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1. Introduction 

In [12], [13] Coifman, Meyer and Stein have developed a theory of "tent spaces" 
with interesting applications. Their theory has led to a unification and simplifica- 
tion of some basic techniques in harmonic analysis. 

The theory of "tent spaces" is closely related to the one of Hardy spaces. In this 
paper we consider the relationship of these tent spaces with spaces of Carleson mea- 
sures. In particular we identify the spaces of Carleson measures as the duals of certain 
tent spaces. 

We also compute the real interpolation spaces of some extreme tent spaces by 
means of computing the corresponding K functionals of Peetre. As pointed out in 
[13] the interpolation theory of tent spaces can be used to derive the 
corresponing theory for H p spaces and Lipschitz spaces. 

Let us briefly explain the motivation of this paper (we refer to w for detailed 
definitions). A basic inequality valid for Carleson measures on R~. +1 is 

(1.1) I#l{(x, t)llf(x, t)l > ;t} _~ c[{x/Ao,(f)(x) > 2}1 

where A~(f)(x)=suPr(x) If(Y, t)[, F(x)=cone with vertex x. Then 

( 1 ) 
(1.2) ff(x, t)d#(x, t) I -< c sup-yN-fr(B ) dlpl llA~,(f)b 

where T(B)="tent with base B".  
1 

Let ll/Ivl=llCx(~)ll~, where Cl(m)(x)=supB~xr-=,f~<~)dl/. Then (1.2)can 
I/~1- 

* Supported by CONICET and University of Buenos Aires. 
** Supported by NSF grant MCS--8108814 (A03). 



156 J. Alvarez and M. Milman 

be interpreted as a duality result between T~={flAo.(f)CL 1} and Vl=space of 
Carleson measures on ~+1 ,  i.e., (T~)* = V 1 (cf. [2]). 

It  is of interest to study inequalities of the form (1.2) by means of considering 
spaces of Carleson measures defined by the boundedness of the funetionals 

1 
supBgxI"R~fT~B ) dl#[, a>0 .  These spaces, V ~, have been considered by several 

authors : Duren [15], Barker [3], Amar and Bonami [2], Johnson [18]. 
In this paper we develop this remark systematically and use it to compute the 

duals of certain "tent spaces" as spaces of Carleson measures. These extreme "tent  
spaces" therefore play an important role in the study of mammal operators. We also 
develop the interpolation theory of these extreme spaces completing the results of 
Coifman, Meyer and Stein [13] as well as those of Amar and Bonami [2]. 

We should mention that while this paper was being prepared for publication we 
received a preprint by Bonami and Johnson [5] that contains some of our results. 
Our approach is, however, different. 

We wish to thank Professor E. Stein for several useful conversations on the sub- 
ject of our work. We are also grateful to the referee for many valuable suggestions 
including formula (4.5) and a correction to our proof of (7.3) below. 

2. Preliminaries 

We shall work on R~_ +1 but most of our results are valid, and useful, in the more 
general context of homogeneous spaces. 

Let f2 be an open set in R ~, we let T(f2) be the subset ofR~_ +1 defined by T(12)= 
{(x, t)lB(x, t )cf2},  where B(x, t) denotes the ball with centre x and radius t. As 
usual, If21 will stand for the Lebesgue measure of the set f2. 

Given ~ER, we say that a measure w in ~_+1 is a Carleson measure of order ~, if  
Vf2cX,  f2 open bounded, 

(2.1) Iwl(Z(g2)) ~ c1~21 ~ 

where c is an absolute constant independent of f2. In fact, we let 

(2.2) Ilwllv~ = inf {c: (2.1) holds} 

and V~={w[w measure on R~_+J, Ilwllv.<oo}. Notice, in particular, that V~ 
{finite measures on ~_+1}. 

The case cr = 1 corresponds to the measures studied by Carleson [7]. 
We consider kernels Pt(x, y) on R~XR ~ and the corresponding integral ope- 

rators associated with them Ptf(x)=f  Pt(x,y)f(y)dy. The maximal operators 
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associated with these operators are given by 

A . o e ( f ) ( x ) =  sup Ie, f(y)[. 
(~, o E r(x) 

The kernels we consider always satisfy: 

(2.3) IIA~oP(f)II, ~- cpllftlp, 1 < p <~o  

Important examples are provided by the Poisson kernels in different settings and also 
by P~ t)l-xZs(x,o(y). As is well known conditions of the form (2.1) 
are useful to estimate the distribution function of Pt f in  terms of A.~P(f). In fact, 
given 2>0,  let f2x={xlMf(x)>2}, where M denotes the maximal operator of 
Hardy--Littlewood. Then 

(2.4) {(x, OlPtf(x) > 2} c T(t2~). 

Using (2.4) and the usual notation of Lorentz spaces (cf. [17]) we get, for a>0,  

(2.5) IIPtfIILP'~Cdw) ~-- cllwHvfllfllL(~,r=). 

