from the following generalization of Theorem 2 in the same way as 
Theorem 1 follows from Theorem 2. 

T h e o r e m  5. Let h~O belong to H ~ ( C + ) .  Suppose that h=glg2 ...g~, where 
the functions gY, J = 1, 2, ..., n, n_> 3, are analytic in C+. If the collection {gl, ..-, g~ } 
is admissible and the condition (i) of Theorem 2 is satisfied, then there exist con- 
stants by E R  such that (6) holds. 

Proof. Observe that  the condition (ii) of Theorem 2 was utilized only in the first 
step of its proof. If we could prove (28) only under the condition of admissibility, 
then the rest of the proof of Theorem 2 could be repeated. Thus we can restrict 
ourselves to the proof of (28). We divide it into five steps. 

Step 1. As in the proof of Theorem 2, let us map C+ onto D by (29) and 
consider the functions (30). Then we again have (31) but instead of (32), we have 
n - p  equations 

P 

(43) gk (r = E ck,i.qy (r k = p +  1,. . . ,  n, 
j 1 

where gl, .-., gp forln a basis of the linear span of {gl,. . . ,  .an }. Applying Theorem D, 
we get 

g J = O  log r - -+ l ,  (44) T r, , 

for l<j<p<k<_n, provided that  ck,jT~O. 

Step 2. We show tha t  (44) remains in force if we replace k by l, p + l < l < n ,  
where 1 is such that  the k-th and l-th rows have non-zero elements in the same 
column (the j0-th, say). 

Indeed, since ck,jor cz,joT~0, (44) is valid for gjo/gk and gjo/gl. 
Whence, for any j, l<_j<_p, 

- gk  / gz / , ,  ' 

Step 3. The next step is to show tha t  (44) is valid for each pair (j, k) where j 
is an arbi trary integer satisfying l<_j<_p, while k, p+l<_k<_n, is such that  the k-th 
row belongs to the submatr ix  C mentioned in the definition of admissibility. 
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By the definition of C, for any j, l<_j<_p, there is l, p+l<_l<_n, such that  the 
/-th row belongs to C and ct,j r  Hence (44) is valid for ~ j /~ .  Let k be an arbitrary 
integer such that  the k-th row belongs to C. By condition (fl) of admissibility, there 
is a set {11, ..., l.~} of integers, ll=l, L,~=k, such that  the lt-th row belongs to C and 
the lt-th and lt+l-th rows, l < t < m - 1 ,  have non-zero elements in the same column. 
As was shown in Step 2, (44) remains in force for .Oh/gl~- Repeating this procedure 
m times, we show that (44) is valid for 911/[~l,,~. 

Step 4. Now we show that  (44) remains in force for gd/gk with any k and j 
such that  l<_k,j<_p. 

Indeed, according to Step 3 we have (44) for t)k/gl with any k and j such that  
l<_k,j<_p and for [~j/[~l with any 1 such that  t he / - t h  row belongs to C. Hence 

T ( r , ~ j ) < _ T ( r , ~ ) + T ( r , ~ ) = O ( l o g l l ~ _ r ) ,  r--+l. 

Step 5. Let us complete the proof. To this end, we show that  

(45) T(~,~j)=o l o g ~  ~ 1 ,  l_<j_<~. 

First we consider the case l_<j_<p. In this case 

+ Z r ~-, + o ( 1 )  0k + O ( 1 ) =  1 T r, 
T(~-,~j) <_ _1 T ~, Z-k-1  - 

n k = l  -- k = p + l  \ 9 j  J / 

Clearly, 

~ - ~ = O  log , r - + l ,  
k : l  

in virtue of Step 4. If p +  1 < k <n,  then, using (43) and properties of the character- 
istic T, we have 

T (  9k)r,~j_j <-ET~:I p - ( r ' ~ + O ( 1 ) : O ( l ~  \ l~- r  ' 1 ) r--+l.  

Hence 

= O  log ~ _ r  r - + l ,  
k : p +  1 

and (45) follows for l<_j<_p. Using this, we have for p+l<_j<_n, 

T ( ~ , ~ ) : T  ~, ~ j ,~  _< T(~.,~)+O(1):O logT27_~. 
The estimate (28) follows from this in the same way as in the proof of Theo- 

rem 2. [] 
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We conclude the paper  by the remark that  the condition of admissibility in 
Theorem 5 cannot be weakened. Namely, if an ( n -p )  xp  matr ix  C, 2<p<n, does 
not satisfy at least one of the conditions (c~) and (~), then it is possible to define 
a collection {#1, ..., #~} having C as the corresponding matr ix  and such that  (5) 
is satisfied, but (2) does not hold. We will only confirm this by a typical example, 
since in the general case one needs to introduce a somewhat complicated notation. 

Define 

Example. Consider the case n = 6 ,  p = 4 ,  

C =  0 1 ' 

~l(Z) = (I+P~ (z))e ~~ ~2(z) = ( l+~(z) )e~o~ ~, 

~(~) = (i+~(~))~- ~o~, i~(~) = (i+~(z))~- ~o~, 

~t5(z) =/tl(Z)-~-~t2(z), /t6(z) = ]i3(z)-[-/t4(z), 

where pj are measures, linearly independent over C, such that  l (v j )>0 ,  j = 1, 2, 3, 4. 
Clearly, all measures satisfy the condition (5) but (2) does not hold. 
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