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The purpose of this paper is to study regularity properties of  vector-valued func- 
tions minimizing variational integrals of the form 

= DuCx))dx 

where f2 is a domain in R n and F(x, u, p) is a continuous function, convex in p and 
growing, for Ipl large, like IPl m, m-->2. 

We will derive partial regularity, i.e. continuity except on a closed set of measure 
zero, for the derivatives of the minima of ~- under the assumption that F is twice 
continuously differentiable in p but only H61der continuous in x and u, which means 
that the functional ~ is in general non-differentiable. This extends previous results 
of Giaquinta--Giusti [5] and Ivert [7], where the case m = 2  is treated. 

Although the techniques employed are much in the same spirit as the ones used 
in [5] and [7], the additional difficulties which arise for m ~ 2  require some tectmieal 
adjustments which may be of some independent interest. 

Let us state our assumptions precisely: 

General assumptions. Let f2 be a domain in euclidean n-space R n, n>-3, let 
N be a positive integer and let F: f2)< R N X c-~R Nn be a function satisfying for  all x, y E f2, 
u, vER n and p, qERnn: 

(i) Ipl m -<- F(x, u, p) <= co(l +lPla) rata 

(ii) IF(x, u, p ) - F ( y ,  v, P)I -~ c0(1 + lpl2)m/2(lx-yl'+ l u -v l ' )  

(iii) IFp(x, u, P)I <= c0(1 +lp12) tm-1)z~ 

(iv) c~1(1 +lpl~)c'-a)/ZlqlZ ~- Fp, p$fx, u, p)q~q~ ~ c0(1 +lPl~)(m-~)l~lql 2 

(v) IFp~(x, u, p) -Fpp(X,  u, q)l ~--(l+lpr+lql2)t~'z~t~o~(lp-ql~) �9 

�9 This work has been written while the authors were enjoying the hospitality of the Forsehungs- 
institut fiir Mathematik, ETH, Ziidch. 
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Here m, a and Co are constants with m=>2, 0<a<=l  and c0>0, and co is a non- 
decreasing concave function on R+ with flint-.0 co(t)=0. 

We use subscripts to denote differentiation, i.e. 

02F 
Op, Opp 

and the summation convention is used, meaning that summation is to be under- 
stood over repeated indices, from 1 to n for Greek letters and from 1 to N for Latin 
letters. 

Let Hi're(f2; R N) denote the Sobolev space of RN-valued functions in Lm([2), 
having first-order distributional derivatives in L'(f2).  

We define the functional ~ :  Hi're(f2; RN)c-~R by 

~'(z) = f o F(x, z(x),Dz(x))dx 

and assume that u is a local minimum for a~, more precisely that 

~'(u) <= ~-(u+~p) for all epCHlo'm(o; RN), 

where HI  'm denotes the closure in H i'm of the set of continuously differentiable 
functions with compact support. 

In the following, the letter c will denote a constant, changing its value from 
time to time, but at each occurrence it will depend only on the parameters n, N, m 
and Co, unless otherwise indicated. Moreover, we use the notation B,(xo) for the 
ball in R" with center at x0 and radius r, and (Z)xo, R denotes the mean value 
f~R(Xo ) z(x) dx of the function z over the ball B R(x0). We often write B R and (z)a 
instead of BR(xo ) and (z)x0 R when there is no fear of confusion. 

1. Aspecia l  case 

In this section we consider the case when the function F does not depend on 
x and u. We shall derive an estimate, Proposition 1.1, which is of essentially the 
same type as the one obtained in [6]. It gives partial regularity of the local minima 
in this case, and it will be useful when studying the general case. Because of the 
simple proof and of its interest by itself, we treat this case separately. 

We thus assume, in this section, that uEHI'm(f2; R N) satisfies 

f F(Du(x))dx<= f F(Du(x)+Dq)(x))dx for all q)EHlo'm((2, Rt~), 

where the function F(p) satisfies (i), (iii), (iv) and (v) of the General assumptions. 



