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1. Abstraect

We continue our investigation of the direct product of hopfian groups. Through-
out this paper 4 will designate a hopfian group and B will designate (unless we
specify otherwise) a group with finitely many normal subgroups. For the most
part we will investigate the role of Z(4), the center of 4 (and to a lesser degree
also the role of the commutator subgroup of A4) in relation to the hopficity of
A X B. Sections 2.1 and 2.2 contain some general results independent of any restric-
tions on 4. We show here

(a)y If AXB is not hopfian for some B, there exists a finite abelian group F
such that if &k is any positive integer a homomorphism 6, of AXF onto A
can be found such that 60, has more than % elements in its kernel.

(b) If A is fixed, a necessary and sufficient condition that 4 X B be hopfian
for all B is that if 0 is a surjective endomorphism of 4 X B then there exists a
subgroup B, of B such that A0B = A40xB,0.

In Section 3.1 we use (a) to establish our main result which is

(c) If all of the primary components of the torsion subgroup of Z(4) obey
the minimal condition for subgroups, then A4 X B is hopfian.

In Section 3.3 we obtain some results for some finite groups B. For example
we show here

(dy If |B]=p%...q¢>* where p,q ...q, are the distinet prime divisors
of |B| and if 0 <e <3, 0<e; <2 and Z(A) has finitely many elements of
order p? then AXB is hopfian.

Several results of the same nature as (d) are obtained here.

In Section 4 we obtain some results similar to (d) by placing some restrictions
on the commutator subgroup of 4. We also show here

(e) AXB is hopfian if B is a finite group whose Sylow p subgroups are cyclic.

(f) AXB is hopfian if B is a perfect group.
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Our main avenue of attack on the problems to be considered may be outlined
here very briefly. Namely if B has finitely many normal subgroups and A XB
is not hopfian we choose a homomorphic image C of B with as few normal sub-
groups as possible such that A4 X C is not hopfian. Then as in Lemma 7 of [3],
Z(0), the center of C is non-trivial and there exists a surjective endomorphism «
of 4xC such that « is not an isomorphism on A4 and such that Cx’NC =1
for all integers 7, 7 # 0. Furthermore C does not have an abelian direct
factor. Our approach in this paper is to assume 4 X B is not hopfian and to gather
information about C. With suitable restrictions we achieve a desired contradiction.
Throughout this paper C and « will be as defined here.

The existence or non existence of a hopfian group 4 with the properties (a) is
unresolved. We show in our remarks following Theorem 1 that if Z(4) has a finite
torsion group and A4 has properties (a) then 4 = 4, F, for some finite central
subgroup F, and some subgroup A4, which is a non-hopfian homomorphic image
of A. Conversely if 4 can be decomposed in the above manner then regardless
of the nature of Z(A4), A has the properties in (a). For if F ~ F; one can easily
obtain a homomorphism of 4 XF onto A with arbitrarily large kernel. Baumslag
and Solitar have shown that there exists a finitely generated hopfian group with
a non-hopfian group of finite index [1]. In view of this anomolous result, we do not
think that it is unreasonable to suspect that a group A4 with properties (a) exists.

In any case our result (c¢) together with the results of [2] and [3] show that
A x B is hopfian for a wide range of 4. In general, extensions of hopfian groups
by hopfian groups are studied in [2] and [3] and the latter contains a bibliography
of some relevant papers on the subject.

2. Some general results
2.1. Strong hopficity

We conjecture that if B has finitely many normal subgroups 4 X B must be
hopfian. If this conjecture is false A4 is in a certain sense close to being non-hopfian.
For write Ax+C = A+ Cio = O X A, where C,c Z(C), 4, c A. Note Cx is
in the centralizer of A« - Cix so that there is a homomorphism y of 'x A4, onto
Cx - A, = L such that y is the identity op 4, and such that y agrees with «
on C. Note L-C=A4xC so that LILNC ~ A. Hence «-y maps AXC;
onto L which in turn can be mapped onto 4 homomorphicly. If we designate the
resulting homomorphism of 4 XC; onto 4 by «, wesee «, isnot an isomorphism
on A and since |4 N kernel x| may be made as large as we please by choosing
a suitable &, so may |4 Nkernel «,]. Also we note «, may be extended to a
homomorphism of A4 XZ(C) onto A for in the above discussion we may replace
C, by Z(C) and 4, by A* where 4, c A* c 4. In the sequel &, will be as
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above. These considerations prompt the definition: Let F be an arbitrary finite
abelian group. We call a group A4 strongly hopfian if every homomorphism of
AXF onto A has kernel of bounded order << N where N is dependent only on
A and F. Clearly, a strongly hopfian group is hopfian.

