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Introduction 

After some progress was made in the study of the adjimction process [19], these 
last few years many papers [12], [15], [16] have appeared on the classical subject of 
classifying projective algebraic surfaces whose general hyperplane section has a given 
genus. 

A more general and intrinsic version of this problem can be stated as follows: 
classify all pairs (S, s where S is a smooth complex projective algebraic surface and 
.LP an ample line bundle on S whose arithmetic genus g(.oq') = 1 +~- (s +.oq~Ks) is a 
given number g. Of course g(Lg)_->0. In the cases g = 0  and g =  1 this classification 
is known [13] (see also [7], [8]) and, in a sense, gives nothing new with respect to the 
classical case where ~ is assumed a very ample line bundle. 

In the case g = 2  the situation is quite different since some meaningful new pairs 
appear with respect to the classical case, e.g. the pair (J(C), Os(c)(C)) defined by a 
smooth curve C of genus two embedded in its Jacobian J(C) and the pair (I;, n* 0p2(1)) 
where re: 2;~PZ is a double cover branched along a smooth sextic. 

In this paper we give a classification of the polarized pairs (S, ~e) with g(Lt') =2.  
Just a few words about what we mean by classifying pairs (S, .o9~ First of all S is 
classified birationally, according to the Enriques--Kodaira classification. As far as 
the line bundle &a is concerned, since the definition ofg  ('Ar involves numerical charac- 
ters only, it seems reasonable to classify ~ up to numerical equivalence. The results we 
find are too complicated to be outlined here, so after noticing that they are summarized 
in various tables section by section, we use this introduction to point out the defects 
of  our classification. Indeed here we find necessary conditions for polarized pairs 
(S, ~ )  to exist, but we are not always able to decide whether all the pairs with the 
characters we find do exist. However pairs (S, ~ )  where S is a minimal model of 
Kodaira dimension ~ ( S ) ~  1 really occur. 
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When z(S)=>I, S is forced to be a minimal model. So as to surfaces of general 
type our description is rather complete. In the case of elliptic surfaces, the complexity 
of Num(S) makes us describe .L# only in terms of fibres and m-sections of the ellip- 
tic fibration. When ~ (S)<_-0, S is not necessarily a minimal model and so we classify 
the pairs (S, .~a) by means of their minimal pairs. This means that we consider a bira- 
tional morphism ~/: S-+S o onto a minimal model So, describe the sequence of the 
blowing-ups ~/factors through and classify the pair (So, ~/.~) even if g(r/.~)->g(La) 
in general. Since the ampleness of a line bundle does not necessarily lift to S, we can 
only give necessary conditions for (S, 4 )  to exist, e.g. the description of ~/,~ in 
Num (So), some restrictions on the factorization of ~/and further restrictions on the 
centers of the blowing-ups. 

In the rational case the behaviour of the adjunction mapping is unknown in its 
full generality, so we can give no restrictions on the possible factorization of r/(unlike 
when ~ is very ample). 

In Sec. 1 we consider surfaces of general type and elliptic surfaces. In Sec. 2 we 
consider surfaces of Kodaira dimension zero, while Sections 3 and 4 are devoted to 
non-rational ruled surfaces and rational surfaces respectively. 

Finally a reason why so many people as authors. Actually this paper started from 
some contributions independently given by the second and the other two authors; 
afterwards it was developed together, so as to avoid more publications on the same 
topic. 

Acknowledgement. We are indebted to the Chief editor of this journal, whose 
professional correctitude made possible the publication of this paper. 

O. Notation, definitions and preliminary results 

By surface we shall always mean a smooth complex projective algebraic variety of 
dimension two. Let S be a surface and D, D' divisors on S. The symbol DD" will 
denote the intersection index of D and D'; D ~ will denote the self-intersection of D. 
The linear and the numerical equivalence of D and D' will be expressed by writing 
D=--D" and D--D" respectively. We shall use the following other standard symbols: 
Os(D)=the invertible sheaf associated to D, hq(D)=dimcHq(S, 0s(D)); IDl=the 
complete linear system defined by D; q~iDl: S--~Ph~ rational map associated 
to ID]; Ks=a canonical divisor on S; po(S)=h~ geometric genus of S; 
pn(S)=h~ n-genus (n->l) of S; q(S)=hl(Os)=the irregularity of S; 
Z( ~Vs) = 1 -q (  S) + Po( S). 

For a divisor D on S, the integer g(D)=lq-~-(DZ+DKs) will be called the 
arithmetic genus of D. Of course, if IDI contains a smooth curve C, then g(D) =g(C) 
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coincides with the geometric genus of C. Moreover, if D is an ample divisor, then 
(cf. [13]) g(D):>max (0, q(S)-po(S)). 

Throughout all the paper we deal with polarized pairs (S, A) where S is a surface 
and A is an ample divisor on S. We shall denote by 5~g the class of the pairs (S, A) 
as above such that g(A)--g. We shaU denote by ~ the class of pairs (S,A) where S 
is a Pl-bundle and Os(A)=Orl(1 ) for any f i b r e f  of S and by ~g the class of pairs 
(S, A) where S is a conic bundle (i.e. a pl-bundle blown up at a finite number s_->0 
of points lying on distinct fibres) and 0s(A)= 0rl(2 ) for the general fibre f o r  s .  

Let us point out some basic facts about ample divisors. 

Proposition O.1 ([13], Th. 1.1). Assume (S, A)~[~ and g(A)=>2. Then A 2~_ 
4(g(A)- I) + Kg, and equality holds if and only if (S, A)ECg. [] 

Proposition 0.2 ([13, Th. 2.2). Assume po(S)=O and g(A)=>l. Then g(A)= 
q(S) if andonly if (S, A)E~. [] 

Let (S, A)ESPg and let ~/: S ~ S  o be a birational morphism onto a minimal mo- 
del So of S. Then Ao=~/.A is an ample divisor on So by the Nakai--Moishezon 
criterion and go=g(Ao)>-g. Such a pair (So, A0)ESgg ~ will be said a minimal pair of 
(S, A). 

Finally, for a Pl-bundle S, e will denote the invariant and Co a n d f a  fundamental 
section and a fibre respectively (cfr. [10], p. 372). We also denote by F e the rational 
Pl-bundle of invariant e. 

1. The case ~ ( S ) ~ I  

In this section we deal with a polarized pair (S, A) where the surface S has 
Kodaira dimension z (S)-> 1. First of all, let us state some preliminary resuks. 

Lemma 1.1. I f  (S, A)EY2 and ~(S)->I,  then 

(1.1.1) A s = AKs = 1 

and S is a minimal model. 

Proof. Since x(S)_->l, there exists an integer m>>0 such that mKs is effective. 
Then KsA>O and A~>0 as A is ample; so g(A)=2 gives (1.1.1). Now assumethat  
S is not a minimal model and consider a birational morphism ~/: S--  So from S to 
its minimal model So. One has Ks=_~I*Kso+E where E is an effective non-trivial 
divisor whose connected components are contracted by ~/. Since u(S)=n(S0)_~l  
then mXsois effective for m>>0 and so A *XSo>0, which gives I=AXs=ACXso+ 
AE, contradiction, q.e.d~ 
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Lemma 1.2. I f  (S, A)ES#~ and ~ ( S ) = I  then 

(1.2.1) h~ >- Z(Ws) 

and either X(Os)=0 or q(S)=pg(S)=O. 

