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Interpolating sequences in the ball of C”

Eric Amar

Abstract. Let B be the unit ball of C", I give necessary conditions on a sequence S of
points in B to be H>°(B) interpolating in term of a C™ valued holomorphic function zero on S
(a substitute for the interpolating Blaschke product).

These conditions are sufficient to prove that the sequence S is interpolating for ﬂp>1 H?(B)
and is also interpolating for H?(B) for 1<p<oo.

1. Introduction

Let B be the unit ball of C™ and S:={a;};en be a sequence of points in B.
We shall say that S is H*(B) interpolating if for every A={};}en €1°°(IN), there
exists f€H>(B) such that f(a;)=A; for all jeN.

We shall say that S is [1,., H?(B) interpolating if for every A={A;};en€
1>°(N), there exist f€[,,, H?(B) such that f(a;)=A; for all jeN.

Finally we shall say that S is HP(B) interpolating if for every A={\;};en with
IM5:=32720 [XsP(1—]a; )™ < +oo, there exists fe HP(B) such that f(a;)=); for
all jeN.

If § is H*°(B) interpolating then the closed graph theorem gives the existence
of a constant C such that for any bounded sequence A there exists a function
feH>(B) such that for all j€N, f(a,;)=\; with the control | f]lco <C|[Alloo- The
smallest such C is called the interpolating constant of S.

The H°(B) interpolating sequences are precisely characterized for n=1 in
the theorem of L. Carleson [8] and they are the same as the H?(B) interpolating
sequences in that case [11]. Such a sequence is the set of zeros of an interpolating
Blaschke product.

Let for a€dB and h>0, Q:=Q{a, h):={neB||1—an|<h} be a pseudoball. We
say that a measure p on B is a Carleson measure if there exist C'>0 such that

|u|(Q(a, h)) <Ch™ for all a € B and h> 0.
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In the case n>1, N. Varopoulos [13], proved that if S is interpolating for H>(B)
then the measure p:=3>_2", dq;(1—]a;|*)" is Carleson.

In [2], I proved that if S is H? interpolating, then again the measure p:=
3720 0a;(1=la;*)™ is Carleson and in [1], we proved that there is a sequence S in
the ball of C? which is H? interpolating but not H* interpolating, which means
that the Varopoulos’ condition is not sufficient for H*® interpolation.

On the other hand B. Berndtsson [7] proved that if the product of the Gleason
distances of the points of S is bounded below, the sequence S is H™ interpolating.
He also showed that this condition, which characterizes interpolating sequences
when n=1, is not necessary for n>1.

The aim of this work is to give a generalization of the interpolating Blaschke
product in the case of the ball in C™.

Let B be a C™ valued bounded holomorphic function in B.

Definition 1.1. Let a€B, and ®, be a biholomorphic map exchanging a and 0.
We shall say that B is equivalent to ®, near a if B=M,-®, with the matrix M,
invertible near a. More precisely, we require that there is a §>0 and Cg >0 such
that M, is invertible in |®,|<d and, with Aq:=M_ 1, [A,|<Cg in |®,|<S.

Now we can give the definition of an interpolating function for S.

Definition 1.2. Let S:={a;};en be a sequence of points in B and B be a C"
valued bounded holomorphic function in B. We say that B is interpolating for S if
B is equivalent to ®;:=®,; near a; uniformly with respect to a;, i.e. the constants
4 and Cp are independent of a;.

Of course, if B is interpolating for S then it is zero on S.

This is a characterization of the interpolating Blaschke products up to multi-
plication by a unit in H°°(D), if we add that S are the only zeros of B.

The fact that this is a “possible” generalization in several variables is supported
by the following theorerms.

Theorem 1.3. Let B be the unit ball of C™, if the sequence S:={a;EB}jcn
is interpolating for H>°(B) then there is an interpolating function B for S.

