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1. Introduction and results 

Given a fundamental set in a Banach space which is not a basis, it is often diffi- 
cult to decide whether or not there exists a uniformly bounded sequence of  linear 
projections onto the subspaces spanned by finitely many fundamental functions. In 
several classical cases, like the trigonometric polynomials as a fundamental set in the 
spaces C~ ,  L ~  of periodic functions and the algebraic polynomials in the spaces 
C [ - 1 ,  1] or L1Q(--1, 1) with Chebyshev weight 0 ( x ) = ( 1 - x 2 )  -1/2, such projections 
do not exist, as a consequence of  the Kharshiladze--Lozinski theorem (cf. [6, 
w 6.5], [28, Appendix 3]). 

Theorem A. For each n ~ P =  {0, 1, 2 . . . .  } let there be given a bounded linear 
projection P, o f  C2~ onto /- /n:span {eikX; lkl<=n, IkICP}, or o f  L~, onto H n, or o f  
C [ - 1 ,  1] onto ~ . = s p a n  {xk; O<=k<=n, kEP}, or o f  LI~(-1, I) onto ~, .  Then 

l imsup [Ie, lltx] = + 0% 

where X denotes the respective space and II �9 Iltx3 is the norm o f  an operator from X into X. 

Adopting a terminology of  Kadec [21] (cf. [32, pp. 194, 212]), one may say that 
the sets of trigonometric or algebraic polynomials form A systems (Lozinski--Khar- 
shiladze systems) on the respective spaces X. Further A systems exist on spaces C(Y)  
and LP(Y) for certain p, where Y denotes the compact torus T d, the sphere Sn-1 
in the real Euclidean space R a, d>-2, or a projective space Pd of  dimension d, of. 
[9], [10], [1 I] and the literature cited there. But in numerous other cases no good lower 
bound for the norm of an arbitrary projection is known, including the algebraic 
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polynomial projections in L a spaces with Jacobi weights w,,p(x)=(1-x) ' ( l+x)  ~, 
- l < x < l ,  ~t,B_~-l/2, o ~ + B > - I  (cf. (1.1) below). The purpose of the present 
paper is to solve this problem for the most interesting case of unit weight (0~ =/~ = 0) 
as well as for the weights w0,-1/~ and w-~/2,o. 

In contrast to the situation of Theorem A, now the partial sum operators of the 
"natural" orthogonal expansions, i.e. the corresponding Jacobi expansions, are no 
longer candidates for minimal or nearly minimal projections. (A projection Qn is 
called minimal if [IQ.[I <=l[e.[I for any projection P,, and it is called nearly minimal 
if there exists a constant C such that IIQ.I[ <--clle.II for any P..) Instead, in the three 
cases mentioned it turns out that the role of a nearly minimal projection can be taken 
over by some other Jacobi partial sum with shifted parameters, i.e., our lower bounds 
will be 

[IS~./~'l/2[ItL,], IlS~./2"-~/2 1 ~-1/2,~/2 , [}[Lwr -11~)1' "~n [L,,v~_I/~,o) ] ,  

respectively (of. (2.5)). 
Using the notation 

(1.1) L~(,,,~) = { f ;  [IfIILL,,,,,,, = f'_, I f ( x ) ] w ~ , p ( x ) d x < " ~  

i -- i L i --L i thus Lw(o,o)--L, w(-11~,-1/2)-- Q, our results are the following. 

Theorem 1. For each nEP let P. be a bounded linear projection o f  L I ( - 1 ,  1) 
onto ~. .  Then 

(1.2) IIe, lltzq --> ~-~log n+O(1), n ~oo. 

1 Theorem 2. Let X be one o f  the spaces L~t0._l/2) or Lw(_x/2,0), and for each 
nEP let P, be a bounded linear projection o f  X onto ~, .  Then 

)IP#]) > 4 1  +0(1)  tx i=  ogn , n~co.  

