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Introduction

After some progress was made in the study of the adjunction process [19], these
last few years many papers [12], [15], [16] have appeared on the classical subject of
classifying projective algebraic surfaces whose general hyperplane section has a given
genus.

A more general and intrinsic version of this problem can be stated as follows:
classify all pairs (S, &) where S is a smooth complex projective algebraic surface and
£ an ample line bundle on § whose arithmetic genus g(&£)=1++4 (£L2+ZLKy) is a
given number g. Of course g(#)=0. In the cases g=0 and g=1 this classification
is known [13] (see also [7], [8]) and, in a sense, gives nothing new with respect to the
classical case where & is assumed a very ample line bundle.

In the case g=2 thesituation is quite different since some meaningful new pairs
appear with respect to the classical case, e.g. the pair (J(C), 0 1c(C)) defined by a
smooth curve C of genus two embedded in its Jacobian J(C) and the pair (Z, 7* @p«(1))
where n: £—~P? is a double cover branched along a smooth sextic.

In this paper we give a classification of the polarized pairs (S, &) with g(#)=2.
Just a few words about what we mean by classifying pairs (S, %). First of all S is
classified birationally, according to the Enriques—Kodaira classification. As far as
the line bundle % is concerned, since the definition of g (£) involves numerical charac-
ters only, it seems reasonable to classify % up to numerical equivalence. The results we
find are too complicated to be outlined here, so after noticing that they are summarized
in various tables section by section, we use this introduction to point out the defects
of our classification. Indeed here we find necessary conditions for polarized pairs
(S, &) to exist, but we are not always able to decide whether all the pairs with the
characters we find do exist. However pairs (S, %) where S is a minimal model of
Kodaira dimension #(S)#1 really occur.
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When %(S)=1, Sis forced to be a minimal model. So as to surfaces of general
type our description is rather complete. In the case of elliptic surfaces, the complexity
of Num(S) makes us describe £ only in terms of fibres and m-sections of the ellip-
tic fibration. When %(S)=0, Sis not necessarily a minimal model and so we classify
the pairs (S, £) by means of their minimal pairs. This means that we consider a bira-
tional morphism #: S—.S, onto a minimal model S, describe the sequence of the
blowing-ups # factors through and classify the pair (S, n,Z) even if g(n,£)=g(%)
in general. Since the ampleness of a line bundle does not necessarily lift to S, we can
only give necessary conditions for (S, &) to exist, e.g. the description of #,% in
Num (S,), some restrictions on the factorization of y and further restrictions on the
centers of the blowing-ups.

In the rational case the behaviour of the adjunction mapping is unknown in its
full generality, so we can give no restrictions on the possible factorization of # (unlike
when & is very ample).

In Sec. 1 we consider surfaces of general type and elliptic surfaces. In Sec. 2 we
consider surfaces of Kodaira dimension zero, while Sections 3 and 4 are devoted to
non-rational ruled surfaces and rational surfaces respectively.

Finally a reason why so many people as authors. Actually this paper started from
some coatributions independently given by the second and the other two aunthors;
afterwards it was developed together, so as to avoid more publications on the same
topic.

Acknowledgement. We are indebted to the Chief editor of this journal, whose
professional correctitude made possible the publication of this paper.

0. Notation, definitions and preliminary results

By surface we shall always mean a smooth complex projective algebraic variety of
.dimension two. Let § be a surface and D, D’ divisors on' §. The symbol DD’ will
denote the intersection index of D and D’; D? will denote the self-intersection of D.
The linear and the numerical equivalence of D and D’ will be expressed by writing
D=D" and D=D’ respectively. We shall use the following other standard symbols:
05(D)=the invertible sheaf associated to D, h%D)=dimcH(S, Os(D)); |D|=the
complete linear system defined by D; ¢,p: S—~P*P~'=the rational map associated
to |D|; Kg=a canonical divisor on §; p,(S)=h"(Ks)=the geometric genus of S;
Pa(S)=h'(nK5)=the n-genus (n=1) of S; g(S)=h"(O5)=the irregularity of S;
1(05)=1-4(S)+p,(S).

For a divisor D on S, the integer g(D)=1++ (D?*+DKs) will be called the
arithmetic genus of D. Of course, if | D| contains a smooth curve C, then g(D)=g(C)
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coincides with the geometric genus of C. Moreover, if D is an ample divisor, then
(cf. [13]) g(D)=max (0, g(S)—p,(S)).

Throughout all the paper we deal with polarized pairs (S, A) where S is a surface
and 4 is an ample divisor on S. We shall denote by %, the class of the pairs (S, 4)
as above such that g(4)=g. We shall denote by # the class of pairs (S, 4) where S
is a P*-bundle and 0;(4)=0p.(1) for any fibre f of S and by % the class of pairs
(S, A) where S'is a conic bundle (i.e. a Pl-bundle blown up at a finite number s=0
of points lying on distinct fibres) and @,(4)=0p:(2) for the general fibre fof S.

Let us point out some basic facts about ample divisors.

Proposition 0.1 ({13], Th. 1.1).- Assume (S, A)¢B and g(A)=2. Then A=
4(g(A)—1)+K2, and equality holds if and only if (S, A)€%. O

Proposition 0.2 ([13, Th. 2.2). dssume p,(S)=0 and g(A)=1. Then g(A)=
4(S) if and only if (S, HER. O

Let (S, 4)c, and let 5: S—S, be a birational morphism onto a minimal mo-
del S, of S. Then A,=n,4 is an ample divisor on S, by the Nakai—Moishezon
criterion and g,=g(A4y)=g. Such a pair (Sy, 4p)€ . will be said a minimal pair of
(S, A).

Finally, for a P*-bundle S, e will denote the invariant and C, and fa fundamental
section and a fibre respectively (cfr. [10], p. 372). We also denote by F, the rational
Pi-bundle of invariant e.

1. The case »x(S)=1

In this section we deal with a polarized pair (S, 4) where the surface S has
Kodaira dimension %(S)=1. First of all, let us state some preliminary results.

Lemma 1.1, If (S, )¢S, and %(S)=1, then

(1.1.1) A* = AKg =1
and S is a minimal model.

Proof. Since x(S)=1, there exists an integer m=>0 such that mKj is effective.
Then KgA=>0 and A%2=0 as Aisample;so g(4)=2 gives (1.1.1). Now assume that
S is not a minimal model and consider a birational morphism #5: S-S, from S to
its minimal model ;. One has Kszn*Ksn—i—E where E is an effective non-trivial
divisor whose connected components are contracted by 5. Since %(S)=1x(Sy)=1
then mK( is effective for m>>0 and so An*K; >0, which gives 1=AK;=An*K +
AE, contradiction. g.e.d:
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Lemma 1.2. If (S, )¢S, and %(S)=1 then
(1.2.1) h°(4) = 3 (0y)
and either y(0s)=0 or q(S)=p,(S)=0.