We may summarize the above discussion as

TreeorREM 1. If A is strongly hopfian and if B has finitely many normal sub-
groups, then AXB is hopfian.

As an example of some conditions which imply strong hopficity suppose that
the torsion subgroup of Z(4), E, is finite. Suppose further that normal subgroups
of finite index in 4 which are homomorphic images of 4 are hopfian. Then A4
is strongly hopfian. For if 6 is a homomorphism of AXF onto 4, F a finite
abelian group, we have A67*'c A6/, j >0 and

A=A0-FO-F2.. . F¢, j>1.

Hence A = A6+ E so that [4:A46'] < |E|. Hence ultimately the subgroups
A0 are identical, say for j > k. But then since 6§ maps M = A6* onto itself,
0 is an isomorphism on M. Since A = M - E, we see that kernel 6 contains
at most |E| elements of 4. It easily follows that A4 is strongly hopfian.

TrEOREM 2. If Z(A) is contained in any normal subgroup of finite index in A
which is & homomorphic image of A, then if L has finitely many normal subgroups
or if L is finitely generated abelian group then A XL s hopfian.

Proof. The hypothesis implies that A4 is strongly hopfian, so that if L has
finitely many normal subgroups, A XL is hopfian by Theorem 1. If L is a finitely
generated abelian group, we may assume by Theorem 3 of [3] that L is an infinite
cyclic group. But then if A XL is not hopfian, almost exactly as before we can
obtain a homomorphism § of 4XL onto 4 which is not an isomorphism on 4.
But then 4 = A3-Lé. If A6 is of infinite index in A, then 4 = A§X L6,
and L¢ is infinite cyclic. But then A4 X L is hopfian by Theorem 3 of [3]. Hence
A is of finite index in 4 so Ld c A5, thatis A6 = A. But then § is an iso-
morphism on A4 contrary to assumption. ‘

Theorem 1 naturally leads us to ask what we can say about homomorphisms of
AXF onto A where F is a finite abelian group. In this direction we may state,

TaroREM 3. If A does not have a direct factor of prime order and if F is a finite
abelian group of square free exponent and if 0 is an arbitrary homomorphism of
AXF onto A with kernel K, then 0 is an zsomorpkwm on A, K=F, and K
is @ central subgroup of AXUF.
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Proof. Let AO0NFO=F0, F,cF. Hence we may find F, such that
F =F XF, and K c AxF,. However if 0, is the restriction of § to AXJF,,
0; maps AXF, onto A, so that if 4, = KN A, then 4, = kernel 0, so that
(AJA)) X Fy ~ A. Hence F, =1 so that 40 = 4. Hence 0 is an isomorphism
on A4 and FOc 46. If we write f0 = a0, f€F a;€ A, then one may show
K = {fas|f€F} and K is a central subgroup isomorphic to F.

2.2. A necessary and sufficient condition that AXB be hopfian

THEOREM 4. A necessary and sufficient condition that A X B be hopfian for all
B is that of 0 is an arbitrary surjective endomorphism of A X B then there exists
some group subgroup B, of B such that A0 B = AOXB,0.

Proof. The necessity is obvious, For the sufficiency suppose that our hypothesis
holds for all groups B but A XB is not hopfian for some fixed B. But then by
hypothesis we may write

AxC = AxxCp, O, cC. (1

Now A4aC = 4, xC, 4, c A. Note O, is a central subgroup of C so that C,
is a finite abelian group. Now since Cy,ax N C =1, if we project C.x into A,
(by mapping C into 1 and A, onto itself via the identity map) and if say A,
is this projection of C,x into 4,, then A, ~ C,. Furthermore we claim
A4, N Ax = 1. To see this say C, is the direct product of ¢ cyclic groups Z,
E,...E; generated by e, e,...e respectively, where each K; is of order a
power of a prime. Then

Ax-C=(AXE X ... XE_)axEux.