Proof. In view of Lemma 1.1, S is a minimal model and (Ks-A)A=O. Then 
the ampleness of A implies h ~ (A) = h~ A) = 0, so (1.2.1) is a consequence of the 
Riemann-Roch theorem. 

Clearly q(S)<-po(S)+l because X(d~s)=>0. Assume that Z(d~s)>0. Therefore 
h~ >0, so there exists a curve AE IAI which is irreducible and reduced since A s = 1. 
We want to prove that q(S)=O. By contradiction suppose that q(S)#O. Then 
we can choose an element rEPic~ and h~(Ks+~)=h~ as ?A=0.  
Hence the Riemann-Roch theorem yields 

h~ >= Z(Os) => 1. 

First suppose that h~ so IKs+Yt contains a pencil #.  Note that 
does not contain A as a fixed component. Otherwise for every FE # we should have 
F=A +C with C effective divisor, therefore 1 =FA=A~+AC= 1 + A C  which impli- 
es C---0, i.e. F=_A=_Ks+% This gives I = ( A - - ? ) 2 = K ] = 0 ,  contradiction. It thus 
follows that for every point pEA there exists a curve /'E # passing through p and 
such that FA = 1. This implies that A is not singular. Moreover # cuts a g~ on A and 
then A is rational, contradiction. 

Now assume that h~ + y)=  1 for every rE Pic~ Hence the restricted 
divisor (Ks+~)[A is effective and its support consists of a single point. By extending 
to zero the map 

Pic~ ~ a 

sending ~ to the support of (Ks+?)la we get a morphism O, which is injective in 
view of  [23], p. 120. Therefore, as 2l is irreducible and Pic ~ (S)#(0),  ~ is an iso- 
morphism. It follows that dim Pic~ = 1 and so A is an elliptic curve, which 
is again a contradiction. Hence q(S)=0. 

Now suppose that pe (S)~ l .  The Riemann-Roch theorem gives 

h~ A) = pg(S)+ 2-q(S)  >= 3. 

Let KE [Ks[ and let # '  be a pencil contained in Igs+AI. Then the relations 1 =AK= 
F'K for every F'E #" imply that K is an irreducible nonsingular curve containing 
a g~, Once again this gives a contradiction because the genus formula implies that 
g(K) = 1. q.e.d 

Lelnma 1.3. Let (S, A)E6a2 with z ( S ) = l ,  Z(d~s)=0. Let bY: S~A bean ellip- 
tic fibration and suppose that A~- P 1. Then q ( S ) = l ,  pg(S)=0.  
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Proof(essentially due to Sommese [20]). Since q(S)=pg(S)+ 1 we have only 
toshowthat  q ( S ) = l .  Suppose that q ( S ) > l  and dim a ( S ) = l  where a: S~Alb(S)  
is the Albanese map. Then ~(S) is a nonsingular curve C of genus g ( C ) > l ,  so the 
fibres of ~ are contracted by ~. Hence we get a surjective morphism Pz~C,  contra- 
diction. Therefore we can assume that dim ~(S)=2.  Let E be the general fibre 
of 7 j. The image ~(E) is neither a point nor a rational curve; hence it is an elliptic 
curve and we can consider the abelian variety ~ = A l b  (S)/~(E). Clearly dim zr 
as dim Alb (S)=>2. Let 7 z : S ~  r be the canonical projection composed with a. The 
image n(E) is a point since ~ has connected fibres. Then we get a surjective morphism 
P Z ~ d ,  wihch is again a contradiction, q.e.d 

Now we are going to consider the case ~(S)=2.  Any smooth rational curve 
C c S  such that C~= - 2  will be called (,-2) -curve. Of course for such a curve one 
has CK s =0. Recalling some well known facts about surfaces of general type (cfr. 
[2], [3], .11]) we can state the following 

Theorem 1.4. Assume that (S, A)E Sa~ and ~(S)=2.  Then S is a minimal surface, 
the canonical bundle is ample (in particular S does not contain any (-2)-curves), the 
numerical invariants are K~= 1, q(S) =0, pg(S)<=2 and S is as follows: 

O) Po(S) =0, S is a (numerical) Godeaux surface and A--Ks+8, where 
~ETors(Pic(S)). Moreover i f  ~ 0  then h~ 

(ii) pg(S)= l ,  A-~K s. In this case S is isomorphic to a (smooth) complete 
intersection of  type (6,6) in the weighted projective space P(1, 2, 2, 3, 3). 

(iii) pg(S)=2, A=--Ks and S is a Horikawa surface. In this case let a : ~ S  be 
the blowing-up at the unique base point of  [AI. Then ~ is the minimal resolution o f  sin- 
gularities of  a double covering of  the rational Pl-bundle F~ branched along a curve 
BEI6Co+ IOfl with no infinitely close triple points. 

Proof. The surface S is a minimal model by Lemma 1.1. Furthermore we have 
(cf. [10], 1.9, p. 368). 

(1.4.1) A2(Ks+ A) ~ <= (A(Ks+ A)) • = 4. 

On the other hand, A~(Ks+A)2=K~+3 again by means of Lemma 1.1, so that 
K~<_-I. Then, since S is a minimal surface of general type, one gets K~=I.  This 
implies q ( S ) = 0  and therefore by Noether's inequality we find pg(S)<_-2 (see [2], 
Thin. 9). Moreover, since A is an ample divisor and A(Ks-A)=AKs--A~=O, the 
Hodge index theorem implies either (Ks-A)~<O or Ks=--A, but as (Ks-A)Z= 
K~-2KsA + A 2 = 0, one concludes that Ks--A is ample. In particular it follows that 
S cannot contain any (-2)-curves. If  pa(S)=0,  then S is a numerical Godeaux sur- 
face. The last part of (i) follows from a result due to M. Reid (cfr. [5], p. 158). When- 
ever pa(S) = 1 or 2 the Picard group Pic (S) is torsion free by [2], Thins. 14, 15. In both 
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cases A--Ks and every divisor belonging to [A[ is an irreducible reduced curve since 
A2=l ;  so, if pg(S)=2,  [A[=]Ks] is a pencil of irreducible curves of genus two. If  
po(S) = 1 the canonical model M of S is (isomorphic to) a complete intersection of 
type (6,6) in the weighted projective space P(1, 2, 2, 3, 3), having double rational 
points at most, as proved in [3], w Now since S contains no (-2)-curves it has to be 
S~-M and we get (ii). If  pg(S)=2  all that we specified in (iii) follows from [11], 

Thm. 2.1. q.e.d. 

Example. The numerical Godeaux surfaces with T = T o r s ( P i c ( S ) ) ~ Z , ,  r = 4 ,  
or 5, are well known. Following [5], I I Iw 2 we can explicitly describe the surfaces 
occuring in 1.4 i) in these cases. 

Let S' ~ S be the unramified covering of  degree r (r = 4 or 5) corresponding to 
the torsion group T. Since S contains no (-2)-curves, S' is isomorphic to its 
canonical model. 

I f  T=Zs, the canonical model of S '  is a quintic surface Z c P  3 and then S is 
the quotient of 2; with respect to the action of a cyclic group of order 5 (the classical 
Go deaux surface). Since 0 z (Kz) ~ Cz (1), Ks is ample and g (Ks) = 2. 