Proof. In view of Lemma 1.1, S is a minimal model and (Kg— A)4=0. Then
the ampleness of 4 implies #2(4)=h"(Ks— A)=0, so (1.2.1) is a consequence of the
Riemann-Roch theorem.

Clearly q(S)=p,(S)+1 because x(0s)=0. Assume that y(05)>0. Therefore
h(A)=0, so there exists a curve A¢|A4| which is irreducible and reduced since A42=1.
We want to prove that ¢(5)=0. By contradiction suppose that ¢(S)#0. Then
we can choose an element y€Pic®(S)\{0} and A2(Ks+7y)=~(—y)=0 as yA=0.
Hence the Riemann-Roch theorem yields

h(Ks+7) = x(05) = 1.

First suppose that A%(Ks-+7)=2, so |Ks-+y] contains a pencil @. Note that &
does not contain 4 as a fixed component. Otherwise for every I'c¢ @ we should have
I'= A4-C with C effective divisor, therefore 1 =I'd= A2+ AC=1+ AC. which impli-
es C=0, i.e. '=A=Ks+7. This gives 1=(4—7)*=K3=0, contradiction. It thus
follows that for every point p€ A4 there exists a curve I'¢ @ passing through p and
such that I'4=1. This implies that 4 is not singular. Moreover & cuts a gt on 4 and
then A is rational, contradiction.

Now assume that #%(Ks+7y)=1 for every y€Pic®(S)\{0}. Hence the restricted
divisor (Ks+y)|, is effective and its support consists of a single point. By extending
to zero the map

Pic’(S) - 4

sending y to the support of (Kg+7)|, we get a morphism g, which is injective in
view of [23], p. 120. Therefore, as A is irreducible and Pic® (8)5#(0), ¢ is an iso-
morphism. It follows that dim Pic®(S)=¢(S)=1 and so A is an elliptic curve, which
is again a contradiction. Hence ¢(S)=0.

Now suppose that p(S)=1. The Riemann-Roch theorem gives

R (Kst+4) = p,(S)+2—-4(S) = 3.

Let K¢|Kg| and let ¢’ be a pencil contained in |Kg+ 4|. Then the relations 1 =4K=
I''’K for every I'€ &’ imply that K is an irreducible nonsingular curve containing
a g;. Once again this gives a contradiction because the genus formula implies that
g(K)y=1. g.ed

Lemma 1.3. Let (S, A%, with x(S)=1, x(05)=0. Let ¥: S—~A4 be an ellip-
tic fibration and suppose that A=P*. Then q(S)=1, p,(S)=0.



Algebraic surfaces containing an ample divisor of arithmetic genus two 193

Proof (essentially due to Sommese [20]). Since ¢(S)=p,(S)+1 we have only
toshowthat ¢(S)=1. Supposethat ¢(S)>1 and dim «(S)=1 where a«: S—~Alb(S)
is the Albanese map. Then «(S) is a nonsingular curve C of genus g(C)>1, so the
fibres of ¥ are contracted by o. Hence we get a surjective morphism P'-C, contra-
diction. Therefore we can assume that dim «(S)=2. Let E be the general fibre
of ¥. The image a(E) is neither a point nor a rational curve; hence it is an elliptic
curve and we can consider the abelian variety &/ =Alb (S)/a(E). Clearly dim &/ =1
as dim Alb (S)=2. Let n:S—& be the canonical projection composed with . The
image n(E) is a point since ¥ has connected fibres. Then we get a surjective morphism
P>/, wihch is again a contradiction. g.ed

Now we are going to consider the case %(S)=2. Any smooth rational curve
Cc S such that C?=—2 will be called (—2) -curve. Of course for such a curve one
has CKy=0. Recalling some well known facts about surfaces of general type (cfr.
[2], 13}, .11]) we can state the following

Theorem 1.4. Assume that (S, A)¢ Sy and %(S)=2. Then S is a minimal surface,
the canonical bundle is ample (in particular S does not contain any (—2)-curves), the
numerical invariants are K3=1, q(S)=0, p,(S)=2 and Sis as follows:

() p,(8)=0, S is a (numerical) Godeaux surface and A=Ks+e, where
e€Tors (Pic (S)). Moreover if €0 then h(A4)=1.

(ii) p,(S)=1, A=Kg. In this case S is isomorphic to a (smooth) complete
intersection of type (6,6) in the weighted projective space P(1, 2, 2, 3, 3).

(i) p,(S)=2, A=K; and S is a Horikawa surface. In this case let ¢:8~S be
the blowing-up at the unique base point of | A|. Then § is the minimal resolution of sin-
gularities of a double covering of the rational P*-bundle ¥, branched along a curve
Be|6Cy+10f| with no infinitely close triple points.

Proof. The surface S is a minimal model by Lemma 1.1. Furthermore we have
(cf. [10], 1.9, p. 368).

(1.4.1) A*(Ks+AY = (A(Ks+ A = 4.

On the other hand, A?(Ks+d4)*=K32+3 again by means of Lemma 1.1, so that
K3=1. Then, since § is a minimal surface of general type, one gets KZ=1. This
implies g(S)=0 and therefore by Noether’s inequality we find p,(S)=2 (see [2],
Thm. 9). Moreover, since 4 is an ample divisor and A(Kg— A)=AKs— A2=0, the
Hodge index theorem implies either (Ks—A4)?<0 or Kg=4, but as (Kg—AP=
K2—2K3A+ A4*=0, one concludes that Kg=A4 is ample. In particular it follows that
S cannot contain any (—2)-curves. If p,(S)=0, then §is a numerical Godeaux sur-
face. The last part of (i) follows from a result due to M. Reid (cft. [5], p. 158). When-
ever p,(S)=1 or 2 the Picard group Pic (S) s torsion free by [2], Thms. 14, 15. In both
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cases A=K and every divisor belonging to | 4| is an irreducible reduced curve since
A2=1; so, if p,(S)=2, |4|=|Ky]| is a pencil of irreducible curves of genus two. If
p,(8)=1 the canonical model M of S is (isomorphic to) a complete intersection of
type (6,6) in the weighted projective space P(1, 2, 2, 3, 3), having double rational
points at most, as proved in [3], §1. Now since S contains no (—2)-curves it has to be
S=M and we get (ii). If p,(S)=2 all that we specified in (jii) follows from [11],
Thm. 2.1. qg.ed.

