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Interpolating sequences 

l~ric Amar  

in the ball of C 

A b s t r a c t .  Let  B be t he  un i t  ball of C n, I give necessary  condi t ions  on a sequence  S of 

po in t s  in B to be H ~ 1 7 6  in te rpo la t ing  in t e r m  of a C n valued ho lomorphic  fnne t ion  zero on S 

(a s u b s t i t u t e  for t he  in te rpo la t ing  Blaschke p roduc t ) .  

These  condi t ions  are sufficient to prove t h a t  t he  sequence  S is in te rpo la t ing  for ~ p > l  H P ( B )  

and  is also in te rpo la t ing  for H P ( B )  for l < p < o c .  

1. I n t r o d u c t i o n  

Let B be the unit ball of C n and S:={aj}jEN be a sequence of points in B. 

We shall say tha t  S is H ~ ( B )  interpolating if for every ,~={)~j}jENEI~(N), there 
exists f E H ~ ( B )  such that  f ( a j ) = A j  for all j E N .  

We shall say tha t  S is Np>I HP(B)  interpolating if for every I = { A j } j e N E  

/ ~ ( N ) ,  there exist f E N p > l  HP(B)  such that  f(aj)=)~j for all j E N .  

Finally we shall say that  S is HP(B)  interpolating if for every A={,~j}jeN with 

IIAIIP:=E~_0 I)~jip(1-1ajl2)n<+oc, there exists fEHP(B) such that  f(aj) )~j for 
all j c N .  

If S is H ~ (B) interpolating then the closed graph theorem gives the existence 
of a constant C such tha t  for any bounded sequence A there exists a function 

f E H ~ 1 7 6  such that  for all NEN, f ( a j ) = A j  with the control llflioo<_cll,kll~. The 
smallest such C is called the interpolating constant of S. 

The H ~ ( B )  interpolating sequences are precisely characterized for n = l  in 
the theorem of L. Carleson [8] and they are the same as the HP(B)  interpolating 
sequences in that  case [11]. Such a sequence is the set of zeros of an interpolating 

Blaschke product.  

Let for a~OB and h>0 ,  Q:=Q(a, h) :={r ]EB 1 1 i - a v l < h }  be a pseudoball. We 
say that  a measure # on B is a Carleson measure if there exist C > 0  such that  

]#](Q(a,h))<Ch n for a l l a E O B  a n d h > 0 .  
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In the case n > 1, N. Varopoulos [13], proved that if S is interpolating for H ~176 (B) 
O O  

then the measure # : = ~ d  1 (~ad (1--lad 12) n is Carleson. 

In [2], I proved that if S is H 2 interpolating, then again the measure # : =  

E ~ - 0  5aj (1-]aj]2)  n is Carleson and in [1], we proved that there is a sequence S in 

the ball of C 2 which is H 2 interpolating but not H ~ interpolating, which means 

that the Varopoulos' condition is not sufficient for H ~ interpolation. 

On the other hand B. Berndtsson [7] proved that  if the product of the Gleason 

distances of the points of S is bounded below, the sequence S is H ~ interpolating. 

He also showed that this condition, which characterizes interpolating sequences 
when n 1, is not necessary for n > l .  

The aim of this work is to give a generalization of the interpolating Blaschke 
product in the case of the ball in C n. 

Let B be a C a valued bounded holomorphic function in B. 

Definition 1.1. Let aEB,  and (Pa be a biholomorphic map exchanging a and 0. 

We shall say that  B is equivalent to (I)a near a if B=Ma.q)~ with the matrix Ma 

invertible near a. More precisely, we require that there is a 5>0  and C B > 0  such 
that  M~ is invertible in [q5~[<5 and, with A~:=M21,  IA~I<Cu in 1~1<6.  

Now we can give the definition of an interpolating function for S. 

Definition 1.2. Let S:--{aj}j~N be a sequence of points in B and B be a C n 

valued bounded holomorphic function in B: We say that  B is interpolating for S if 

B is equivalent to qSj :=qs j  near aj uniformly with respect to aj, i.e. the constants 
5 and CB are independent of aj. 

Of course, if B is interpolating for S then it is zero on S. 

This is a characterization of the interpolating Blaschke products up to multi- 

plication by a unit in H~176 if we add that S are the only zeros of B. 

The fact that  this is a "possible" generalization in several variables is supported 
by the following theorems. 

T h e o r e m  1.3. Let B be the unit ball of C ~, if the sequence S:={ajEB}jcN 
is interpolating for H ~176 (B) then there is an interpolating function B for S. 

T h e o r e m  1.4. Let B be the unit ball of C 2, if there is an interpolating func- 
tion B for the sequence S, then the sequence S is Np>l HP(B) interpolating. 