If  T=Z~,  the canonical model of S' is a smooth complete intersection V of 
type (4,4) in the weighted projective space P(1, 2, 1, 2, 2). Thus S is isomorphic to 
the quotient of Vwith respect to the action of a cyclic group of order 4. The weighted 
adjunction formula gives Cv(Kv)~- Ov(4 + 4 - 1  - 1 -- 1 - - 2 - 2 ) = r  ). Furthermore 
Ov(1) is ample since Vcan be chosen as a nonsingular weighted complete intersection 
in the sense of Mori [17]. Then Ks is ample and g(Ks) =2.  For  instance one can consi- 
der the group/t4 of the 4-th roots of 1 and its action on P(1, 1, 1, 2, 2) defined by 
(To, T1, T~, T3, T4)~(~To, ff2T1, ~3T2, ~T3, ~ST4), (~ a primitive 4-th root of 2). The 
surface V whose equations are 

T0~+T~'+~' t+T.I  ", = ~'0~r?+7"?T~+ 7 ? + T g  = 0 

is invariant under this action and contains no fixed points of it. The quotient of V 
with respect to this action of P4 is just an example as above. [] 

The last part of this section is devoted to the case of a surface S with ~ ( S ) =  1. 
Let us consider an elliptic fibration 71: S-~A. Let F b e  the general fibre of 7 j and 
the reduced component of a fibre of multiplicity m~. Then F--mif  ~ and the canonical 
divisor can be written as follows (cf. [9], p. 572). 

0.5.1) 

where 
gets 

(1~5.2) 

Ks = ~ * a + Z ~ ( m ~ - l ) f .  

6EDiv(A) and deg6=2g(A)-2+Z(Os). As KsA=I, by Lemma 1.1. one 

(2g(A)-2+X(Os))AF+•, (m,- 1)Afi = 1. 
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We shall divide our analysis of formula (1.5.2) into three parts according to whether 

2g(A)-2 + )~(Os)~< O. 
a) Case 2g (A) -2+Z(0s )>0 .  Since ~(mi--1)Af>-O, it is AF=I,  2g(A)-  

2+Z(Os)=l and ~P has no multiple fibres. In view of Lemma 1.2 it can only be 
g(A)=X(Os)= 1 and so ]AI contains an effective divisor D. Now the equalities A2= 
AF=I imply that D is an irreducible section of ~,  but this gives 2 = g ( A ) =  
g(A) <= 1, contradiction. 

b) Case 2g(A)-2+Z((gs)=O. In this case formula (1.5.2) becomes ~ ( r n i - 1 )  
A f  = 1, hence, in view of the ampleness of A, the morphism ~g has a unique multiple 
fibref~ of multiplicity m1=2. By (1.5.1) we get Ks=f~ and so po(S)=l. Then 
Lemma 1.2 gives ~((r which implies g ( A ) = l  and then p2(s)=h~ 
This case however cannot occur due to a result of  Kollar [24], Props. 4.5 and 5.1. 

c) Case 2g(A)-2+)~(Os)<O. We can assume mi_->2 for each i=1  . . . .  , k  
in view of (1 .5 .2 )andle t  ml<=...<=rnk . Since Z((gs)>=O, we have g(A)=0 and by 
Lemma 1.2 it can only be either po(S)=q(S)=O or Z(Os)=O; in the latter case it 
has to be po(S)=O, q ( S ) = l  in view of Lemma 1.3. Put )C(r  e=0,1. 
Then as F--mif~, formula (1.5.2) becomes 

(1.5.3) ( k -  1 - -5--~k=11/mi)Ar = 1. 

In particular it follows that AF=l.c .m.  {m~}. Let m =max  {m~}. Then AF>-m and 
since rni_->2 for each i, one gets the inequality 

(1.5.4) 1 _-> m ( k - 1 - e - ( k - 1 ) / 2 - 1 / m )  = m ( ( k - 1 ) / 2 - , ) - l ,  

where the equality holds if and only if both AF=m and ml . . . . .  ink=2. Hence 

(1.5.5) re(k-1-25)  <- 4 

and again the equality holds if and only if both AF=m and m~ . . . . .  mk=2. As 
m=>2, one gets k<=3+25 by (1.5.5) and if k = 3 + 2 5 ,  then rnl=m2 . . . . .  rnk=2. 
On the other hand, it has to be k > 1 +5 in view of (1.5.3). Therefore, when Z(d)s) = 1 
we have the following possibilities : 

Cll ) k = 3, ml = rn2 = ms = 2 and A F =  2; 

C12 ) k = 2, ml  = m2 = 3 and A F =  3; 

c18) k = 2 ,  rn 1 = 2 ,  r n 2 = 4  and A F = 4 ;  

c14) k = 2 ,  m 1 = 2 ,  m 2 = 3  and A F = 6 .  

When X(0s)=0, if k > 3 ,  in the same way we get the following possibilities (recall 
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that AF=l.c.m. {m~}): 

czl) k = 5 ,  m l = m s = m s = m 4 = m s = 2  and A F = 2 ;  

cs~) k = 4 ,  m l = m s = m s = 2 ,  rn 4 = 4  and A F = 4 ;  

css) k = 4 ,  m l = r n 2 = m s = 2 ,  rn 4 = 3  and A F = 6 .  

For k=3  more care is needed. Indeed in this case (1.5.3) reduces to 

(1.5.6) (1 - l /m1-1~ms-  1/ms)AF = 1. 

To make positive the left hand of (1.5.6) it has to be m~_->4 for some i. Assume, for 
instance, rna=>4; then (1.5.6) gives 1 >=AF(3/4- l/m1-1/ms), and the equality holds 
if and only if ms=4. For shortness, write p=rn~, q=rn s. Since AF>-rn3>-4, we get 
pq<:-2(p+q). Then p-<_4 by the assumption p>-q and furthermore 3<_-q<=6 
when p---3, q=4  when p=4,  whereas we get no restrictions on q when p=2.  In 
case p=3,  3-<_q<-6 we obtain the 4-tuples (3, 3, 4; 12), (3, 3, 6; 6) and when p = q =  
4 we get (4, 4, 4; 4) only. Whenever p =2 by looking at the low values of ms we find 
the following 4-tuples (2, 4, 5; 20), (2, 4, 6; 12), (2, 4, 8; 8), (2, 5, 5; 10), (2, 6, 6,; 6), 
(2, 3, 7; 42), (2, 3, 8; 24), (2, 3, 9; 18), (2, 3, 12; 12), while for ms->13 one gets the 
inequality 1 >-AF(1 - 1/2-1/q-- 1/13) =AF(11/26-- 1/q). Since AF>-m3>= 13, it fol- 
lows that 13<=AF<=26q/(llq-26), then q<-2, i.e. q=2;  but (1.5.6)cannot hold 
if p =q=2 .  In conclusion for k = 3  we have the following cases: 