Write ¢ =ae;, ¢ €C, o, €4;. Let A* = AXE X ... xE, 0<k<i, and

let 4° = A. Let A} be the subgroup generated by a.;, @ s ... k<1,
and let A4} be the identity group. Suppose

Aol = Arxx Ax, &k <i. 2)
(2) is certainly true for £k =4¢. But if k> 0, we may write from (2),
Ax-C =FXE,, F=ATax4k.

Since ¢, is of prime power order, say order e, = p*, either a, or e, has order
p*mod F. If the order e, mod F is p°

Ax-C = Fxded>

which. implies that € has a direct abelian factor which would contradict
the “minimality” of C. Thus
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Ao C = Fx{ay = A" ax A%

so that (2) is true for 0 <k <<Ti.

Since Aj = A, setting k=0 in (2) gives us our assertion.

Now if y is the projection of AxC onto Ax which maps 4, into 1 and which
is the identity on Awx, clearly Cy ~ C and CyN A4 = 1. Furthermore, CA44x
so certainly OyA(4xCO). Hence, AXC = AXCOy. As in Lemma 4 of [3] this
implies & is an isomorphism on A4 contrary to assumption.

We note that we have also established the following results in the proof of the
theorem:

CoroLLARY 1. A sufficient condition that A X B be hopfian for fixed A and
for fixed B is that for each homomorphic image E of B and for each surjective endo-
morphism y of AXE we have AyE = Ay xDy for some D c E.

CoroLLARY 2. If AXB is not hopfian, then it is impossible to find C, c C
such that AoC = Ax X Cyo.

3. Restrictions on Z(A)
3.1. Z(A) with a torsion group with minimal condition for its primary subgroups

The main results of this section depend mainly on the endomorphism o, of
the previous section and on the following result:

LemMA 1. Suppose AXB s not hopfian. If L is a Sylow p subgroup of
Z(C) there exists a basis yy, Yy, - . .Y, for L such that if 0 is an arbitrary positive
power of « then for any i, 1 <i <e,

y.0 = yy® ... yhi... ¥y modA

where the exponents ry;, Ty, ... 7y

11

are all divisible by p.

Proof. Let Z(C) = M xL where L is a Sylow p subgroup of Z(C). Let
L=LxXL,X ... XL,

where each I; is a direct product of cyclic groups of the same order p" where
uy1 <My, w=1,2,...8— 1. Suppose w € L;. Let wb = wywyw;...w, mod A
where w; € L, We claim w;, w,, ..., w, are p™ powers in Z(C). Since w is of
order p™ and each L; for ¢ <k is a direct product of cyclic groups of order
p" and m, > m, we can easily see that w; is a p™ power in Z(C) for i < k.
It is not obvious however that w, must be a »™ power. To see this, choose a
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basis my, my, .. ., m; for L, so that I, is the direct product of the (m; and
each m, is of order p™. Let w, = m{ims2. ...m4J. To show w, is a p™ power
we show p is a divisor of each #,. Suppose for example p is not a divisor of #.
Let F be the subgroup generated by m,, ms, ..., m; and let E be the subgroup
generated by the L, ¢ £ k. Let 4, = AXMXEXF. Hence, 4,00 = 4, xX{m,
C6j/4, N CH ~ {my>. But the order of whmod 4, NCH is p™. Hence,

CO = <wb>x (4, N CH).

Since @ is an isomorphism on C this implies that C has a cyclic direct factor of
oder p™ which is impossible. Now if ¥y, ¥, . . . , ¥, is obtained by taking the union
of basis’ of each L; and if the y’s are indexed such that r << ¢ implies the ¥’s
in L, precede the #’s in I, then the y’s have the asserted property.

TrEOREM 5. Let B have finitely many normal subgroups. Suppose that for each
prime p, the subgroup of elements in Z(A) of order a power of p satisfies the minimal
condition for normal subgroups. Then A XB 1is hopfian.