Theorems 1 and 2 cannot be established by a straightforward extension of the 
proof of  Theorem A, since the Berman--Marcinkiewicz identity, which is the main 
tool there, does no longer work here. In the trigonometric case, this is the identity 

(1.3) s . f  = • f "  T _ , e . T t f  dt (fELl,). 
2zc -= 

(See Berman [4, (10)], Marcinkiewicz [26, Theorem 1], Faber [15, (24)].) Here S.f ,  
P,, and 7", denote the nth partial sum of the Fourier series o f f ,  a projection of C~ 
or LI~ onto/-/., and the ordinary translation operator defined by Tt(f; x )=f (x+t) ,  
respectively. In the algebraic case of Theorem A, the corresponding identity is 

1 1 
2 fa (ztpn~ t f)(x)o(t  ) dt--y f _~ .f(u) e(u) du, (1.4) $2112"-112(f; x ) =  rc -x 
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where fEL~. Here S~ -a/2' -112f is the nth partial sum of the Chebyshev expansion 
o f f ,  P. a projection of C [ - 1 ,  1] or Lie onto ~. ,  and z, the Chebyshev translation 
operator, defined by 

1 {f(cos [arc cos x +arc cos t]) +f (cos  [arc cos x -  arc cos t])}, (1.5) ~(f; x) =-~ 

(x, t~[- 1, 1]). 

The right-hand sides of (1.3) and (1.4) may be interpreted as symmetrizations of the 
given arbitrary projections P, relative to the corresponding translation operators 
[9], [31]. The symmetrization principle was also used by Newman and, more generally, 
by Rudin (cf. [30]) to prove that there is no bounded linear projection of L~ onto 
the subspace H 1. 

Extending now this approach to a space Lt~(,,#) with (~, f l )~( -1 /2 ,  -1 /2)  
would lead to a Berman--Marcinkiewicz type identity which has 

N . f  = f ~ l  Tt~' aPnTt~'P fw~'a(t) dt 

on its right-hand side, where T7 '~ is the Jacobi translation operator (see [3], [18]). 
Unfortunately, the Jacobi partial sum S~'af is not identical with N . f  but rather with 
M. (N.f), where M. is a multiplier operator arising from the normalization constants. 
The operator norm of M. increases with n too rapidly in order to derive a lower 
bound for [I e.ll. So in the Legendre case, for example, one would only obtain 

cnll~ <~ I]S~~176 <= CnlIP.Iltz~ ~ 

for certain constants c, C>0 .  One might think of improving the lower estimate by 
factoring the operator N. through several different spaces, but, as already mentioned 
in [19], this will not sutiice to prove the above theorems. 

Instead, the main idea in proving Theorems 1 and 2 will be to divide the problem 
into two parts. On the one hand we study, under a more general aspect, the main 
ingredients of the proof of a Kharshiladze--Lozinski type theorem (Proposition 1). 
This leads to a new sort of a Berman--Marcinkiewicz type identity which employs 
the Chebyshev translation (1.5), though this is not the proper translation for the 
orthogonal systems involved. It is based on a product formula of an unfamiliar type 
(see (2.9) below) which involves two different sets of orthogonal functions which 
may not consist of polynomials. On the other hand we isometrically transform a 
given algebraic polynomial projection on L~,p) into a projection of LaQ onto some 
set of generalized polynomials (Proposition 2). The actual proof then consists in 
showing that the two propositions fit together nicely in the three cases under con- 
sideration. 

Before proceeding with the proofs of Theorems I and 2 we note some of their 
consequences. As analogues of the classical theorems of Nikolaev and Berman 
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(cf. [6, p. 215]) one deduces the non-existence of  a sequence oforthogonal projections 
of D ( - 1 ,  1) onto ~,  which is uniformly bounded in n, as well as the non-existence 
of linear operators R, from L 1 into ~ ,  such that I]f-RJll/llf-P*llrl=O(1), n~oo, 
for each fEL 1, where p* denotes a polynomial of best approximation o f f  in LL 
There is also a counterpart of the classical Faber theorem [15]. The latter says that, 
given a triangular matrix A of interpolation nodes in [ -  1, 1] there always exists an 
fEC[ -1 ,  1] such that the associated Lagrange interpolation polynomials L , f=  
L,(A ; f )  do not converge to f in the uniform norm. The situation is different if 
convergence in the L~ norm for any non-negative weight co is considered and if one 
chooses A =Ao,, the matrix of zeros of the orthogonal polynomials corresponding 
to co. The case p = 2  has been treated by Erd6s and Tur~in [13]. Other cases and 
particular weights have been considered by Erdrs and Feldheim [12], Marcinkiewiez 
[25], Holl6 [20], Szeg6 [33, w 14.3], Askey [1], [2], Nevai [29], and Vdrtesi [34]. 
We only mention Holl6's result: For the Jacobi abscissas A=A(a, r) and each 
fEC[--1, 1] one has }}L,(A,f)--f}}r.,~O, n ~ ,  provided that max(a, fl)<3/2. 
All these results deal with C [ -  1, 1] functions or with properly Riemann integrable 
functions, at least. There are also a few L 2 convergence results for functions which 
are improperly Riemann square integrable (e.g. Freud [17, Chapter III. 2], Esser 
[14]). If the class of functions is enlarged to CL~(- I ,  1 ) = C ( - 1 ,  1)nL~(-1,  1), 
however, Theorem 1 implies that the result turns into the negative again (in Theorem 
1 the domain of P,  may be restricted to the dense subspace CL ~ of D). 