Example. The numerical Godeaux surfaces with T=Tors(Pic(S))=Z,, r=4,
or 5, are well known. Following [5], IIT § 2 we can explicitly describe the surfaces
occuring in 1.4 i) in these cases.

Let S’ S be the unramified covering of degree » (r=4 or 5) corresponding to
the torsion group 7. Since S contains no (—2)-curves, S’ is isomorphic to its
canonical model.

If T=Z,, the canonical model of S’ is a quintic surface X P® and then S'is
the quotient of X with respect to the action of a cyclic group of order 5 (the classical
Godeaux surface). Since 0y(K5)=0;(1), Ksis ample and g(Kg)=2.

If T=2Z,, the canonical model of S’ is a smooth complete intersection ¥V of
type (4,4) in the weighted projective space P(1, 1, 1, 2,2). Thus S is isomorphic to
the quotient of ¥ with respect to the action of a cyclic group of order 4. The weighted
adjunction formula gives 0, (Ky)=0,(4+4—1—1—1—-2—-2)=0,(1). Furthermore
0,(1) is ample since ¥ can be chosen as a nonsingular weighted complete intersection
in the sense of Mori[17]. Then K is ample and g(K5)=2. For instance one can consi-
der the group p, of the 4-th roots of 1 and its action on P(l1, 1, 1, 2, 2) defined by
(To, Ty, Ty, T3, T4)~((Ty, (2T, (3T, (T, £3TY), ({ a primitive 4-th root of 1). The
surface ¥ whose equations are

T3+ T+ T+ T,T, = TR+ TR T34 T3+ T = 0
is invariant under this action and contains no fixed points of it. The quotient of V'
with respect to this action of p, is just an example as above. [

The last part of this section is devoted to the case of a surface S with »x(S)=1.
Let us consider an elliptic fibration ¥:.S—~A4. Let F be the general fibre of ¥ and f;
the reduced component of a fibre of multiplicity ;. Then F=m; f; and the canonical
divisor can be written as follows (cf. [9], p- 572).

(1.5.1) Ks = ¥*6+ 3 :(mi—1) f;,

where 6€Div(4) and degd=2g(4)—2+y%(05). As KsA=1, by Lemma 1.1. one
gets

(1:5.2) (28() =2+ (0) AF+ 3 (m;— 1) Af; = 1.
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We shall divide our analysis of formula (1.5.2) into three parts according to whether
28(A)—2+2(05)=0.

a) Case 2g(4)—2+x(05)=0. Since J;(m;—1)Af;=0, itis AF=1, 2g(4)—
2+4%(05)=1 and ¥ has no multiple fibres. In view of Lemma 1.2 it can only be
g(4)=x(0s)=1 and so | 4| contains an effective divisor D. Now the equalities A4>=
AF=1 imply that D is an irreducible section of ¥, but this gives 2=g(4)=
g(A)=1, contradiction.

b) Case 2g(4)—2+x(05)=0. In this case formula (1.5.2) becomes >;(m;—1)
Af:=1, hence, in view of the ampleness of 4, the morphism ¥ has a unique multiple
fibre f; of multiplicity m;=2. By (1.5.1) we get Kg=f; and so p,(S)=1. Then
Lemma 1.2 gives x(05)=0, which implies g(4)=1 and then p,(s)=h"(2K)=1.
This case however cannot occur due to a result of Kollar {24], Props. 4.5 and 5.1.

¢) Case 2g(4)—2+yx(0s)<0. We can assume m;=2 for each i=1,...,k
in view of (1.5.2) and let m;=...=m,. Since x(0s)=0, we have g(4)=0 and by
Lemma 1.2 it can only be either p,(S)=¢(S)=0 or x(0s5)=0; in the latter case it
has to be p,(S)=0, g(S)=1 in view of Lemma 1.3. Put x(05)=1-—¢,e=0,l.
Then as F=m, f;, formula (1.5.2) becomes

(1.5.3) (k—1—&~3;  1/m)AF = 1.

In particular it follows that AF=Lc.m. {m;}. Let m =max {m;}. Then AF=m and
since m;=2 for each i, one gets the inequality

(1.5.4) 1= m(k—1—e—(k—1)/2—1/m) = m((k~1)2—&)—1,

where the equality holds if and only if both. 4F=m and m;=...=m,=2. Hence
(1.5.5) mk—1—2¢) =4

and again the equality holds if and only if both AF=m and my=...=m=2. As
m=2, one gets k=3+2¢ by (1.5.5) and if k=3+2¢, then my=m,=...=m =2,

On the other hand, it has to be k=1+¢ in view of (1.5.3). Therefore, when x(05)=1
we have the following possibilities:

¢) k=3, m=my=myg=2 and AF=2;
¢ k=2, mi=my=3 and AF=3;

¢g) k=2, m=2, my=4 and AF=4;
¢y k=2, m=2, my=3 and AF=6.

When x(05)=0, if k=3, in the same way we get the following possibilities (recall
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that AF=Lc.m. {m}):
Ca) k=5 m=my=mg=my=my=2 and AF=2;
Cyw) k=4, m=my=my=2, my=4 and AF=4;

) k=4, m=my=my=2 my=3 and AF=6.
For k=3 more care is needed. Indeed in this case (1.5.3) reduces to
(1.5.6) (1—-1my—1/my—1/m)AF = 1.

To make positive the left hand of (1.5.6) it has to be m;=4 for some i. Assume, for
instance, my=4; then (1.5.6) gives 1=AF(3/4—1/m;—1/m,), and the equality holds
if and only if mz=4. For shortness, write p=m,, g=m,. Since AF=my=4, we get
pq=2(p+q). Then p=4 by the assumption p=qg and furthermore 3=g=6
when p=3, g=4 when p=4, whereas we get no restrictions on ¢ when p=2. In
case p=3, 3=¢=6 we obtain the 4-tuples (3, 3, 4; 12),(3, 3, 6; 6)and when p=g=
4 we get (4, 4, 4; 4) only. Whenever p=2 by looking at the low values of m; we find
the following 4-tuples (2, 4, 5; 20), (2,4, 6; 12), (2,4, 8; 8), (2, 5, 5; 10), (2, 6, 6,; 6),
(2,3,7;42), (2,3,8;24), (2,3,9; 18), (2, 3, 12; 12), while for m3=13 one gets the
inequality 1=AF(1—1/2—1/g—1/13)=AF(11/26—1/q). Since AFz=m3;=13, it fol-
lows that 13=AF=26q/(11g—26), then ¢=2, i.e. ¢=2; but (1.5.6) cannot hold
if p==g=2. In conclusion for k=3 we have the following cases:

c31) m; = 2: Mgy = 4, Mg = 8 and AF= 8

C2) My =2, my=myg=6, and AF=6;