T h e o r e m  1.5. Let B be the unit ball of C 2, if  there is an interpolating func- 
tion B for the sequence S, then the sequence S is HP(B) interpolating for l <p<oc. 

The sufficient results are stated and proved in C 2. No doubt they are true in 

C n, but at the price of non-trivial technical new results. 

I want to thank B. Berndtsson for giving me simpler proofs of some lemmas. 
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2. Necessary condit ions 

In order to prove Theorem 1.3, we shall need the following. 

2.1. Linear extens ion 

Let us recall Drury 's  lemma as used by A. Bernard in [6]: 
Let S = { a j } N 1  c B  be a finite sequence and let A:=e 2i€ be an N t h  root of 1. 

Suppose S is interpolating for H~~ with constant C, then we can find func- 
tions ~j c H ~ ( B ) ,  j - l ,  ..., N such that Zj (ak)=~5 k and llZsll~ <C. 

Put  on the group G of the N t h  roots of 1, its Haar  measure 

1 N 
d.:= ~ ~ 5~j, 

j - -1  

and on the dual group F = Z / N Z ,  the dual measure d u : = ~ N _ l  6 5, 
We may consider the/~j as functions on G, depending on the parameter  z, and 

take their Fourier transform, 

1 N 

k = l  

We get easily that /~j  e H ~ ( B ) ,  ~j(ak)=6jk and, using the Plancherel formula, 

N N 

E i/~jl 2 1 =~l~jl~_<c ~. 
j : l  5--1 

Hence we have proved the following proposition. 

Propos i t ion  2.1. ([6]) If  S : = { a j c B } N 1  is a finite set o/points in B,  with 
H ~176 interpolating constant C, then there are functions /3 5 in H~176  such that 
EN:I I/3j(z)12<_C 2 and /~j(ak)=6jk. 

Using this fact, we can set 

N 

j = l  

and it remains to show tha t  this C 2 valued function fulfills the conclusion of Theo- 
rem 1.3. 

The following is a simple generalization of a result of Ahern and Schneider [10, 
p. 115]. 
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T h e o r e m  2.2. Let/3:={~jEH~ be such that ~ L 1  l~J(z)l 2<-A~ for 
all z C B, and for all j = 1,..., K,  /3j (a) = 0 for an a C B, then/3j =Tj. ~a, where q2a is 
a biholomorphic mapping exchanging a and 0 and the 7j's are C n valued bounded 
holomorphic functions in B with ~L117Jl  2<-CA2 and C independent of K. 

Proof. Using the invariance of the sup norm under a biholomorphic mapping, 

it suffices to prove the theorem for a=0 .  

Let us introduce the "big Hankel" operator as in [10] but for C ~c valued holo- 

morphic functions: 

f = ( f l , . . . , fK ) ,  V~f : = ~ . f - T ~ f ,  

where ~a-f:=(~ofl, ... , WfK) and T~f:=(P(wfl ) ,  ..., P(WfK)) and P is the projection 
of L2(0B) on H2(B);  V~, is the projection on the orthogonal complement of H2(B) 

called "big Hankel" of symbol %o. 
Now we put the euclidian norm on C K valued functions, 

K 

If(z)[ 2 := ~ IfJ(Z)l 2, 
j = l  

and we want to show that  if f E H ~ ( B ) ,  then Vqof is also bounded with norm 
depending only on the norm of f and not on K. 

Let F :=(F1 ,  ..., FK), be such that tFIELI(OB). We have 

K 

(V~ f , F) 
j = l  

with Fz(s ~) (~(z ) -~( r  where C(z, r is the Cauehy kernel in B. 

Using Sehwarz' inequality in the sum we get, 

I(E'f'f)l <- fOB ~OB If(r lF(z)l IF~(C)ld~(C)d~(z), 

but Ifl is bounded and Irz(r is uniformly integrable in r ([10]). Hence we get 

I(v~f, F)I_<cIIIll~llFIII, which proves that the sup norm of V~f is bounded by a 
fixed constant times the sup norm of f .  

Now we can use exactly the end of the proof in [10] to conclude that we can 
factorize the identity if the vector/~ is 0 at 0 with control of the norm of % hence 

the theorem. [] 

It remains to finish the proof of Theorem 1.3. Recall that  

N 

B(z) := % (z)9  (z), 
j --1 
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hence B is a C n valued holomorphic function in B, which is obviously bounded, as 

the (I)j send B on B. 