Theorem 1.4. Let B be the unit ball of C?, if there is an interpolating func-
tion B for the sequence S, then the sequence S is ﬂp>1 H?(B) interpolating.

Theorem 1.5. Let B be the unit ball of C2, if there is an interpolating func-
tion B for the sequence S, then the sequence S is HP(B) interpolating for 1<p<oo.

The sufficient results are stated and proved in C2. No doubt they are true in
C”, but at the price of non-trivial technical new results.
I want to thank B. Berndtsson for giving me simpler proofs of some lemmas.
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2. Necessary conditions

In order to prove Theorem 1.3, we shall need the following.

2.1. Linear extension

Let us recall Drury’s lemma as used by A. Bernard in [6]:

Let S={a;})_; CB be a finite sequence and let A:=e*"/N be an Nth root of 1.

Suppose S is interpolating for H°°(B) with constant C, then we can find func-
tions 8; € H>*(B), j=1,..., N such that 3;(ax)=N* and ||3;||0c <C.

Put on the group G of the Nth roots of 1, its Haar measure

1 X
dﬂizﬁjzlls,\jy

and on the dual group I'=Z/NZ, the dual measure du:zzyzl 05,
We may consider the §; as functions on G, depending on the parameter z, and
take their Fourier transform,

1
Bi— — g ARG,
7N k=1 *

We get easily that Bj € H*(B), ,/S’j(ak):éjk and, using the Plancherel formula,

al A 12 1 ol 2 2
;lﬁj, :N;,ﬂjf <C-

Hence we have proved the following proposition.

Proposition 2.1. ([6]) If S:={a;€B}}, is a finite set of points in B, with
H*® interpolating constant C, then there are functions B; in H*(B) such that
51 1B5(2)P<C? and Bj(ax) =0

Using this fact, we can set
N
B(2):=) _ ®;(2)6;(2)
j=1

and it remains to show that this C? valued function fulfills the conclusion of Theo-
rem 1.3.

The following is a simple generalization of a result of Ahern and Schneider [10,
p. 115].
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Theorem 2.2. Let f:={8;€ H*(B)}IL, be such that 25{:1 18i(2)|> < A? for
all z€B, and for all j=1,..., K, §8;(a)=0 for an a€B, then B;=";-@,, where ¥, is
a biholomorphic mapping exchanging a and 0 and the v;’s are C™ valued bounded
holomorphic functions in B with Z]K:1 [v;|><CA? and C independent of K.

Proof. Using the invariance of the sup norm under a biholomorphic mapping,
it suffices to prove the theorem for a=0.

Let us introduce the “big Hankel” operator as in [10] but for CX valued holo-
morphic functions:

f:(fla"'va)a V¢f::<p'f_T<pf7

where ¢-f:=(¢f1,...,ofx) and T, f:=(P(¢f1), ..., P(¢fK)) and P is the projection
of L?(6B) on H?(B); V,, is the projection on the orthogonal complement of H*(B)
called “big Hankel” of symbol ¢.

Now we put the euclidian norm on C¥ valued functions,

K
2 :Zifj(zﬂz

and we want to show that if fe H>(B), then V,f is also bounded with norm
depending only on the norm of f and not on K.
Let F:=(Fy,..., Fx), be such that |[F|e L'(0B). We have

(Vof. F .LBABE:L I, (¢) do(¢) do (),

with T',(¢):=C(z, {)(¢(2) —¢(¢)), where C(z,() is the Cauchy kernel in B.
Using Schwarz’ inequality in the sum we get,

(Vo F K/‘/ O 1)) [T-(O)] do(C) do(z),

but |f] is bounded and |T',(¢)| is uniformly integrable in ¢ ([10]). Hence we get
|V £y F)ISC| flloo | Fll1, which proves that the sup norm of V,,f is bounded by a
fixed constant times the sup norm of f.

