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On the Titchmarsh convolution theorem

Secil Gergiin, lossif V. Ostrovskii and Alexander Ulanovskii

1. Introduction and statement of results

Let M be the set of all finite complex-valued Borel measures 0 on R. Set
I{p) = inf(supp u).

The classical Titchmarsh convolution theorem (see, e.g. [4], Chapter VL.F, [6],
§16.2) claims that if measures us, pz, ..., tr belong to M and satisfy

(1) l(/,Lj)>—OO, j:1,2,...,’l’b,
then
2) Wpepos kg ) = Upa) +(p2) 4+ (pn),

where ‘¥’ denotes the operation of convolution.
Simple examples show that condition (1) is essential. One may set

= 5 ad S _pm
(3) =3 o =y (FUT k>0,
m=0 ’ m=0 ’

where &, is the unit measure concentrated at the point x. Clearly, pq*pus=34y. We
see that [(p1)=I{u)=—o0c while I{p1*pu2)=0.

It was Y. Domar [2] who first established that condition (1) can be replaced
by a sufficiently fast decay of u; at —oo: there exists a>2, such that

i (o0, 2)) = O(exp(—iz|*)), z——00, j=1,2,...,n.

The best possible condition on decay of u; was obtained in [8].
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Theorem A. ([8]) If u;€M and the condition
@ il((—00, ) = Ofexp(—clallog al)), @ —00, for all ¢>0,

holds for 7=1,2,...,n, then (2) remains true.

One can easily check that the measures p; in example (3) satisfy (4) in which
‘for all ¢>0’ is replaced by ‘c=1/k’. Hence, condition {4) in Theorem A is sharp.

It turns out that there is a close connection between Theorem A and a certain
‘quasi-analytic’ property of the second convolutions of measures.

Theorem B. ([8]) Suppose vi,1,€M and satisfy (4). If l{v1)=—00 and
2k 2% — Dk

VP*)(Co0,0) =V3*|(—o00,a) for some a€R, then vi*=v3*,

Thus, every measure v€M satisfying the assumptions of Theorem A has the
property that the second convolution ©?* is uniquely determined by its values on any
fixed half-line (—oco,a). For proof, it suffices to apply Theorem A to the measures
pi=v1+ve and po=v1—is.

In fact, all n-fold convolutions v™* have a similar property. Moreover, if n>3
then restriction (4) can be substantially weakened.

Theorem C. ([8]) Suppose n>3, v1,vo€M and satisfy the condition
(5)  Il((—o0.) = Olexp(~dlal)), & ——o0, Jfor alle>0, j=1,2.

If l{r1)=—00 and V™[ —co,a) =V |(—o0,a) for some a€R, then VP =vi*.

Restrictions (4) and (5) in Theorems B and C are sharp (see [8]).
Observe that

v —vl* = (1 - 10) % (1 —eQm/nyg)*...*(ul —62”("_1)/”1/2).

Hence, if n>3, the difference v7** —v3* can be represented as the convolution of
linearly dependent measures. One may ask if there is an extension of Theorem A
to linearly dependent measures in which restriction (4) is replaced with a weaker
restriction (5). It is established in this paper that Theorem C can be easily deduced
from a general result which extends Theorem A to linearly dependent measures.
This result will be formulated and proved in Section 5. In our first result we extend
Theorem A to measures connected by a linear equation.
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Theorem 1. If p1, pio, ..., tn_1€M, n>3, are linearly independent over C,
satisfy (5) and
Hn = 1+ 2+t n—1,
then (2) remains true.

Condition (5) is sharp: the statement ceases to be true if ‘for all’ in (5) is
replaced with ‘there exists’.

We derive this theorem from the following factorization theorem in the class
H>(C,) of functions analytic and bounded in the upper half-plane C,.