Clearly B is zero on the sequence S and we have to show that  B_~(I)j  n e a r  aj. 
Applying Theorem 2.2, we have the existence, for all indices j and k, of a C ~ 

valued holomorphie function 7kj such that  

t3k=Tkj.O2j, k r  and Eh,kj[2<_C 2. 
k#j 

Then B ( z ) = ~ j ~ ( z ) + ~ k C j  ~k(",/kj.(~j) 2. Put  ajk:=(~/kj.ibj)3'kj. This is also a 
C n valued holomorphie function and mjk :=(I)k .ozjk may be seen as an n x n matrix, 

defined by the identity (Ok'ajk)'v (ajk'v)Ok, vEC ~, hence we can define mj:= 
~ r  mjk as an n x n matrix. 

We have ]mji<y'~jr k l(Vkj.~j)Vkjl I~kl<_l~,j[ ~,jCk 17kJl2<-I~yI C2" 
With this notation B(z) can be written 

B(z) = ( /~(z)I+mj) .~j  with I being the identity n x n  matrix. 

1 in I(~jl<5, if 5 is small enough, and putting S ince /3 j (a j )= l  it follows that Ifljl>_~ 

By :=3~.(z)I+mj we have that  B = M j . ~ j  and that  the holomorphic matrix Mj is 

bounded in B by a constant independent of j.  It is also invertible in I~j[<5, if d 

is small enough, and its inverse Aj is also bounded independently of j in I~jl<_5, 
hence the theorem. [] 

3. Sufficient condi t ions  

Let S:={ajEB}jeN be a sequence in B and x(t) be the usual cut-off func- 

tion, X C C ~ ( R  +) satisfying X(t)=O if t>_l and X( t )= l  if O<t<�89 and let Xj(z) :=  
x(l jl2/ 2). 

We say that the sequence S is uniformly separated if the sets {15)j]<5} are 

disjoint. 

To prove Theorem 1.4 we shall need a proposition. 

P r o p o s i t i o n  3.1. If there is an interpolating function B for S, then the se- 
quence S is uniformly separated and ~ j = 0  XJl 0 J [ : (1 - [z l  2) dA is a Carleson mea- 
sure in B. 

Proof. That  B is equivalent to (I)j near aj means that B=Mj.4)j with the 

matrix My invertible near a j; precisely, there are 5 > 0 and CB > 0 such that  for all 

jEN,  Mj is invertible in [(I)j[•5 and, with Aj:=M~ -1 and [Aj[<CB in [(Iij[<5. 
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Using the Ahem and Schneider theorem, we already know that  I Mo [ -< C llBlloo, 
and, since t3 is zero on ak, we still get that  Bj-Mjk .q~k ,  again with IMjkl_< 

c211mloo. 
Now suppose that  z c { l % l < v } n { l ~ l < , } ,  then Mj(z ) - -Mjk(z ) .~k (z ) ,  hence 

IMj(z)l<_C%llBIIoo, which leads to a contradiction if r] is less than 1/c.c211BII~, 
hence the separation. 

To prove that  the associated measure is Carleson we take advantage of the fact 
that,  since B is in H ~176 

IOB(z)12(1 - Izl 2) d), is a Carleson measure; 

but Ot~=Mj.cgd~jq-cgMj.~j, and as My is bounded, we get 

IIMjlI~ < ClIBII~ 
I O M j l  <_ - -  

hence on I{Pj I < 5, I OMj I <- C]O~j I with a constant C independent of j .  
From 0~j  + A j- OMj-q~j = Aj .  OB in I~y I < 5, we get for a 5 such that  5CII Aj II < t 

1 
- -< I0%I - IAj  OMj-%I<GBIOBI ~ Xjl0%I<CxjlOBI, 
2 1 O ~ j l  - - - 

with the usual cut-off fnnction Xj (z):=;~(]Oj 12/a2). 
Hence we get that  20~_0 xjlO%PO 1~12)<_clOB(z)12(l-lzl~), since the sets 

I~j]< 6 are disjoint, and the measure ~ - 0  XJlOqbl 2 ( 1 -  I zl 2) dA is Carleson in B, 
which concludes the proof. [] 

L e m m a  3.2. Let aCB and ~a be a biholomorphic mappin 9 exchanging a and 
O, then on I~a[<~, IO~a]~-l/(1-lal =) the constants being independent of a c B .  

