Partial regularity for minima of
variational integrals

Mariano Giaquinta and Per—~Anders Ivert”

The purpose of this paper is to study regularity properties of vector-valued func-
tions minimizing variational integrals of the form

Fw = [F(xux), Du(x))dx

where Q is a domain in R* and F(x, #, p) is a continuous function, convex in p and
growing, for [p| large, like |[p|™, m=2.

We will derive partial regularity, i.e. continuity except on a closed set of measure
zero, for the derivatives of the minima of # under the assumption that F is twice
continuously differentiable in p but only Hélder continuous in x and », which means
that the functional & is in general non-differentiable. This extends previous results
of Giaquinta—Giusti [5] and Ivert [7], where the case m=2 is treated.

Although the techniques employed are much in the same spirit as the ones used
in [5] and [7], the additional difficulties which arise for m=2 require some technical
adjustments which may be of some independent interest.

Let us state our assumptions precisely:

General assumptions. Let Q be a domain in euclidean n-space R®, n=3, let
N be a positive integer and let F: QX RN X "\RN" be a function satisfying for all x, y€ Q,
u, v€RY and p, gcRM™:

(@) |pl™ = F(x, u, p) = co(1+|pI2)™*
() |F(x, u, p)—F©, v, p)l = co(1+|p|)™2(|x ~p|° +|u—~0v|")
(i) |1F,(x, u, p)l = co(1+|p|2)m—DP2
() o (L+1pA"=PP\ql* = Fyup(x, u, p)gig) = co(1+ D=2 |qf2
W) |Fpp(x, 4, )~ F,pp(x, 4y )| = (1+| P12+ 1g1D™ 22 0(| p—ql?).

* This work has been written while the authors were enjoying the hospitality of the Forschungs-
institut fiir Mathematik, ETH, Ziirich.
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Here m, o and ¢, are constants with m=2, 0<o6=1 and c¢y>0, and © is a non-
decreasing concave function on R with lim,-¢ w{t)=0.

We use subscripts to denote differentiation, i.e.

O*F
Trirh = Grion}

and the summation convention is used, meaning that summation is to be under-
stood over repeated indices, from 1 to n for Greek letters and from 1 to N for Latin
letters.

Let H>™(Q;RY) denote the Sobolev space of R¥-valued functions in L™(2Q),
having first-order distributional derivatives in L™(Q).

We define the functional #: H“™(Q; R )\R by

F@)=[ F(x, 2(x), Dz(x) dx

and assume that u is a local minimum for &, more precisely that
F(uw) = F(ut+e) for all @cHp™(Q;RY),

where Hy™ denotes the closure in H>™ of the set of continuously differentiable
functions with compact support.

In the following, the letter ¢ will denote a constant, changing its value from
time to time, but at each occurrence it will depend only on the parameters n, N, m
and ¢, unless otherwise indicated. Moreover, we use the notation B,(x,) for the
ball in R" with center at x, and radius r, and (z), r denotes the mean value
Ja 59 2(x) dx of the function z over the ball Bg(x,). We often write B and (2)z
instead of Bg(x,) and (z), r when there is no fear of confusion.

1. A special case

In this section we consider the case when the function F does not depend on
x and u. We shall derive an estimate, Proposition 1.1, which is of essentially the
same type as the one obtained in [6]. It gives partial regularity of the local minima
in this case, and it will be useful when studying the general case. Because of the
simple proof and of its interest by itself, we treat this case separately.

We thus assume, in this section, that u€ H»™(Q; R¥) satisfies

fﬂF(Du(x)) dx éfﬂF(Du(x)-i—Dgo(x)) dx for all @cH}™(Q; RY),

where the function F(p) satisfies (i), (iii), (iv) and (v) of the General assumptions.
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Fix a point x,€Q and a positive number R=<dist (xy, 0Q). Put p,=(Du), x.
Define the function G: R¥™\R to be the Taylor polynomial of second degree of
F around p,:

G(p) = F(po)+ Fp (p0) (2= Db )+ Frip (P0) (Pi—1b) (0 —Pi)-
Comparing with the Taylor expansion of F, we get from (v):
¢B)) |[F(P)—G(p)| = c(1+|pol2+| pID™=12| p— pyl2w (| p— pol?).
Now let v€ H>2(B, 4z (x,); RY) be the unique function with
fB G(Dv(x))dx = ij G(Dv(x)+Dp(x))dx for all @€H?(Byag; RY)

1/2R

(1.2) v— ], .o € Hy *(Byjer; RY).