Theorem 2. Let h#0 belong to H>*(C,). Suppose that h=g19> ... g, where
the functions g;, j=1,2,...,n, n>3, are analytic in C, and satisfy the conditions:

(i) there exists H>0 such that sup{>_7_, 1g;(2)|:0<Im 2 <H } <o0;

(ii) g1, 92,-.-, gn—1 are linearly independent over C and

In=0g1+g2+...+Gn-1.
Then there exist constants b; ER such that
(6) 9;(z)exp(ibjz) € H*(C,), j=1,2,...,n.

The proof of Theorem 2 is based on two results. The first result is the following
immediate corollary of H. Cartan‘s second main theorem for analytic curves.

Theorem D. ([1]) Let f1, fa,..., fn, n>3, be functions analytic in the unit
disc whose zeros satisfy the Blaschke condition. If f1, fo,..., fn_1 are linearly
independent over C and fo=f1+fo+ ...+ fn_1, then

T r,ﬁ =0 logL , r—=1, j=1,...,n—1,
fn 1—7

where T denotes the Nevanlinna characteristic.

The second result is the following theorem on representation for functions har-
monic in C, which we believe is of independent interest.

Theorem 3. Let u be a real-valued function harmonic in C, which satisfies
the conditions:
(i) there exists a sequence {ry}32 |, ry—00, such that

(7) / ut(re’?)sin o dp <exp(o(r)), r=rk— 00;
0
(i) there exists H>0, such that
= Ju(ztiy)|
8 su / ————dx < o0.
( ) 0<y£H —50 1+-T2
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Then u admits the representation

_y [ dv(t) o
(9) u(z)—ﬂ/—m L—(t—x)2+y2+ky’ z=z+iyeC,,

where kER is a constant and v is a real-valued Borel measure on R such that

(10) / IO

e 1412

Theorem 3 differs from the known results ([6], p. 109, [5], p. 233) since it
contains a much weaker assumption (7) on the growth of u* for representation (9)
to hold. For instance, in [5], p. 233, one assumes that u*(z2)=0(|z]), |2|— .

The rest of the paper is organized as follows. In Section 2 we prove Theorem 3
after two preliminary results (Lemmas 2.1 and 2.2). These lemmas may be of inter-
est on their own. Section 3 contains the proof of Theorem 2, which can be viewed
as the main part of the proof of Theorem 1. In Section 4, we derive Theorem 1
from Theorem 2. Finally, Section 5 contains a generalization of Theorem 1 to the
case when the dimension of the linear span of y1, ..., fy is less than n—1.

2. Proof of Theorem 3

Lemma 2.1. Let u be a (complex-valued) function harmonic in C. and sat-
isfying

o) t N
(11) sup / M dt <oo for some H >0.
O0<s<H J - 1+t

Then w admits the representation

(12) u(z):%/_oo (m__dtv)(;)TyQJrU(z), z=z+iy € Cy,

where v is a Borel measure on R satisfying (10) and U is a funclion harmonic in
the whole plane C such that U(z)=0, zeR.

Proof. Consider the family of Borel measures on R,

u(t+1is)
O'é(E):/EH—tht, O<s< H.
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By (11), each sequence {cs, }32,, limg_, o $x=0, contains a subsequence (which
we also denote by {0s, }7°,) weak-star convergent to a finite Borel measure o on
RuU{oo}. Hence

] . o0 2
LY u(t+isg) Yy / 1+t Y
13 lim = o dt== ———do(t)+= :
(13) e 100 (z—)2 442 7)o (a—t)2 492 o )—I—ﬂ_a({oo})

Consider the family of functions
(14)  Uslz)= (z+zs)—g/ uw—dt z=z+iycCy, 0<s<sH

s A ( ~t)2—l—y2 ’ +9 2 .

Every function U, is harmonic in C, continuous in C, and U,(x)=0 for zeR. By
the symmetry principle, it can be harmonically extended to C and U, (2)=—U(Z2),
z€C.

The family {USIO<S< %H} is uniformly bounded in any rectangle HR7H:{z:

|Rez|<R, |Imz|<}H}. Indeed, (14) and (11) imply that there exists C'>0 such
that

= Us(z+iy)|
./_OO—H-TdISC for |yl <3H, 0<s<3H.