Proof. Suppose the assertion is false. Let L, be a Sylow p group of Z(C)
for the prime divisor p of |Z(C)|. Let P be the p™ powers of the elemests of
order a power of p in Z(A)XZ(C). We will show that we can find subgroups

Z;C Z(A)x Z(C) and positive integers 7, such that
Ly~L,, LnAd=1, and LurcP. (3)

To obtain the desired contradiction note that (3) implies that A4 X Z(C) is the

direct product of the groups 4 and f;, for » a prime divisor of |Z(C)|. Hence
if 7 is a positive common multiple of the 7, and y = ", then each element of
f;,y is a p™ power for all p and hence each element of fpy* is a p™ power.
But note that if H is an arbitrary group with a finite central p subgroup H,
and if H = HH, for some subgroup H,c H and if é is a homomorphism of
H onto some group K such that every element in H,0 is a p™ power then K =
H,6. Hence Ay, = A, a contradiction of the hopficity of A.

We will give an inductive method for constructing the I—;;. Let p be a fixed
prime divisor of |Z(C)| and let gy, 95, ..., y. be a basis for L, as in Lemma 1.
We will show that there exists w4y, ¢y, - . ., %, in Z(4) X Z(C)ysuch that for 1 <17 <e

u; = y; mod 4, (4)
u; and #; have the same order, and (5)
some fixed power of « mapsw; into P (6)

Once we do this we see that the subgroup generated by the u;, 1 <i <e is iso-

morphic to fp and may be taken as L,. Our method first gives wu,, then u,_,,
then w,_, and so forth.
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Suppose that s is an integer, 1 <<s <e and that we have already found
Ugy Uy_1, + « - 5 U, Such that (4) and (5) hold for s <<i << e and that say some power
0 of o mapswu,u,_;,...,u, into P. We show that under this assumption we can
find u € Z(A)x Z(0) such that =y, ;mod 4 and » and y,_, have the same
order and some power of 0 maps« into P. Then # may be taken as u,_, and
we may repeat the procedure until all the «’s are constructed. (The inductive step
of finding #, , also shows how to find wu,.)

Write y = y,_,. Let K be the group generated by u,, %,.,,...,u,. Then we
can write y0=awy... y*-1mod K, a; € A where each ¢ above is divisible
by p. Hence,

y0=a,mod P- K. (7

If 0,0 =af'...y" ' mod K, a, €4, then yt*=ayf...y" 1 mod P K from
which we deduce that each of the g; are divisible by p. Hence a,0 = a, mod (K - P).
By considering y0° we see in a similar way that we may write a,6 = a, mod (KP),
a3 € A and that we can define @, € A inductively so that

a,0 = a,,; mod (KP).

One may verify that a, € Z(4) and that the order of @, is a divisor of the order
of y. Furthermore, since 6 maps K - P into P we see 0™ = a,,, mod (K - P)
and y0™ = a,, mod (K - P). Now the elements of order a power of p in Z(4 xC)
form a direct product of a divisible group and a finite group. Hence not all the ¢;
can be distinet mod P. Hence we can find positive integers k& and m such that
Op = ., mod P. Hence, (ya;')6™ € K+-P and consequently, (ya;')g™"' € P,
Hence, if we define u,_, = ya; ' then uj0m+1 €P, s — 1 < e so that the proof is
complete.

CoroLLARY 1. If B is a finite group such that the subgroup of Z(A) consisting
of elements whose orders are divisors of |B| obeys the minimal condition for subgroups
then AXB is hopfian.

Proof. Since C' is a homomorphic image of B only prime divisors of |B]|
come into play in the case where B is finite.

CororrArY 2. If B has finitely many normal subgroups and 0 is a surjective
endomorphism of AXB such that
af = ab® for a € Z(A) (8)

then 0 is an automorphism. If B is finite and (8) holds only for central elements of
A whose orders are divisors of |B| then 0 is an automorphism.

Proof. Suppose the assertion false. Then in passing from 6 and AXB to «
and AXC we note that (4) may be preserved; that is we may assume ax = aa?
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for a € Z(A) or for central elements of 4 whose orders divide |B| in case B is

finite. Now proceed exactly as in the theorem to construct the groups L,. Define
0,s,9,us,...u as before. Now apply 6 to (7) obtaining

y0? = a,0 = a,02 mod P

so that w,_; may be taken as ya;'.