The existence and uniqueness of v follows from elementary Hilbert space theory.
v is the solution of an elliptic second-order system with constant coefficients, and
from the LP-theory for elliptic systems we get the estimate

—pls s . _
f;l/m’Dv Dol dxécsfl;l/mlDu polfdx if 1<s5 <o

Moreover it is not difficult to prove (see [2}, [3] p. 78)

k
I
(1.3) f;e [Dv—(Dv),|*dx = ¢, (f) jl;./m [Du—A*dx
forall 2€RY™, o<ZR and k=2

Now the function k(t)= f - F(Du+t(Dv—Du)) dx is twice continuously
differentiable and attains its minimum for =0, i.e.

[, [F@)-F@ildx = h()~h(©) = f:(l—z)h”(t) dr.

Performing the differentiations of 4 and considering (iv) of the General assumptions
we get the estimate

fB (14 |Duj2+|Do|)™=2/2|Dy —Dp|2 dx = ¢ f [F(Dv)— F(Du)} dx.
1/3R

To the integral on the right-hand side we add the mtegral fl', . [G(Duw)— G(Dv)] dx,
which is certainely nonnegative due to the minimizing property of v. Then we apply
(1.1) and arrive at

fB (1+|Duj?+|Do|®™ 22| Dy — Dv|® dx

1/2R

=cf,  (1+|pol*+1Do)"=D2Dv—pol2w(Dv—pof?) dx
Bissr

+c f (1+1pol2+|Dul)™=¥2| Du— po|2er (|Du — p,|?) dx.
Bizr
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The first term on the right-hand side can be estimated by
€ foyne [LH12ID D IDo—pift+ Do pil"] (Do~ pof?) dx
= cf f,,m [(L+1pal®) =72  Do—pyl+ | Do—pol "= dx) "~/
X{f, . @4Do=pily "
=c { f,,m [(1+1po|®)™= 2| Du— pol2+ | Du— po| "]/~ dx}<n-2)/,.

fo(f i)

= 2 2\(m—2)/2 - n/(n—2) (n—2)/n
= c{fnl,m[lﬂpol +|Dul?) [Du—~ pgl?] dx}

X{w (cf;R [Du—pg|? dx]}zl”,

where we used the above-mentioned estimates for v as well as the boundedness
and concavity of w. The second term can be estimated in the same way, and thus

(1.4) [, (L+|Dul*+|Do|?)"=>"% | Dy — Dol dx
1/2R

o l2 4y )" 2 2y(m—2)/2 . 121/(n—2) (n—2)/n
scofec 1, \Du—pd dx) { me[(1+lpoI +1Dul?) Du—pofT dx}

Now, since u satisfies the Euler equation
f F, (Du(x))Dp(pf (x)dx =0 forall @cH}™(Q),

it is easy to derive by the difference quotient method (see e.g. [8]) that it has weak
second order derivatives, satisfying

2\(m—2)/21 D22 = —2 2)(m—2)/2 —nl2
1.5 fB mR(1+IDuI) |D2u|? dx = cR fB R(1+]Dul) |[Du—p,l? dx.

We introduce the function S(p)=(1+|p|2)™~2", for which we have the elementary
inequalities

(1.6) 22="(L+1pl2+ gD 22 p—gl? = |S(p)p— S(9)ql?
< 2 (1 1plt+gims|p g,

Put w(x)=S(Du(x))Du(x). It is easily seen that
|Dw ()] = 2 S(Du()) D ().

Now we can continue the estimate from (1.4), using the Sobolev—Poincaré
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inequality as well as the inequalities just mentioned:
{ /. [+ 1Pl Dul) =2 D o= =5
= _ 2n/(n—2) (n—2)/n
= me [w () =S (po) Pol dx}
= c{f, WOyl dx)™ 2"+ ciWhyar — S (po)pol
=cR? f; - IDw|? dx+c f;; o |S(Du(x)) Du(x) — S(po) pof? dx,
so, from (1.4), (1.5) and (1.6) we get
1.7 f (1+|Dul?+|Dv|®)™ 22| Dy —Do|? dx
Byjar
=cofcf, | Du—(Dusl* dx)™" f, (14 |(DWl*+1Dul)™ =" Du— (Duygl? dx.
After these preparations, we are ready to prove

Lemma 1.1. Let u€¢ H"™(Q;R") be a minimum for [, F(Du(x))dx, F sat-
isfying (), (iii), (iv) and (v) of General assumptions. Put

U, ) = ff, |Du—(Du)ldx+f, 1Du—(Du)"dx.