Corollary 1. Let A be a triangular matrix o f  nodes in ( - 1 ,  1). There exists an 
fECLI ( -1 ,  1) such that the Lagrange interpolation polynomials L . (A , f )  do not 
converge to f in L ~ norm as n~  co. 

From the proof of Theorem 1 and (2.8) below one also obtains estimates for the 
relative projection constant 2(~, ,  L 1 ( -  1, 1)). Generally, for a normed linear space X 
and a subspace Y of X the relative projection constant of Y in X is defined by 

2(//, X)= inf  {l[Plltx]; P is a linear projection of X onto Y}. 

Corollary 2. For each nEN, 

(1.6) 

where 
.t 

(1.7) 2, = IIs~,/~, a/211tL q = ~ log n +d~(l), n --- ~. 

Projections with norm divergence of order log n are, for example, the S, ~'~ 
with 1/2<=~<=3/2 [19]. For n = l  the minimal projection as well as the relative 
projection constant 2(~a, D ( - 1 ,  1)) can be determined explicitly. See Franchetti 
and Cheney [16]. Estimate (1.6) is to be compared with the corresponding result in case 
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X=C[- 1, 1] or 

(1.8) 
where 

(1.9) 

zl (- l ,  1), 

1) <- x )  -< 

J(, = IIS~" x/e, -1/311tx] = ~ log n + 0(1), l l  --~ o o .  

In both spaces it is an open problem to determine the exact value of  the projection 
constants and to find projection operators for which it is attained. As it is well-known 
in the trigonometric case the projection constants coincide with the Lebesgue con- 
stants of  the Fourier partial sums, and it is a deep result that the minimal projection 
is unique, see [8] for X=C2, and [22] for X=L~ and generalizations. For a survey 
on projection operators compare also [7]. 

We further mention a remarkable parallelicity of  the above results with the situa- 
tion for minimal polynomials in LP( - 1, 1) spaces. It  is well-known that in the set of  
monic algebraic polynomials, the polynomials of  minimal LV(-1, 1) norm for 
p = 2 ,  0% and 1 are given by the monie Legendre polynomials and the monic Che- 
byshev polynomials of  the first and second kind, respectively. For  p =  1, this is the 
Korkin and Solotareff problem (see [6, p. 222]). On the level of linear projection 
operators on LP( - 1, 1), the situation is quite similar. For p = 2  the Legendre partial 
sums are minimal, for p = co (1.8) and (1.9) imply that the Chebyshev partial sums of  
the first kind are nearly minimal, and for p = 1 the near - -  minimality of  the Cheby- 
shev partial sums of  the second kind now follows by Corollary 2. This parallelicity 
holds also in the spaces treated in Theorem 2. 

In view of Theorem 2, Corollaries 1 and 2 also hold with L 1 replaced by LX~(0,_l/2) 

or L~w(_llz, o). 

2. Proofs 

Let ~ , / 3 > - 1  and let P,~'a(x) denote the Jacobi polynomial of  degree n~P, 
normalized such that these form an orthonormal system on the interval [ - 1 ,  1] with 
respect to the weight function w~, p [33]. Particular cases to be used later are 

(2.1) p~-x/2,-a/2(x ) = ~1/2-~ -c~ (n arccos x), nEN 
(1/1/~, n --- O, 

(2.2) /~/2.1/2 (x) = V 2 sin ((n + 1) arc cos x)(1 - x  2) ~1~2 

(2.3) P~/2'-l/~(x) = sin n +  7 a r c c osx  ( l - x )  -v2, 

2 1 
(2.4) Pzll2' l/~(x) = V ~  cos l ( n +-~) arc cos x) ( l + x)-l'2. 
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The Fourier--Jacobi coefficients and the Jacobi partial sums of a function 1 fE Lw(~, p) 
are denoted by 

f ^ ( k ;  or, fl) = f~_lf(t)_P~,P(t)w,,a(t) dt, 

I I  ^ 

(2.5) S~'a(f; x ) =  • k = o f  (k; a, fl)fif,'a(x), 

respectively. A lower bound for the norm of  the operator ,S~ 'b on the space 1 Lw(,, a) 
will be needed for particular values of a - > a > -  1, b_>-/~ > -  1: 

a ,  a S a ,  - 1 /~  1 (2.6) IIS~" ]ItL~,.,.,~ ~ II t./2~ I[tLw,.,-1,~,~' 