Csl) m l = 2 ,  m2=4 ,  m s = 8  and A F = 8  

css) m r = 2 ,  r n 2 = r n s = 6 ,  and A F = 6 ;  

csz) rn~=2, m s = 3 ,  rn s = 1 2  and A F = 1 2 :  

cs4) m l = m s = 3 ,  m s = 6 ,  and A F = 6 ;  

css) m~=rn  s = m s = 4  and A F = 4 ;  

c41) rn 1 = 2 ,  m s = 4 ,  m s = 5  and A F = 2 0 ;  

c4s) m1=2 ,  m s = 4 ,  rn3=6  and A F = 1 2 ;  

c48) r n t = 2 ,  m s = m 3 = 5  and A F = I O ;  

c44) rn 1 = 2 ,  rn s = 3 ,  m s = 7  and AF---42; 

c45) m1=2 ,  m s = 3 ,  m s = 8  and A F = 2 4 ;  

c4G) rn 1 = 2 ,  m s = 3 ,  m 3 = 9  and A F =  18; 

c~7) rn l = r n , = 3 ,  m s = 4  and A F = 1 2 .  
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To obtain further information about the pair (S, A) we have to analyze the above 
case c) more closely. First of all, by putting n = A F  and recalling (1.5.1), (1.5.3), 
one gets 

nKs -- (n(k-- l -8 ) -Z~=~n/mi )F  = F, 

hence p,,(S) =2,  as g(A) =0.  In each case Clt), since Z(d)s)>0, we know that h~ 
by (1.2.1). Moreover, as A~=I,  any effective divisor CEIA] is an irreducible curve 
which is a n-section of the morphism 7/: S--,-A. On the contrary, when X((gs)=0, 
we do not know whether A is an effective divisor or not. Put 

/ ~  in cases C~n), h # 3 and 
f = - fk  in cases c23) and c47), 

[ f l - f 2 - f ~  in cases c4t) t # 7. 

c3~), 

Now consider the divisor A+f .  Of course h 2 ( A + f ) = h ~  since 
(Ks - -A - - f )A=  - fA<O,  so that, by the Riemann--Roch theorem we get h~ 
Af=l .  Let DC[A+f[; as DA=2 and D~=3, D cannot have more than two irre- 
ducible reduced components. So, if D is not a curve, then it can be written as D = 
C1 + C2, where C1, C2 are irreducible curves such that C1A =C2A-- 1. Furthermore 
as D f = ( A + f ) f = l ,  one of the two curves C{s for instance C2, is contained in a 
union of fibres of  7 j. Since Af= 1 any fibre of 7 t is numerically equivalent to a mul- 
tiple o f f ;  so we have C2=rf ,  r positive rational number. On the other hand, 2 =  
DA = (C1 + rf)A = C1A + r, so r = 1, in view of the anapleness of A. Therefore, if we 
are not in cases c23) and c4t) we conclude that C2 itself is a multiple fibre of maximal 
multiplicity mk. Hence we get CI~]A[ in cases c~2), c30, c33) and e34), where f = f k  
is the reduced component of the unique fibre of maximal multiplicity; while in cases 
c21), ca2) and c35) we get only A = - C l + ( f ' - f  ") where f "  a n d f "  are the reduced 
components of any two fibres of maximal multiplicity. In each of these eases C~ 
is a ink-section of 7 t. In cases e23) and e47) in the same way we get A=-Cl+f l - f i  
where i , j= l ,  2, 3 and i , j= l ,  2 respectively. As to the remaining cases c4t), t r  
we get either A-~C1 or A=-Cl+2f~-fl  in cases e~l)and e42), A=-Cl+f3-f2 in 
case c43), A--Cl+4f3-f~ in case c J ,  A~Cl+f2--3f3  in case e46). Note that, in 
case c44) as the three multiplicities are relatively prime, it can only be A =C~. In all 
these cases C1 is a n-section of 7 ~. 

What  we have proven is summarized by the following 

Theorem 1.5. Assume that (S, A)E s and ~ ( S ) = I .  Then S is a minimal surface 
endowed with an elliptic fibration ~P: S ~ P  1, A2= 1 and (S, A) belongs to one of  
the classes described below (there F~ denotes a s-section of  71). Moreover if  m i are the 
multiplicities o f  the multiple fbres of  7 t and n =l.c.m. {mi}, then pn(S)=2.  
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Class 

Cll 
C12 
C13 

c~ 

C21 
r 

C23 

Cg3 

ca~ 

r 

Ca2 

r 

Description of S 

q(S) "]~ p~(S) (m~, m~ ..... m~) 

(2, 2, 2) 
(3, 3 )  

0 0 (2, 4) 
(2, 3) 

(2 ,2 ,2 ,2 ,2 )  
1 0 (2 ,2 ,2 ,4)  

(2, 2, 2, 3) 

(2, 4, 8) 
(2, 6, 6) 

(2, 3, 12) 
1 0 (3, 3, 6) 

(4, 4, 4) 

(2, 4, 5) 
(2, 4, 6) 
(2, 5, 5) 

1 0 (2, 3, 7) 
(2, 3, 8) 
(2, 3, 9) 
(3, 3, 4) 

g(3) Description of A 
in terms of n-sections 

F,,, effective 

G + A - ~  or G - A  
F~ or ~r'4-ft 

/'6+A - f j  (i, y= 1, 2, 3) or /'6-Aq-A 

G or G - A  
F~+A-fj(i,]=2, 3) or F6-A 

/'x~ or Fxz-fa 
F6 or -/'6-fa 
G or G - f ,  

/'so, F~o + (2f~ - f l )  or / ' so  -fl+fa-~-f3 
F12,/'1~ +(2f2 - f l )  or Fx2 -fyFf~+f3 
F l o , / l o  + ()ca --f2) or 1"1o --fx+f~+f3 
F4z or F a --fx+f~+f~ 
F2, , / '2 ,  +--(4f,--fl) or F2 , - - f l+f2+f8  
/ ' i s '  Fx8 +(3f3-f~)  or I'18-fl+f~+f3 
I'12+fl--f~ (i,j= 1, 2) o r / ' xz - -A+fa  

2. The case ~ (S )=  0 

Throughout  this section we dealwith a polarized pair (S, A) where S is a surface 
of  Kodaira dimension g (S)  =0.  To begin with we state the following 

Proposition 2.1. Let ( S, A)~ 5r with ~ ( S ) = 0 .  Then one of  the following eases 
holds: 

(2.1.1) S is a minimal model and A2=2, AKs=O; 

(2.1.2) S is not a minimal model and A 2 = AKs= 1. 

Furthermore, whenever a pair (S, A)ESe~ verifying (2.1.2) exists, then there exists 
(So, Ao)E SP2 verifying (2.1.1) and ~l : S=Bp(  So) ~ So is the blowing-up of  So at a point 
p, E = q - l ( p ) ,  A=_~I*Ao-E. 

Proof. (2.1.1), (2.1.2) follow from the genus formula recalling that A is an ample 
divisor. Now assume that there exists (S, A) verifying (2.1.2) and consider the mot-  
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phism ~: S~So onto the minimal model So. Thus Ks--~*Kso+E, where E is an 
effective divisor contracted by t /and  Kso is numerically trivial. Then we get AE= 1, 
hence Eis  an exceptional curve of the first kind and t/is a blowing-up at a single point. 
Moreover Ao =~/, A is an ample divisor and q'A0--- A + E  so we find g(Ao) =g(A). 

q.e.d. 
To go on we need some preliminary results. 

Lemma 2.2. Let ( S, A)C~P2 with S minimal model. Then one has 

i i f  S is either an abelian or a hyperelliptic surface; 
h~ = if  S is an Enriques surface, 

i f  S is a K3-surface. 

Proof. Indeed A - K  s is an ample divisor a s Ks=_O, therefore hi(A) =0,  i = 1, 2. 
Hence the Riemann-Roeh theorem gives h~ and the assertion 
follows, q.e.d. 

Lemma 2.3. Let (S, A)E Se 2 with S minimal model and let D be an effective divisor 
on S, D=--A. I f  D is reducible, then it can be written as D=CI+C~ where 
C~, C2 are the irreducible, reduced components and either 

o r  

g ( C 1 ) = g ( C 2 ) = 0 ,  C ~ = C ~ = - 2 ,  C~C~=3 

g(C~)=g(C2)=l ,  C ~ = C ~ = O ,  C~C2=1.  