Then there is a constant A, depending only on n, N, m and c, and a bounded function
& with lim, . &(t)=0, depending only on n, N, m, ¢, and w, such that

Ulxp,0) = 4 [[%)Z (—g] (1 + [(Du)g[?) =226 (U (x,, R))] U(xy, R)
if 0<g<R<dist (x, Q).

Proof. Let v be the function defined by (1.2). Using the estimates (1.3) and
(1.7) we get
U(x,, 0) = c[ [, \Du~(Do),[2dx+f, |Du—Do) " dx]

c [ £, |Do—(Do),J* dx+ f. |Do—(Do),I" dx]
5 n
e

c( ] [f;}mR lDu—Dvlzdx+f;‘/=R |Du—Dv|™ dx]

2 n
__Q_ l ) (5_) 2 N (m-2)/2 - 2
c(R) U(xo, > R|+e . f;llm(IHDul +|Dyl?) |Du—Dul? dx

(1A

+

A

[iA

2 n
¢ [%) U(x,, R)+¢ (i;-) o(cU(xy, R)™(1+|(Du)gl?)™ P2 U(x,, R), qe.d.

Now we can state
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Proposition 1.1. Under the assumptions of Lemma 1.1 there is for each L=0
a positive number e=¢(L; n, N, m, ¢y, ®) such that if for some x,£Q and some
R<dist (x,, 09Q)

(1.8) |[(Dw)y,, gl <L and U(x,, R) < e(L)
then, for all g€(0, R)
19 UG, 0 = B(&) UGx, B

where B and p are positive constants depending only on n, N, m, ¢, and o.

Proof. The proof proceeds by an elementary iteration argument, used many
times, see e.g. [3], p. 174:

Fix a number 7€(0, 1) such that A4:2=1/4, and let ¢ be such that
1472 ]/_2-81/2

Y2 ~1 )
A and @ are here taken from Lemma 1.1, which then tells us that

UG*R) = 2 U@ 'R) if |(Du)egl =L and U@E1R) <e.

1

A"+ |LY™-D12G(e) = =, where L=L+

B

Now, using the inequality
|(Dt)acr — (D) e-1r] = U(z* R34+ 12U R)',

it is easily seen by induction that if |(Du)z|=L and U(R)<g, then for every k€N
we have |[(Du)ugl=L and U(*R)=3U(**R)=2"*U(R), which proves the
proposition with p=log2/log 1/z.

If (1.8) holds for some x, and R, then [(Du), gl<L and U(x, R)<e for all x
in some neighbourhood of x,, and thus, from Proposition 1.1, U(x, ¢)=
B(e/R* U(x, R) for all x in this neighbourhood.

This implies, see Campanato [1], that Du is Holder continuous in a neigh-
bourhood of x,. Now we note that (1.8) holds for almost all x, in Q, so we can state

Theorem 1.1. Let u be a minimum for the functional [q F(Du(x))dx, F sat-
isfying the General assumptions. Then there exists an open set ©, with meas (Q\ 2,) =0,
such that u has Héolder continuous first-order derivatives in £2,.

Actually, one can show that the Hausdorfl dimension of O\, is less than
n—2, see [6] and [3] for a discussion.



Partial regularity for minima of variational integrals 227
2. The general case

We now consider the general case F=F(x, u, p) as it is described in the Gen-
eral assumptions. First we state our main theorem:

Theorem 2.1. Let ucH>™(Q;RY) be a minimum for the functional

f @ F(x, u(x), Du(x)) dx, F satisfying the General assumptions. Then there exists an

open set Q,Q with meas (Q\Q,)=0, such that u has Holder continuous first-

order derivatives in Q,. For the singular set Q\ Q, we have Q\Q,=2X,VX,;, where
Z = {xOEQ; sup If;e(xo)Du(x) dxl = +°°},

e>0

I, = {xOEQ; lim inf fB (o 1D~ (D), " dx > 0}.

Proof. We again fix a point x,6Q and an R-<dist (xy, 0Q2). Put =

Jo, sy #(¥) dx and define the function F°: R™\R by F°(p)=F(x,, Uy, P)-

Let v be the unique function (for existence and uniqueness, see e.g. [8]) sat-
isfying
0 - (1]

.1 f . FY(Dv(x))dx = f B;/.R(xo)F (Dv(x)+Do(x)) dx
for all @€HF™(By2r(x); RY)
U—u|Bl,m(x.,)€H5’m(Bl/zR(xo); RM).