Now we can use exactly the end of the proof in [10] to conclude that we can
factorize the identity if the vector 5 is 0 at 0 with control of the norm of , hence
the theorem. [

It remains to finish the proof of Theorem 1.3. Recall that

N
B(2):=)Y_ ®;(2)8%(2)
=1
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hence B is a C™ valued holomorphic function in B, which is obviously bounded, as
the ®; send B on B.
Clearly B is zero on the sequence S and we have to show that B~®; near a;.
Applying Theorem 2.2, we have the existence, for all indices j and k, of a C™
valued holomorphic function vg; such that

Br="k;-®;, k#j, and Y |y,lP<C%
E#j

Then B(2)=®;87(2)+> k. ; Pr(vr;-®;)% Put aje:=(7k;-®;)vk;. This is also a
C™ valued holomorphic function and m;i:=® -, may be seen as an n xn matrix,
defined by the identity (®g-ajx)-v=_ck-v)Pk, v€C™?, hence we can define m;:=
2_k4j Mk @8 an nXn matrix.

We have || <32, 1 (7kg @5 )ves | 1 Prl <1851 325 2 I 2 <1251C2

With this notation B(z) can be written

B(z)=(67(2)I+m;)-®; with I being the identity nxn matrix.

Since fB;(a;)=1 it follows that [3;|>2 in [®;{<J, if 4 is small enough, and putting
Bj:=p3(2)I+m; we have that B=M;-®; and that the holomorphic matrix Mj; is
bounded in B by a constant independent of j. It is also invertible in |®;| <4, if §
is small enough, and its inverse A; is also bounded independently of j in |®;|<4,
hence the theorem. O

3. Sufficient conditions

Let S:={a;€B};en be a sequence in B and x(¢) be the usual cut-off func-
tion, x€C*®(R™") satisfying x(t)=0 if t>1 and x(¢)=1 if 0<¢<3, and let x;(z):=
x(12;]2/6%).

We say that the sequence S is uniformly separated if the sets {|®;|<d} are
disjoint.

To prove Theorem 1.4 we shall need a proposition.

Proposition 3.1. If there is an interpolating function B for S, then the se-
quence S is uniformly separated and Y72 x;|0®;[*(1~|2) dX is a Carleson mea-
sure in B.

Proof. That B is equivalent to ®; near a; means that B=AM;-®; with the
matrix M; invertible near a;; precisely, there are >0 and Cp >0 such that for all
JEN, M; is invertible in |®;| < and, with Aj::Mj_1 and |A;|<Cp in |®;|<0.
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Using the Ahern and Schneider theorem, we already know that |M;|<C/||B||c,
and, since B is zero on ay, we still get that B;j=M;g-®s, again with |M;z|<
2B o

Now suppose that z€{|®;|<n}N{|®x|<n}, then M;(z)=M;y(z) - P(2), hence
|M;(2)| <C?n||B|| s, which leads to a contradiction if 7 is less than 1/CpC?||B||oo,
hence the separation.

To prove that the associated measure is Carleson we take advantage of the fact
that, since B is in H*(B),

|0B(2)12(1—|2|?) d\ is a Carleson measure;
but 0B=M;-0®;4+0M;-®;, and as M; is bounded, we get

1Myl _ CIBl
1—|z2 = 1—|z)?

|OM;| <

hence on |®;]<d, |0M;|<C|0®,;| with a constant C' independent of j.

From 8®;+ A;-OM;-®;=A;-0B in |®;]<§, we get for a § such that §C||A;]j< 5,

1
505, = [0®;|—[A;-0M;-@;|<Cpl0B| —  x;|0%;] < Cx;|08],
g

with the usual cut-off function y;(z):=x(|®;]*/6%).

Hence we get that 3777 x;10®;[*(1—[2|*) <C|0B(2)|*(1—|2/?), since the sets
|@;]<¢6 are disjoint, and the measure >-°2 ; x;10®;|*(1~|2[*) dX is Carleson in B,
which concludes the proof. [l

Lemma 3.2. Let aeB and ®, be a biholomorphic mapping exchanging a and
0, then on |®4| <4, |0®,|~1/(1—|al?) the constants being independent of a€B.