Proof. First suppose a :=  (al, 0) EB and let 

~a:=(zl--a~l-lx/l_lal]2 Z2 ) 
1--alZ 1 ' 1--alz1 

be a biholomorphic mapping exchanging a and O. If [ ~ [  <6 then 

Iz l -a l l  < a l ] -<z ,J  < a[1 ]all2-Las(al--Zs)] ~ ( 1  [al12w611-~1ql),  

and this implies 

Izl-asl ~ 15o-(1 I<i2); 
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in the same way 

We then get 

I~1 _< V ~  ~ ~---  la~ I ~ �9 

0(I)a Ik ( l _ a l z 1 ) 2  dzl, lxfl~-~all 2 - -  

a l Z 2  

1 - 0 d z l  

~--ta~ I ~ d ~  
d Z l  

1 - a l z l  ; 

hence on IOpal<5, 
1-1al l  2 1 

10~ol-~ ( l _ < z d  2 - 1_1a1r 2 

This is invariaz~t by rotations, hence for any a ~ B we have on I q)~ I< 5, 10q)~ I-~ 
1/(1-1a12), the constants being independent of aEB.  [] 

oc 1 Remark a.3. This implies that  the measure # : = ~ j = 0  5~j ( - l ay  12) 2 is also Car- 
leson. 

Proof of the remark. Let Q(C,r):={zEBlll-~.zl<r} be a Carleson set. We 
have 

o 

~Q ~ (1-1ajl2)2<LxjlO%12(1-1zl2)d,X(z), a j  

since the volume of {l%]<~}nQ is of order ( l - l a j l 2 )  a and IOejl>l/(1-1ajl ~) 
there, hence adding 

oo 

#(Q) = E (1 - l ay  12) 2 ~ ./Q E Xj IO~j [2(1 - [z[  2) ~< r 2, 
aj ~Q j = O  

by the proposition. [] 

Beginning of the proof of Theorem 1.4. First we solve the problem smoothly. 
Let B = ( B 1 ,  B2) be the C 2 valued function given in the theorem, let A:={Aj}/eN 
be a sequence in loo(N) and set 

Oo (I) 2 v ' ~  x(I jl ) r(~) := z__. J \ ~ - j -  
j=O 

Since the sets {zCBllffPjl<6} are disjoint we get F(aj)=Aj for all j c N ,  hence F 
solves the problem in the C~176 class. 

We shall correct it to make it holomorphic, so let us compute its 6: 

Oo 1 

j 0 
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We have B=Mj.g2j ~ r in I~ j l<~  for all j by assumption, with the Aj 
uniformly bounded, hence 

j=O 

The form A~.Oq)j is a C 2 valued (1, 0) form and its complex conjugate tAj "O~j has 

2 components denoted by (tAj,~j)k, k = l ,  2. We thus get 

1 O0 

OF=Blwl+B2w2, cok:=~2~AjX'(tAj'OOj)k, k = l ,  2. 
j=O 

We have to generalize the notion of Carleson measures of order c~ defined in [5] 
to forms. 

Definition 3.4. A measure # in B is a Carleson measure of order c~, # E W e ( B ) ,  
if it belongs to the intermediate space (W ~ (B), W 1 (B))~, where W ~ (B) is the space 

of bounded measures and W ~ (B) the space of Carleson measures. 

Definition 3.5. A (0, 1) form w with continuous coefficients is in the class 
W(~,I)(B ) if the measure (I~I+I~AS~/~I)d~ is a Carleson measure of order 

a in B, with ~(z):=lzl2-1, a defining function for the ball. 

L e m m a  3.6. The (0, 1) forms wk belong to the class W(10,1)(B). 

In order to see this, we must prove that  the coefficients of wk are Carleson 
measures 

OO 

I1~11~ Y~ Ix'l ltAjl IOq~jl . I ~ k l  < _ ~ -  
j - -0 

Now integrating over a Carleson set Q in B, we get 

/Q 1 
I~kl <_C y ]  (1-1ajl2)31_LajL2, 

aj CQ 

since the volume of [Oil< 5 is equivalent to ( 1 -  laj 12) 3, we have ItAjl<C and 10qsjl< 

(1-1aj[2) -1 by Lemma 3.2. 
We also have to check that  w k A O O / ~  is still Carleson, but again, 

5~5j AOg < 1 

which proves the lemma. [] 



In te rpo la t ing  sequences  in t he  ball of C '~ 

Unfortunately these forms are not closed and we have to modify this decom- 
position in order to get closed forms. 

Let us take the 0 of these forms, 

o o  

"'~ - t I 

O w k = E ~ X  {q~j,Oq~j)A( As.0q~5)k, k~- l ,  2, 
5=0 

and again, since the support  of X" is in I(])jl<(~, we can write ~5 in terms of B, 
q)j = A  5 .B, hence again, 

and 

oo /~j t, t - -  t 
0 W l = B 2 E ~ X  ( ASO~j)2A ( Aj.O j ) l ,  

J 0 

o o  

O w 2 = - B l  ~ )~j ,, t - -  t - -  ~ ( AjO%)2A( Aj.0%)I. 
j o 

Now to close the w 5's in the Carleson class we have to solve 

0 / ~  = a) 3 : :  
A5 ~ ~ , ( t A gq~5)2A(t 

j = 0  

with R a (0, 1) form in the Carleson class. 

