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We will first in this paper consider a class of hyponormal operators which we 
call *-hyponormal operators. We give an example of a hyponormal operator which 
is not *-hyponormal. It follows from a theorem of Ackermans, van Eijndhoven and 
Martens [1] that subnormal operators on a Hilbert space are *-hyponormal. We prove 
a generalized Fuglede--Putnam theorem and some other results for these operators. 

We will also prove some results on the following problem which was mentioned 
in [4]: 

Problem (1). Let T be a bounded linear operator on a Banach space X. I f  T* = 
H + iK for some hermitian operators H and K on X*, is it true that T=Ho + iK o for 
some hermitian operators 1-1o and Ko on X? 

It is known that if T* is normal, then Tis normal (Behrends [4]). We show that 
(1) is true if T* is a *-hyponormal operator with a weakly compact commutator. 
Finally we prove that if X is a dualoid space (in particular a dual space) or a C*- 
algebra with a unit element, then (1) is true for all operators T such that T*= 
H+iK. 

Let X be a complex Banach space and X* the dual space of X. We denote by 
B(X) the space of all bounded linear operators on X. If X and Y are two Banach 
spaces, then B(X, Y) is the space of all bounded linear operators from X to Y. 
A normal operator on X is an operator which can be written in the form H + i K  
where H and K are commuting hermitian operators on X. We will only be concerned 
with bounded operators. The adjoint of an operator TEB(X) is hermitian if and only 
if T is hermitian (see [6, w 9] or [7, w 17]). We refer to [6] and [7] for basic facts about 
numerical ranges and hermitian operators. 
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1. *-hyponormai operators 

In the following definition H and K are hermitian operators. 

Definition 1. An operator TE B(X) is called 
O) hyponormal i f  T = H + i K  and i(HK-KH)>=O. 

(ii) *-hyponormal i f  T = H + i K  and the inequality 

( * )  llezre-~rll -< 1, 

where T is the operator H - iK ,  holds for all complex numbers z, 

Normal operators are obviously *-hyponormal. In Proposition 1 we give some 
sufficient conditions implying that  the restriction of  a *-hyponortnal operator to an 
invariant subspace is *-hyponormal. I f  the space is a Hilbert space, it follows that the 
restriction of  every *-hyponormal operator to a closed invariant subspace is *-hypo- 
normal. In particular, subnormal operators on a Hilbert space are *-hyponormal. 
This was proved in [1]. 

Proposition 1. Let P be a projection on X with IIPII = 1 and let N be a *-hyponor- 
real (or normal} operator on X such that 

N P X a  PX and 1 V ( I - P ) X c  ( I -P)X .  

Then the operator Nlex is *-hyponormal. 

Proof. Let N = H + i K  and let T=N]ex. Let A and B be the operators on PX 
defined by 

A y =  PHy and B y =  PKy. 

Then .4 and BEB(PJO and T=A+iB. The operators .4 and B are hermitian. To 
see that,  let yEPX with ]lyll=l and let fE(PX)* with I t f l l=f(y)=l.  By the 
Hahn--Banach theorem there is a functional gEX* such that ligll---1 and glpx=f. 
We have 

f ( A y )  = g(P/ - /y)  = (P*g)( / - /y) .  

Since (P*g)(y) =g(Py) = f ( y )  = 1 and IIP*gll <- 1 it follows that lle*gll - - ( e * g ) ( y ) -  1. 
Since H is hermitian we conclude that A is hermitian. Similarly B is hermitian. 

Since PNP=PN and PNP=NP, we have 

'TfT~y = (PTV)JN~y = PNJNky, 

whenever yEPX a n d j  and k are non-negative integers. Therefore 

lle=r e-~r yll = tiPe'rC e-~t~ yll <= Ilel[ llyll <-- ~yll 

for every zEC and yEPX. This implies ( , ) .  
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Proposition 2. A *-hyponormal operator is hyponormaL 

Proof. Assume that Tis *-hyponormal and T= H+ i K .  We have for all complex 
numbers z 

1 => lle~re-~re-zre~rll = llI-Izl~AIl +r(z),  

where A = T T - - T T  and lr(z)l<=Mlzl a forsome M > 0  if Izl~l .  Given I~EB(X)* 
with II~ll = ~ ( D = I ,  it follows that 

[1-1zl~(A)l-<- I + M l z l  3 (Izl <-- 1). 

Since A = 2 i ( H K - K H ) ,  A is hermitian [6, Lemma 5.4] and therefore #(A) is a real 
number. We now have 

- I~(A)<:Mt  ( 0 <  t~_ 1). 