Proof. The ampleness of  A and the condition A 2 = 2  show that D has only two 
irreducible, reduced components Cx, C2. Moreover since 2=A2=A(C~+C2) and 
ACt>O, we see that  ACi---1 and from the equalities 1 =ACi=C~+C1C2, i=1 ,  2, 
we get ~ CI=C 2. Furthermore the genus formula gives C~=2g(Ci)-2, so that C~ 
is even and C~=>-2. Hence, as C1C~>-O and CIC~=I-C~,  i t  can only be either 

2 2 C1C2=1 and C i - 0 ,  or C~C2=3 and C i - - 2  , i = 1 , 2 ,  q.e.d. 

Lemma 2.4. Let (S, A)CSPz with S minimal model. I f  h~ then IAI has 
no fixed components. 

Proof. Whenever h~ then S is either a K3-surface or an Enriques sur- 
face by Lemma 2.2. Assume that IAI has a fixed component C1 and write IAI--C1+ 
IC2[. Lemma 2.3 implies that C~=C~=0:  otherwise C ~ = - 2 ,  g(C2)=0 and IC~l 
would contain a pencil of rational curves. Then S would be a ruled surface in view of  
the Noether-Enriques theorem, contradiction. 

I f  S is a K3-surface, thon Ks--O, so h2(CO=h~ by the Rie- 
mann- -Roch  theorem we find h~ Since C, is a fixed compo- 
nent of IAI, one has h~ so we get a contradiction. Assume now that S is an 
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Enriques surface. Then h~ =h~ =2 and the pencillC~l is basepoint free as C~=O. 
Furthermore for every point pEC1 there is a curve CE IC~l passing through p and 
such that 1 =C1C. This implies that C1 is smooth. On the other hand C1 is an elliptic 
curve since g(C1)=g(C~)=l, while the map which sends every CEICd to the point 
p = C l n C  defines a surjective morphism PI~C,  contradiction q.e.d 

Proposition 2.5. Let (S, A)ESez, where S is an Enriques surface. Then S is the 
quotient o f  a K3 surface X which is the double cover of  a smooth quadric Q c pa branch- 
ed along a curve of  bidegree (4, 4), with respect to a fixed-point free involution z. 
Moreover, up to numerical equivalence, A is the quotient o f  the inverse image of  a hyper- 
plane section of  Q, by z. 

Proof. In view of the ampleness, IAI contains an irreducible smooth curve A 
([4], Thm. 8.3.1 and Thm. 4.1). Let n: X ~ S  be the K3 universal cover of S and put 
B=rr*A. B is ample, hence 1-connected and then IBI has to contain irreducible (and 
hence smooth, by [18]) curves, which are hyperelliptic of genus 3, since B 2 =4 and 
KB-zc*K a. Moreover, h~ IBI is base-point free by well known properties 
of K3 surfaces and the corresponding morphism 91BI: X-~P ~ exhibits X as a 
double cover of a quadric surface Q. We claim that Q is smooth. Actually, 
were Q a quadric cone, then S would be of special type ([4], Lemma 4.4.3.4), 
i.e. S would contain an elliptic pencil 12El, a nodal curve 0 with OE=I and IAI = 
12E+0 +Ksl. But this leads to a contradiction. Indeed, since nodal curve 0 satisfies 
0 2 = - 2  ([4], Prop. 1.6.1), we would get AO=(2E+O+Ks)O=O, contradicting the 
ampleness of A. This proves the claim. Now, since Kx=-O, the branch locus of q~lBI 
has bidegree (4, 4). q.e.d. 

Example. Let Q be a smooth quadric surface and let ~o: X ~ Q  be a double cover 
branched along a smooth curve of bidegree (4, 4). Then X is a K3 surface. One can 
find an involution of Q fixing the branch locus, a smooth hyperplane section H, and 
inducing a fixed-point free involution z on X(e.g. [1], p. 184); then z acts on B =q~*H. 
Now let S=X/(z)  and let 7r: X ~ S  be the natural projection. Then S is an Enriques 
surface and A=zc(B) is an ample divisor with g(A)=2, its ampleness following 
from the one of B and from the finiteness of re. 

Proposition 2.6. Let ( S, A)ESaz where S is an abelian surface. Then either 
(2.6.1) S = J ( C )  is the Jacobian of  a smooth curve C of  genus 2 and _4 is numerically 

equivalent to C embedded in J(C), or 
(2.6.2) S is the product of  two elliptic curves and A is numerically equivalent to the 

sum of  the factors. 

Proof. By Lemma 2.2 there exists a unique CEIAI. Firstly assume C to be irre- 
ducible; then C is smooth since it can be neither a rational nor a singular elliptic 
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curve ([22], p, 117) and the inclusion C c_~S factors through the commutative diagram 

C ~ "-S 

N b  (C) ~ Alb (S) 

where ec, es are Albanese morphisms and i. is a surjection with connected fibres, due 
to the Lefschetz theorem ([6], p. 155). Since C has genus 2=q(S) ,  this implies that i, 
is an isomorphism; on the other hand es is an isomorphism too, S being an abelian 
surface and then (2.6.1) holds. Now assume that C is reducible. By Lemma 2.3 we get 
C=C~+C2, where C~, C2 are smooth elliptic curves such that 2 ~ C1=C~=0 and 
C1C2 = 1. The curves (:71, C~ can be identified with subgroups of S, up to the transla- 
tion sending the point p =ClraC2 to the zero of the group. Hence we get an iso- 
morphism S~-C~• and (2.6.2) holds, q.e.d 

Now let us recall some general facts about hyperelliptic surfaces. As is known, 
a hyperelliptic surface S is the quotient of the product F N C  of two elliptic curves 
with respect to a translation group.G of F, which acts on C and is isomorphic to Zm@ 
Z, where the pair (m, n) is one of the following: (2, 1), (2, 2), (4, 1), (4, 2), (3, 1), 
(3, 3), (6, 1) (for details see [9], p. 586--590). In any case the canonical divisor Ks 
is torsion of order m and the surface S contains two pencils of elliptic curves. The 
first one is elliptic and consists of the fibres of the Albanese map of S, all of which are 
isomorphic to C. The second one is rational and consists of the fibres of the morphism 
~ which makes the diagram 

F •  ~ , C 

t t 
S ~-2_._~ p~ 

commute, where 7: is the projection and the vertical arrows are defined by the action 
of G. Of course this fibration has multiple fibres corresponding to the fixed points 
of the action of G on C. Let F and f be the general fibre and the reduced component 
of the fibre of maximal multiplicity of ~b and let C be a fibre of the Albanese map. 
It can be shown that F----mr and CF=mn. 

Coming back to the pair (5, A), let us introduce the following notation 

~(S,  A) = [_J, {Supp (D), D reducible divisor, D ~ A}. 