L e m m a  3.7. Let a c B  and let �9 be a biholomorphic map exchan9in9 a and 
O, let A be a bounded matrix, then 

_ _ ( l - l a P P / ~  I(A.O~)2A(A.O~)ll 5 II act AI I~ ~ _ ~ : ~ . ~ - .  

Proof. We can assume without loss of generality that  a =  (al,  0), then 

- -  1 - 1 ~ P  

0(I)1-  (1_a121) 2 d21, 

0~2 - -  x//l la[2 al d22~ a12~2 a1 dZl. 
1--alZl  ( l - -al ,Zl)  2 

Hence 

(A.a~)2A(A-0~ )I = (AI10~1+AI20~2)A(A210~I+A220~2) =det A.O~IAO~2, 

since 0~yA0~3=0. [] 
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L e m m a  3.8. The coefficient of the (0, 2) form w3 ~ is a Carleson mea- 
sure in B of order a = l - 1 / p .  

Proof. Recall that  

Aj t t t  - -  "t A cv3 : = E  ~ff)C ( AjOOPj)2A( j ' ~ j ) l ,  
j o 

the matrices tAj  are uniformly bounded on the support of X"(IOyl2/~ 2) and so are 
the determinant of these matrices, hence applying the previous lemma, we get 

' w 3 ' < ~ I A j '  X " ( ~ ) - ( 1 ~ [ a Y ' 2 - ) 3 / 2 .  
j=0 1-aj ' r  

Let 
x" ( _jajj2)3/2 

j : o  ' 

multiplying it by ~ 1 2  and integrating over a pseudoball Q(a, h) leads to 

/Q wx/i  ~- let 2 < ~ (1-pal2) 2 5 h 2, 
acQnS 

as we already know that  the sequence S is Carleson. 
Now clearly AELP(7), hence using [5] we get that  cv3 is Carleson a. [] 

In order to finish the proof of Theorem 1.4 we shall use the following theorem 
which is proved in the last section. 

T h e o r e m  3.9. Let w3 be a (0, 2) form defined in B in C 2 and such that the 
coefficient of cv3x/F2-1~] 2 is Carleson of order a, then there is a (0,1) form co in 

B with Ocv-cv3 and cvCW(~,I)(B ). 

We solve the equation OR=w3 using the previous theorem and we correct the 
cvj's the usual way, 

[t l  : = w l - B 2 R ,  #2 : w2+BIR .  

The pj 's  are still in the same Carleson class, and now they are c5 closed and we still 
have 

OF = B1#1 +B2#2, 

hence we can solve the equations 

~Sj=[~j, j = l ,  2, 

with the r in BMO(0B) if (~=1 and in LP(OB) with p = l / ( 1 - a ) ,  if 0 < a <  1, [5], 
hence the function H: F - B ~ S ~ - B 2 S 2  is in Np>~ HP(B) if c~ 1 and in HP(B) 
with p = l / ( 1 - a ) ,  if 0<c~<1, and solve the interpolation problem. [] 
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4. K e r n e l s  

We want kernels solving the c~ equation for (0, 2) forms in the unit ball B 
of C 2. We shall use Skoda's kernels but  lifted by one dimension to get interior 
values instead of boundary ones as we already did in [4] for (0, 1) forms. 

T h e o r e m  4.1. Let ~/ be a (0, 2) form in B, there are kernels solving Jco=~/ 
in the ball with 

and 

with the notation 

wj=Aj.~/-~Bj."/, j = l ,  2, 

aJ = col d~l +a~ d22, 

and ~ r t h e  unit ball, we have 

04=G,  QJ:=~, 
~(r := 1r PN - o~ 

hence 

and 

r 8  
r :  ~ s : = ~ - I r  ~ ~:=11-(-~1, ~ : = - -  , ~t2 ' 

for any 0 < 5 < 1 ,  let x ( t ) = l  if t<5 x ( t ) = 0  if t>~, then 

1 / 1 \  q - p 2  
rp,q(C~) < ~ ( a ) a P + l +  ( 1 - x ( a ) )  q _ ~ _ 2  [ ~  ) . 