Partial regularity for minima of variational integrals 223 

Fix a point x0Ef2 and a positive number R<dist  (x0, 0/2). Put po=(DU)~o,R. 
Define the function G: RN"c-~R to be the Taylor polynomial of second degree of 
F around P0: 

G(p) ~ ~ 1 = e(po) + Fp, (p0) (p.-po.) + ~ Fp,,~ (P0) (P~-P~.) (P~ -PO" 

Comparing with the Taylor expansion of F, we get from (v): 

(1.1) IF(p)-G(p)I <- C(I +IPoI~+IPI~)(m-~)/~Ip--POI~Oo(IP--PoI~). 

Now let vEHl'Z(B1/2R(xo); R N) be the unique function with 

f~,/,G(Dv(x))dx<= f,,/,RG(Dv(x)+Dq~(x))dx for all e~H1o"(B1/zR; R N) 

(1.2) v--uIn,/,,EH~'2(BI/m; RN). 

The existence and uniqueness of v follows from elementary Hilbert space theory. 
v is the solution of an elliptic second-order system with constant coefficients, and 
from the LP-theory for elliptic systems we get the estimate 

f~I/,R IDv-p~ ~- c,s IDu-p~ dx if 1 < s  < ~o. 

Moreover it is not difficult to prove (see [2], [3] p. 78) 

o "< IDu-).l k dx ( 1 . 3 )  = 

1 for all 2CR N", 0 < - ~ R  and k->2.  

Now the function h(t)=fB,/,~ F(Du+t(Dv--Du)) dx is twice continuously 
differentiable and attains its minimum for t=0,  i.e. 

f,,,,~ [e(D0-F(Du)] a~ = h(1)-h(O) = f~(1 - t )h"( t )  dt. 

Performing the differentiations of h and considering (iv) of the General assumptions 
we get the estimate 

(1 + ]Dul~+ IDv[~) (m-u)/2 IDu-Dv] ~ dx -<- c f [F(Dv)- F(Du)] dx. 

To the integral on the right-hand side we add the integral fB,/,~ [G(Du)-G(Dv)] dx, 
which is certainely nonnegative due to the minimizing property of v. Then we apply 
(1.1) and arrive at 

f .,/,. (1 + IDul2 + [Dvl~) ~m-2)/2 IDu-Dvl ~ dx 

<- e f (1 + [p0[Z + lDvl~)(m-2)/ZlDv -PolUOo(IDv -p0l z) dx 

+ c Col%,, (1 + IP01 ~ + IDul~) (~-zm IBu -Pol~o~(IDu -/'0!D dx. 
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The first term on the right-hand side can be estimated by 

c f zh/2R [(1 + [pol2)("-2)/~[av--po[a + [av-Po["]co([av-Po[ 2) dx 

~_ c {f~,,, [(1 +iPolS)("-s)/2lDv-po[ ~ +[Dv-pol"] "/('-~) dx} <'-2)In 

x {f,, , ,  o~(t 1),-p01=)"/= ax} ' '  

e I f .  [(1+ IPol~)(m-~)/2lnu-po[2+ [Du-polm] "/("-2) dx~('-~)/" 
t , J  D 

Xl2R J 

X{o~(L,/talDv-po[~dx)}~l" 

< [l+]p U-Pol~]'l('-') dx} ('-')1" 
a l 2 a  

where we used the above-mentioned estimates for v as well as the boundedness 
and concavity of co. The second term can be estimated in the same way, and thus 

(1.4) f.,,,. (1 + IDul2+ lDvl2) (m-2)12 IDu-Dvl 2 dx 

* co (cAR [Du--pol 2 dx) ~/" {f , , .  [(1 + I pol2 + ]Du]2) (m-2,[2 [Du- p0]2] "1("-') dx}("-2)l" 