In particular the choice a---~-, gives (of. [2]) 

(2.6) f IPtf(x)l dlwl(x, t) <- c Ilwllv, zp IlfllL(,,l~ 

which can'be interpreted as a duality formula. 
The tent spaces Tff, 0<p~_ 0% 0<q<_ oo are defined using two families of func- 

tionals. The A~ functionals defined by: 

(2.7) aa( f ) (x)  = {f r (x ) I f (Y,  t)la 
dy d.__._..~tt~ lla 

~', t~+x J ' 

(2.7)' A.~(f)(x) = sup If(Y, t)l, 
F(x) 

where.as usual, F(x) is the cone with vertex x, {(y, t ) l lx -y l<t  }. 
The C a functionals are given by 

1 ~.,a dy dt] lla 
(2.8) Ca(f)(x) = sup{-~ ' f r~n  ~ If(Y, t)l "--7--/ 

where the sup is taken over all bails containing x. 
Let us observe that the A~ and C~ functionals can be defined for measures. This 

observation will be particularly useful for us in what follows. (See 2.9). 
The tent spaces T~' are defined by the condition Aa(f)ELV, 0<q~_ ~o, 0 < p <  0% 

(if q=oo we impose some additional restrictions such as the continuity o f f ( e L  [13] 
and (7.1) below). One defines similarly the T~* spaces using C a functionals (cf. [13]). 

In view of (2.5) it is of interest to define tent spaces based on Lorentz spaces, this 
can be done simply by replacing the L p norm condition by an L(p, r) norm condition 



158 J. Alvarez and M. Milman 

in the appropriate definitions. The spaces thus obtained will be denoted T~'" and will 
be shown to appear naturally when we interpolate T~ spaces. 

Let us note in passing that this description of the T~'" spaces as interpolation 
spaces, proves their completeness and provides the duality theory for them, at least 
when l<p<oo ,  l ~ q <  0% from the duality theory developed for the T~ spaces in 
[13]. Alternatively one could deduce this part of the theory using similar arguments to 
those given in [13] (cf. also [15]). 

Our attention in this paper will be devoted to the study of the extremal spaces 
T~', T~, T~ 1 and their duals. Let us start by making explicit the remark that followed 
(2.8). 

(2.9) Definition. The A!, C1 functionals for measures are given by 

(2.10) A~(w)(x) = f r(x) t-" dlwlfY, t) 

1 
(2.11) C~(w)(x) = sup f dlwl(y, t). 

B ~  [BI T(B) 

For 0 < p < ~ ,  0<q<=~, let zf'q:{wIAI(w)ELP'~}, z~-{w[Cl(w)6L ~} where w is 
a measure on ~_+1. One easily cheks that z~=  V ~, on the other hand, if l < p <  ~o, 
,-P'P-~'P coincides with the space lip' �9 W antroduced by Amar and Bonami in [2]. 

The Aland C~ functionals are related by 

C~(w)(x) <= ~M(A~(w))(x). 
In particular, 

(2.12) I(xlC~(w)(x) > ~}l <- I{xleM(a~(w))(x) > X}I 

where M is the Hardy--Littlewood maximal operator. This follows readily from the 
definitions (cf. [3]). 

Finally, in our estimates of K functionals we need the well-known concept of 
nonincreasing rearrangment (cf. [17]): for a given function f t h e  nonincreasing rear- 
rangementf* is the generalized inverse of the distribution function ]{xllf(x)l >t}] 
therefore [{xll f(x)[ >f*(t)} I ~= t. The double star function f**  is simply the average 
off* at time t; f**(t) = t -1 fo f*(s)  ds, t >0, and is also decreasing. 

3. Interpolation of T~ spaces 

In this section we study the interpolation properties of the T~ spaces. Our results 
complement earlier work by Coifman, Meyer and Stein [13] and Amar and Bonami 
[2]. 

We shall consider the real method of interpolation using Peetre's K functionals. 
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We review briefly some pertinent facts about real interpolation. For more information 
on interpolation theory we refer the reader to [4]. 

Let B0, B~ be quasi normed spaces embedded in a suitable topological Hausd0rff 
vector space V, and define for fEBo+B~, t>0,  

K(t, f, B0,/71) = in( {tlfoll~o+tllAllB,}. *=fo+f, 
ftEBi 

For 0 < 0 < 1 ,  0<q-<o% let 

= B ~ dt'l I/q < ~ } .  
= {f: t,-oK<,,: 

We shall also use, in w an important complement to the reiteration theorem obtained 
recently by T. Wolff [22]: Let A~, i=0,  ..., be quasi Banach spaces continuously 
embedded in a common topological Hausdorff vector space; let 0 < 0 < t / < l ,  0 =  
2q, ~/=(1-#)0+/t ,  0<2,  #<1,  then if AI=(Ao, A2)a,p, A2=(AI,Aa)u,~ we have 
A1 =(Ao, As)o, p, As--(Ao, Aa)~, q. In other words Wolff's theorem allows to treat each 
end point space separately. 