Pro@ Let us take Skoda's kernels in C 3 for (0, 2) forms [12] 

D(z, r [-L)+ {P, r  z}]3 {Q, C-z)  2, 

D(z, 4):=(1 ~.z)3(1-r  2, 

Nj:=(-1)J- l (1-I( I2)2zj  A(d2k+d~k)A/30, j = l ,  2, 3, 
kCj 

M1 := (--1)J+k(1 - KI2)(zj~k--ZkQ)C~(lr d2/A/~0, j < k, j 7 ~ l, k r l, 

# 
[Ajl < ~ r 2 , s ( a ) ,  j = 1, 2, 

S 
IBNI < ~ 1 / 2 r 4  F1,9/2(O~/), j = 1, 2, 
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wi th  

the  kernels are 

3 

~ 0 : =  A d(k, 
k=l 

A j = ~ - ,  j = l ,  2, 3 and B t = ~ - ,  / = 1 ,  2, 3, 

and  if w is a (0, 2) form in C 3, the  solut ion of Obu=w is 

3 3 

j= l  1 1 

Now if co depends  only on the 2 first variables,  we have 

~((~, G) = ~((1, G) ~(~ A d(~, 

hence 

N2Aw = -(1- I<l~)~(() d21A/3((-) A/~((), 

NaAw = 0 ,  

M1 i w  = --(1 --](I s) (Z2~ 3 -- Z3(2)/~(() ~S dZl i]~(()A]~(~), 

M~ A~ ---- (1 -I (I  ~) ( ~  83 - ~(1)~(()(~ d~2 A/~(() AS(() ,  

M3Aw = (1--1(12)(,g'l(~[2--Z2(-1)/l,(()(3 d;~3i/~(()i/~(~)- 
The  solution u(z) verifies ObU=W, hence if U=U1 dz1+U2d22+U3dz3 is an 

extension of u in B3, then  

8U1 0U2 
OZ2 O~,l -- p (ZI '  Z2), 

therefore  we can take U s ~ 0 .  Moreover  for any fixed w, U,w :=U(Zl ,  z2, w) still verifies 
OzU~ =w,  we can take  the  mean  value of Uw on the  circle C of center  (zl ,  z2, 0) and 
of radius  r =  V/I - Izl 12 -Iz212 , this  circle C is on 0t33, hence U,~=u(zl, z2, w) is well 

defined there  and we get 

1 f 2 ~  vj (z l , z2):=~j  ~ uj(zl,z2,rei~ j = l ,  2, 

and wi th  v(zl, z 2 ) : = v l  dZl+V2 dz2, we have cqv=cz. 
This  way we have an interior solution in B2. I t  remains  to  es t imate  the  asso- 

c iated kernels. 
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5. Computat ions  

We shall use the following simple lemma. 

L e m m a  5.1. If p> l, then 

fo 2'~ dO < 1 
I i_e- iOzlp ~ l_lzlp-X 

Let 

for all z E D. 

f (1-1CI2) p 
Mp,q := ~z312=l_lz,12 dlz31 dA((3). 

J1<312<l i<'1 ~ 11-('21 q 

In order to estimate Mp,q we shall first integrate with respect to z3. Let 

fo 2~ dO = __1fo2~ dO 
J : =  11_(,.2,  (3r e iOIq ~q Ii-r~-i~ 

with the notation 

( '  := ((~, 42), z ' :=( zx , z2 ) ,  r 2 : = l - t z ' l  2, . : = l l - ( " z ' l ,  

Hence using Lemma 5.1, we get 

1 1 j <  
. ll- 21 l t 

Now we have to integrate with respect to (3, 

Mp,q <~ J1(/312 <1-1('12 (1  - 1 ( I 2 ) P J  d a ( ( 3 )  , 

hence, with 

Lpq :=fie (1-K'I2-K312)p d/~(~3), 
' 312<1__]~ , , ] 2  (1-v2](312//~2) q-1 

we h a v e  Mp,q<,~Lp,q/pq. Let 

1-1z'l 2 (1-1( '12)0- iz ' t2)  and ~ t 2, OL:= . - -  - -  /~2 #2 

then, passing to polar coordinates, we get 

Lp,q < r2(P+l) Jo ( l - u )  q-1 
du. 

~3 

# 
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Let v = l - u ,  then 

/~2+zp fz (a-l+v)P dr. 
Lp,q < r2+2 p Jl ~ vq-Z 

Let us compute the integral 

1 f l  1/(1-~) ( u -  1) p rp,q .-- ( l__Oz)q_p_ 2 u q _ ~  du, 

after the change v=(1 -c~)u  we have two eases. 
If a <  1, then we majorize u - 1  by 1 / ( 1 - c ~ ) - i  and 1/u by 1, to get 

Fp,q (O~) _~ C(p, q)ol p+I  , 

and if a>_ 3,1 then we majorize u - 1  by u, to get 

Fp,q(a)< 1 [ 1 "~q p 2. 
- q - p - ~  \ ~ - a J  ' 

provided that q - p - 2 > 0 ,  which will be the case for us. This can be summarized 
by 

1 / 1 V  -p 2 
rp,q( ) <_ q>p+l +(1- (, ) 

with )C the characteristic function of [0, �89 [. 
Now back t o  Lp,q and Mp,q, 

]~2+2p w z 
Lp,q <~ T ~ p  l_ p,q(OZ), 

U z+2p-q rv,q(~). 