Theorem 2.7. Consider a polarized pair (S, A)6Se~, with ~(S)=0.  
(2.7.1) I f  S is a minimal model, then (S,/1) belongs to one o f  the classes listed in the 
table below. 
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Class 

a) 

b) 

cO 

c2) 

d) 

K3 

Enriques 

abelian 

hyper- 
elliptic 

Description of (S, A) 

: S ~p2 is a double cover branched along a smooth 
sextic; 
A--~* (line) 

The universal cover n: X~S  is a K3 surface s.t. 
r X--,Q c p3 is a double cover of a smooth quadric 
surface with branch locus of bidegree (4, 4); 
A -- n ((a* (hyperplane section)) 

S=J(C) the jacobian of a smooth curve C of genus 2; 
A __.image of C in its jacobian 

S = E1 >( E~, the product of two elliptic curves; 
A-~EI+ E~ 

nA-~rCW sf, r, sEZ, 
rs =n, n=l ,  2, 3 

A ~ 

2 

h~ 

(2.7.2) I f  S is not a minimal model, then ~l : S = Bp (So)~ So is the blowing-up at a point 
p of  the minimal model So, A=q*Ao-r l - l (p)  and (So, Ao) is as in cases a), b), cl) 
and d) with nAo-- C +nf, n = 2 ,  3, Iisted in (2.7.1). Furthermore, p lies in A o \ ~  (So, Ao), 

Proof. Assume that  S is a minimal model. I f  S is a K3 surface then h~ 
by Lemma 2.2 and the map q91.41: S ~ P  2 is a morphism exhibiting S as a double 
cover o f P  z branched along a smooth  sextic, as was proved in [18], See. 5. Whenever S 
is either an Enriques or an abelian surface, Propositions 2.5 and 2.6 give the result. 
So it only remains to consider the case where S is a hyperelliptic surface. In this case, 
since the 2 ~d Betti number  b2(S) =2 ,  the classes of  C and f generate over Q the alge- 
braic 1-cycles modulo  numerical equivalence. I t  thus follows that  A--aC+bf ,  
a, bEQ. Hence one obtains 2=A2=2abn; moreover  an, bn are integers, as we can 
see by computing A f  AC, respectively. Therefore we find that  nA--rC+sf ,  where 
r, sEZ, rs=n, n = l ,  2, 3 and (2.7.1) is proved.  

I f  S is not  a minimal model,  then, by Proposit ion 2.1, q: S=Bp(SO)~So is the 
blowing-up at a point  p of  the minimal model  So, A=~I*Ao-~I-I(p) and (So, Ao) 
is one of the pairs  listed in (2.7.1). Now let D be a reducible divisor, D=-Ao, and 
suppose that  pESupp (D), Then D=CI+C~,  where Ci is an irreducible curve and 
CiD=I ,  by Lemma 2.3; so, if  pECk, one sees that  q-I(Ci)A<-O, i = 1 ,  2, which 
contradicts the ampleness of  A(*). Hence p l Y ( S o ,  Ao). In particular, case c~) 
cannot  occur, since in that  case ~ (So, A0)= So. Whenever (So, A0) belongs to class 

(.) /,]--1 (D) always denotes the proper transform of a divisor D. 
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d), consider the fibre C through p; since r /-I(C)A>0, one easily sees that s r  
hence n r  r = l  and (2.7.2) is proved, q.e.d. 

Example. Case (2.7.2) with (So, A0) as in cl) does really occur ([14], Remark 3.10). 
It can be obtained by taking S = C  (~) the two-fold symmetric power of a smooth curve 
C of genus 2 and A as the image in C (2) of a factor of C •  Then A is a smooth amp- 
le curve of genus 2 and the natural map C (~) ~ J ( C )  is merely the contraction of the 
unique exceptional curve of C (~) corresponding to the g~ of C. 

3. The case ~(S)<0,  q (S)>0  

Let (S, A) be a polarized pair belonging to 5a~ and assume S to be a ruled surface. 
The Riemann-Roch and the Kodaira vanishing theorems give h~  - 
q(S) ,  so q(S)<=g(A)=2. 

First of all, by Proposition 0.2 we have 

Proposition 3.1. Let (S, A)~Sa2 and assume that n ( S ) < 0 .  Then q ( S ) = 2  i f  and 
only i f  (S, A)E~.  [] 

Therefore it remains to study the cases q(S)=01 1. Throughout this section we 
shall suppose q( S ) - -  1. 

Let ~/: S ~  So be a birational morphism from S to a minimal model So. Then 
So is a PLbundle over an elliptic curve B and Ao-aCo+bf, ,  a, b~Z,  where Co a n d f  
stand for a fundamental section and a fibre respectively. The ampleness conditions 
for Ao say that 

a > O  and b > a e  if e_->O, 
(3.2.1) 

a > 0  and b > a e / 2  if e = - l ,  

where e =  - C ~  is the invariant of So (cf. [10], p. 377). 
We need some more facts, which we shall be using in the sequel. Let ~/: S =  

Bpl....,ps(So)~S o be the blowing-up of Soa t  s distinct points Pl . . . .  ,Ps. One has 
A--rl*Ao--ZiriE~ where Ei=q-l(pi) ,  r i = A E  i and 

(3.2.2) 0 < ri < a. 

Indeed 0 <  AE~< Arl*f =rl*Aorl*f -- r~E~rt*f = Ao f =a. Furthermore 

(3.2.3) A S = A ~ - ~  r~ 

and AKs=AoKso+Z~r i recalling that Ks=~I*Kso+Z~E~. It thus follows that 
A~+AoKso=A2+AKs+Zir i ( r ,  - 1), that is 

(3.2.4) (a - 1)(2b-ae)  = 2 + Z ,  r,(r i -  1). 
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On the other hand A~=a(2b-ae)=A2+~ir~ by (3.2.3), so (3.2.4) yields 

(3.2.5) 2 b - a e  = A 2 - 2 + Z i  r~. 

Now come back to the original pair (S, A)ESa2 . Of course (S, A)~& since 1--- 
q(S)r  =2. Then by Proposition 0.1 we get 

(3.2.6) A s <- 4+Ks ~ 

and the equality holds if and only if (S, A)E~. Since K~<-K~o-S, (3.2.6) gives 

(3.2.7) s <= 3, and if s = 3 then (S, A)Ecg. 

First we describe class of. 

Proposition 3.2. With the notation as above, let us consider a pair (S, A)ESQ2. 
Then (S, A)Ecg i f  and only i f  S--Bpl ..... p(S0) is Soblown up at s (O=<s_-<3) points Pi 
lying on distinct fibres, A=--rl*Ao-~Ei, the minimal pair (So, Ao) belongs to 5e~nCg 
and is described as follows: 

i) So has invariant e=0,  Ao~2Co+f, So~B)<P 1 and none of  the points p~ 
belongs to a fundamental section; 

ii) So has invariant e =  - 1, A0-~2Co and two or three points Pi do not lie on the 
same fundamental section. 

Proof. The "if part" is clear, so it is enough to describe So since (3.2.7) already 
gives the bound s~3 .  As (S, A)Ecg then ri=l in (3.2.2), so (So, A0)E6a~. On the 
other hand Ks+A~-~l*(Kso+Ao), therefore (So, Ao)E~ in view of Proposition 0.1. 
Now put Ao _--__ 2Co + b f ,  b E Z, and recall that Kso ~ - 2Co-  ef. Condition g (Ao) = 2 
yields b=eq-1, which as to A 0 gives the listed cases by means of (3.2.1). Finally, 
assume that t<=s points Pl . . . .  ,Pt belong to a fundamental section Co. Then 
O < A q ' l ( C o ) = l - e - t ,  so t < l - e .  In particular if e=0,  So cannot be B X P  1, 
since in that case the whole So is covered by fundamental sections, q.e.d. 