When considering the {TL}p>0 scale it is natural to let T~ = L  = since A~( f )E  
L~%~.fEL ~. Our main result concerning this scale is 

(3.1) Theorem. Let 0 < p < ~ ,  0 < 0 < 1 ,  0<r--<% 

(i) 3cl, es>0 such that 

1 1 - 0  
- - - ,  then 

Po P 

+~ {f:" At(f)*,(+)d,}" ~= KCt, f, Tg,L ~) + c+{f:" At(f)*"(+) ds} ~/". 

In other words, 
K(t, f T v ,  L ~) ~ K(t, A= (jr), L v, Lr176 

(ii) (Tg, L=)o,, = Tgo,'. 

Proof. The second half of the theorem is an easy consequence of the first half. 
Consider the proof of (i). Let f = f l + f 2  be a decomposition o f f  with f0ET v,  

f~EL =, then 

If': A=(f)*'(')d~) '/'<- c llf[ A~(fo)*'(s)ds} ~/" +(S:" "4=(A)*'(~) ds)'/'] 

--<= c [][foH T~ + t llfd ~1. 

Thus, taking infimum over all decompositions gives the first inequality of (i). 
Let us construct a nearly optimal decomposition to prove the main estimate of 

(i), Let t>O, f E T e + L %  define f2,={xlA~(f)(x)>A.o(f)*(tP)}, and consider the 
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decomposition o f f  given by f = f 0 + f l ,  where f0=fxr{a0. Then, 

{f~" } (3.2) ~f011r.- = IIa~(f0)llo <-- cllx~,A.o( f)llp ~- c a.~(f)*P(s)as */~. 

Moreover, 

{f~" } tlfAIl~ <-- A,(f)*P(s) ds *I,. 

Combining these estimates we conclude that  

g(t,  f ,  Z~, Z ~) ~_ Ilf011m, + t IIAII.~ 

4. Interpolation of zf spaces 

In this section we extend the results of [13] (cf. also [2]) concerning the interpola- 
tion of the {zx p } scale. 

(4.1) Theorem. Let 0 < p < o o ,  0 < 0 < 1 ,  0 < r ~ o o ,  - - = 1  1- -0  , then 
Po P 

(4,2) (z~', *~')0,, = z~ ~ 

The proof  of (4.2) is based on the following estimates for the K functionals for 
couples of z~ spaces 

(4.3) Theorem. (i) Let 1 <=p< r then 

(4.4) K(t, w, ~f, ~) <- c {f[ M(,41(w))*'(s) as} '/" 

where c is a positive constant independent of  w. 
(ii) Let 0 < p 0 < p l < o o ,  then 

(4.5) K(t, w, x~', ~1) ~. K(t, al(w), L po, LV 0. 

Using (i) and (ii) we can now provide the 

Proof of(4. I). Observe that for 1 < p  < % we have (of. [13]) 

(4.6) l&(w)Ilp ~ IIG(w)l[,. 

Consider the operator Cx, then by (4.6) we have 

(4.7) ( 7 1 : , ~ - ~ L  p, C~: * i * ~ L %  p > l .  
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Interpolating the estimates in (4.7) and taking into account (4.6) once again gives 

(4.8) (zf, ~)0.~ =c ~fo,,, ~ = ~ , 1  1 - 0  if p > 1. 
Po P 

The reverse inclusion can now be obtained from (4.4) and Hardy's inequality. 
Therefore we have obtained 

(4.9) (z~,z~*)0,~ = z~o,, , _ 1  = 1 - 0  , 1 < p  <oo. 
Po P 

Using (4.5) we readily derive 

1 1 - 0  0 
(4.10) (#o, ~ ) o , ,  = z~ ~ ~ = §  0 < Po < Pl < oo. 

Po Po Pt 

We can now invoke Wolff's theorem to combine (4.9) and (4.10) to obtain (4.2). 
We are now ready to provide the 

Proof of(4.3). We prove only (4.4) (the assertion (4.5) being similar). Moreover, 
we only need to consider the case p = 1. 

The proof of (4.4) consists in exhibiting a nearly optimal decomposition. Let 
t>0 ,  wCz~+~,  define I2t={xlCl(w)(x)>cM(Al(w))*(t)},  and consider the decom- 
position w = p 0 + / q ,  where Po--WZr(a,). We have, 

ll~on~ = ll Al  ~uo)h <= IIA~(w)z~,II I <- f ~'l  M(Aa (w))* (s) ds. 

Now, recall that by (2.12) 

IO, I ~- el{xlM(Al(W))(x) > M(A~(w))*(t)}] <= ct, c > 1. 