C) My=2, my=3, my=12 and AF=12:

Cy) My=my=3, my=6, and AF=6;

Cg5) Mp=my=my=4 and AF=4;

) M =2, my=4, my=>5 and AF = 20;

C) My=2, my=4, my=6 and AF=12;

Cg) M =2, my=my=5 and AF=10;

644) my = 2, my = 3, mg = 7 and AF = 42;

C45) my = 2, my = 3, ms = 8 and AF = 24;

Cig) M=2, my=3, mg=9 and AF=18;

Cip) Mm=my=3, my=4 and AF=12.
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To obtain further information about the pair (S, 4) we have to analyze the above
case c) more closely. First of all, by putting n=AF and recalling (1.5.1), (1.5.3),
one gets

nKs = (n(k—1—8)— 3+ _ nfm)F = F,

hence p,(S)=2, as g(4)=0. Ineach case ¢y,), since x(0s)>0, we know that s°(A)=0
by (1.2.1). Moreover, as A2=1, any effective divisor C¢€|A] is an irreducible curve
which is a n-section of the morphism ¥:.S—A4. On the contrary, when x(05)=0,
we do not know whether A is an effective divisor or not. Put

fe incases¢y), h#3 and ¢,
F=3i—f incases ¢3) and ¢y),
fi—fo—fs incasescy) t=T.

Now consider the divisor A+f. Of course  h2(A4+f)=h"(Ks—A—f)=0 since
(Ks— A—f) A= —fA<0, so that, by the Riemann—Roch theorem we get 2°(4+f)=
Af=1. Let D¢|A+f[; as DA=2 and D?=3, D cannot have more than two irre-
ducible reduced components. So, if D is not a curve, then it can be written as D=
C,;+C,, where C;, C,are irreducible curves such that C; 4=C, A=1. Furthermore
as Df=(A-+f)f=1, one of the two curves C;’s for instance C,, is contained in a
union of fibres of V. Since Af=1 any fibre of ¥ is numerically equivalent to a mul-
tiple of f; so we have C,=rf, r positive rational number. On the other hand, 2=
DA=(Cy+1f)A=CA+r, so r=1, in view of the ampleness of 4. Therefore, if we
are not in cases ¢,3) and ¢,,) we conclude that C, itself is a multiple fibre of maximal
multiplicity m,. Hence we get C€|A4| in cases ¢y), ¢g1), C33) and czy), Where f=f;
is the reduced component of the unique fibre of maximal multiplicity; while in cases
Ca)s €32) and c35) we get only A=C,+(f"—f”) where f’ and f” are the reduced
components of any two fibres of maximal multiplicity. In each of these cases C;
is a my-section of ¥. In cases cy3) and cy;) in the same way we get A=C;+f;—f;
where i,j=1,2,3 and i,j=1,2 respectively. As to the remaining cases ¢,,), t7,
we get either A=C, or A=C,+2f,—f; in cases cy) and c¢y), A=Ci+f3—f in
case c3), A=C +4f;—f, in case cy), A=C,+f,—3f; in case ¢;). Note that, in
case c¢yy) as the three multiplicities are relatively prime, it can only be 4=C,. In all
these cases C, is a n-section of V.
What we have proven is summarized by the following

Theorem 1.5. Assume that (S, A%, and %(S)=1. Then S is a minimal surface
endowed with an elliptic fibration ¥: S—~P*, A*=1 and (S, A) belongs to one of
the classes described below (there I denotes a s-section of ¥ ). Moreover if m; are the
multiplicities of the multiple fibres of ¥ and n=l.c.m. {m;}, then p,(S)=2.
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Class Description of S 2(4) . Description of 4
. (S | 2,(8) I (ny, s, ..., 1) in terms of n-sections

i 2,2,2)
Cy2 (3,3
C13 0 0 2, 4) 0 I,, effective
14 2,3
(2% 2,2,2,2,2) t-fi—f; or I—f;
Ca2 1 0 2,2,2,48 0 I'yor I'—f,
Ca3 (2,2,2,3) Itfi—f30,7=1,2,3) or Ie—fi+fs
cn 2,4,8 Iy or I's~f;
Ca (2,6, 6) IeH-fi—f3(,7=2,3) or Ii—f;
C33 (2,3,12) I, or I',—f3
C3q 1 0 (3,3,6) 0 Iy or I's—fs
Cs5 4,4,4) I, or I,—f;
[ (2,4,5) Iy, T 221, —11) oF Too—fit 1ot/
Caz (2,4,6) N, N 221 —f) or I ~f1+fo+/s
Cy3 2,5,5) Iy, N (f5=1) or Ty —fitfetfs
Caa 1 0 2,3,7) 0 Ty or Ty —frHfot /s
Cy5 2,3,8 Iy, Ty 2@f5—11) or Dy —fitfotfa
Ca6 2,3,9 I, Iy £3fs—1) or Nis~fitfit/fs
Caz (3,3,49 N+fi—f G i=1,2) or I, —fi+fs

2. The case % (S)=0
Throughout this section we deal with a polarized pair (S, 4) where S is a surface
of Kodaira dimension x%(S)=0. To begin with we state the following

Proposition 2.1, Let (S, A)c%, with x(S)=0. Then one of the following cases
holds:

(2.1.1) Sis a minimal model and A>=2, AK;=0;
(2.1.2) Sis not a minimal model and A?>=AKg=1.

Furthermore, whenever a pair (S, A)¢S, verifying (2.1.2) exists, then there exists
(So, Ap)eSs verifying (2.1.1) and n: S=B,(So)~ S, is the blowing-up of S, at a point
D E='l—1 (p)> AE?]*AO—E.

Proof. (2.1.1), (2.1.2) follow from the genus formula recalling that 4 is an ample
divisor. Now assume that there exists (S, 4) verifying (2.1.2) and consider the mor-
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phism #: S—.S; onto the minimal model S,. Thus Kszn*KSoJrE, where E is an
effective divisor contracted by # and K is numerically trivial. Then we get AE=1,
hence E is an exceptional curve of the first kind and # is a blowing-up at a single point.
Moreover Ay=1, A is anample divisor and #*4,=A+E sowefind g(4,)=g(4).
g.e.d.
To go on we need some preliminary results.

Lemma 2.2. Let (S, A%, with S minimal model. Then one has

1 if Sis either an abelian or a hyperelliptic surface;
h(A) = {2 if S is an Enriques surface,
3 if Sis a K3-surface.