As in the previous section, we get the estimate

f (1+|Dul?+|Dv|?)™—22| Dy —Do? dx = ¢ f [F°(Du)— F°(Dv)] dx
Byj2r Byer

1/72r(%0)

=c f [F*(Du)— F(x, u, Du)+ F(x, v, Dv)— F°(Dv)] dx.
Byjar

Now [F(p)—F(x, u, p)] = co(1+|p[®"?(|x —x,|°+]u—14|°), and thus
fB (1+|Dul?+|Dv|2)m—212| Dy — Dv|? dx
1/2R

=c f  (+DuP+|DoP)"* (R +|u—u|” +|o—ul") dx.
1/2R :
Now we have

Lemma 2.1. Under the assumptions of Theorem 2.1, and with v defined by (2.1),
there is a positive number K and a number r=1, both depending only on n, N, m
and c,, such that

2 2ymr/2 r 2ym/2
{ ﬂ m(1+|Du| +|Dol2) dx} = KfBR(1+|Du| Y2 dx.,
For the proof, see [4].

Since the number r as well as the exponent o of General assumptions can be
decreased if necessary, it means no loss of generality to assume that ro/(r—1)=
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2n/(n—2), so from Lemma 2.1 and the preceding estimate we get
.2 f (1+|Duj?+|Dvj?)™— /2| Dy — Do|? dx
Bis2r

=c {’f;lllR (1+ | Dul?+ | Do|2ym/? dx}l/r

1-(1
X{f;/ (Rzn/(n—z)_l_Iu_u0|2n/(n-—2)+Iu_UIZM/(n—z))dx} @a/r)
1/2R

al2

= cR° fB ) (1+|Dul2)ym'> dx{ fB R(1+[Du|2+wv|2) dx}
= cR° {ﬂk (1+|Dulz)"'/2 dx}l-i-(o'/m).

The theorem will follow from

Proposition 2.1. Under the assumptions of Theorem 2.1, there is for each positive
number L a positive number &y(L) such that if |(Du), gl<L and U (xp, R)<gy for
some R<dist (x,, 0Q), then

@3 0600 =0[(g) ven mer (T {f, asipurreasyen]

for all 9<R, where D depends only on n, N, m, ¢, and w, and u is the exponent
Jfrom Proposition 1.1.

Proof. We want to study the quantity
UGxo, ) = f, o DU (D, [P+ AR L DML
comparing it with the corresponding quantity V(x,,r), defined in the same way
with Du and (Du), ,, replaced by Dv and (Dv), ,.
If we first prescribe that & be less than 1, we see that |[(Du)g]<L and
U(xy, R)<g, imply that
fB ) (1+|Dul2y"? dx = L,

with L, depending only on L and m, and hence, from the minimizing property
of v,

f (1 +|Do|?y"? dx = Ly(L, m, c,).
Bsron

Furthermore, since v satisfies the Euler equation for the functional f Bl/mF (Do (x)) dx,
written in the form

L3, LR (D) = Ey (D)1 Dy () dx = O, &G By RY)
it is easily seen, choosing as a test function
@ (x) = v(x) —u(x) = [v(x) —(Dw)g - ¥] —[u(x) — (D) g - X]

that ¥ (x, 3 R)=c(L) U(x,, R), and thus, if g is small enough, depending on L,
the hypothesis of Proposition 1.1 holds for v, and therefore (1.9) holds for V(x,, 0).
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Thus
U(xo, 0) = ¢ f, (IDu—(Dv),[*+|Du—(Do),")dx

= cV(xy, 0) +¢ (%] f; (1+|Duf2+|Dv|?)n=272| Dy — Dv|2 dx
1/2R

n n
2 1 ) (_Ii] 2 2(m=2)/2{ Dy — Dol2
= cB[R) V(xo, 5 R|+c . me.(1+|Du| +|Dol?) |Du—Du|2dx

(1A

R

Using (2.2) we now get (2.3), and the proposition is proved.

By an easy modification of the iteration argument used in the proof of Proposi-
tion 1.1 (see e.g. [5]) one now deduces from Proposition 2.1 that for each positive
number L there are positive numbers &(L) and Ry(L) such that if |(Du), gl<L
and U(x,, R)<g, for some R<min (R,, dist (xo, dQ2)), then for g<R we have
U(xy, g)=c(g/R)* for some positive number 7, and the conclusion of Theorem 2.1
follows exactly as in the proof of Theorem 1.1.

cB (—Q—) U (%o, R)+c(1+B) (%] Jr, . AHIDult | Dol Du Do dx.
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