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Suppose u: R---R is an increasing homeomorphism. For  a function f we 
then define (Uf)(x)=f(u-a(x)) .  The purpose of  this paper is to classify those 
u for which the operator U is bounded on BMO, the space of  functions of  bounded 
mean oscillation. Our theorem answers a question of  Coifman and Meyer, and 
was announced in [2]. Though some time has passed since then, the result still seems 
to be of  some interest as it has been used in several papers. The corresponding 
problem for R", n_->2, was solved by Reimann [5], who showed that U is bounded 
on BMO if  and only if u is quasiconformal. The translation of  this statement 
to R, i.e. that u is quasiregular, is false. 

In order to understand our result, we must first recall the definition of  the 
Muckenhoupt class A~. A positive Baire measure # is said to be in A~. if there 
are constants C, 6 > 0  such that whenever 1 is an interval and Ec1,  

<_ c f i E j i  
/ t ( I ) -  t l l l ) '  

where l" I denotes Lebesgue measure. Thus, every #EA.o satisfies dlz(x)=og(x)dx. 
For  such a positive weight function 09, we put  co(E)=fEo~dx. We will need to 
use the fact that whenever u is an increasing homeomorphism, the measure u'EA~. 
if and only if the same is true for u -1. See [1] for a proof. 

Theorem. The following conditions are equivalent: 

a) Uq~EBMO whenever q~EBMO is lower semicontinuous. 
b) U is a bounded mapping from BMO to BMO. 
c) U is a bijection from BMO to BMO. 
d) u'EA~. 

The proof  of  the theorem relies upon two useful facts. The first is the theorem 
of  John and Nirenberg [4]. Let  I denote a generic (bounded) interval, and let 
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II �9 11, denote the BMO norm. Then 

sup -~-1 ]{xE I: lgo ( x ) -  9,1 > 2}] <_- c~ exp [/Y~-~-, ~ ' -  c~ 2 ] 

1 
where gol ='~ f l  go dx is the mean value of go on I. The second tool is due to Coifman 

and Rochberg [3]. Let M denote the Hardy--Litt lewood maximal operator. 
Suppose # is a Baire measure on R. Then if there exists a point x such that 
M# ( x ) < ~ ,  the function log (MIz)EBMO and ]llog (M/0ll,<--cz. 

With the John--Nirenberg theorem in hand, it is an easy exercise to show that 
condition (d) of the theorem implies condition (c). We must therefore only show that 
(a)=~(b)=~(d). 

To show that (a)=,(b), let u'=# and suppose there is a set E such that 
#(E)>0,  while [El=0. Let f E L  1 be such that {x:f(x)>n} is an open set 
containing E, for all integers n. Then g0=log (Mf) is in BMO and go ~_ + 
on E. Since any function of  the form M# is lower semicontinuous, so is go. This 
is a contradiction because Ugo~L~o c, let alone BMO. Therefore d#=o)(x)dx 
where co-~0 is in L 1 and Uf is Lebesgue measurable whenever f is. loc,  

By the results of [3], every ~oEBMO is of the form ~p(x)=~ log (M#~)(x)+ 
B log(Ml~)(x)+b(x), where /z 1 and /~2 are Baire measures and bEL =. Then 
since Ub is bounded and Lebesgue measurable, Ugo is Lebesgue measurable and 
in BMO. The closed graph theorem now shows that U is a bounded operator 
on BMO. Thus, (a)=~(b). 

Now suppose that (b) holds with, say, HUll=K, and suppose that (d) fails. 
Let u'(x)=co(x), and fix 5, 6>0.  Then there is an interval I and a (measurable) 
set E c l  with 0 <  [E[<e]ll and o)(E)/co(I)>-_(lE[/]I[) '~. By a translation and a change 
of scale, we may assume that 1=u(1)=[0, 1]. We may also assume by symmetry 
that E c [ 0 ,  1/2]. Let ~>1 be such that u(~)=2, and let go = log  (MzE). Then 
go~0 a.e. on E, go(x)_-<log(2lE[) on [i,~] and II~[I,<=ca. Since IIUgolI,<=c3K 
and Ugo-<__log(21El) on [1, 2], the John--Nirenberg theorem shows (Ugo)t0,21<_- 
c4K+log IEI. If  e is small enough, c4K+log [El-<0 and we thus have 

IFl - l{xC[0, 2]: IUgo(x)-(uq,)to,  l > - c 4 K - l o g  IEI}I --> [U(E)I => IEI 

But by the John--Nirenberg theorem, 

tFI <- 2cl exp (c4K+ log [E = % [EIC,. 

I f  6<ce, we then obtain (%)-l<=ec6-n, which fails as soon as e is small enough. 
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