Therefore, using the fact that f**( t )k  we obtain 

(4.11) 11 011,I <-- 

Consider now Cx(pl)(x); clearly if xE f2~ we get 

tC~(pO(x) <= tC~(w)(x) ~_ tM(A,(w))*(O 

< -  

Suppose now that xE f2t. In order to estimate C~ ~ )  (x) we use a Whitney decom- 
position of the open set f2 t. (See [21], p. 167.) Therefore, g2t=U~=~ Qk, where the 
Qk'S are disjoint cubes such that dist (Qk, f2~)~diam (Qk)" More precisely, for each 
cube Qk let x~ be its center and 2r k its diameter, we also let Qk be the cube concentric 
with Qk and such that diam ~k = 10rk; then, ~- (2rk) < dist (Qi, f2~), and dist (Qk, f2~) 
~--4(2rk). 
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Let B = B ( x ,  r) be a ball centered at x with radius r. I f  T(B)cT(Ot ) ,  then we 
clearly have 1/[BI fT(n)dl/~11=0. Thus, from now on we suppose that T(B)c~ 
(T(Ot)) ~ # 0. Therefore, there exists (y, s)~ T(B) such that (y, s) r T(Ot). If  (y, s) r 
T(Ot) then B(y,s)cgT(Ot) .  Two possibilities arise: a) y r  t or b) yCf2 t but 
dist (y, O~)<s. 

We consider the case b) first. By our assumption YEQk for some kEN. There- 
fore, 

('~) (2rk) < dist (y, O~) < s  < r 

where the last inequality follows from the fact that (y, s)C T(B). 
Let xkCO~ be such that dist(xk, Qk)<=8rk. It follows that 

In fact, 
I x -  x~l <- Ix-- Yl + ly -- xgl + lx~,-- xkl 

Consequently, 

xkCB=B(x,  10r). 

<= r+rk-{- lOr~ < 9r. 

1 C Wl f (B) dl/xzl ~ dl/hl  

~- cCz~l)(x , )  ~-- cM(Al(w))*(t). 

Finally if y~Ot ,  then 

1 f dl&l <= C l ~ ) ( y )  -<_ M(AI(w))*(O. 
IBI T(B) 

Our analysis shows that if xE O t, 

tC l ( l t l ) (X  ) ~ c M(A~(w))*(s) ds. 

Therefore 

f (4.12) tlltLdq <= c M(Al(w))*(s) ds. 
0 

Combining (4.11) and (4.12) we obtain 

K(t, w, .ca, z~) <= of' M(Az(w))*(s)ds 
0 

as desired. 
In particular, we have the results of  [2] for the (V ~ V z) couple. In fact since 

zx 1 = V ~ z~' = V z, we get from (4.2) 

1 
(4.13) (V ~ VZ)o, oo = zfo '~ = V z/po, - -  = 1 - O .  

Po 
Moreover, we also have (cf. w 

1 
(4.14) (V ~ V1)o,po = WZ/Po, - -  = 1 - 0 .  

Po 
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5. Spaces of Carleson measures and duality of T p'q spaces 

We take up the study of the duals of T~ spaces. Recall the result of Coifman, 
Meyer and Stein [13]: (T~)*=z~~ - V 1. In this section we consider more generally, 
the duals of 7~' ~ spaces. 

We begin our analysis with the case p_-> 1. 

(5.1) Theorem. 

( i )  ( T ~ , 1 )  * - -  V I~p, 1 <_-p < co 

(ii) (T~)* = ~(', 1 < p < 0o. 

Proof. (i) The basic inequality is a reformulation of (2.5) for a -- l/p, namely 

[f f(x, t)dw(x, t) <= cl[wllv..llA~(f)l[p,~. 
It follows that VlWc(T~'~) *. 

To prove the reverse inclusion we argue as in [13]. Let lE(T~a) *, let K be a 
compact set of ~_+t and consider the restriction l r of l to C(K);  then there exists 
a measure on K representing IK, i.e. I K ( f ) = f f ( x ,  t)d#K(x, t)VfEC(K); by letting 
{K,} be an increasing sequence of compact sets covering ~"+t _.+ we obtain a measure/~ 
o n  ~+t. 

We claim that #E V ~;p. We may suppose that #_->0. Then given any open boun- 
ded set ~, let {fn} be a sequence of continuous bounded functions with compact 
support such that f~r ; then Iff~ (x, t) dp] <-l[/[] [[ f,[] T~,~, and  therefore 

d,[ <= HIll IIA= = pull[ lal xz'. 

(ii) The basic inequality here is the elementary inequality 

(5.2) [fR < "++~ f (x ,  t) dp(x, t) = C f R  " A=(f)(x)AI(#)(x) dx. 

The proof of (5.2) runs as follows : 

d [#[ (y, t) 
f Aoo(f)(x)AiQ~)(x ) dx = fR- sup If(y, t)[ fr(x) t" dx r(x) 

d [p](y, t) dx = f R ~ f  r(x) If(Y' t)] If(Y, t)] d [p[ (y, t) dx 

= if(Y, t)l dl#l(y, t). 

It follows that z~'c(T~) ~. Let IE(T~)* and argue as in the proof of (i) to obtain 
a measure # representing l. We shall show that A~(IOEL r Assume that # is posi- 
tive. 
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Let us observe that AI is the adjoint of the operator po defined in w P~ = 
1 

f lyl- ,  f ( x - y )  dy. Therefore, 

IIAx(~)ll,,= sup f A ~ ) ( x ) g ( x ) d x =  sup fpOg(x)d#(x,t). 
Ilgllp~--I Ilgllp~--I 

At this point we use the fact that # represents the functional l, and obtain 

I[ad~)ll,, <- sup IIP~ llll[ <-- II/II sup [IMgl[~ ~- cll/ll 
Ilgllp~--I Ilgllp~--I 

where in the last inequality we use the Hardy--Littlewood maximal theorem. 
To deal with the ease 0 < p < l  we use the atomic theory of T~ spaces as 

developed in [13]. A p-atom is a function a(x, t) such that there exists a ball B with 
suppacT(B)  and llall~<=lBl -I/p. Observe that if a is a p-atom then IlallT~<_--l. 
Moreover, notice that these atoms do not have zero mean. 