Thus #(A)=>0. It followsthat  i (HK-KH)>-O. 

Remark 1. It is well-known that an operator S on a Hilbert space ~a is hyponor- 
real if and only if 

IlSx[l <= IlSxll for all x 6 ~ .  

(Indeed we have IlSxllm-IISxllm--(~Sx, x ) - (SSx ,  x )=( (SS-SS)x ,  x)). The condi- 
tion ( . )  in Definition 1 can be written 

l[ezrx[l <= [le~Tx][ for all x ~ X  and zEC. 

If  Tis an operator on a Hilbert space, the conjugate of e ~r is e ~r. Hence we have: 

(ct) T is *-hyponormal if and only if 

e zT is hyponormal for all complex numbers z. 

Also we have: 

(~) T is normal if and only if 

e ~r is normal for all complex numbers z. 

These relations are not in general true in Banach spaces as the following example 
shows. 

Let H be a hermitian operator such that the spectrum of H is { -  1, 0, 1 } and H ~ 
is not hermitian. For example, if P is a hermitian projection on a Hilbert space g and 
P~O, P ~ I ,  then the operator S~-~PS- SP on B ( ~ )  has these properties [3]. Then 
H 3 = H  by the spectral mapping theorem [8, Theorem 7.4(iv)] and by [7, Theorem 
27.3]. Now there are real coefficients a and b e 0  such that 

e u = l + a H + b H  2. 
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Since H 2 is not hermitian it is not equal to A + iB for any hermitian operators A and 
B by [5, (2.12)]. Therefore e ~ is neither normal nor hyponormal. Thus (~) and (fl) do 
not hold. 

We now give an example of a hyponormal operator which is not *-hyponormal. 

Example. Let 12 be the Hilbert space of all complex sequences {~.}~=o such that 
the series 2:[C~n[ ~ converges and let U be the unilateral shift on Is defined by 

U ( . o ,  ~1 . . . .  ) = (o,  ~o, ~ . . . .  ) .  

The operator T =  U + 2 U  is hyponormal. By results of Ito and Wong [14, Remark 4] 
Tis not subnormal. There are vectors x and numbers z such that 

I[ezrxH > ][e~rxH. 

This can be seen by a direct calculation taking for example z--0.6 and x={o~,} 
where ~0--1 and a z = - 4  and otherwise ~,=0.  It follows that T i s  not *-hypo- 
normal. 

In the case of a normal operator the result of the following theorem is included 
in [10]. The proof in [10] is different from the next proof. I f  T is  only assumed to be 
hyponormal and X is strictly c--convex, then the conclusion of the following theorem 
is also true by [16, Theorem 2.4]. 

Theorem 3. I f  T is *-hyponormal and Tx = 0  for some xE X, then Tx =0. 

Proof. Assume that Tx=O. Let fEX*. Then the function g(z)=f(eZTx) is 
entire. Since 

[f(ezrx)[ = [f(e~re~rx)] <- [Ifll I[xl[, 

g is bounded. By Liouville's theorem g is constant. Thus g(z)-g(O). We conclude 
that 

f ( ( e ~ r - I ) x )  = 0 for all zCC and for all fEX*. 

This implies by the Hahn--Banach theorem that ( e~r - I )  x=O for all z. Taking the 
derivative at z=O we obtain Tx=O. 

Remark2. If  T is  *-hyponormal and Tx=2x for some 2EC and xEX, then 
Tx--L,c since T - 2 I  is also *-hyponormal. 

From Theorem 3 we obtain an extension of the Fuglede--Putnam theorem. There 
are several extensions of this theorem for hyponormal operators on a Hilbert space. 
For further references see [16]. 

Theorem 4. Let T be a *-hyponormal operator on Y and U a *-hyponormal opera- 
tor on X. I f  T S = S U  forsome SEB(X, Y), then TS=SU.  
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Proof. We will show that the operator 

~(S) = T S - S U  

is a *-hyponormal operator on B(X,  Y). The result then follows from Theorem 3. 
Note that ~ is the operator S~--~TS - SU. 

Given A 6 B ( Y )  and B6B(X) ,  let 

l ( s )  = A s ,  r ( S )  = SB  (SC~(X, r)) 
and let d = l - r .  Since land r commute, we have ([6, Theorem 3.2]) 

e t - r  = e l e  - r .  

Hence 

(2) ed(S) = e ' (e - ' (S ) )  = ease -B (S6B(X,  Y)).  

Using (2) and the assumption that T and U are *-hyponormal it follows that for all 
z6C and SEB(X,  Y)  

llez~ e-~n s[I = Rezr e-~r se~V e-~V[I ~- HS[I. 