Proof. First suppose a:=(a1,0)€B and let

(p(l::(Zl;al a\/1_|a1121 Z_Q )
—ai1z1

1—a;z

be a biholomorphic mapping exchanging a and 0. If |®,| <4 then
’21~a1| < 5|1—d12}1] §(5|17|a1|2+@1(a1—21)] S (5(17'&1’2+6’1*d121’),

and this implies

Y 2
P P S .
A -] < < (1-la[);
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in the same way

We then get

1— 2 = /1— 2
8<I>a = <(—|$2 dzl, A\ 1—\a1|2 1 (11@22 dZ1+ ‘a1| dZQ),
—a1Z

1*@121) 1—a121

hence on |®,]<4,
1

B 17[(1,1(2.

1-jay|?
(1—@1 21)2
This is invariant by rotations, hence for any a€B we have on |®,]| <4, |0P,|~
1/(1—|a}?), the constants being independent of acB. [l

[0®,| ~

Remark 3.3. This implies that the measure u::Z?iO 84, (1—|a;|*)? is also Car-
leson.

Proof of the remark. Let Q(¢,r):={2€B||1—-{-z|<r} be a Carleson set. We
have

a;€EQQ == (l—laj|2)2g/ijlati)jlz(lﬂzlz)d)\(z),

since the volume of {|®;|<6}NQ is of order (1-|a;|>)® and [0®,|>1/(1—|a;|?)
there, hence adding

W@ = X (-l PP s [ YoxlowP-fP) sr,
a;€Q Q j=0
by the proposition. [

Beginning of the proof of Theorem 1.4. First we solve the problem smoothly.
Let B=(Bi, Bz) be the C? valued function given in the theorem, let \:={);}jen
be a sequence in [*°(N} and set

F(2) ::i)‘jx<]q;é}2>'

Since the sets {zcB||®;|<d} are disjoint we get F(a;)=A\; for all jeN, hence F
solves the problem in the C°°(B) class.
We shall correct it to make it holomorphic, so let us compute its 0:

_ i 1
OF = ijx'ﬁ@j, o,).
j=0
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We have B=M,;-®; = ®;=A;-B in |®;|<4 for all j by assumption, with the A;
uniformly bounded, hence

_ 1 X .
OF = o > XX (B, A5-09;).
7=0
The form A}-0®; is a C? valued (1,0) form and its complex conjugate *A;-9®; has
2 components denoted by (‘4;-0®;), k=1, 2. We thus get

_ 1 & .
8F:B1W1+Bgu}2, Wi ::ﬁ E )\jX/(tAj'a(I)j)k, kzl, 2.
Jj=0

We have to generalize the notion of Carleson measures of order « defined in [5]
to forms.

Definition 3.4. A measure p in B is a Carleson measure of order o, u€W<(B),
if it belongs to the intermediate space (W°(B), W!(B)),, where W?(B) is the space
of bounded measures and W'(B) the space of Carleson measures.

Definition 3.5. A (0,1) form w with continuous coeflicients is in the class
W&.1)(B) if the measure (lw|+|wAbo/+/=2 ) dX is a Carleson measure of order
« in B, with g(z):=|z|?—1, a defining function for the ball.

Lemma 3.6. The (0,1) forms wy belong to the class W&) 1)(B).