(5.3) Theorem (cf. [13]). Suppose that ArE T~, 0<p<_ - 1, then f = ~ ' 7 = l  2ja~ 
in the sense of 5r where the afs are p-atoms, 2jEC, and (~f=1 I A J I P) x/p <= c 11 f[I T.~- 
In fact, I [ f [ l r ~ i n f { ( Z s = i  [2j]p)I/P: f = ~ T = i  2jaj, aj p-atom}. 

Finally one more observation is needed before stating the duality theorem. It is 
easy to check, using for example Whitney's decompositions, that wE V" with r_->l 
if and only if for some c >0  and all balls B = R ' ,  

(5.4) Iwl (T(B)) <= c In ?. 

(5.5) Theorem. Suppose 0 < p < l ,  then 

(5.6) (Ts = V ~/p. 

Proof. Let a be a p-atom, supp a c  T(B), for some ball B c  R", then if ltE V a/p 

a(x. t) d#(x. t)l ~ IB[ -1/p al,l(x, t) <_- ll,ll,.-.. 

Therefore, by (5.3), we see that Vi/pc(T~) *. The reverse inclusion is obtained as in 
the proof of the case  p _-> 1 above using the remark (5.4). 

6. Applications 

We consider applications of our results to some problems in harmonic analysis. 

A. Multiplier operators and maximal operators on V ~, ~ '  q and T~ spaces 

Let X denote any of the spaces V ", z~ 'q or T~. A natural problem that arises is 
the study of multipliers of X: i.e., let #(x, t) be a function on R~. +1, then under what 
conditions is the map w-,-pw well defined and continuous from X into itself? 
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Observe that when X =  Tg a necessary condition is the continuity of/~. In other 
cases the necessity of this condition is not so explicit but is natural in view of our 
next. 

(6.1) Lemma (cf. [18]). Let P=(x0 ,  to)CRy. +1 be f ixed and let 61, be the Dirac 
measure concentrated in P. Then, 3pE V ~, 6pEz~ 'q. Moreover, 

c 
(i) II ~J, ll v= = t~----~, c=c(n,o 0 

(ii) [[apll,f, q = ct~ (O/p)-1), c = c(n, p, q). 

Proof. Let s  be a bounded open set, then 6e(T(s vanishes unless 
(Xo, to)ET(I2). Thus, if 6p(T(f2))#O we see that ctg~-If~l, and consequently, for 
~ > 0  

1 
3~,(T(K2)) <-.(ctg)= I~1 ~. 

On the other hand 6e(T(B(xo, to)))= l= lB(x0 ,  to)[~/(ctg) =. These two observations 
prove (i). 

The second half of  the lemma follows readily from the observation that 
Az(fp)(x)=tonzR(xo.,o)(x). 

Let us denote by M x the space of  multipliers of  X as a subset of  C(R~_+z). Let 
B(R~_ +1) be the space of bounded continuous functions on R~_+L We then have 

(6.2) Theorem. Mx=B(Rn++I). 

Proof. It is clear that B(R~_ +1) ~ M x. Now, i f#  is a multiplier of V =, then accord- 
ing to (6.1), 

lit(x0, t0)l [lOPllv= = ll~Orllv= <= c~llO~llv=. 
Thus, #E B(R~.+x). 

The same argument can be used to show that any continuous multiplier of  z p'q 
must be bounded. We also readily see that MTL =B(R~_+x). 

We introduce now two weighted maximal functions, which are variants of  the 
one considered in [13]. 

Let # be a function defined on R~_ +z. Given f~ T p ,  0<p<= 1, let 

Nl,(f)(x) = sup I#(x, t)f(x, t)]. 
t>-0 

I f  q~ is a function in the Schwartz class S(R") such that f ,(x)dx=l, let q~t(x)= 
t-"(p(x/t). Given fEHP(R"), 0 < p ~ l ,  define 

N~(f)(x) = sup  lu(x, 0 ( ~ , * f ) ( x ) l .  
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(6.3) Theorem. Let 0 < p  <- 1. The following conditions are equivalent 
(i) N, :  T~-+L p, boundedly. 

(ii) sup 1/[BI fn  (suPt<, B [p(x, t)l)Pdx< co, where the sup is taken over all balls 
and r B =radius of B. 