Whence we obtain, for z€llp , o=1H, (=¢+in,

I<—//c z|<g 1+ 1+(§2>Id§

H—(iRezHg /H/Q/ stetiml e g < 1FEL? o
H/2 S+ - we?

(15)

Let {51}, be a sequence such that (13) holds. By the well-known compact-
ness principle for harmonic functions, we can extract a subsequence (which we also
denote by {sx}%2,) such that the sequence {Us, }32, is uniformly convergent on
any compact subset of the strip {z:|Im2[<1H}. Let U be the limiting function.
Clearly, U is harmonic in {z:{Im z|<${H} and U(z)=0 for z€R. Putting s=s; in
(14) and letting k— oo, we obtain (12). O

Lemma 2.2. Let u be a (complex-valued) function harmonic in C. and sat-
isfying (11). Assume that there exists a sequence {1y}, re—00, such that

(16) /OW lu(rei?)|sin 6 df < exp(o(r)), r=r — 0.

Then representation (12) holds with
(17) U(z)=ky, y=Imz,

where keC is a constant.
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Proof. We divide the proof into five parts. Without loss of generality, assume
that u is real-valued. Then function U and measure v in (12) are also real-valued.

Step 1. First we show that
(18) / U (re?®)|sin 6 d6 < exp(o(r)), T =ry — oo.
0
From (12) we get

/|U(rei9)|sinﬁd9§/ [u(re'?)|sin 0 do
0 0

T/(rsinf [ dv|(t) .
+»/O ( ™ [w 2442 27t cosf siné df.

The first integral in the right-hand side admits the estimate (16). The change of the
order of integration and simple calculations show that the second integral is O(r),
as r—oo. This gives (18).

(19)

Step 2. Now we show that
(20) U()] <explo{]]), 2= i o0,

where o(|z|) does not depend on argz. Since U(z)=—-U(%), it suffices to establish
(20) for z€C,.
By the Nevanlinna formula ([3]), p. 16; [6], p. 193) we have

(21)
" (R?—r?)4Rrsin psinf 6 — et
U(z) 27r R apiRe o VRN b, z=1¢¥, 0<r<R 0<p<r
Hence
|U<z>|é%~)i‘iﬂ : / VR sinodd

Putting R=ry, r=21rs, and using (18), we get (20).
Step 3. Let us show that
(22) |U(2)| =0(]2|*), as|z|—o00, |[Imz|< 1H.

It follows from (12) that U admits a representation similar to Us in (14) in which
u{z+1s) is replaced with u(z) and u(t+is) dt is replaced with dv(t). Calculations
similar to those from the proof of Lemma 2.1 establish that there exists C such that

(23) /fowﬁ—j;?)'dxgc for |y < LH
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and

1+ |z|+ H {U(§+m)1
dé dn.
| (Z)| //E |5|e<zl|q</£[/4 1+§2 §dn

The double integral tends to O7 as Re z— 00, because its integrand is summable over
the whole strip {(£,n):—co<{<oo, In|<1H} as (23) shows. Thus, (22) is valid.

Step 4. Let G be the entire function uniquely determined by the conditions
Re G(z)}=U(z), G{(0)=0. We now show that:
(i) there exists a sequence {Rx}32,, Rx— 00, such that

(24) |G(z)[ <exp(o(]z]))  for |2 = Ry = o0;

(25) |G(2)| =0(|z]?) for |Imz| < LH, z— 0.

To verify (24) we use the well-known formula

1 27 ) )
G'(z)=— U(z+0e®)e " do,
@)= | Uleee®)
whence
, 2
(26) |G (= )|<E[<maX U (O]

We get for |z|=Ri=35rp—o,

G(2)|=

[ 6] < T 1601 < Buexplof3)) < explof i)

ie. (24) is valid.
If | Im 2| < § H,, it follows from (26) and (22) that |G'(z)|=0(|2|?), z— 00, whence
(25) follows by integration.

Step 5. Let us complete the proof of Lemma, 2.2.