Now we shall assume that (S, A)Ecf. We are going to characterize the minimal 
pairs (So, A0) according to the possible values of s; of course it can only be s<-2 in 
view of (3.2.7) and (3.2.6) becomes A2<4+Ks ~. 

a) Let s=2 .  First of all assume that S=BpI, p,(So) is obtained by blowing up 
So at two distinct points p~, Ps. Then K~= --2 so AS<= 1; hence AS= 1 and (3.2.4), 
(3.2.5) give 

(3.3.1) 2 = ( a -  I ) + ( r l -  I ) ( a - r l - -  1)+(ts--  1)(a-rs--  1), 

where every summand on the right hand is non-negative. As AS=l, (3.3.1) gives 
a = 3  and either rl=r2=l, r l = r s = 2  or rlr~=2. Again from (3.2.5), (3.2.1) one 
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deduces the following cases 

al) A S = l ,  r l = r ~ = l ,  e = - l ,  A0=_-3Co-f, 

as) A ~'=1, r 1 = 2 ,  r z = l ,  e = 0 ,  Ao =-3Co+f, 

a3) A S = l ,  r l = r ~ = 2 ,  e = - l ,  Ao=-3Co, 

Note that if the centers Pl, P2 are on the same fibre of So then the stronger condition 
rl+r~<a holds. Therefore in cases a2), a3) the points p~, p~ have to belong to distinct 
fibres. 

It remains to consider the case when p~ is infinitely near p~. In this case the bira- 
tional morphism r/: S~,-~-~ $1 ~---~ So is the composition of theblowing-ups al of So at p~ 
and as of Slatp2Ea~l(pl)=E. After putting EI=a~a(E) and E2=a~l(p~) we get 

(3.3.2) A =- q* Ao - rx El - (r~ + r~) E~, 

where 2~rl=A(EI+E~)<a,  l<=r2=AE~<=a--1 and a=>3 since (S,A)~cg. For- 
mally the equations we obtain in this ease are still (3.2.4), (3.2 5) and so the new 
cases we find are characterized by the same numbers as in a2), an), though rl, r~ have 
a different meaning according to (3.3.2). 

b) Let s = l .  Then K ~ : - - I  and A~<4+K~=3. So one deduces the follow- 
ingpossibilities from (3.3.1): a=5,  r = 2 , 3  if A ~ : I  and a=3,  r = l , 2  if A2=2. 
Therefore (3.2.5), (3.2.1) yield the eases 

bl) A S = l ,  r = 2 ,  e = - l ,  A0- -5Co-2 f ;  

b2) A S = l ,  r = 3 ,  e = 0 ,  Ao =-5Co+f; 

b3) A S = 2 ,  r = l ,  e = - l ,  Ao_-=3Co-f; 

b4) A 2 = 2 ,  r = 2 ,  e = 0 ,  As- -3Co+f .  

c) If S=So, the genus formula gives (a-1)(2b-ae)=2.  As we are assuming 
(S, A)~Ct, we have a=>3 and the previous equality implies a=3  and b=(3e+l)/2. 
Then e~0,  so ampleness conditions (3.2.1) give 

cl) e = - l ,  A = A o - - 3 C o - f .  

The analysis made in this section can be summarized by the following 

Theorem 3.3. Let (S, A)EAa2 be a polarized pair such that g(S)<0,  q(S)= 1. Let 
(So, Ao) be a minimal pair of  (S, A) and let B be the base curve of  the elliptic pX. 
bundle So. Then the pair ( S, A) is one of  those described in the table below by means of  
(So, Ao). Moreover S o ~ p I •  whenever e(So)=0. 



206 Mauro Beltrametti, Antonio Lanteri and Marino Palleschi 

S 

B~I ..... ~s(S0) 

0~_s~3 

e(So) 

- 1  

0 

Points 

on distinct fibres, no 1 - e (So) 
on the same fundamental 
section 

A 

t/*Ao- ~ El 
i 

A ~ 

4 - s  

So 0 - 1 Ao 3 

p not on a fundamental 
section 

p not on a fundamental 
section 

- 1  

0 

--1 

0 

t/*Ao - E  

~*Ao-2E 

g*Ao-2E 

~*Ao-3E 

By (So) -- 1 
I 

- 1  

- 1  

- 1  

distinct, no both on the same 
fundamental section n* Ao - E1- E~ 

on distinct fibres; no one on 
a fundamental section t/*Ao- E , -  2E~ 

on distinct fibres, no both 
on the same fundamental 
section ~l* Ao - 2E1 - 2E2 

p~ infinitely near p~; P2 not 
on a fundamental section r/*A0- 2Ex- 4E2 

P2 infinitely nearpz ; p~ not 
on a fundamental section r/*Ao - 2E1 - 3E~ 

Bp. ~,,(So) - 2  

Ao nume-  
rically 

2Co 

2Co+f 

3co - f  

3 C o - f  

3Co.-[- f 

5 c o - f  

5 c 0 + f  

3Co- f  

3 c o + f  

3Co 

3Co 

3Co+f 

R e m a r k  3.4. As far  as the  surface  S O is concerned ,  no te  t ha t  So, which  is the  

pro jec t iv iza t ion  P ( 8 )  o f  a r a n k - t w o  vector  bund le  do, is de f inedup  to i somorph i sms  

i f  e =  - 1, while  i f  e = 0 ,  e i ther  S O is un ique  or  else i t  has  a m o d u l i  space  i somorph ic  

to  t '1 accord ing  to  whether  do is i n d e c o m p o s a b l e  or  no t  (see [21], p.  295). 

In  case  e = 0 ,  and  d o decomposab l e ,  So is sa id  o f  t ype  (2, 2) i f  there  exists an  

el l ipt ic f ibra t ion  S0-~P 1 whose  fibres a re  s m o o t h  el l ipt ic  2-sections �9 = 2 C 0 .  N o t e  

a lso  tha t  in case e = 0  wi th  do i n d e c o m p o s a b l e  So has no  s m o o t h  2-sections while  i f  

e =  - 1, So has  exact ly  three  s m o o t h  2-sections ~ - -  2 C o - f ,  i = 1, 2, 3. 

F u r t h e r  res t r ic t ions  on the  pos i t i on  o f  the  po in t s  Pi wi th  respect  to  such  2-sec- 

t ions can  easi ly be  ob ta ined .  F o r  ins tance  whenever  S = B v ( S o  ) one sees t h a t p  canno t  

be long  to any  2-sections.  In  case  S=Bp, ,p , (So)  with  e = 0  then  P2 canno t  be long  to 

a 2-sect ion r  if  p l ,  P2 a re  on dis t inct  fibres,  while  p~ c a n n o t  be long  to such 

a 2-sect ion i f  P2 is infini tely near  px. In  pa r t i cu l a r  this implies  tha t  So canno t  be  o f  
t ype  (2, 2). 
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4. The rational c a s e  

Now assume that ~ ( S ) < 0  and q(S)=0, i.e. S is a rational surface. First of all 
note that if (S, A)~5~ then S ~ P  2. Otherwise if we had A - n L  where L is a line 
in p2, we should obtain A2+AKs=n(n-3)#2. Hence S dominates a geometri- 
cally ruled surface So (possibly S =  So) and just as in the previous section one can 
consider the corresponding pair (So, Ao) which is a minimal pair if So has invariant 
e #  1, while So is p2 blown up at a poin tp  if e =  1. In this section we shall deal with 
geometrically ruled pairs instead of minimal pairs. 

As usual denote by Co andfrespectively the fundamental section and the fibre 
of the geometrically ruled surface So. One has Ao--aCo+bf for some a, b~Z and 
the ampleness of A0 implies (see again [10]). 