This completes the proof. 

Corollary 5. Assume that T is a *-hyponormal operator on X and Y is a subspace 
o f  X such that the following conditions hold: 

(i) Y is a Banach space with respect to a norm I �9 I on Y and there is a constant M 

such that Ilyll <-MlYl for all y6 Y. 
(ii) T Y c  Y, T]y is bounded and there are hermitian operators A and B on Y such 

that T I y =A  + iB and the operator A - - i B  is *-hyponormal. 
Then T Y c  Y. 

Proof. Let TI=TIr.  The inclusion j :  Y ~ X  is bounded by the assumption (i). 
Since Tj=jT1 it follows from Theorem 4 that Tj=jT1.  Hence T Y c  Y. 

2. On the weak*-eontinuity of hermitian operators 

The following theorem was proved in [4] for normal operators. For the case when 
X is a dualoid space (see Definition 2 below) or a C*-algebra with unit more general 
~esults will be proved in Theorems 7 and 9. 

In the proofs of the following two theorems we shall make use of the canonical 
projection on the third dual of X. If i x is the canonical embedding of Xinto X**, then 

P = i x ,  oi ~ is a projection on X*** whose range is (X*) and whose kernel is (2) x 
(A > is the canonical image of X and (,~)• is the annihilator of ,~ in X***). Note that 

Ilell =a. 
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Theorem 6. Assume that an operator T~ B(X) has the following properties: 
(i) T* = H +  iK, where H and K are hermitian, and T* is *-hyponormal. 
(ii) HK---KH is weakly compact. 

Then T=Ho + iK o for some hermitian operators Ho and Ko on X and T is *-hyponor- 
mal. 

Proof. Let P be the projection with norm one on X*** such that PX***= 

(X*) and Ker ( P ) = ( ~ ) •  It  is obvious that T*** commutes with P and the space 
PX*** is invariant for H** and K**. Let Z=( .~ )  • =(I-P)X***.  Let A and B be 
the operators on Z defined by 

Az = ( I - P ) H * * z ,  Bz = ( I - P ) K * * z .  

Then A, BEB(Z) and T***[z=A+iB. 
We will show that A is hermitian with respect to an equivalent norm on Z. 

Since (I--P)H**P=O, we have for every zEZ and k = l ,  2, ... 

Akz = ( I -P)(H**)kz .  
Therefore, 

[I e~'~zll = I[ z + ( I -  P) (e itn** -/)z[] --- []pz + ( I -  P) e~m**zll <-- (1] P[] + ]] I -  pl[)l[ zll 

for every z~Z  and tCR. By [6, Lemma 10.3] there is an equivalent norm on Z s u c h  
that A is hermitian with respect to this norm. The same is true for B. 

Let C=HK--KH.  Since C is weakly compact, it follows that C**X***c(X*). 
Thus ( I -P)C**=O.  This implies, since ( I -P)H**P=O and ( I -P)K**P=O, that 
for every z~Z  

( A B -  BA)z = ( I -  P ) H** ( I -  P) K** z - (  I -  P ) K** ( I -  P ) H** z 

= ( I - P ) H * * K * * z - ( I - P ) K * * I I * * z  = ( I - P ) C * * z  = O. 

Hence AB=BA. By a theorem of Lumer [7, Lemma 33.8] there is an equivalent norm 
] �9 ] on Z such that A and B are hermitian with respect to this norm. 

By applying Corollary 5 to the operator T*** and the space Z provided with 

the norm I" I we obtain (T***)ZcZ.  This implies that H * ) ? c ) ~  and K*)~cS .  We 
define operators Ho and K0 on X by 

Hox -~ i~I(H*~),  Kox = i~-I(K*~). 

Then H* = H  and K* =K.  It follows that H0 and K0 are hermitian and T=Ho+iKo. 
Since T* is *-hyponormal and (T)* =(T*) we have 

][eZre-~Tll = [[e-~(T)*eZr*[l <-- 1. 

Thus T is *-hyponormal. 
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We do not know whether the condition T* = H + i K  always implies that H a n d  K 
are weak *-continuous. We will show that this is true if X is a dualoid space or a C*- 
algebra with unit. A dualoid space was defined in [11] as follows: 

Definition 2. A Banach space X is called a dualoid space, i f  there is a projection 
o f  norm one on X** whose range is f[. 

For example all dual spaces and LI(0, 1) are dualoid spaces. If  K i s  a compact 
and extremally disconnected space ( = a  stonian space), then C(K) is a ~l-space 
[13] and hence a dualoid space. There are stonian spaces K such that C(K) is not 
isomorphic to any dual space (see [20, w 4] or [18, w 3.9]). 