Now, since u satisfies the Euler equation 

fFp~(Du(x))Dp~oJ(x)dx = 0 foral l  q~CH~"(O), 

it is easy to derive by the difference quotient method (see e,g. [8]) that it has weak 
second order derivatives, satisfying 

(1.5) f .  (l +[Dul~)("-~)/2lD2u[2 dx <- cg - '  f , ,  (l +lDul2)(m-~)/2lDu--Pol~ dx. 
I12R R 

We introduce the function S(p)=(1 + [p[2) (m-9~)14, for which we have the elementary 
inequalities 

(1.6) 2~-m(l + Ipl 2 + Iql~) ('-2)/2 [ p -  ql 2 ~- IS(p)p-S(q)q] 2 

1712 
~-- 4 (l +lpl2+lql~)("-2)/UlP-qlU" 

Put w(x)= S(Du(x))Du(x). It is easily seen that 

m ( (~))j ,  Inw(x)l ~= -~ S nu D u(x)l. 

Now we can continue the estimate from (1.4), using the Sobolev--Poincar6 
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inequality as well as the inequalities just mentioned: 

{f,,.,~ [(1 + Ipol~ + IDul~) r IDu -Pol~] "/c"-~) dx} c"-~)/" 

<= c {fn Iw(x)-S(po)po[ ''/~ dx} ~ 
I/2R 

c{f~ Iw(x)-(wh/~l  ~'/c'-~) dx}'~-~)/"+cl(w)~/~-S(po)pol ~ 
1/2R 

~cR2 f IDwpdx+c fB~/, lS(Du(x))Du(x)--S(Po)Pol2dx, 
J BllZR 

so, from (1.4), (1.5) and (1.6) we get 

(1.7) f ~,/,~ (1 + [Du] 2 + IDvl2) r [Du-Dv] 2 dx 

~_ co, (c fBR WU--(OU)~I' dx)'/'fB (1 --~I(DM)RI2-~[Dul2)(m-$'/2[Du--(Du)R]2dx. 

After these preparations, we are ready to prove 

Lemma 1.1. Let uE HI"m(f2; R N) be a minimum for f a F(Du(x)) dx, F sat- 
isfying (i), (iii), (iv) and (v) of  General assumptions. Put 

V(xo, r) = f,.~,o inu- (z~),l ~ dx +f,:,~ IOu- Wu),l" dx. 
Then there is a constant A, depending only on n, N, m and Co and a bounded function 
Co with limt~o+ c3(t)=0, depending only on n, N, m, Co and co, such that 

2 n 
U(xo, Q)~- A[(---~) + ( ~ ) ( 1  + [(Du)a[')'m-~'/2~3(U(xo, R))] U(xo, R, 

/f 0 < e < R < d i s t  (x, dO). 

Proof. Let v be the function defined by (1.2). Using the estimates (1.3) and 
(1.7) we get 

o Q 

--<~C [A~t  IDD--(9/3)ol  2 dx  ~ 1 1 D / 3  - (  Dl))O[m d~] 

+~ (~-)" [L,,,. IDu--D/3l'dx+f,,,,,,, [JDu--DI,)I ra dx] 

1.1 =< c U Xo, + c  (1 +lDul~+lDvl~)(m-2)lZlDu-Dvl2 dx 

<= c U(xo, R)+c co(cU(xo, R))'/"(I + l(Du)alg~m-2)/'U(xo, R), q.e.d. 

Now we can state 



226 Mariano Giaquinta and Per-Anders Ivert 

Proposition 1.1. Under the assumptions o f  Lemma 1.1 there is for each L > 0  
a positive number e=8(L;  n, N, m, Co, co) such that i f  for some XoEs and some 
R < d i s t  (x0,012) 

(1.8) l(Du)~o, RI < L and V(xo, R) < e(L) 

then, for all 0 E (0, R) 

(1.9) U(xo, O) <- B U(xo, R) 

where B and # are positive constants depending only on n, N, m, c o and 09. 