(2.7) H S~"'- x/=llt/:~,~ ' _ 1,=,3 = [I 82 ~/2'"lltL~i_ ~j=..,] 

2_o_1/2 F ( n + a  +3/2) 1/2,, 
-- F ( 1 / 2 ) F ( n + a + l )  jlP'~ !ItLL,_~/,,.,I 

=(4/r~2) logn+C,+OC--O~)+~(n-" -3 /2 ) ,  n - -~ , .  

Here an asymptotic expansion due to Lorch [24] has been employed, see [19]. The 
results of  [ 19] also imply that the rate log n is sharp, provided 2~ + 1/2 N a-<_ 2e + 3/2. 
In the particular cases needed in connection with Corollary 2 the constant 4/n ~ 
is sharp, too, since it can be shown that 

< f ,  sin.~+3/2) 0 
(2.8) lls~/~'~Z2lltm ----< 2rt - ~  sin (0/2) dO = log n+d) (1), n ~ oo. 

Let ~ = ~ o  denote the set of all orthonormal systems ~0={q)k}kCl' with re- 
spect to the Chebyshev weight Q (x) = w_ ~/2, - 1/2 (x), i.e., each (p consists of functions 
%6L~, not necessarily polynomials, for which 

f~ ~os(x) ~o,(x)(~-x2)-~/2 dx = 3ik (j, kEP). 

For  n6P and ~06#, let 

{ z  . } = k=oak~0k, a ~ 6 R ,  0 _<-- k <_- n 

denote the corresponding sets of abstract polynomials and, assuming further that 
% 6 L ~ ( - 1 , 1 )  for each kCP, let 

n 1 
S~g = ~ k = o f _  1 g(t)(pk(t)Q(t)dt cpk 

be the nth partial sum with respect to ~p of a function g6L~.  
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Proposition 1. Let ~pE �9 be a fundamental system in L~ consisting of  L*~ ( -- 1, l) 
functions, and suppose that there exists another system ~bE �9 with the property 

(2.9) X,(~Pk; X) = Ctpk(X)~bk(t) 

for X, t6 [--1, 1], kCP, where zt is given by (1.5) and c is a constant, independent ofk .  
For an arbitrary bounded linear projection P~ of  LI~ onto ~ the Berman--Marcinkie- 
wicz type identity 

S~(g; x) = c - 2 p _  1 (z,P~. ztg)(x)(1-t~)-l/2dt (gELS) (2.10) 

holds. Moreover, 

(2.11) IIS~IItL~e] <-- ~c -~ IIP~IItL~I. 

Proof. For each nEP, S~ belongs to [L 1] and, denoting the right-hand side of  (2.10) 
by N~ng, the operator N~ is well-defined on L[ since ztP~ ztg is strongly continuous in 
t and so the Bochner integral exists. Moreover, N~ is in [L~] since P~ is, and I1~,11 = 1 
for each t. Thus it suffices to prove (2.10) for g in a dense subset, i.e. to show that 
S~tpk=N~tPk for each k6P.  Indeed, for O<=k<=n one has, by (2.9), 

Nn~(qgk; X) = ek(x) f 1 (~k(t))2(1--t2)-l/2dt ~- ~Ok(X ) ~--- S~n ((Pk; X), 

and for k>n, setting Pn~tPk=~.=oajk~Pj, say, 

N~(q~k; X) = ~j=oajkq~j(X) 1 _t2)_V~d t (j(t)r = 0 = S~(tpk; X), 

This proves (2.10), and (2.11) is an immediate consequence. 
Let us consider a subset of  the class # which consists of  those systems q~ (~, t )  = 

{~p~,'a}k(r, Cqfl-->--l/2, whose elements are in L *~ and can be represented in 
terms of  Jacobi polynomials and weights as 

(2.12) 9~'a(x) = P~+ll2"2[J+l]l(X)Wat+lt2, fl+ll2(X) (kEP). 