Proof. Suppose that (i) holds. Given a ball B, l e t f b e  a continuous function such 
that Zr(B)<----f<--ZTC2B) where 2B denotes the ball with the same center as B andradius = 
2r B. We have, 

ZB(X) sup ]#(X, t)l = sup ]#(X, t)ZTCB)(X, t)l <- Nl,(f)(x). 
t < r  B t > O  

Thus, 

(sup I (x, 01) dx c.ll = Inl 
t-<r B 

which is (ii). 
Conversely, suppose that # satisfies (ii). L e t f b e  a p-atom supported in T(B), for 

some ball B. Then, 
1 

Nu(f)(x) < ~ sup [/~(x, t)XT(B)(X, t)l 

Consequently, 

_< ZB(X) sup I#(x, t)l. 
= ~ t < r  B 

1 IIN,,(f)I[~ ~- s u p ~  fn (sup.-,a ]#(x, t)]) p dx 

and (i) follows. 

(6.4) Corollary. Suppose that p satisfies condition (ii) of (6.9). Then, N~ defines 
a bounded operator, N~: H p-~L p, 0<p<_- 1. 

Proof. Indeed, if fCH p, then q~t*fE T~ (see [16], p. 183). Consequently, N~(f) = 
N~(cpt.f) and (6.4) follows from (6.3). 

B. Interpolation of H p spaces and Lipschitz spaces 

As pointed out in [13] the theory of tent spaces can be used to derive the inter- 
polation theory (real and complex) of H p spaces. In fact, using a "trick" ofA.  P. Cal- 
der6n (cf. [6]) we can "invert" the n o operators (cf. [13]). Let cP(Co(R" ) be radial 
satisfying all the conditions of [13, p. 328]. Moreover, suppose ~o satisfies 

f q~(~t)l~le-2~lr ~ ,  V~r Then for sufficiently regular f,  ~q, t P t f  =f, 

where P J =  Poisson integral of  f .  (This can be easily checked using Fourier trans- 



Spaces of Carleson measures: duality and interpolation 167 

d 
forms), Now, one observes that fCHPr (P t f )  P t fETr  to obtain the interpola- 

tion theorems for H p spaces from the ones for Tr spaces. 

The complex interpolation theory for the T~ and Z~ spaces can be readily deri- 
ved from the results of w w and the methods of [20]. 

(6.5) Theorem. Let 1 < p  <Po < o% 0 < 0 < 1, then 

1 1 - 0  0 
(i) [Tg, TZ~ = Tgo, = - -  § 

Po P Po 

1 1 " 0  0 
(ii) [zf, "c~o]o = z~o, Po P ~ Po 

Proof We shall only provide the details of  the proof  of  (ii). (The proof  of  (i) is 
similar.) 

Using (i), and our duality theorem (5.1) (ii) we have 

r 

zfo = [T=~', 7 s  ~ jo = [ f f ,  ~f~ 

C. Balayages 

Let Pt be a kernel on R n •  ~ (see w The balayage P . w  is defined formally 
by (cf. [2]) 

(6.6) (P* w)(y) = fa.++l P,(x, y) dw(x, t) 

where w is a measure on ~+1 .  
Therefore, we have the duality 

(6.7) f..§ e , f ( x l d w ( x ,  t) = frt,  f ( y l ( P * w l ( Y ) d y .  

In particular, if Pt f i s  the Poisson integral of f ,  we have 

(6 .8 )  

and by dual i ty ,  

(6.9) 

~ : H P ~ ,  0 < p ~ l  
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i.  o ulo oly.om,a  of e r e  o ep='so'y i .  

order to give a sense to (6.6) it is necessary in general to suppose that the measure w is 
finite. 

Let us observe that (6.9) also holds for any kernel Pt satisfying (6.8). In particu- 
lar, we will give a direct proof  of the following result. 

(6.10) Theorem. Let Pt be a kernel on RnXR" satisfying for some N =  1, 2, 3 . . . . .  
the following conditions: 

(i) ID~Pt(x, Y)I -<- c t ( t+ lx -y l )  - ' -z- lal ,  

ID~P,(x, " .--, D:,+pp (ii) Y)--,/'I~+aI<U y f~(X, yo) 

i f  t+lx-yol >21Y--Yol, Ifll ~_N-1 .  

Let wE V ~, ~ >= 1 be a finite measure. Then, i f  1 + 

layage P . w of  w belongs to Lip n ( ~ -  1). 

IPl ~ N - 1  

(Y--Yo)~ [ lY--Yol N 
~t <- c (t+lx_Yol).+u+lal 

N - I < ~ z < I + N ,  the ba- 
n n 

Proof. Let us first show that P . w  is well defined a.e. In fact, condition (6.10) (i) 
with f l=0  implies that supxa f IPt(x, Y)I dy< ~. Since w is a finite measure, we 
deduce that 

fR-IP* w(y)l dy <- Iwl (R~ +a) 

which implies that P . w  is finite a.e. Now, given l f l l = N - 1 ,  we will show that 
DaP.  w is a bounded function satisfying a Lipschitz condition 

IDa(P.  w)(y) - D a ( P .  w) (yo)[ -~ ely -Yol "('-z)-N+l. 