In order to see this, we must prove that the coefficients of wy are Carleson

measures
< || S

Z X' 145110251,

=0

Now integrating over a Carleson set () in B, we get

/|wk|<02<1 ja;[2)? ‘2,

aEQ

since the volume of [®;| <4 is equivalent to (1—|a;|?)?, we have |[*4;|<C and |09;|<
(1—1a;/*)~! by Lemma 3.2.
We also have to check that wy Adp/+/—p is still Carleson, but again,

‘&I)j/\gg < 1
Vo | 1—]af?

which proves the lemma. O
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Unfortunately these forms are not closed and we have to modify this decom-

position in order to get closed forms.
Let us take the d of these forms,

Bwk_252 (®;,00,)N(*A;-0%,)k, k=1, 2,

and again, since the support of x” is in |®,| <4, we can write @, in terms of B
g pp X J J

¢,=A;-B, hence again,

x>

)\ R
Owy=By» 2L 55X ((A;0%)21(A;-0%; )1,
7=0
and
6w2_—312 (*A;0% )2 N (PA;-0%;),.

Now to close the w;’s in the Carleson class we have to solve

5R:w3::26—9 (*A;00,)2A (" A;-0%;)
7=0

with R a (0,1) form in the Carleson class.
Lemma 3.7. Let a€B and let ® be a biholomorphic map exchanging a and

0, let A be a bounded maltriz, then

(458 )2 (451 5 et ] 1200

Proof. We can assume without loss of generality that a=(ay,0), then

Hence

(A%)g/\(A%)l = (All(%l —|—A12(962)/\(A21861 —f—AQQ%g) =det A'@T{)l/\gq—)%

since 00, A0%;=0. 0O
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Lemma 3.8. The coefficient of the (0,2) formws+/1—|¢|? is a Carleson mea-
sure in B of order a=1-1/p.

Proof. Recall that
Z(;—j (*A;09;)aA(PA;j-0%))1,
§=0

the matrices *A; are uniformly bounded on the support of x”(|®;]?/62) and so are
the determinant of these matrices, hence applying the previous lemma, we get

7 |(I)j|2 (1_|a'jl2)3/2

X ( 62 ) 1-a;-CP
Let . y
< ” lq)jl (1_Ia‘jl2) 2

= Aj —,
iod JZ:;I 3‘ X ( 52 ) |1—aj'C|3

multiplying it by /1—[¢|? and integrating over a pseudoball Q(a, h) leads to

/w TS Y (-l sk

acQns

as we already know that the sequence S is Carleson.
Now clearly A€ LP(y), hence using [5] we get that ws is Carleson a. U

In order to finish the proof of Theorem 1.4 we shall use the following theorem
which is proved in the last section.

Theorem 3.9. Let w3 be a (0,2) form defined in B in C? and such that the
coefficient of wz+/1—|C|? is Carleson of order «, then there is a (0,1) form w in
B with Ow=w3 and weW§ ,(B).

We solve the equation @R=ws using the previous theorem and we correct the
w;’s the usual way,
p1=w1—BaR, pg:i=we+Bi R

The p;’s are still in the same Carleson class, and now they are 0 closed and we still
have

OF = By + Bapia,
hence we can solve the equations

aS;=u;, j=1, 2,
with the S;’s in BMO(4B) if a=1 and in LP(6B) with p=1/(1—a), if 0<a<1, [3],
hence the function H:=F —B1S;—B385 is in ﬂp>1 H?(B) if =1 and in H?(B)
with p=1/(1—a), if 0<a <1, and solve the interpolation problem. [J
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4. Kernels

We want kernels solving the 9 equation for (0,2) forms in the unit ball B
of C2. We shall use Skoda’s kernels but lifted by one dimension to get interior
values instead of boundary ones as we already did in [4] for (0,1) forms.

Theorem 4.1. Let y be a (0,2) form in B, there are kernels solving dw="y
in the ball with

wj:Aj"Y+Bj"Y7 .7:17 27

w=uw1 dz1+ws dZs,
and
1415 % T25(0), j=12,
|Bj| < ﬁrl,g/z(a% =12
with the notation

_ rs
e VISER, 5= VISP, gl a=

Jor any 0<6<1, let x(t)=1 if t<d, x(£)=0 if >4, then

g—p—2
FW(“)5X<a>a”“+<l—x<a>>q4;—2(ﬁ) .