Proposition 2. Let 0 q f l - > - l / 2  and set oo(x)=w.+l/Z,a+l/2(x). 
(i) Given a bounded linear projection P. of  L~(~,a) onto ~ ,  P~(*'a)(g; x)= 

P.(g/co; x)to(x) defines a bounded linear projection of  L~ onto ~(*,a), and 

(2.13) I[ P~ (~' a)[ttr~l = t[ P~ It[LL,., ~,1. 

(ii) In particular, choosing the Jacobi partial sum S~ ~+1/2'2a+1/~ for P., one has 
p~(~,a) = S~(~,a) and hence 

(2.14) ]1 S~ (~'~)IItL~ = 11 S~ ~§ U+V~llr,~(., ~,~- 

Proof. Obviously p~(~,a) is well-defined on L~ and a projection onto ~ff(~'~). 
The identity (2.13) is true since IIl'~(~'a)gllL~-lle, fllL, a~ holds with f=g/co. 
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Concerning (ii), the choice en~--~Sn ~+l'2fl+l is clearly admissible in part (i). Since 
P~("fl)(g; x)=S~("O)(g; x) for each gCLI~, the proof is complete. 

Proof of Theorem 1. Given P,,  Proposition 2 (i) furnishes a bounded linear pro- 
jection p~(o,o) of  L~ onto ~,~0,0~ with 

(2.15) Ile~(~176 = IIe.lltva. 

In view of  (2.12), (2.2) one has 

(2.16) ~o~.o (x) = ff~/z,i/z (x)(1 -x~) ~/z = 1/~//n sin ( (k+ 1) arc cos x). 

In order to apply Proposition 1 it remains to show that the 9 ~176 are fundamental in L~ 
and that they satisfy (2.9). The first of  these assertions holds since, e.g., the (C, 1) 
means of the Legendre expansion converge in L 1 and each Legendre polynomial has 
a unique representation in terms of Chebyshev polynomials of the second kind, so 
{/~/2'l/~}kEp is fundamental in L t, too. Moreover, 

(2.17) z,(~o~176 x) = 1/-~o~176 

thus (2.9) is satisfied with ~k= {Pk~ ~'-l/2}keP~ �9 and c =  1/-~ -. Hence Proposition 
1 implies that 

IlSW<~176 ~ _-< 2][eff<~176 

i.e., in view of  Proposition 2 (ii) and (2.15), 

(2.18) IIS~/~'V~lltLn <= 21IP.]ltLn. 

Applying (2.6), (2.7) with a =  1/2, 0c=0, the assertion of Theorem 1 follows. 

Proof of Theorem 2. Since P, need not be a symmetric operator, the two cases 
(~, fl)=(0, -- 1/2) and (~, f l ) = ( ~  1/2, 0) have to be proved separately. Proceeding 
as above, we appIy Propositions 2 and 1. The corresponding systems q~(~,/3) are 
(of. (2.3), (2.4), (2.12)) 

~o~,-x/s (x) = 2)/2)/~sin ((k + 1/2) arc cos x), 
(2.19) 

q~;-1,2,0 (x) = )/2/zr cos ((k + 1/2) arc cos x), 

respectively. These belong to L~ 1) and they are fundamental in L~(o_~/2) 
and in L~(_l/~,o), respectively, which can be seen as in the proof of  Theorem 1. 
Moreover, condition (2.9) of  Proposition 1 is satisfied in view of  the identities 

(2.20) .Ct(q)O,--1/2; X) = r ~0k'X/2'O(t), 

(2.21) z,(q~-~/2'~ x) = 1/~/2 q)~/~'~ ~orl/~"~ 

so that we have c=I/Tr)2 and O=cp(-1 /2 ,  0) in both cases. Combining the asser- 
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tions of Propositions 1 and 2, one has 

1 $112.-V2 x 

l i P  II . _  1 ~ - ~ / 2 , , / ,  . n [ L ~ ( _ l / z , 0 ) ]  = ~"  ~ n  [L~, (_x/~ ,0) ] ,  

respectively. By an application of  (2.7) with a = l / 2 ,  ~ = 0  the proof is complete. 