If  B denotes B(y, 1), we see that (see [2], p. 33), 

y)dw(x, 0l+ y)dw( , ol 

According to (6.10) (i), since ~ n > n + N - 1 ,  we can appeal to Lemma 2(1) in [2] 
to deduce that the first term is bounded. In T(B)* we have t + l x - y l  >1;  thus, the 
second integral can be majorized by clwl(R~_+l)< co. 

Finally, let us verify the Lips ehitz condition. Fix y, Y0 and let B = B (Y0, 21y - Yol). 
Then, we estimate 

f TC.~ [D] Pt(x' y ) - D ]  P'(x' Y0)] dw(x, t)+ f T(n)~ [Dg et(x, y ) -  

-D~e,(x, Yo)] dw(x, 0 = (O+(S).  
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The term (I) can be majorized by the sum of two integrals over tents 

(I) <= f IDg ,(x, y)l dlwl(x, 0 

+fr(B) ID~Pt(x, Yo)[ dlwl(x, 0 

and each of  these integrals can be estimated in the same way using (6.10) (i) and Lem- 
ma 2 in [2]. In fact, let us consider the first one, say (/1). 

(I1) <= c frcB~,81y.yol)) (t+lx-yl) -"-N+I dlwl(x, t). 

Since an>n+N-1, we are again in the conditions of Lemma 2(2) in [2] and con- 
sequently the last integral is bounded by a constant times l y-Yol nr 

To estimate (J), we observe that over T(B) c we have t+lx--Yol >21y--Yol and 
therefore, we can use (6.10) (ii), to get 

(J)  ~ c lY-  y01N frc~)o ( t+  Ix-yol)  -"-~N+I d Iwl (x, 0. 

Since this time ~n<n+N<-n+2N-1, we can apply Lemma 2(1) in [2], to obtain 
(J) <- c I Y-Yol (~-1)"-N+1. This completes the proof  of  the theorem. 

1 N + n  
(6.11) Remark. When - -  in (6.9) has the critical values ~ ,  N =  1,2 . . . .  , one 

p n 
gets that D#(P.w), I/~I=N-1, belongs to the Zygmund space Lip. 1 However, 
when N_->2, the same technique of Theorem (6.10) gives the improvement 

I D# ( P .  w) (y) - D #  ( P .  w) (Yo) l -~ c [Y - Yol. 

Let us observe that the hypothesis that w is finite can be dropped in (6.10) by 
N - 1  

considering a regularization of the balayage (see [18]). More precisely, if 1 + < 
n 

N 
e < l + - - ,  we consider for l i l l e_N-I ,  

n 

f [DgPt(x, Y) - Z l # + , l < s  D~+' Pt( x, Yo) 
( y - y o )  r 

~t 
Zr(n)c (x, t)] dw (x, t), 

where B=B(yo, !"o), B = B ( y o ,  2to). This integral can be seen to be finite for a.e. 
yEB. In fact, 

f~cm ID~Pt(x, Y)I dlwl(x, t) ~_ c f TCB~,3,0~ (t+lx--Yl)-~-I~l dlwl(x, t). 
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Since gn>n+N--l>-n+l[31, we can apply Lemma 2(2) in [2] to estimate it by 
crY0 *-x)~-Ipl. On the other hand, 

fr@).[D#yP,(x, Y)-.~I,+,I<NDy#+'P,( x, Yo)(.)'~.Yo)'] dw(x, t) l 

<- c f ~ ly-Yoln(t + [x-Yol) -"-n-Ira dlwl(x, t). 

This time we have gn<n+N<=n+N+l[31. Thus, applying Lemma 2(1) in [2], the 
last term is bounded by 

c ly-- YolN /o ~-I)"-N-I#I. 

Taking r0 = l Y-Y01, these calculations also show that the increment can be majorized 
by cly-Yol (~-1)~-N+1, when I/~I=N-1. 

7. Carleson measures on product spaces 

The theory developed in this paper can be easily adapted to the study of certain 
tent spaces and spaces of Carleson measures on product spaces. A theory of Car- 
leson measures on product spaces has been developed by L. Carleson, S. Y. A. Chang, 
R. Fefferman (of. [8], [9], [10], [11]). 

In this section we shall outline an extension of some of our results to the two 
parameter setting. A more detailed theory of tent spaces on product spaces will be 
developed elsewhere, 

We will work on R~_ • ={(x, t)lx=(x 1, x~)ERmXR n, t=(tl, tz)ER ~, tl, t2 >0}. 
Given (x, t)ER~• B(x, t) stands for the product of balls B(xl, tl)XB(x2, ts)c 
R"XR". Moreover, given xER~XR ~, F(x) will denote the product of cones F(Xl)X 
F(x2)ca~_ XR~_. 

Given a subset f2=R'~• *, the tent over f2, T(f2), is defined as 

{(x, t)ER'~_XR~+IB(x, t) = ~}. 