Proof. The proof  proceeds by an elementary iteration argument, used many 
times, see e.g. [3], p. 174: 

Fix a number zE(0, 1) such that Az~<=l/4, and let 8 be such that 

A~-n(l+lr, l~)(m-m~(e) = ~-, where ~ = L+ l + z - n / ~  

/ / a n d  (~ are here taken from Lemma 1.1, which then tells us that 

U(z~R) < 1 U(zk_lR) if I(Du)~-,RI < J~ and U(z~-IR) < e. 

Now, using the inequality 

I(Du),~R-- (Du),~-,RI <= U(~ k R) 1/~ + ~-"/~ U(z k- 1-R)1/~, 

it is easily seen by induction that if I(Du)RI<=L and U(R)~e, then for every kEN 
we have I(Du),~RI=<s and U(zkR)<-~U(zk-IR)<=2-kU(R), which proves the 
proposition with # = l o g  2/log 1Iv. 

If  (1.8) holds for some x0 and R, then I(DU)~,RI<L and U(x, R ) < e  for all x 
in some neighbourhood of  x0, and thus, from Proposition 1.1, U(x, e)~_ 
B(Q/R)" U(x, R) for all x in this neighbourhood. 

This implies, see Campanato [1], that Du is H61der continuous in a neigh- 
bourhood of Xo. Now we note that (1.8) holds for almost all xo in O, so we can state 

Theorem 1.1. Let u be a minimum for the functional f o F(Du(x)) dx, F sat- 
isfying the General assumptions. Then there exists an open set f2o with meas (f2~f20) =0,  
such that u has H61der continuous first-order derivatives in 12o. 

Actually, one can show that the Hausdorff  dimension of  s is less than 
n - 2 ,  see [6] and [3] for a discussion. 
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2. The general case 

We now consider the general case F =  F(x, u, p) as it is described in the Gen- 
eral assumptions. First we state our main theorem: 

Theorem2.1. Let uE HI'm(ya; R N) be a minimum for the functional 
f n F(x, u(x), Du(x)) dx, F satisfying the General assumptions. Then there exists an 
open set f2ocf2 with meas (fa\f2o)=0, such that u has H61der continuous first- 
order derivatives in f2 o. For the singular set f a \  f2o we have fa\fao=2~lvo~72, where 

�9 1 - SUo  = + 

Z2 = {XoE g2; l imin f / "  [Du(x) -(Du)xo, elm dx > 0}. 
o o d ec(xo) 

Proof. We again fix a point x0~f2 and an R<dist(xo,012). Put Uo= 
fn~(x,) u(x) dx and define the function F~ RN"c-~R by F~ uo,p). 

Let v be the unique function (for existence and uniqueness, see e.g. [8]) sat- 
isfying 

(2.1) f ~,,,.~oFO(Ov(x))dx < -  f B,/,.(~oF~ 
for all r R N) 

v -  ul.,,,.(.0e H~ '~ (B1/~R (Xo); RN). 
As in the previous section, we get the estimate 

f n,/,~ (1 + [Du]2+ [DvIZ)(m-*)/~IDu-Dvl2 dx ~ c f B,/,~ [ F~ F~ dx 

~= c f ,  [F~ u, Du)+ F(x, v, Dv)-F~ dx. 
1/2R 

Now [F~ u, p)l <- co(l +[pl~)'~/~(lX-Xol'+lu-uo[~ and thus 

f,,,,. (1 + [Dul ~ + IDvl*) (m-* )/2 [Du - Dvl ~ dx 

< = cf~ (l+lOul'%lOvl2)mZ~(R~ 
I/2R 

Now we have 

Lemma 2.1. Under the assumptions of Theorem 2.1, and with v defined by (2.1), 
there is a positive number K and a number r > 1, both depending only on n, N, m 
and co, such that 

{A,/ ,  (1 +lDul2+lDvlZ) m'/2 dx}l/" <= K A a ( 1  +IDu[2) m/2 dx. 