Proof. Indeed A— Ky is an ample divisor as Kg=0, therefore #'(4)=0, i=1, 2.
Hence the Riemann-Roch theorem gives #4°(4)=yx(0s)+ A*2 and the assertion
follows. g.e.d.

Lemma 2.3. Let (S, A)¢ S with S minimal model and let D be an effective divisor
on S, D=A. If D is reducible, then it can be written as D=C,+C, where
C,, C, are theirreducible, reduced components and either

g(C)=g(C)=0, C{=C}=-2, C,C,=3
or
g(C) = g(Cy =1, CE=C}=0, CCy=1.

Proof. The ampleness of 4 and the condition 42=2 show that D has only two
‘irreducible, reduced components C,, C,. Moreover since 2=A42=A4(C,+C,) and
AC;=0, we see that AC;=1 and from the equalities 1=4C;=C?+C,C,, i=1,2,
we get C3=C3. Furthermore the genus formula gives C?=2g(C,)—2, so that C?
is even and C?=—2. Hence, as C;C,=0and C,C,=1—C?%, it can only be either
C,C;=1 and C?=0, or C,C;=3 and Ci=-2, i=1,2. q-e.d:

Lemma 2.4. Let (S, A)c %, with S minimal model. If h°(A)=2 then |A| has
no fixed components.

Proof. Whenever h%(A4)=2, then S is either a K3-surface or an Enriques sur-
face by Lemma 2.2. Assume that | 4] has a fixed component C, and write |4|=C;+
|Csl. Lemma 2.3 implies that C2=C2=0: otherwise C3=—-2, g(C,)=0 and |C,|
would contain a pencil of rational curves. Then S would be a ruled surface in view of
the Noether-Enriques theorem, contradiction.

If Sis a K3-surface, then Ks=0, so h*(C)=Hh"(Ks—C;)=0 and by the Rie-
mann—Roch theorem we find A%(C,)—A*(Cy)=x(0s)=2. Since C, is a fixed compo-
nent of |A4|, one has A*(C;)=1 so we get a contradiction. Assume now that S is an
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Enriques surface. Then h°(C,) =h°(4) =2 and the pencil |C,] is base point free as C2=0.
Furthermore for every point p€C; there is a curve C¢|C,| passing through p and
such that 1=C,C. This implies that C, is smooth. On the other hand C, is an elliptic
curve since g(C;)=g(C,)=1, while the map which sends every C€|C,| to the point
p=C;nC defines a surjective morphism P'—C, contradiction q.e.d

Proposition 2.5. Let (S, A)¢S%, where S is an Enriques surface. Then S is the
quotient of a K3 surface X which is the double cover of a smooth quadric Q CP® branch-
ed along a curve of bidegree (4,4), with respect to a fixed-point free involution <.
Moreover, up to numerical equivalence, A is the quotient of the inverseimage of a hyper-
plane section of Q, by t.

Proof. In view of the ampleness, | 4] contains an irreducible smooth curve 4
([4], Thm. 8.3.1 and Thm. 4.1). Let #: X—S be the X3 universal cover of S and put
B=7n*A. Bisample, hence 1-connected and then |B] has to contain irreducible (and
hence smooth, by [18]) curves, which are hyperelliptic of genus 3, since B2=4 and
Ky=n*K,. Moreover, h°(B)=4, |B| is base-point free by well known properties
of K3 surfaces and the corresponding morphism @z X—~P? exhibits X as a
double cover of a quadric surface Q. We claim that Q is smooth. Actually,
were Q a quadric cone, then S would be of special type ([4], Lemma 4.4.3.4),
i.e. S would contain an elliptic pencil |2E|, a nodal curve 6 with E=1 and |4[=
|2E+6+K|. But this leads to a contradiction. Indeed, since nodal curve 8 satisfies
0*=—-2 ([4], Prop. 1.6.1), we would get 40=(2E+0+K5)0=0, contradicting the
ampleness of 4. This proves the claim. Now, since Ky=0, the branch locus of ¢
has bidegree (4, 4). g.e.d.

Example. Let Q be a smooth quadric surface and let ¢: X—Q be a double cover
branched along a smooth curve of bidegree (4, 4). Then X is a K3 surface. One can
find an involution of @ fixing the branch locus, a smooth hyperplane section H, and
inducing a fixed-point free involution 7 on X (e.g. [1], p. 184); then 7 acts on B=¢*H.
Now let S=X/(z) andlet n: X~ S be the natural projection. Then S is an Enriques
surface and A=n(B) is an ample divisor with g(A4)=2, its ampleness following
from the one of B and from the finiteness of 7.

Proposition 2.6. Let (S, A€, where S is an abelian surface. Then either
(2.6.1) S=J(C) is the Jacobian of a smooth curve C of genus 2 and A is numerically
equivalent to C embedded in J(C), or
(2.6.2) S is the product of two elliptic curves and A is numerically equivalent to the
sum of the factors.

Proof. By Lemma 2.2 there exists a unique C¢|4|. Firstly assume C to be irre-
ducible; then C is smooth since it can be neither a rational nor a singular elliptic
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curve ([22], p- 117) and the inclusion C ., S factors through the commutative diagram

C——§

e s,

Alb (C) 2> Alb(S)

where ¢, og are Albanese morphisms and i. is a surjection with connected fibres, due
to the Lefschetz theorem ([6], p. 155). Since C has genus 2=¢(S), this implies that i,
is an isomorphism; on the other hand og is an isomorphism too, S being an abelian
surface and then (2.6.1) holds. Now assume that C is reducible. By Lemma 2.3 we get
C=C,+C,, where C;, C; are smooth elliptic curves such that C3?=C2=0 and
C,C,=1. The curves C;, C, can be identified with subgroups of S, up to the transla-
tion sending the point p=C;nC; to the zero of the group. Hence we get an iso-
morphism S=C,;XC, and (2.6.2) holds. q.e.d

Now let us recall some general facts about hyperelliptic surfaces. As is known,
a hyperelliptic surface S is the quotient of the product FXC of two elliptic curves
with respect to a translation group.G of F, which acts on C and is isomorphic to Z,,&
Z, where the pair (m, n) is one of the following: (2, 1), (2,2), (4, 1), (4,2), (3, 1),
(3, 3), (6,1) (for details see [9], p. 586—590). In any case the canonical divisor Kg
is torsion of order m and the surface S contains two pencils of elliptic curves. The
first one is elliptic and consists of the fibres of the Albanese map of S, all of which are
isomorphic to C. The second one is rational and consists of the fibres of the morphism
Y which makes the diagram

FxCc-=-C

|,

S ¥ PI

commute, where 7 is the projection and the vertical arrows are defined by the action
of G. Of course this fibration has multiple fibres corresponding to the fixed points
of the action of G on C. Let F and f be the general fibre and the reduced component
of the fibre of maximal multiplicity of ¥ and let C be a fibre of the Albanese map.
It can be shown that F=mf and CF=mn.