We can apply this to our kernels, with S=v/ (1  - 1412), 

IAj (z, 4) 1 s M2,.5 s # 7 r 2 , 5 ( ~ ) ,  j = ,, 2, 
8 

IBj(z, 4)1 < sM~,9/2 l ~ r ~ r l , 9 / 2 ( ~ ) ,  J = 1, 2. 

This finishes the proof of Theorem 4.1. 
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Corollary 5.2. 
have 

(1) 

Let �9 be a biholomorphic map exchanging ~ and O, then we 

if I~(z)l<~ then 

IAjl < I1 -~ ~ 1  1 
(1_1zl2)3 I~(z)l 2' 

, /Y:-I~t 2 1 

IBJI< ~ /~-~-21  (1- lz l2)  2 t~(z)l a; 

(2) if t~(z)l>_6 then 

(1-1Cp)  a 
IAjf <~ I I - C ' ~ P  ' 

IB j l  < (1-1(:12)5/2 
~ I1 ~:-~1 ~ / ~  

Proof. We just remark that  1-a=l(I)[  2. [] 

6. Application 

We are now in position to prove Theorem 3.9 and in order to prove this theorem, 
we shall use the following lemma. 

L e m m a  6.1. Let Ip:=fl~L<5(1/Ig)lP ) din(z), where q~ is a biholomorphic map 
exchanging ~ and O, then we have p < 4  ~ Ip <(1-KI2)  3. 

Proof. We make the change of variables w=~)(z). With C=(C1,0) we have 
already computed 0O for Lemma 3.2 and we have 

i det O,i,(z)12 _ ( 1 -  I ( l l2)  3 1 
i 1 _ r  6 _ ( 1_ i~z l2 )3  on I~1 <~. 

Hence for any ~cB by rotation we get 

idet 0~[2 ~_- 1 (1_ i r  3 o ~  t ~ 1 < 5  

and the Jacobian in w is its inverse, Jae(w)_~(1-1<12) 3 and we get 

IP::LI<5 ]qS[ pl dm(z)= fl~[<5 Iwl Jac(w) dm(w)<54-P(l_l~12)3,~p 
if we integrate using polar coordinates. [] 
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6.1.  P r o o f  o f  T h e o r e m  3.9 .  T h e  case  o f  C a r l e s o n  m e a s u r e s  ( c ~ = 1 )  

We set 

R := (A1 (7) +Bx (7)) dzl + (As ('7) +t72 ('7)) dz2. 

We have to show that  the coefficients of R and the coefficient of RAO[zJ~/V/1 - [z[ 2 

are Carleson measures provided that this is the case for ~ w. 

Hence we shall be done if we do so for the kernels divided by VzfC-- Izl ~ , which 

are the worst cases. 

Let us call any of these divided kernels K(z, ~) and compute the integral over 

a pseudoball Q :=Q(a ,  h ) :={r /cBl [  1-at /]  < h}, 

I := /Q /B [K(z, r [w(r dm(r dm(z). 

By Fubini we can exchange the order of integration, 

I := /g /c21K(z, Ol lco(r dm(z) dm(r 

Define Qn:=Q(a, 2nh), then 
o o  

I =  E In, 
n ~ 0  

with 

Ii := /Q1/Q IK(z,~)[ dm(z)Iw(g/)l dm(~), 

and 

n > 2 .  

Let us look at 11. Let ~:=UIr Since ~eQ1, we have Q c Q : = Q ( ~ , T h )  with a 

9/independent of a and of h, hence we have that 

Ii < /Q1 ff'Q IK(z' ~)11w(~)[ din(z)dm(~). 

The inner integral becomes 

J 



and 

are such that J < J l + J 2 .  

Interpolating sequences in the ball of C ~ 

J1 : = / ~  1<5 IK(z,C)ldm(z), 

& := J~/ \{1~,<~> IK(z, r d.~(z) 

On {1~51>~} the kernels satisfy, because of Corollary 5.2, 

IAji 5 (1-1C12)3 

IBjl 5 (1-)~I2)5/2 
I i - ~ . e ? / 2  ' 

hence in any case 

17 

(1-1r 2 
#KI 5 (1-Izl2)1/21 z-C.~I 4' 

because we have to divide by x/ l - Iz l  2 . 