For the proof, see [4]. 

Since the number r as well as the exponent a of General assumptions can be 
decreased if necessary, it means no loss of generality to assume that ra/(r-1)= 
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2n/(n--2), so from Lemma 2.1 and the preceding estimate we get 

(2.2) Al/2a (1 + [Du[2 + [Dv[2) (m-~)/2 [Du-Dvl ~ dx 

{f.l,,. (1 + [Dul2+ IDvlZ) ~'/~ dx} x/" 

x {f.,,, +lu-uol 2"/(n-2~ 1 - w ' )  

-<_ cR" { f . ( 1  +lDul')'/' dx} '+('/'~. 
The theorem will follow from 

Proposition 2.1. Under the assumptions of  Theorem 2.1, there is for each positive 
number L a positive number co(L) such that if  l(Du)xo, gl<L and U(xo, R)<80 for 
some R<dist  (Xo, Of 2), then 

[(d } ] (2.3) U(xo, O) <- D U(Xo, R)+ R" (l +lDul~),/2 dx a+(,/.) 
11 

for all Q<R, where D depends only on n, N, m, Co and o~, and # is the exponent 
from Proposition 1.1. 

Proof. We want to study the quantity 

U(xo, r) = f~,(Xo) IDu-(Du)xo, rl 2 dx § dx, 

comparing it with the corresponding quantity V(xo, r), defined in the same way 
with Du and (DU)~o, r replaced by Dv and (DV)xo,,. 

If we first prescribe that so be less than 1, we see that [(Du)•I<L and 
U(xo, R)<~0 imply that 

fn (1 +lDul2) m/2 dx ~ Lt 
R 

with Lt depending only on L and m, and hence, from the minimizing property 
of V, 

f ~  (1+ IDvl2) m/~ dx <- Lm(L, m, Co). 
I / 2 R  

Furthermore, since v satisfies the Euler equation for the functional f~ , / ,F  ~ (By (x)) dx, 
written in the form 

fB,/2[F~ = O, q~EHI'"(B,,~; RN), 

it is easily seen, choosing as a test function 

e (x) = v ( x ) -  u(x)  = [ ,  (x) - (D u) ,  . x l - - [ u ( x ) - - ( D u ) R ,  x] 

that V(xo, ~ "< .~R)=c(L) U(xo, R), and thus, if So is small enough, depending on L, 
the hypothesis of Proposition 1.1 holds for v, and therefore (1.9) holds for V(xo, Q). 
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Thus  

V(x0, O) <= c f ~  (IDu-(DOQI~+IDu-(Bv)oIr") dx Q 
R "  

~- cV(xo, O) + c (--~-) s  ( l + [Du[~ + [Dvl~)t~-2)/2 [Du-- Dv,2 dx 

1 
t J fBl,,  (1 + ID.I IDvlZ)~m- ~)/~ lDu -19v I' dx 

R "  cB(-~)IZU(Xo, R)'q-c(1 "~B)(-'~-) fB1/,a (1 AvIDuI2-~IDI)IC*)(m-2)/2IDu.D1)] '~ dr. 

Using (2.2) we n o w  get (2.3), and  the p ropos i t ion  is proved.  
By an easy modif icat ion of  the i terat ion a rgumen t  used in the p r o o f  of  Propos i -  

t ion 1.1 (see e.g. [5]) one n o w  deduces f rom Propos i t ion  2.1 tha t  for  each posi t ive 

n u m b e r  L there are posi t ive numbers  co(L) and Ro(L) such tha t  if  [(DU),o.RI<L 
and  U(xo, R)<80  for  some  R < m i n  (R0, dist (x0, 0f2)), then for  0 < R  we have  
U(xo, Q)<=c(Q/R) ~ for  some  posi t ive n u m b e r  z, and  the conclusion of  Theo rem 2.1 
follows exact ly as in the p r o o f  of  T h e o r e m  1.1. 
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