Theorem 7. Let X be a dualoid Banach space and let T be an operator in B(X)  such 
that T* = H  + iK where H and K are hermitian operators' on X*. Then there are her- 

mitian operators Ho and Ko on X such that T =  11o + iKo. 

Proof. Let P be a projection of norm one on X** whose range is 2 and let i x 
be the canonical embedding of  Xinto  X**. The operators 

A = iT,1PH*ix and B = iT,1PK*ix 

are bounded linear operators on X. Since T**J~cJ~, we have 

i xT  = T**ix = PT**ix = PH*ix+iPK*ix .  

It follows that T= A +iB. It remains to show that A and B are hermitian. Since 

A**2 = PH*2 (xEX) 

we can show in the same way as in the proof  of Proposition 1 that the operator A**[x 
is hermitian. But 

Ilei'Axll = I[e*'A**~[l = 11211 = llxl[ 

for all tEN and x E X  and therefore A is hermitian. Similarly B is hermitian. 
We shall finally prove that the result of Theorem 7 is also true for all C*-algebras 

which have a unit. There are C*-algebras which are not dualoid spaces, for example 
e0. Such are more generally all infinite dimensional C*-algebras which are separable 
or which are ideals in their second duals. This follows from the next proposition. 

Proposition 8. Let A be a C'a lgebra  such that .4 is complemented in A**. 
O) Then A ~ I~ or A is finite dimensional. 
(ii) I f  ~ is also an ideal o f  A**, then A is finite dimensional. 

Proof. O) Assume that A ~ c0. Then the identity operator on A is weakly com- 
pact by [2, Theorem 4.2]. Thus A is reflexive and by a result of Ogasawara [17, Theo- 
rem 2] A is finite dimensional. 



272 Kirsti Mattila 

If A D Co, then A D l~ by a theorem of Rosenthal [19, Corollary 1.5]. 
(ii) If .~ is an ideal of A**, then .~ is an M-ideal of A** [22, Proposition 5.2]. 

It follows from [12, Corollary 3.6(c)] that A is reflexive. Then, by [17, Theorem 2], 
A is finite dimensional. 

Remark 3. Let A be a C*-algebra. Then by [23] .~ is an ideal of A** if and only 
if A is dual in the sense defined by Klaplansky [15]. By Proposition 8 a C*-algebra 
which is dual in this sense is not complemented in its second dual, in particular it is 
not isomorphic to a dual space, unless it is finite dimensional. 

Theorem 9. Let A be a C*-algebra with a unit element. I f  TEB(A) and T*= 
H +  iK for some hermitian operators H and K on A*, then there are hermitian opera- 
tors Ho and Ko on A such that T=  Ho + iKo. 

Proof The space A** with the Arens product is a W*-algebra with unit [8], [9]. 
Given u~A**, let Au be the inner derivation 

Au(x) = ux- -xu  for all x~A**. 

IfAu(A~)c~, then A,(A~)c.~, since (~)=(a) for every aCA (see [8,Theorem 38.19]). 
There are hermitian elements h, h', k and U in A** such that the hermitian ope- 

rators H* and K* can be written 

H* = Lh+Ah,, K* = Lk+A k, 

where L h and Lk arc left multiplication operators on A**. This follows from theresults 
of Sinclair [21, Remark 3.5] and Sakai and Kadison [18, Corollary 8.6.6]. Since 
T**.~c.~ and A has a unit, we conclude that h + i k ~ .  Thus hE-~ and k6.~. We 
also have 

Lh + iLk = L* * 
for some cEA. Now 

T**-L** = Ah'+~k'. 

From the beginning of the proof it follows that 

Ah,(.~)c-~ and Ak,(-4) c ~ .  

Therefore H*.~c.~ and K*.~c.4. This implies that H a n d  Kare weak*-continuous 
operators on A* which completes the proof. 

Remark 4. Let A be a C*-algebra such that A is not an ideal of A**. We will show 
that there are hermitian operators on A* which are not weak*-continuous. Since .~ is 
a sr subspace of A**, it follows that A is not a right (nor a left) ideal of 
A**. Let Fbe an element of A** such that AFd: A'. Notice that A** has a unit element 
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even if A does not have one ([8, Corollary 29.8 and Lemma 39.14]). We can assume 
that F is a hermitian element of A**. The right multiplication R r is then a hermitian 
operator on A** and it is the adjoint of  the left multiplication L r on A*. The operator 
LF is hermitian and it is not  weak*-continuous. 
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