Applying the well-known version of the Phragmén—Lindel6f principle for half-
plane (see [7], p. 43), we conclude that (25) holds in the whole plane C and, by
Liouville’s theorem, G is a polynomial of degree <2. Since Re G(t)=U{(t)=0 for
teR, and G(0)=0, we have G(z)=iaz2+ibz, a,b€R. Hence U(z)=—2azy—by. If
a#0, then (23} could not be valid. Thus U(z)=-by, i.e. (17) holds. O
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Proof of Theorem 3. The proof of Theorem 3 differs from the proof of Lemma
2.2 by only one additional step. Namely, we should prove that, for a real-valued wu,
the estimate (18) remains valid if the condition (16) is replaced by the less restrictive
condition (7).

Note that (12) implies also that the inequality (19) remains valid if we replace
|Ul and |u| with U™ and u™, respectively. Hence,

(27) / U+ (rei®) sin 6 d0 < exp(o(r)), 1 =T — o0.
0

Setting z=t in (21) we get

1 (" (R’-1)4Rsinf y
27 Jo {Rew—i|2|Reﬂ‘0_i|2\U(Re NEZ

T on

9 [T (R®-1)4Rsi ,
/ (FZ-DARSING oy poioy o1y,

o |Re? —i?|Re—% —i|?
Taking into account that

4(R—-1)%sin6 - (R?—1)4Rsin6 - 4R3sin 0
(R+1)*  ~ |Re® —i|2|Re~® —4]2 — (R~1)%’

putting R=r;, and using (27), we obtain (18). O

3. Proof of Theorem 2
Proof of Theorem 2. We divide the proof into four steps.

Step 1. Let us show that

Cr

(28)  log" |g;(re)| < " log <

<= - recC,, r>1, j=1,...,n,
sing sing

where C is a positive constant.
Map C, onto D={¢:|¢|<1} by

(29) ¢
and set

(30) hC)=hz), §5;(Q)=g;(2), j=L,...,n.
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Then
(31) h(¢) =31(¢) - n(Q),
(32) 3n(0) = 31(O) ++Gn1(0).

Moreover, he H (D) and §i,...,Gn_1 are linearly independent over C. Since the
zeros of h satisfy the Blaschke condition, equation (31) implies that the zeros of
each §;, j=1,2,...,n, also satisfy this condition. Applying Theorem D, we get

- 1

(33) T(r,&)zO(logl—), r—1, j=1,..,n—1
n —r

Using the properties of the Nevanlinna characteristic (see, e.g. [3], Chapter 1,

§6; [7], Chapter 6, §2.5) and taking into account that h€ H(D), we obtain

T(r, §n) = %T<7‘, %) +o() < %T (n :,%) +O(1),

n n

whence, using (31) and (33), we conclude

1 Bt e G
T(r,gn) < T\ 1, glgng >+0(1)
1 n—1 g
J —

Using (33) once again, we get

B4 Tl < T<r, %) VT ) — O(log

The well-known inequality

where M (r, ;) =max{|g;({)|:|¢|<r}, allows to derive from (34) that there is a pos-
itive constant C7 such that

. C
log" 13;(Q)] < -7 1o

o |
1 ¢eD, j=1,..,n.
g B S

Using (29), we get (28).
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Step 2. Let us show that

(35) sup{[w%#dx:0<y<H}<w, ji=1,..,n,

where H is taken from the condition (i) of Theorem 2.
We need the following simple known lemma (see, e.g. [8]).
Lemma 3.1. If a function QZ0 belongs to H*(C,), then for any K >0

sup{/OO log” |11/E£Z+Zy)l dz:0 <y<K} < 0.

—00

To prove (35), write
(36)
™ |logg;(z+i > log* {g;(z+i > log" [1/g;(x+i
/ | Oglg](xﬂy)ildx:/ og” |g;(z+1y)| dﬁ/ og [Vg;(z+ay)l .
o 1+22 e 1422 o 1+22

The first integral in the right-hand side is bounded for 0 <y<H by condition (i) of
Theorem 2. Using condition (i) once again, we get

1 1

= I otz +iy)l <

- - , O<y<H,
lgi i)l hatip)] L

|h(z+iy)|
where C' is a positive constant. Hence, the boundedness of the second integral in
the right-hand side of (36) is a consequence of Lemma 3.1 with Q=h.