3.2. Finite B

We apply the results of section 2.2 in this section to finite groups with some
special restricts on |B|. In contrast to Corollary 1 of Theorem 5 we show that in
some cases we need not pay attention to all the elements in Z(4) whose orders
are divisors of |B].

Lemma 2. If G is a group and if v 1is an endomorphism of G and if g€ G
and the elements gy, gv2, g3, . .. are finite in number, we can find a positive integer
r such that gy" = gy”.

Proof. Choose positive integers e and f such that gy* = gyze”. Then for any
7>0, ¢ +q=gy"7 + g. Choose ¢ so that 2+ - g = 2(2° 4 q) and choose
r=2°+gq.

Lemma 3. Suppose B is finite and Z(A) has only finitely many elements of
order p% If AXDB 1is not hopfian, then Z(C) 1is not of the form LXM where L
is cyclic of order 1, p or p?, p a prime and where M 1is of square free exponent
prime to p.

Proof. Suppose the assertion is false. Let
Aol = Ax- O, AxNOx = Cyx with C, ¢ C; € Z(0) .

Then we claim () is not of square free order or else (; = 0, X C; so that AaC =
Ax X Cyx contrary to Corollary 2 of Theorem 4. Hence L is of order p% and L c C;.
Furthermore if L = {w),

wx &€ Ax 9)

or again we would obtain a contradiction of Corollary 2 of Theorem 4. Moreover,
since A4(Cx)= A4 mod Z(C) and Ax(C)== Axmod Z(CT), one sees that
Cx/A N Cx and C[AxN C are isomorphic to subgroups of Z(C). Hence

E= (XM c Aa~' N Au (10)

or otherwise ¢ would have a finite abelian direct factor which is impossible. Since
AxNCOx c Bx we see AxNCxcC A.
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Now let K =CaxN(CxA4N Ax). We claim K = Ax N Cx. We have already
shown Ax N Cx c K. On the other hand suppose k € K. Then

k=cx=ca, c€Z(0), C,€ZC), a€A4ANAx. (11)

From (10) we see that if wx = w?mod 4, then (p,q) = p. Hence (10) and (11)
imply
¢, € Ax (12)

so that K = AxN Cx as asserted. But then if we set G = AxXC and M =
(4N Ax)Cx we see

GIM = [(Ax)(Cx)]| M ~ AxJA N Ax ~ (4 - Ax)/A

so that [G: M] < |C|. But MNC =1 so [G:M]> |C|. Hence, we conclude
AXC = MxC.

Now in all of our above arguments we may replace « by &, ¢ >1, and 4
by any A, such that

A xC=A4xC. (13)
In particular as in (9)
wo' € At, i>1 (14)

for any 4, in (13).

In any case our hypothesis concerning Z(A) guarantees that the elements
wo', §=1,2,3... are finite in number. By Lemma 2 we may choose 7> 0
such that wa” = wo®”. But then if we set 4, = AN Ax"-Cx" and o = wo"
we see a € 4, and wo = ax’, contrary to (14).

THEOREM 6. If |B| =p°l...q, where p,qy, -..,q, are the distinct prime
dwisors of [Bl, and 0<e<3, 1<e¢<2 for 1 <i<s and if Z(4) has
finitely many elements of order p?, then AXB is hopfian.

Proof. Suppose the assertion is false. Then 3 is not a divisor of |Z(C)| or else
C would have a direct abelian factor of order p? [4]. Similarly ¢7, ¢+ =1,2...s,
is not a divisor of |Z(C)| and we arrive at a contradiction of Lemma 3.

In a similar way, the next two theorems follow easily with the aid of the previous
theorem, Lemma 3 and Theorems 6 and 3 of [3].

TuroreM 7. If |B| = p'qiq...q% where p,qi,...,q, are the distinct prime
divisor of |B], 1 <e; <2 for 1 <¢<s, and if Z(A) has only finitely many
elemests of order p?, and if a Sylow p group of B is non-abelian, then AXB is
hopfian.
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TrEOREM 8. If Z(A) has only finitely many elements of order p? and if |B| = p?,
p & prime, the AXB is hopfian.