(4.1.1) a > 0  and b > a e .  

We shall restrict our considerations to the case in which S is So blown up at s 
distinct points i.e. the birational morphism t/: S~So factors via s simultaneous 
blowing-ups. 

Since Ks==-rl*Kso+~iEi one has K~=K~o--S, so by Proposition 0.1 we know 
that A2<= 1 2 - s  and the equality holds if and only if (S, A)Ccg. Since A2->l it thus 
follows that s<- 11. Let Ei, i =  1 . . . .  , s, be an exceptional curve contracted by t/. We 
have A=-rl*Ao--~ir~Ei where r~=AE~ and 0 < r ~ < a  by ampleness. Moreover we 
find 

1 3  2 2 = A o - ~  ri, AKs = AoKso+z~i rf 
and then 

A~ + AoKso = A2 + AKs+ Z i  ri(ri- 1). 

Hence, as Ao(Kso+Ao)----(a-- 1) (2b -e ) -2a ,  condition g(A)=2 yields 

(4.1.2) (a -- 1) (2b - ae) = 2 (a + 1) + ~ f  r ,(r~- 1). 

On the other hand, as A~=a(2b-ae)=A~+~ir~, from (4.1.2) we get 

(4.1.3) 2b -ae  = Z i  ri+ A2-2(a + 1). 

Then formulas (4.1.2), (4.1.3) give 

(4.1.4) (a - 1) (A s + s) + Z i  (r~- 1) (a - r~- 1) = 2a (a + 1). 

Firstly assume that (S, A)Ug. Then it has to be A 2 + s =  12 and r~ = 1, i =  1, ... s. 
In this case (4.1.4) gives either a = 2  or a = 3 .  If  a=2 ,  by (4.1.3), we get 2 ( b - e ) =  
s + A 2 - 6 = 6  i.e. b = e + 3 .  So e=0,  1, 2 in view of the ampleness conditions (4.1.1). 
Therefore the geometrically ruled pairs (So, Ao) corresponding to the pairs (S, A)Ccg, 
when a = 2 ,  are characterized as follows: 

e = 0 , 1 , 2  and A o - 2 C o + ( 3 + e ) f .  
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If  a = 3  it can only be e = 0  and we have nothing to add to the above list. Indeed in 
view of the symmetry between Co a n d f w h e n  e =0,  we fall again in one of the eases 
listed above. Henceforth the pairs (S, A)Ec~ and the corresponding geometrically 
ruled pairs are the following ones: 

S K~s A A z e=e(So) do 

Bpl, ,..,p,(S0) 8 - s  A -  ~/*A0- ~ E~ 12-s e=0, 1, 2 Ao--2Co-k(3-ke)f 

0~s~_ll 0_~s~_ll 

Remark 4.1. 1) We can prove that whenever A is (numerically) 2-connected (i.e. 
D1D2>--_2 for every splitting A=DI+D2,  D1 and D2 effective) and h~ then 
(S, A)EcE. Indeed IA+gsl is base point free and r S -~P  1 gives the struc- 
ture of  a conic bundle. 

2) Let ~ElaCo-{-bfl be a curve of  So passing through t<-_s of the points 
Pl,  ...,P~. Since A~/- I (~)>0 one easily fmds that t<2b+3a-ae .  In particular 
2 -  e points at most can lie on the same fundamental section. 

3) Whenever e = l  one has S=Bpp 1 ps(P 2) and A = ( q o a ) * 4 L - - 2 E - Z i E  i, 
where L is a line in P~, o- denotes the blowing'-'up of p2 at a point p and E =  (r/o a ) - I  (p). 
Note that the pairs (S, A) consisting of a Castelnuovo surface and a hyperplane sec- 
tion can be found in this class when 0<-s<-7 (cfr. [12], Thm. 2.1). [] 

Now consider the number 

Q = Z i  ( r i -  1)(a - r i -  1) 

which appears at the left hand of (4.1.4). 

Remark 4.2. The pair (S, A) belongs to cg i f  and only i f  e = 0 .  Indeed if (S, A)Ecg, 
then r~=l for every i. On the other hand, if Q=0, recalling that A~+s~12 ,  it 
follows from (4.1.4) that 1 2 ( a -  1 ) ~ 2 a ( a +  1), which implies a = 2 ,  3 and then A~+ 
s = 1 2  byusing again (4.1.4). This means (S, A)ECg by Proposition 0.1. [] 

Finally assume (S, A)~Cg; then A2+s<- l l ,  so that 

(4.3.1) s <- 10, 

in view of the ampleness of A. As Q attains its maximum value when r , -  1 = [(a - 2)/2] 
for all i=1  . . . . .  s (where [ ] is the least integer function), from (4.1.4) one gets the 
inequality 

11 (a -1 )  + s [(a - 2)2/4] ~ 2a (a + 1). 
This implies 

( 8 - s ) a a - 4 ( 9 - s ) a + 4 ( l l - s )  <= 0 if a is even, 

( 8 - s ) a ~ - 4 ( 9 - s ) a + 4 4 - 3 s  ~_ 0 if a is odd. 
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The latter inequality is never satisfied when s_<-7 while the former one fails to be 
satisfied for s<_-6 and if s = 7  gives a = 4 .  Unfortunately both inequalities say 
nothing when 8Ns~10 .  This makes evident that in the rational case, still under the 
assumption that r/ factors via s simukaneous blowing-ups, we are dealing with infi- 
nitely many pairs (So, Ao). The integer a can assume all the positive values ->4. Note 
that if a =3  one has Q =0,  hence by Remark 4.2 we fall again into the case (S, A)~cg. 
Let us give an idea of  what happens when a = 4. By (4.1.4), recalling that A2+s <- 11, 
we get 0 = 4 0 -  3 (A 2 +s)  _->7. Moreover since 

( r ~ _ l ) ( 3 _ r l ) = ~ O  if  r i = l  or 3 
t 1 i f  r~ = 2,  

one concludes that Q is the number of  the r[s equal to 2. So Q<_-s and we can assume 
rl . . . . .  r7=2. On the other hand A2+s=(40-Q) /3  by (4.1.4), so that it can only 
be Q=7 and then A 2 + s = l l .  Indeed, recalling (4.3.1), Q<_-10 and if it were Q=10 
then we should have Q=s=10 ,  which leads to the contradiction A~+10=10.  To 
conclude, if  a = 4 ,  one has 

* Z Z A s = l l - s ,  7 <-s<--10, A - ~ / A o - 2  i=lEi-- j>~rj 

and in view of (4.1.3) the corresponding geometrically ruled pairs (So, Ao) are classi- . 
fled in the following table according to the values of the last s -  7 integers rj's. 

10 

/'8 F9 u 

1 * 

3 

1 1 
1 3 
3 3 

1 1 1 
1 1 3 
1 3 3 
3 3 3 

e=e(S~) 

e~_l 

e~_l 
e~_2 

e~_l 

e~2 

e~_l 

e_~2 

e~_3 

Ao (up to linear equivalence) 

4Co+ (4q- 2e) f 

4Co+ (4-t- 2e) f 
4Co-l- (5+ 2e) f 

4Co-t- (4+ 2e) f 
4C0-t- (5+ 2e) f 
4Co§ (6-1- 2e) f 

46"o+ (4+ 2e) f 
4Co+ (5+ 2e) f 
4Coq-(6q-2e) f 
46"o-}- (7+ 2e) f 
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