Let us first look at J2, 

j2 < f~  (1-I~1~) ~ din(z), 
(1_1z12)1/211_~.~14 

and by invariance under rotations we may suppose that ~2=0 and ( l=r>0;  this 
implies that ~=(1, 0). After integrating with respect to z2, we obtain 

j l  ~ - ~  [Z112 dA(zl) 
& g (1-1~i2)2 _Zli<,Th IZ-~z]l 4 

5(1-ir 2 f dA(zl) _(1_ir 
JIl-zll<Gh I]-rzllT/2 

We make the change of variables w = l / r - Z l  in L, and obtain 

1 /c dA(w) 
L = r-~7 G lwl7/2 , 

where 
C : = { w C C  ~ - w  < I } A { w C C  1 - ~ + w  <Th}. 
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We majorize if we integrate on the corona 

C / : = {  w E C  -rl-l<[wl<!-l§ pC" 

Hence 

1 JC (~ ) -3 /2_(~  l+.yh/-3/2 ( l - r ) 3 / 2 ;  L < ~V~/~ f ,  d),(w) < - 1  - < 
- i w t 7 / 2  ~ 

putting in d2 we get J2~<V/1-M 2 , recalling that r=1r 
Putting this in the integral of I1, we get 

II <_ /Q, ~ f ~  ]~(C)l dm(C) < h 2, 

since ~ ]w(r is Carleson. 
Now look at all. The kernels are majorized on t(I)1<6 by 

IAjl < I1-r ~I 1 
(l_l~p)a t~(~)l ~' 

IBjl < v~- I~ l :  1 
~ ( 1 - l z ] 2 )  2 I~(z)l a' 

hence we have, with p=2 for the kernels Aj and p=3 for the Bj, 

1 1 

IK(z, 4)I < (1_1r l(~(z)lp, 

since oil I~'I<(;, I i - ~ ' z l - ~ l - t r  2 and 1-P~12_~1 Ir and we stin have to divide 
by ~ - t z l  2 . We get 

J1 :-- 1~1<~ ]K(~. r d.~(~). 
P 

Using Lemma 6.1 with p, we get 

1 (1_i412) a ~__1~1 ~ J1 ~ (1 --1r = " 

Putting this in the integral of/1, we get 

JQ~ 
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but ~ I~(r d.~(r is Carleso~, so 
I ' /< h 2 

and [l=[~ q-[~'hh 2. 
Now let us look at In. If  ~ Q n  and zEQ then Igp(z)l>6 and I i - ~ z l > 2 n h ;  the 

kernels are 

IKI < ( 1 -K I2 )  = 
(1 IZI 2)1/2 1 ]--~--ZJ 4 '  

and the volume of Q is of the order h 3, hence 

t & := (]-ICl2) 2 (1_lzlN)l/211_~z14 am(z) (~,h) 

1 /Q ] din(z) -<(1-1r (~,h) (1-1zl=) 1/= 

(1-1r f f  dt h2 < 2(]-ICI2) 2 
24nh4 -h ~ -- 24nh3/2 " 

Put t ing this in In, we get 

l n ~  24nh3/2 (1-1CI2)3/2x/T-s 2 Iw(C)Idm(C)<2~-l/2nh2, 

as ~CQn+I ~ 1-1{12_<2n+lh and VqC-Ir 2 Iw(01 is Carleson. 
Now we see tha t  the sum is convergent and we obtain the first case. 

The case of bounded measures ( a = 0 ) .  We have to show tha t  the coefficients of 
R and the coefficient of R A O l z l 2 / v / l l z l  2 are bounded measures provided that  it 

is the case for x / ~ w ,  and the t reatment ,  exactly as above, will be left to the 
reader. 

The case of 0 < a < ]. This is obtained by interpolation between the two previ- 
ous cases, since we know that Carleson measures of order a are obtained by (Banach 

space) interpolation between bounded measures and Carleson measures [5]. [] 

6.2. P r o o f  o f  T h e o r e m  1.5 

Now let )~={)~j EC} jcN be such that  Ej~=o IAjIp(1 laj 12)2=: IlAllpP<+oo. Since 

OO 049 
p := ~ E (  1 --laj 12)3/2~aj = E ( 1 - - l a j  12)25aj 

j=0 j 0 

is Carleson, A={Aj}jcN is in LP(#), hence Iw31<A.# is in the class Wi~,2)(B), [5]. 

To conclude, we have that  the (0, 1) forms #j are still in the same Carleson 
class, hence we can solve them in LP(cgB), again using results of [5]. [] 
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