Coming back to the pair (S, 4), let us introduce the following notation

Z(S, A) = Up {Supp (D), D reducible divisor, D = A}.

Theorem 2.7. Consider a polarized pair (S, A)¢ %, with x(S)=0.
(2.7.1) If S is a minimal model, then (S, A) belongs to one of the classes listed in the
table below.
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Class s | Description of (S, 4) A4 |4
m: §—>P?%is a double cover branched along a smooth
a) | K3 sextic; 2 3
A=r* (linc)
The universal.cover n: X—S is a K3 surfaces.t.
. : X>QcP?isadouble cover of a smooth quadric 2 2
b Enriques i
) qu surface with branch locus of bidegree (4, 4);
A==r(¢* (hyperplane section))
) $=J(C) the jacobian of a smooth curve C of genus 2;
. A=image of Cin its jacobian
abelian .. 2 1
C,) S=E,; X E,, the product of two elliptic curves;
AZE\+E,
4 hy})er.- nd=rCtsf, r, scZ, 2 1
elliptic rs=nn=1,2,3

(2.7.2) If S is not a minimal model, then 1: S=B,(S,)~> S, is the blowing-up at a point
D of the minimal model S,, A=n*A,—n=1(p) and (S,, 4o) is as in cases a), b), ¢,)
and Q) withnA,=C+nf,n=2, 3, listed in (2.7.1). Furthermore, p lies in ANNZ (Sy, Ag),

Proof. Assume that S is a minimal model. If S is a K3 surface then A°(4)=3,
by Lemma 2.2 and the map ¢,: S -~P? is a morphism exhibiting S as a double
cover of P2 branched along a smooth sextic, as was proved in [18], Sec. 5. Whenever S
is either an Enriques or an abelian surface, Propositions 2.5 and 2.6 give the result.
So it only remains to consider the case where S is a hyperelliptic surface. In this case,
since the 2™ Betti number b,(S)=2, the classes of C and f generate over Q the alge-
braic 1-cycles modulo numerical equivalence. It thus follows that A=aC-+bf,
a, b€ Q. Hence one obtains 2=A4%2=2abn; moreover an, bn are integers, as we can
see by computing Af AC, respectively. Therefore we find that nA=rC+sf, where
r,s€Z, rs=n, n=1,2,3 and (2.7.1)is proved.

If Sis not a minimal model, then, by Proposition 2.1, n: S=B,(Sg)~S, is the
blowing-up at a point p of the minimal model S,, 4=n*4,—n~1(p) and (S,, 4o)
is one of the pairs listed in (2.7.1). Now let D be a reducible divisor, D=4,, and
suppose that peSupp (D). Then D=C,+C,, where C; is an irreducible curve and
C;D=1, by Lemma 2.3; so, if peC;, one sees that 17 1(C;)4=0, i=1,2, which
contradicts the ampleness of A(*). Hence p¢ Z(Sy, 4y). In particular, case ¢,)
cannot occur, since in that case Z (S,, 4o)=S,. Whenever (S,, 4,) belongs to class

(*) n~ (D) always denotes the proper transform of a divisor D.
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d), consider the fibre C through p; since n7*(C)4>0, one easily sees that s>1,
hence n#1, r=1 and (2.7.2) is proved. q.ed.

Example. Case (2.7.2) with (S, Ag) as in ¢;) does really occur ([14], Remark 3.10).
It can be obtained by taking S=C® the two-fold symmetric power of a smooth curve
C of genus 2 and A as theimage in C® of a factor of C X C. Then A is a smooth amp-
le curve of genus 2 and the natural map C®—~J(C) is merely the contraction of the
unique exceptional curve of C® corresponding to the gi of C.

3. The case %(S)<0, ¢(S)=0

Let (S, 4) be a polarized pair belonging to &, and assume S tobearuled surface.
The Riemann-Roch and the Kodaira vanishing theorems give A°(Ks+ A)=g(4)—
g(S), so q(S)=g(4)=2.

First of all, by Proposition 0.2 we have

Preposition 3.1. Let (S, A€, and assume that »(S)<0. Then q(S)=2 if and
only if (S, A)ek. O

Therefore it remains to study the cases g(S):O; 1. Throughout this section we
shall suppose g(S)=1.

Let #: S—~.S, be a birational morphism from § to a minimal model S,. Then
S, is a P'-bundle over an elliptic curve Band 4,=aC,+bf, a, bcZ, where Cy and f
stand for a fundamental section and a fibre respectively. The ampleness conditions
for 4, say that

a=0 and b =>ae if e=0,
a=>0 and b=>aef2 if e=-1,

where e= —C2 is the invariant of S, (cf. [10], p. 377).

We need some more facts, which we shall be using in the sequel. Let #: S=
B, .5 (So)—~S, be the blowing-up of S, at s distinct points p;, ..., p,. One has
A=n*Ay—2yr;E;, where E;=n~Yp,), r,=AE; and

(3.2.2) O<r;<a.
Indeed O<AE,<An*f=n*An*f—r,Ef* f=A, f=a. Furthermore
(3.2.3) A= A5 3,7}

and AKg=AKs+2r; recalling that Ks=n"Ks+3,E;. It thus follows that
A(2)+A0K50: A2 +AKS +Ziri(ri"‘ 1), that iS

3.2.9) (a—1)(2b—ae) =2+ 3;ri(r;—1).

(3.2.1)
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On the other hand AZ=a(2b—ae)=A4%+3,r? by (3.2.3), s0(3.2.4) yields
(3.2.5) 2b—ae = A*~24 1.

Now come back to the original pair (S, 4)€%,. Of course (S, 4)¢# since 1=
q(S)=g(A4)=2. Then by Proposition 0.1 we get

(3.2.6) A2 =4+K¢
and the equality holds if and only if (S, A)€%. Since K§§K§0—s, (3.2.6) gives
327 s=3, and if s=3 then (S, A¢%.

First we describe class €.

Proposition 3.2, With the notation as above, let us consider a pair (S, A)E€S;.
Then (S, A)€¥ if and only if S=B,  ,(S)isSyblown up at s (0=s=3) points p;
lying on distinct fibres, A=n*Ay—JE;, the minimal pair (S,, Ay) belongs to #,n%
and is described as follows:

1) Sy has invariant e=0, A,=2C,+f, SozBXP' and none of the points p;
belongs to a fundamental section;

i) Sohas invariant e=-—1, Ay=2C, and two or three points p; do not lie on the
same fundamental section.