Proof. Let us take Skoda’s kernels in C? for (0,2) forms [12]

D(Z,C) = [_Q+<Pa C—Z>]3<Q,C—Z>2,

and for the unit ball, we have

e |12 _ 90 = —=
o(Q)=[¢I*~1, Pp= ac; =G, Q=%
hence
D(z,¢)=(1-(2)*(1~(2)%,
and

Ny = (=171 (1-[¢P)%z N\ (dz+ de)ABo, G=1, 2, 3,
k#j

M= (17 (- 6P (2 G~ 2G)B(C ) A dzA o, <k, §#L k#L
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with

3
Bo:= /\ dCx,

k=1

the kernels are

N M,
AJ:EJ’]:]', 213 and Blzfl_? l:]" 2’ 3’

and if w is a (0,2) form in C3, the solution of Jyu=w is

3 3
:;1/BAj(z,g)/\w(g)+§/]3Bl(z,g)/\w(g).

Now if w depends only on the 2 first variables, we have

w(Cr, &) = p(Gr, G2) A dia,
hence

NiAw = (1-[¢[*)?211(¢) dza B AB(Q),
NoAw = —(1-[¢|*)?22p(¢) dZL AB(C)AB(L),

NsAw =0,

My Aw=—(1~|¢*) (2283~ 23C) ()G Az AB(C)ABLE),
MayAw = (1—[¢]*)(21G —23C1) ()63 dZ2 AB(O AB(C),
Mz Aw=—(1—|¢*) (2102 = 22$1)u()¢s dzsAB(O AB(C)-

The solution u(z) verifies dpu=w, hence if U=U; dz;+Us dZ+Us dz3 is an
extension of u in Bj, then

oU,  0U,

55 82
therefore we can take Us=0. Moreover for any fixed w, U, :=U (21, 22, w) still verifies
9,U,=w, we can take the mean value of U,, on the circle C' of center (z1, z2,0) and
of radius r=+/1—|21[2 222, this circle C is on 0Bg, hence U, =u(21, 22, w) is well
defined there and we get

= p(z1, 22),

1

27
271'/ uj(zl7227rei9) dea .721, 27

v;(21,22) 1=
and with v(zy, z2):=v1 dz1 +vq dZ2, we have Ju=w.
This way we have an interior solution in Bs. It remains to estimate the asso-

ciated kernels.
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5. Computations
We shall use the following simple lemma.

Lemma 5.1. If p>1, then

2m
do 1
- < llzeD.
f e S e for s

Let

1—[¢|?)P
Mp’q ::/23|2:1—|2'\2 %T_!—L,)q d|Z3| d)\(Cg)
I¢s 2 <1—{¢"|?

In order to estimate M, , we shall first integrate with respect to z3. Let

g /2“ dg 1 /2” dg
S Jo 1=CF—CGeren e p fyo [1orye e

with the notation

(=00G), Fi=(a,2), r=1-1 p=1-("7, 7;:%_

Hence using Lemma 5.1, we get

< 1 B 1

B T T e S

Now we have to integrate with respect to (s,
My [ (11T dA )
¢s]2<1—[¢’|2

hence, with
Lyg:= / (1-[¢P=1Gsl*)”
T iaarmjee (L=r21G2/pR)T
we have M, o SLy q/p9. Let

dA(Gs),

—_ |12 1.2 .2
I ST 0 N BT
“ H

then, passing to polar coordinates, we get

< I‘I’Q “ (TQSZAMZU)]J du
Pd o~ r2(p+1) 0 ’

13
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Let v=1—wu, then

2+42p p1 P
1 (a—1+4v)
Lp’q S T2+2p /7 vq_l dv.