3. Remarks 

It is also possible to deduce a Kharshiladze--Lozinski type theorem in connec- 
tion with the Fourier--Bessel expansion of order e = - l / 2  (cf. [35], [27; w 
Denoting the corresponding partial sum operator by 

n 1 ~.(f; x) = Y,k=of~ f(t) Jk(t) dtj~(x) (nEP) 

for fs 1), where Jk(x)=l/2"cos (k+  1/2)rex, one has the following. 

Theorem 3. For each nCP let P, be a bounded linear proiection o f  LI(O, 1) 
. j onto the set of  abstract polynomials o f  the form .,~=0 ak k, akCR. Then 

1 
(3.1) }lPnl}tLl(~ ~ T IIBnlltzl(~ ~ log n+19 (1) (n --,,,o). 

Proof In order to set up a Berman--Marcinkiewicz type identity, the Chebyshev 
translation has to be replaced by the "Fourier--Bessel" translation Trs,,, 0<=t <= 1, 
which is defined by 

=12~{f(Ix- t l )+f(x+t)} ,  0 < = x + t < - I  

TFB,,(f; X) [ ~ { f ( l x - t l ) - f ( 2 - x - t )  }, 1 < x + t < - 2  

for fEL~(O, 1). Obviously the translation has the properties 

TFB.,(Jk; X) = ~2 J~(x)Jk(t) (0 <= x, t ~_ 1), 

tITFB, tfIILI(O,1) <= ]]fllLt(O,a) (f6 Zl( O, 1)), 

which are required to deduce 

B,(f ;  x) = 2.]'ol (TrB,,P, TeB,,f)(x) dt (f~L~(O, 1)), 

as well as (3.1). In view of  the identity 

S - 1 / 2 ' 1 1 2  x ]lBn[{tLx(0.a)] = ,I n l,[L,.,,_x#,o)(--1,a)l 
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the divergence order of the Lebesgue constant on the right-hand side of 0.1) is the 
same as in Theorem 2. 

The algebraic version of the Berman--Marcinkiewicz identity (1.4) and of 
Theorem A can be subsumed under Proposition 1, after making a slight modifica- 
tion in order to take care of the zero degree term. Indeed, for the two systems r and 

one can choose the Chebyshev polynomials {/~-x/~'-x/2}k~p, so that ~ turns 
into ~, .  The crucial point in Proposition 1, however, is that different systems r 
and ~O are admitted (cf. (2.20)) and that ~ even must not be fundamental in L~ (cf. 
(2.17)). 

The fact that Proposition 1 applies in the four cases ~o=q~(~, fl) with 
~, fl~ { -  1/2, 0}, can be traced back to our requirement that the Chebyshev transla- 
tion �9 t appears in equation (2.9). Hence, similar results for other values of ~ and fl 
may be expected if an appropriate translation operator 7", can be found which 
satisfies (2.9) and has its [L~e] norm uniformly bounded with respect to t. One approach 
to determine such a Tt is to solve an initial boundary value problem for an associated 
hyperbolic partial differential equation (see e.g., Levitan [23]). If the system ~0 con- 
sists of eigenfunctions of a Sturm~Liouville differential equation [5, Chapter X] 

L~q~k(x)+ltktpk(x) = O, L~ = w-l(x) d [p(x) d ] - q ( x ) ,  

the appropriate translation Tt can be considered as the solution u(x, t )=Tt( f ;  x) 
of the partial differential equation (L~,- Lt) u (x, t) = 0 under initial conditions depend- 
hag on f and additional boundary conditions. 

For the orthonormal systems tp (e, t ) =  {q~" a}k eP the Sturm--Liouville opera- 
tors are given by 

fl(2fl+l) ~(2~+1) ~ - -  
L~'~ = L~ x/2'-~/~-q~'~(x), q~'~(x) = 1--x l +x  ' 

where 

z1.~ d 21a d L~ a/2.'x/2 = ( l - x )  / ~ -~ (1 -x )  / 

denotes the differential operator in the Chebyshev differential equation. If now 
~, fie {-1/2,  0}, the potential function q~'P vanishes, and the Chebyshev translation 
is a solution of (L~'a-L~'P)u(x, t )=0.  In these instances the final result says that 
the partial sum operators S~ ~+1/2,2p+1/2 are the appropriate reference operators for 
projections P, of L~(~,p) onto 9~, in the sense that 

S~+1/2'~+1/~. IItLwc., , ) l '  <= CHP.I[tLL,.,p)I" 

It may be conjectured that this inequality holds true for all ~, fl=>- I/2. 
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