Proof. The «if part” is clear, so it is enough to describe S, since (3.2.7) already
gives the bound s=3. As (S, A)€¥ then r;=1 in (3.2.2), s0 (Sy, 4,)¢%. On the
other hand KS+AE11*(KSO+A0), therefore (S,, 4y)€¥% in view of Proposition 0.1.
Now put 4,=2C,+bf, b€Z, and recall that Ks = —2C,—ef. Condition g(d4,)=2
yields b=e-+1, which as to 4, gives the listed cases by means of (3.2.1). Finally,
assume that f=s points p,,...,p, belong to a fundamental section C,. Then
0<dAn~Y(Cy)=1—e—t, so t<l—e. In particular if e=0, S, cannot be BXP,
since in that case the whole S, is covered by fundamental sections. q.e.d.

Now we shall assume that (S, 4)¢%. We are going to characterize the minimal
pairs (Sy, 4p) according to the possible values of s; of course it can only be s=2 in
view of (3.2.7) and (3.2.6) becomes A2<4-+K32.

a) Let s=2. First of all assume that S=B, »,S0) is obtained by blowing up
S, at two distinct points p,;, p,. Then Ki=—2 so 4*=1; hence 4%2=1 and (3.2.4),
(3.2.5) give

(3.3.1) 2= (a—1)+@—D)@—r—1)+@2—1)(@—ry—1),

where every summand on the right hand is non-negative. As A%?=1, (3.3.1) gives
a=3 and either r;=r,=1, r=ry=2 or rry=2 Again from (3.2.5), (3.2.1) one
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deduces the following cases
a) A2=1, rn=r=1, e==1, 4,=3C—f,
a) A2=1, n=2, r,=1, e=0, A4,=3C,+f,
ag) A: =1, r=ry=2, e=—1, A,=3C,,

Note that if the centers p,, p, are on the same fibre of .S, then the stronger condition
r1+ry<a holds. Therefore in cases a,), a,) the points p,, p, have to belong to distinct
fibres.

It remains to consider the case when p, is infinitely near p,. In this case the bira-
tional morphism #5: S, S,%2., S, is the composition of the blowing-ups o; of S, at p,
and g, of S; at p,€o7 (p)=E. After putting Ey=0;%E) and E,=0;"(p,) we get

(3.3.2) A= ﬂ*Ao—rlEl—-(r]_"‘rg)Ez,

where 2=r,=A(E,+Ey)<a, 1=r,=A4E,=a—1 and a=3 since (S, 4)¢¥. For-
mally the equations we obtain in this case are still (3.2.4), (3.2 5) and so the new
cases we find are characterized by the same numbers as in a,), a;), though 7, r, have
a different meaning according to (3.3.2).

b) Let s=1. Then Ki=—1 and A*<4+K:=3. So one deduces the follow-
ing possibilities from (3.3.1): @=5, r=2,3 if 42=1 and a=3, r=1,2 if A2=2.
Therefore (3.2.5), (3.2.1) yield the cases

b) AP=1, r=2, e=—1, A, = 5C,—2f;
by) A2=1, r=3, e=0, A;= 5Co+f;
by) A2=2, r=1, e=-1, A,=3C—f;
b) A2=2, r=2, e=0, A= 3C,+f.

c) If §=S,, the genus formula gives (a—1)(2b—ae)=2. As we are assuming
(S, A)¢¥, wehave a=3 and the previous equality implies a=3 and b=(3e+1)/2.
Then e#0, so ampleness conditions (3.2.1) give

cl) e=—1, A=A0_E_3C0—f:
The analysis made in this section can be summarized by the following

Theorem 3.3. Let (S, A)€S, be a polarized pair such that x(S)<0, q(S)=1. Let
(Sy, Ay) be a minimal pair of (S, A) and let B be the base curve of the elliptic P*-
bundle S,. Then the pair (S, A) is one of those described in the table below by means of
(So, o). Moreover Sy:P*X B whenever e(Sy)=0.
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. A -
S K2| e(So) Points A a | l’zgﬁ‘;
By, ..., 50 —1 | ondistinct fibres, no 1—e(S,) 2C,
—5 on the same fundamental ¥4y~ g: E; 4—s
0=s=3 0 | section 2Ct+f
So o -1 A, 3 |3C,—f
-1 n*Ad,—E 3Co—f
2
0 | pnotonafundamental
* 4
section M Ay—2E 3Cotsf
Bp (So) -1
—1 n*A4,—2E 5C,—f
0 | pnotonafundamental 1
section n*Ay=3E 5Co+f
—1 | distinct, no both on the same
fundamental section n*A,—E,—E, 3C,—f
0 | ondistinct fibres; no one on
afundamental section n*A,—E, —2F, ) 3C+f |
—1 | ondistinct fibres, no both
By, 2i(S0) =2 on the same fundamental
section w*¥Ad,—2E,—2E, 3C,
—1 1 p,infinitely near p;; p, not
on a fundamental section A, —2E, —4E, 3C,
0 | p,infinitely near p, ; p, not
on a fundamental section n*Ag—2E, —3E, 3C+f

Remark 3.4. As far as the surface S, is concerned, note that S, which is the
projectivization P(&) of a rank-two vector bundle &, is definedup to isomorphisms
if e=—1, whileif e=0, either S,is unique or else it has a moduli space isomorphic
to P'according to whether & is indecomposable or not (see [21], p. 295).

In case e=0, and & decomposable, S, is said of type (2, 2) if there exists an
elliptic fibration S,—~P* whose fibres are smooth elliptic 2-sections ®=2C,. Note
also that in case e=0 with & indecomposable S, has no smooth 2-sections while if
e=~1, S, has exactly three smooth 2-sections @,=2C,—f, i=1, 2, 3.

Further restrictions on the position of the points p; with respect to such 2-sec-
tions can easily be obtained. For instance whenever S=B,(S,) one sees that p cannot
belong to any 2-sections. In case S =B, ,(Sp) with e=0 then p, cannot belong to
a 2-section @=2C, if p,, p, are on distinct fibres, while p; cannot belong to such
a 2-section if p, is infinitely near p,. In particular this implies that S, cannot be of

type (2, 2).
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4. The rational case

Now assume that %(S)<0 and ¢(S)=0, i.e. Sis a rational surface. First of all
note that if (S, A)€¢%,, then S=%P2 Otherwise if we had A=nL where L is a line
in P?, we should obtain A2+ AKg=n(n—3)>22. Hence S dominates a geometri-
cally ruled surface S, (possibly S=S,) and just as in the previous section one can
consider the corresponding pair (S, 4,) which is a minimal pair if S, has invariant
e#=1, while S, is P?>blown up at a point pif e=1. In this section we shall deal with
geometrically ruled pairs instead of minimal pairs.