Step 3. Denote by B, the Blaschke product formed by the zeros of g; and set

9;(2)
B;(2)

(37) uj(z) =log

, J=1,...,n.

This is a harmonic function in C,. Let us show that it satisfies the assumptions of
Theorem 3.
We have

(38)

/o uf (re*) sing dp < /0 log™ |g;(re'?)|sin ¢ d<p—|—/0 log* sin ¢ de.

1
Bj(rei#)

Estimate (28) implies that the first integral in the right-hand side is O(r logr), as
r—o0. To estimate the second integral, we need the following lemma.
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Lemma 3.2. If a function QZ0 belongs to H>*(C,), then

(39) JR

This lemma can be easily derived from the Nevanlinna formula ([3], p. 16; [6],
p. 193) or the Carleman formula ([3], p. 19; [6], p. 188), therefore we omit the proof.

Applying Lemma 3.2 to B;(z), we get that the second integral in (38) is O(r),
as r—+oo. Hence, u; satisfies the condition (i) of Theorem 3.

Further we have

< luileti)l o [T Doglgietipll ) 7 log" 1/ Biletiy)|
1+22 - 1+22 oo 1422 '

sinpdp=0(r), r—oco.

—oa —00

Using (35) for the first integral in the right-hand side and Lemima 3.1 for the second
one, we see that condition (ii) of Theorem 3 is also satisfied.

Step 4. Let us now complete the proof of Theorem 2.
Applying Theorem 3, we get the representation
_y [T dyi(Y) o
u;(z) = p /_OO m-#kﬂ/v z=a+iy € Cy,

where k; is a real constant and v; is a real-valued Borel measure satisfying (10).

oo [ (et Y anee)

Then, according to (37) we have
g;(2) =e";(2)B;(2)e %% a€R.

Let us show that ¢;(2) exp(ik;z) belongs to H*(C,). Clearly, this function is
bounded in {z:0<Im z<H} by condition (i) of Theorem 2. For y>H and any fixed
N>1 we have

. < dri(t)
1 + . ik;z <g/ 3
0og ‘gj(z>e \— . (w—t)2+y2
T 2
< — dvT
T AU R

z=1z+y.

2 +y?) / dvi(t)
|

>y 1+E27
Since N can be taken arbitrarily large, we get
log” |g;(z)e™* = o(|2%), |2l =00, Imz > H,
log™ |gj(2)e™*%| =o(|z]), |z| = o0, 1%ﬂ—argz‘ <im

Applying the Phragmén—Lindel6f principle we conclude that (6) holds. O
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4. Proof of Theorem 1
Theorem 1 will be proved if we prove the following fact.
Theorem 1'. Under the hypotheses of Theorem 1, the following implication
holds:

(40) Wp xpg* .k piy) > —0c0 = l(p;)>—oc0, j=1,..,n.

Proof. Without loss of generality one may assume that [(pg*ps*...%u,)=0.
The last equality implies that the Fourier transform fi of the measure p:=p1 *...%
belongs to H>*(C. ).

For z€R, we have

(41) i(z) = 1 (2)f12(2) - fin (2),
(42) ﬂj(z):[ e“tdu;(t), j=1,2,..,n.

Condition (5) implies that the integral in the right-hand side of (42) converges
absolutely and uniformly on any compact subset of C.. Hence, fi; can be extended
to C, as a function analytic in C, and continuous in C,. Then equation (41)
holds in C,, and, moreover, for any H >0 we have sup{|;(2)|:0<Im2<H}<oc.
By Theorem 2 we obtain that fi;(z) exp(ib;z) e H>*(Cy), j=1,...,n. Using the well-
known corollary of the Paley—Wiener theorem we get {(;)>—[b;|>—00, j=1,...,n.