(7.1) Definition. In accordance with the one parameter case, we define 

A.~(f)(x) = suplf(y, t)l. 
r(x) 

For 0 < p <  oo, 0<r_< co, T~'" denotes the class of functionsfwhich are continuous 
in R~XR~_, for which Ao~(f)(x)~L(p,r) and IAoo(f~-f)llp,,-~0, as 5-~0, 
where f~(x, t)=f(x, t+5), 5=(51, 5~), 51, 52>0. These spaces are normed spaces for 
l < p <  oo, 1-<r<= oo. 
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As in the one parameter case, we have the inequality 

If(x, t)l <- inf Aoo(f)(y). 
yE~(x,0 

By integration on B(x, t), we get 

(7.2) [f(x, t)[ _<- ct~mWt; nip I[Aoo(f)lip. 

This shows that T~ is a complete space. 
The spaces T~, 0 < p ~  1, can be characterized through an atomic decomposi- 

tion. First, a suitable notion of atom is needed. 
A function a(y, t) is a p-atom if there exists an open subset f l c R r " X R  n of  

finite measure such that 
(i) supp ( a ) c  T(fl), 

(ii) Ila[I ~ <= I OI -x,p 
It is readily seen that a p-atom a belongs to TL and [I Aoo (a)][p<= 1. 

(7.3) Theorem. Given a function f defined in R~_ • , the following statements are 
equivalent: 

a) fE TL, 
b) f = 2 2 k a  k in the sense o f  ~'(R'~XR~_), where a s are p-atoms, 212k[P~ 

clIAoo(f)lf . 

Moreover, [[f[l~g.~inf { 2  [2klP:f=~2kak}, as in the one parameter case. 

Proof We only need to show a)=~b). First observe that given a functionfdefined 
in R~_• we have for each 2>0 ,  

(7.4) {(x, OilY(x, t)l > 2} = T{xlA~.(f)(x) > 2}. 

Now, given f~  T~, let us consider for each kEZ, Ok= {xlA.o (f)>2k}. Ok is an open 
subset of R m • R n of finite measure and Ok+ 1= Oz. Let 0 =  Us T(Ok). From (7.4) it 
follows that supp ( f )=O.  Now, let Ok=T(Ok)\T(Ok+O. The sets Ok are a disjoint 
covering o f supp  ( f ) .  Moreover, on 0k we have I f (x ,  t)l <-2 k+l. Thus, we can write 
f = 2 2 k a k ,  where 2k=2k+llOkll/P, ak=2--k--llOkfl/Pzr It is easy to see that as 
is a p-atom supported on d~k. Moreover, let Aj=Oj\Oj+~.  Then, Ok=Uj~k Aj and 

2~~ 2~ = 2P2~~ 2PklOkl 

= 2p Z~~ ~o 2~k ZT=~ lajI 

~_ 2~ Z:=_~ 2 "~ ZT.=~ 2-"J f ,, a . ~ ( x ) " d x  

= 2~ Z T =  - ~ 2 - ~J Z ~  = _ ~ 2 ~  f a .  ( f )  (x)~ ax  
A 1 

= cllAoo(f)ll~p. 

This completes the proof  of  the theorem. 
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We want now to identify the duals of the spaces T n, T~ n't. In analogy with the one 
parameter case, a suitable notion of Carleson measure in the product space ~ XR~ 
plays an important role. 

(7.5) Definition. Given a measure w in ~ ,z ~ ,  the A1 functional is defined as + , - x  + ,  

f r dlwl(x, t) AI (w) (x) = cx) t'~ t~ 

For ct->0, we also define 

1 
Cl,.(w) (x) = sup y ~ y  f . ,~ ,  a I wl (Y, t) 

where the supremum is taken over all the open subsets of RmXR" of finite measure 
containing x. For 0<p,  ~<~o, let znt={wlA1(w)ELP}, V'={wlCI,~(w)EL**}. 

According to [8], V 1 is the space of Carleson measures. If Pt denotes the tensor 
product of the usual Poisson kernels in R~_ and R~_, we have the following characte- 
rization of V x. A measure wE V 1 if and only if(see [19]) 

(7.6) f R~• IP'(f)((Y)P dIwI(y' t) <- cp f R.• If(y)lP dy 1 ~_ p <oo. 

The functionals A~ and C1,~ are related by the following inequality 
r 

(7.7) f If(Y, t)l 1/~ d Iwl (Y, t) <_- f A.~ (f)  (x) C~,~ (w) (x) x/" dx. 

In fact, the proof follows readily from (7.4). 
In the spirit of (7.6) we also have a characterization of V ~, 0 < ~ < 1 .  In fact, 

a measure wE V ~ if and only if 

(7.7) f IP, ff)(Y)I dlwl(y, t) <= cllflll/~,x. 

Finally, a measure wEzf ,  l < p <  0% if and only if 

(7.8) f ~  < x• IP,(f)(y)l dlwl(y, 0 = c (f..~• If(x)l v dx)"'. 

All the above assertions follow readily as in the one parameter case. 

(7.9) Theorem. 

a) Let 0 p =  1, then (T~)* = V lip. 
Let l<p<~o ,  then 
b) (T~)*=~f'. 
c) (T~21)*= V Vp. 

Proof. The only change needed in the theory of w is to replace in the proof of 
(5. i) (ii) the maximal operator of Hardy Littlewood by the strong maximal operator. 
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