Let us compute the integral

1/(1—o) _1\P
1 / (=1 .
1

I, g=—"—"7——=
»,q (l_a)q—p—Z ,uq—l

after the change v=(1—a)u we have two cases.
If a< 1, then we majorize u—1 by 1/(1-a)—1 and 1/u by 1, to get

Fp,q(a) S C(p7 Q)ap+17

and if o> %, then we majorize u—1 by wu, to get

1 1\
Tpqla) < <—’_> ;

g—p—-2\1—«

provided that ¢—p—2>0, which will be the case for us. This can be summarized
by

q—p—2
Upq(0) <x{@)C(p, 9o +(1-x(a)) q_;_g <fi7)

with x the characteristic function of [0, 1.
Now back to Ly,  and My, 4,

N2+2p
Lpq S r2+2p Lpq(e),

'ul2+2p~q
< _
P4~ a5 Fp,q(a)-

We can apply this to our kernels, with s=+/(1-|¢|?),

[4;(2, OIS M25 S T—lérz,s(a), i=1, 2,

S .
|B; (=, OIS 5M1,9/2WF1,9/2(04), ji=1 2

This finishes the proof of Theorem 4.1.
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Corollary 5.2. Let ® be a biholomorphic map exchanging ¢ and 0, then we
have

(1) o |®(2)|<b then
1-¢2 1
(1= [2]2)3 [@(2)[*’

1B,1< V1-(¢? 1

1-Cz] (1-2]2) (2)]F

14,1 <

(2) if |®(2){>6 then

(1-[¢%)°
(1-l¢1)®?

Proof. We just remark that 1—a=|®|2. O

6. Application

We are now in position to prove Theorem 3.9 and in order to prove this theorem,
we shall use the following lemma.

Lemma 6.1. Let Ip::f|¢\<6(1/|<1)|p)dm(z), where ® is a biholomorphic map
ezchanging ¢ and 0, then we have p<4 = L,<(1~|¢?)3.

Proof. We make the change of variables w=®(2). With (=((;,0) we have
already computed 0® for Lemma 3.2 and we have

o (=1G)° 1

| det OP(2)|* = TEeP R e ATy on || < 4.
Hence for any (€B by rotation we get
]det8<I>|2f:_1— on |®| <4
(1-1¢?)®

and the Jacobian in w is its inverse, Jac(w)=~(1—¢|?)3 and we get

1 1 §4-p 5
= Jopes T 0= [ et e £ G0 -IP

) iw|p

if we integrate using polar coordinates. [J
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6.1. Proof of Theorem 3.9. The case of Carleson measures (a=1)
We set
R:= (A1 (V) +B1(7)) dz1+ (A2 (7) + B2 (7)) dz2.

We have to show that the coefficients of R and the coefficient of RAG|z|?//1— (2|2
are Carleson measures provided that this is the case for 1/1—|z|? w.
Hence we shall be done if we do so for the kernels divided by /1—|z|?, which

are the worst cases.
Let us call any of these divided kernels K(z,¢) and compute the integral over
a pseudoball Q:=Q(a, h):={neB||1—an|<h},

ri= [ [ 1K Ol a0 an(e)
By Fubini we can exchange the order of integration,
1= [ [ G011 dm(z) dmc)

Define Q,,:=Q(a,2™h), then

I = i I,,
n=0
with
L= / /Q K (2,0)] dm(2)|w(C)] dm(C),
and

I, = /Q . /Q K (2,0 dm(2)|w(O)]dm(¢), n>2.

Let us look at I;. Let (:=(/|¢|. Since (€@, we have QCQ:=Q((,vh) with a
~ independent of a and of h, hence we have that

[ [ IKEONO]dn() dm()
The inner integral becomes

Ji= /Q K (2,¢)] dm(2),
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and
J1 ::/ |K(z,¢)| dm(z),
|®|<é
= [ KGOldm()
Q\{|®|<s}

are such that J<J;+Ja.
On {|®|>4} the kernels satisfy, because of Corollary 5.2,

(1-[¢))°
|AJi 5 |—1_—<‘—2|5,

(1-I¢])*

Bi|<
| JIN |1_C2|9/27

hence in any case

(- 1Py
IS Topmiei—c e

because we have to divide by /1—[z|2.
Let us first look at Js,

JQ,S/ (1_1C|2)2 dm(z),

& (L] L—C-2F

and by invariance under rotations we may suppose that (o=0 and {;=r>0; this
implies that {(=(1,0). After integrating with respect to 22, we obtain