It remains to prove that the condition (5) in Theorem 1 cannot be weakened
by replacing ‘for all’ by ‘there exists’. For this, we consider the measures u1, p2, ps
defined by the Fourier transforms

(e = e ) = (e () =)+,

where ¢ is a positive constant. A direct calculation of the inverse Fourier transform
shows that the condition (7) is satisfied with the given fixed ¢>0, and I(p1)=I(pz)=
I(pg)=—00. Nevertheless, I(py*poxpz)=0. O

5. A generalization of Theorem 1

Equality (2) is not true for arbitrary linearly independent measures u; satisfy-
ing (5). Indeed, if n is even, we define u; and po by (3) and set

pas—1(de) =i (sde), pgs(de)=pa(sdz), s=1,2,...,%n.
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Then i1, ..., ptn, satisfy condition (5) and (g *...% ) =0 while {(p;)=—00 for all
j=1,...,n. An example in which poes_1=p1 and pos=p2, where s=1, ..., %n and
i1 and po are defined by (3), shows that Theorem A is also not true for arbitrary
collections of linearly dependent measures satisfying (5). We now give necessary
and sufficient conditions on the linear dependence of measures p; for (2) to remain
true.

Let {p1,.., ttn}, n>2, be a collection from measures from M satisfying (5).
Let A be the linear span of the collection, p=dim A. We assume that 1<p<n-—1.
One may reorder u; so that the first p measures ji1, ..., ptp form a basis of A. Then
we have

'4
K chk,juj, p+1<k<n,
=1

where ¢y, ;’s are constants. Consider the {(rn—p)xp matrix

Cp+1,1  Cp+1,2 -+ Cptlp

C:

Cp,1 Cn,2 Cn.,p
We say that the collection {u1,...,un} is admissible if C satisfies the following
conditions («) and (8):

{a) Each column of €' contains at least one non-zero element.

To introduce the second condition, observe that in some cases it is possible to
delete some rows of C without violating condition («). Let us denote by C any
submatrix of C with the minimal number of rows that still satisfies condition (o).
The second condition sounds as follows.

(8) Any matrix C either consists of one single row, or each pair {o, R} of rows
of C can be embedded in a set {01, 0m} of rows of 5‘, such that g1=9, om=R
and, for each ¢, 1<t<m—1, g; and g,+1 have non-zero elements in the same column
(depending on ).

Observe that if p=1, then C consists of one single column and the collection
{{41, -y bin}, n>2, is always admissible. If the assumptions of Theorem 1 are sat-
isfied, then p=n-1 and C =C consists of one single row (1,1,...,1) and hence is
admissible. Therefore, the following theorem can be viewed as a generalization of
Theorem 1.

Theorem 4. Let {p1, oo, ..., pin}, n>3, be a collection of measures of M sat-
isfying (5). If this collection is admissible, then (2) holds.

One can check that assumptions (a) and (3) hold when ;=11 —exp(2mij/n)vs,
j=1,...,n, where v1 and v belong to M and satisfy (5). This shows that Theorem C
follows from Theorem 4 in the same way as Theorem B follows from Theorem A.
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Note that the notion of admissibility can be extended in an evident way to
collections {g1,92,.-.,9n}, n>2, of functions analytic and #Z0 in C,. Theorem 4
can be derived from the following generalization of Theorem 2 in the same way as
Theorem 1 follows from Theorem 2.

Theorem 5. Let h£0 belong to H>*(C,). Suppose that h=g1ga ... gn, where
the functions g;, 7=1,2,...,n, n>3, are analytic in C,. If the collection {g1,...,gn}
is admissible and the condition (i) of Theorem 2 is satisfied, then there exist con-
stants b; €R such that (6) holds.

Proof. Observe that the condition (ii) of Theorem 2 was utilized only in the first
step of its proof. If we could prove (28) only under the condition of admissibility,
then the rest of the proof of Theorem 2 could be repeated. Thus we can restrict
ourselves to the proof of (28). We divide it into five steps.