Asusual denote by C,, and frespectively the fundamental section and the fibre
of the geometrically ruled surface S,. One has Ay=aCy+bf for some a, béZ and
the ampleness of A, implies (see again [10]).

4.1.1) a=0 and b > qe.

We shall restrict our considerations to the case in which S is S, blown up at s
distinct points i.e. the birational morphism- #: S—~S8; factors via s simultaneous
blowing-ups.

Since Kg=n*Ks +3,E; one has Ki=Kg —s, so by Proposition 0.1 we know
that A?=12—s and the equality holds if and only if (S, 4)¢%. Since A%=1 it thus
follows that s=11. Let E;, i=1, ..., s, be an exceptional curve contracted by n. We
have A=w*4,—>,rE; where r;=AE; and O<r;<a by ampleness. Moreover we
find

A2 = A%—Zl 7‘%, AKS= A0K50+2i ri
and then

A%+A0KS0 = A2+AKS+ZL r,-(ri~ 1).

Hence, as AO(KSO-I—AO):(a— 1)(2b—e)—2a, condition g(A4)=2 yields
“4.1.2) (a—1D)(2b—ae) =2(a+ D+ Z;ri(r;—-1).
On the other hand, as A2=a(2b—ae)= A2+ >,;r?, from (4.1.2) we get
(4.1.3) 2b—ae = 1+ A%2—-2(a+1).
Then formulas (4.1.2), (4.1.3) give
“4.1.4 (a—DA+9)+ 3 (ri—D(a—r,—1) = 2a(a+1).

Firstly assume that (S, A)€%. Then it has to be £2+s=12 and r;=1,i=1, ... s.
In this case (4.1.4) gives either a=2 or a=3. If a=2, by (4.1.3), we get 2(b—e)=
s+ A2—6=6 ie. b=e+3. So e=0, 1, 2 in view of the ampleness conditions (4.1.1).
Therefore the geometrically ruled pairs (S,, 4,) corresponding to the pairs (S, 4)€%,
when a=2, are characterized as follows:

e=0,1,2 and A4,=2C,+(B+e)f.
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If a=3 itcan only be e=0 and we have nothing to add to the above list. Indeed in
view of the symmetry between C, and f when e=0, we fall again in one of the cases
listed above. Henceforth the pairs (S, 4)€% and the corresponding geometrically
ruled pairs are the following ones:

S K2 A A2 e=e(Sy) Ay
By, 550 8~s A=n*d,~ 3 B [12-s| €=0,1,2 | 4,=2C+(B+e)f
i
0=s=11 0=s=11

Remark 4.1. 1) We can prove that whenever 4 is (numerically) 2-connected (i.e.
D,D,=2 for every splitting A=D;+D,, D; and D, effective) and #°(4)=4, then
(S, A)€%. Indeed |A+Kg| is base point free and @ 4k S—P* gives the struc-
ture of a conic bundle.

2) Let ®€laCy+bf| be a curve of S, passing through ¢=s of the points
P15 ---> Dg- Since An~(P)=0 one easily finds that ¢1<2b+3a—ae. In particular
2—e points at most can lie on the same fundamental section.

3) Whenever e=1 one has S=B,, ps(Pz) and A=(oo)*4L—2E—J E,,
where Lis a line in P%, ¢ denotes the blowing-up of P2at a point p and E=(noa) ~1(p).
Note that the pairs (S, 4) consisting of a Castelnuovo surface and a hyperplane sec-
tion can be found in this class when 0=s=7 (cfr.[12], Thm. 2.1). O

Now consider the number

e=2i(n—N(a—-r—1
which appears at the left hand of (4.1.4).

Remark 4.2. The pair (S, A) belongs to € if and only if ¢=0. Indeed if (S, A)€¥,
then r;=1 for every i. On the other hand, if ¢=0, recalling that A%+s=12, it
follows from (4.1.4) that 12(a—1)=2a(a+1), which implies a=2, 3 and then 42+
s=12 by using again (4.1.4). This means (S, 4)€% by Proposition 0.1. O

Finally assume (S, 4)¢%; then A*+s=11, so that
(4.3.1) s = 10,

in view of the ampleness of 4. As g attains its maximum value when r,—1=[(a—2)/2]
for all i=1, ..., s (where [ ]is the least integer function), from (4.1.4) one gets the
inequality
11(a—1)+s[(a—2)2/4] = 2a(a+1).
This implies
(8—5)a®—4(9—s)a+4(11—s)=0 if a is even,

8—s)a?—4(9—s)a+44-3s =0 if a is odd.
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The latter inequality is never satisfied when s=7 while the former one fails to be
satisfied for s=6 and if s=7 gives a=4. Unfortunately both inequalities say
nothing when 8=s5=10. This makes evident that in the rational case, still under the
assumption that # factors via s simultaneous blowing-ups, we are dealing with infi-
nitely many pairs (Sy, 4,). The integer a can assume all the positive values =4. Note
thatif a=3 onechas ¢=0, hence by Remark 4.2 we fall again into the case (S, 4)€%.
Let us give an idea of what happens when a=4. By (4.1.4), recalling that A2+s=11,
we get 0=40—3(4%+s5)=7. Moreover since

0 if =1 or 3

1 if r,=2,

one concludes that g is the number of the ;s equal to 2. So g=s and we can assume
ry=...=F;=2. On the other hand A%24s5=(40-—0)/3 by (4.1.4), so that it can only
be 9=7 and then A%2+s=11. Indeed, recalling (4.3.1), ¢=10 and if it were ¢=10
then we should have ¢=s5=10, which leads to the contradiction 4*+10=10, To
conclude, if a=4, one has

A=1l—-s, T=s=10, A=q"4,-23]_ E—3, ,1iE;

(r=1G-r) =

and in view of (4.1.3) the corresponding geometrically ruled pairs (Sy, 4,) are classi- |
fied in the following table according to the values of the last s—7 integers r,’s.

s ¥s I F10 e=e(Sy) Ay (up to linear equivalence)
7 e=1 4C,+(4+2e) f
8 1 ex1 4C+(4+20) f
3 e=2 4C,+(5+2e) f
1 1 ex1 4C,+(4+2e) f
9 1 3 - AC+(5+2e) f
3 3 e=2 4C,+(6+2e) f
1 1 1 e=1 4C,+-(4+2e) f
10 1 1 3 - 4CH(5+2e) f
1 3 3 e=2 4Cyt(6+2e) f
3 3 3 e=3 4CH(T+2e) f
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