REO-c [ vITEE )

J1—z1|<vh H_T’leél

sy | A1)

— (1—-1C12V2 L.
[1—z1]<vh |1~7ﬂzl|7/2 ( Kl )

We make the change of variables w=1/r—z; in L, and obtain
L 1 dA(w)
T/ o lwl7/2 ’

C:= {wECH%—w‘ <1}ﬂ{w€C ‘ ‘1—%—{—111‘ <7h}.

where
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We majorize if we integrate on the corona
, 1 1
C'=qweC|-—1<lw|<=-=14+7hDC.
r r

Hence

1 dw) (1 N 11 -3/2 .
< i S [, N <(1— /2.
L= /C ML N(T 1) ~—1+7h <(1-1)"%%

putting in Jo we get Jo<4/1—]C|?, recalling that r=|(].
Putting this in the integral of I;, we get

Hsl}¢FKWMQMm@s#,

since 1/1—1¢|? |w(¢)] is Carleson.

Now look at J;. The kernels are majorized on |®|<d by
[1—-C-z| 1
(1=[2]2)? |@(2) >’

< VTP 1
T =2 (1—|2]2)2 [2(2) 2

hence we have, with p=2 for the kernels A; and p=3 for the Bj,

|45 <

1 1
(1=[¢2)>7> (@ ()P

|K(z, Ol

since on |®|<d, [1—¢-z|~1—~|¢|? and 1—]z|2~1—|¢|?, and we still have to divide
by +/1—z]%. We get
J1 ::/ K (z,¢)| dm(z).
[l<s

Using Lemma 6.1 with p, we get

J1§(—1_|Clw(1—|ﬂg)3:v 1-[¢]2.

Putting this in the integral of I7, we get

H5/=mmmmmq
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but y/1—|¢|? |w(¢)| dm(¢) is Carleson, so
Ii’ﬁhz
and I, =I]+ 17 <h2.
Now let us look at I,,. If (¢Q@, and z€Q then |®(z)|>§ and |1 —(z|>2"h; the
kernels are g
(1-[¢*)

K| <
KIS T ppprn—cae
and the volume of Q is of the order A%, hence
1
=(1— 2 2/ _ d
( |C§ ) Q(a)h) (1—|z|2)1/2|1—Cz|4 m(z)
1
<0 gings [, T 4

(1-1¢1%)? dt 5 _,(1-ICF)°
< 924n h4 /l—h /1_th <2 94np3/2 °

Putting this in I,,, we get
2 n
1 g (=PI Q) d) 52

as (€EQny1 = 1—|C|2§2”+1h and /1—|¢|? |w(¢)| is Carleson.
Now we see that the sum is convergent and we obtain the first case.

The case of bounded measures (a=0). We have to show that the coefficients of
R and the coefficient of RAJ|z|?/4/1—|z|? are bounded measures provided that it
is the case for y/1—|z|?w, and the treatment, exactly as above, will be left to the
reader.

The case of 0<a<1. This is obtained by interpolation between the two previ-
ous cases, since we know that Carleson measures of order « are obtained by (Banach
space) interpolation between bounded measures and Carleson measures [5]. 0O

6.2. Proof of Theorem 1.5
Now let A={)\; €C}jen besuch that 372 [A;[P(1—[a;[*)?=:[|A[|5<+oo. Since

oo

=v1 IZIQZ —la; )80, = (1~a; )6,

3=0
is Carleson, A={),},en is in Lp(u), hence |ws|<A-p is in the class W 5, (B), [5].
To conclude, we have that the (0,1) forms p; are still in the same Carleson
class, hence we can solve them in LP(dB), again using results of [5]. O
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