Step 1. As in the proof of Theorem 2, let us map C, onto D by (29) and
consider the functions (30). Then we again have (31) but instead of (32), we have
n—p equations

P
(43) Q)= esdi(Q)s k=pH+1,im,
j=1

where §1, ..., §p form a basis of the linear span of {g1, ..., §n }- Applying Theorem D,
we get

(44) T<r,&> :O<logi>, r—1,
Gk 1-7r

for 1<j<p<k<n, provided that cy ;#0.

Step 2. We show that (44) remains in force if we replace k by I, p+1<I<n,
where [ is such that the k-th and I-th rows have non-zero elements in the same
column (the jo-th, say).

Indeed, since ¢y, j, #0, ¢, #0, (44) is valid for §;,/gr and g;,/G:-

Whence, for any j, 1<j<p,

T(r, g~—j> < T(T, €—3> —|—T<7‘, @) —|—T<T, g~£) +O(1) = O(log L ), r—1.
gi 9k g gi 1-r
Step 3. The next step is to show that (44) is valid for each pair (j, k) where j

is an arbitrary integer satisfying 1<j<p, while k, p+1<k<n, is such that the k-th
row belongs to the submatrix C mentioned in the definition of admissibility.
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By the definition of 5, for any j, 1<j<p, there is [, p+1<1<n, such that the
I-th row belongs to C and ¢; ;7#0. Hence (44) is valid for g;/g;. Let k be an arbitrary
integer such that the k-th row belongs to C. By condition (3) of admissibility, there
isaset {l1,...,1,,} of integers, l;=I, I, =k, such that the l,-th row belongs to C and
the l;-th and l;41-th rows, 1<t<m—1, have non-zero elements in the same column.
As was shown in Step 2, (44) remains in force for g, /§,. Repeating this procedure
m times, we show that (44) is valid for g, /ai,, -

Step 4. Now we show that (44) remains in force for §;/gx with any k and j
such that 1<k, j<p.

Indeed, according to Step 3 we have (44) for g /g with any & and j such that
1<k, j<p and for §;/g with any [ such that the I-th row belongs to C. Hence

T< gk)<T< gk>+T(r gz) O(log—1 ) r—1.
gj gi gj 1—r

Step 5. Let us complete the proof. To this end, we show that

1
(45) T(néj)=0<log —) r—1,1<j<n.
r
First we consider the case 1<j<p. In this case
1 p ~ n ~
ZT(T, ~—) o(1)=— (ZT(T, “f—’“) + > T(r, g—k)> +O(1).
j " \iz1 9/ .2 gj
= =p+1

Clearly,

k=
in virtue of Step 4. If p+1<k<n, then, using (43) and properties of the character-
istic T', we have

~ P ~
9k 2 : Ys 1

Hence

and (45) follows for 1<j<p. Using this, we have for p+1<j<n,

70,39 =7( ch ) <> 105+ =0 (g 11 )

s=1
The estimate (28) follows from this in the same way as in the proof of Theo-
rem 2. [J
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We conclude the paper by the remark that the condition of admissibility in
Theorem 5 cannot be weakened. Namely, if an (n—p) xp matrix C, 2<p<n, does
not satisfy at least one of the conditions («) and (8), then it is possible to define
a collection {p1, ..., un} having C as the corresponding matrix and such that (5)
is satisfied, but (2) does not hold. We will only confirm this by a typical example,
since in the general case one needs to introduce a somewhat complicated notation.

Example. Consider the case n=6, p=4,
1 1 0 0
C‘(o 0 1 1>'
,[Ll(z):(l—l—ﬁl(z))eCOsz’ ﬂ2(z)=(1+ﬁ2(z))ecosz,
fia(2) = (L+05(2))e™ "%, fua(z) = (1+a(2))e” 7,
fis(z) = () +hiz(2),  fie(2) =fis(2) +fia(2),

where v; are measures, linearly independent over C, such that I(v;)>0, j=1,2,3,4.
Clearly, all measures satisfy the condition (5) but (2) does not hold.

Define
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