THEOREM 9. Let |B| = pilp...pr, 1 <e, <3, wherethe p; are the distinct
prime divisors of |B|. Let L, be a Sylow p; group of B and suppose that at most
one of the groups L, are abelian. If Z(A) has finitely many elements of order p,
1=12,...,r, then AXDB s hopfian.

Proof. Suppose the assertion false. Then Z(C) is not divisible by »; for any
p; or C has an abelian direct factor. On the other hand, |Z(C)| must (by Lemma 3)
be divisible by 7 - pj, ¢ % j. Since C does not have any abelian direct factor we
must have e; = ¢; = 3. But then the Sylow p, and the Sylow p; groups of C
are abelian and isomorpbic to the Sylow p; and the Sylow p; groups of B, contrary
to assumption.

4, Restriction on the commutator subgroup

In investigating the hopficity of 4 X B, we can obtain some further results by
considering some of the following restrictions on A4”:

A'c Z(4). (15)

If B is finite, and »° is a divisor of |B|, p a prime, then A4’ has (16)
only finitely many elements of order p°.

If K is an arbitrary normal subgroup of a homomorphic image D
of B such that Z(D) £ 1, then A’ has only finitely many normal subgroups (17)
isomorphic to K.

Lemma 4. If (15), (16) or (17) hold and AXB is not hopfian, then C' is a
central subgroup of C. In any case, C' c Ax and C'xC A.

Proof. As in the proof of Lemma 3, Cx’4A N Cx and C"AxN C are abelian
so that the last two assertions are evident. Hence if (15) holds our assertion is
evident. If (16) holds, let y be in a Sylow p group of ¢'. But then ya'c A4’
for + > 1. By Lemma 2 we may choose a positive integer r such that

yOCr — y(x2r.

Hence yx' € Ax"N Cx" so that yx" is a central element. If (17) holds we note
that since C'a’ ¢ 4’, we may choose (exactly as in Lemma 2) r > 0 with 0’6" =
C'o”. Hence C'x’ c A" so C'«’ and hence (O’ is central.

Now recall that for any group G, Z(G)N G c Fr(G) where Fr (GF) is the
Frattini subgroup of @, and for a finite group &, & c Fr (F) implies that G
is nilpotent. Hence we have the following:
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Lemma 5. If B s finite and A XB is not hopfian and if (15), (16) or (17)
holds, then C s nilpotent.

THEOREM 10. Suppose B is a finite group, |B| = p{ips2 ... por, where the p;
are the distinct primes dividing |B|. Suppose one of the conditions (15), (16) or (17)
holds. If e, <3 for all i, then AXB 1is hopfian. If e; <4 for all i and Z(4)
has only finitely many elements of order pi, i = 1,2,...r, then AXB is hopfian.

Proof. Suppose the assertion is false. By Lemma 5, C is nilpotent and hence
is a direct product of p groups for various primes p, where p divides |B|. How-
ever, by Theorem 6 of [3], the direct product of a hopfian group with a group of
order p* is hopfian. In any case with the aid of Theorem 8 and Theorem 3 of [3]
we have our result.

TuroreM 11. If B = B’ + L where L is an abelian subgroup of B and if one
of the conditions (15), (16) or (17) holds, then A X B +ts hopfian.

Proof. Suppose the assertion is false. Note any homomorphic image of B satisfies
the same hypothesis as B. Hence we may write, C = C’+- M where M is abelian.
By Lemma 4 C’ is a central subgroup of C so that C is abelian and consequently
finite contrary to Theorem 3 of [3].

CoroLrARY. If B is finite and if all the Sylow p groups of B are cyclic, then
AXB is hopfian.

Proof. B|B’ is cyclic. ([6] Theorem 11).
TuEOREM 12. If B is a perfect group then AXB is hopfian.
Proof. Suppose the assertion is false. Any homomorphic image of a perfect

group is perfect. Hence C is perfect. By Lemma 4, C ¢ Ax which is contrary
to Lemma 4 of [3].
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