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1. Introduction

We continue the programme begun in [1] of studying the (topological) cohomo-
logy of operator algebras. In that article, we proved that cohomology of a type I
von Neumann algebra with coefficients in the algebra vanishes [1: Theorem 4.4].
Employing that theorem and the various preparatory results on centre adjustment
of cocycles, we prove (Theorem 2.4), in this paper, that each cocycle on a (general)
von Neumann algebra with coefficients in the algebra cobounds a cochain with
coefficients in the algebra of all bounded operators on the Hilbert space on which
the von Neumann algebra acts. This theorem is, then, used to prove (Theorem 3.1)
that cohomology with coefficients in the algebra vanishes for hyperfinite von
Neumann algebras.

The argument proving Theorem 2.4 is structurally the same as that appearing
in [4; Theorem 4]. It is made more difficult by the fact that higher-dimensional
(norm-continuous) cocycles do not satisfy automatic weak continuity conditions
(as do derivations [4; Lemma 3]). This same difficulty rules out certain direct
approaches to dealing with the hyperfinite case.
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2. Cobounding in P3(%()

In this section we show (Theorem 2.4) that each m-cocycle with coefficients in
our von Neumann algebra X is the coboundary of a cochain with coefficients in
PB(9(). This is precisely analogous to the step in the proof of the Derivation Theorem
establishing that derivations are »spatialy (cobound an operator % in B(V() —
see [4: Theorem 4]). The present proof is similar in structure to the proof for deri-
vations. We extend our cocycle to the algebra generated by a maximal abelian
subalgebra of the commutant and our von Neumann algebra, after establishing
suitable boundedness conditions. Unlike the derivation case, the extension of the
cocycle from this algebra to its weak-operator closure, a von Neumann algebra of
type I, is not a result of automatic ultraweak continuity (as is the case with deri-
vations [4; Lemma 3]). It is easy to convinece oneself that (norm-continuous) higher-
dimensional cocycles are not necessarily ultraweakly continuous by passing to the
coboundary of a suitable (norm-continuous) cochain which is not ultraweakly
continuous.

In fact that (Theorem 2.1), nonetheless, each cocycle on a (concretely repre-
sented) C*-algebra with coefficients in its weak-operator closure can be adjusted
by a coboundary so that the resulting cocycle has an extension to the weak-operator
closure (which is, again, a cocycle) replaces the missing automatic ultraweak conti-
nuity. This fact is established with the aid of [1; Theorem 3.4] (the centre adjustment
of cocycles) and the properties of the universal representation.

In the argument which follows, we will have occasion to extend a multilinear
mapping from a C*-algebra to its weak-operator closure. One would hope, of course,
that when the mapping is ultraweakly continuous (separately) there is an ultra-
weakly continuous extension. This has been proved in another connection and will
appear elsewhere. It involves other techniques; and, since we will be dealing, here,
with the universal representation, we have chosen (and are able) to use the simpler
(more awkward) procedure of successive extensions.

TaEOREM 2.1. If ¢ is a faithful representation of the C*-algebra A and
0 € ZXp(N) , p(N)), thereisa T in Zp(N)~, p(A)~) whose restriction v to @(A)
18 cohomologues to o (in ZX(p(N) , p(A)7)).

Proof. From the properties [3: pp. 181--182] of the universal representation o
of 9, there is a central projection P in ()~ and an isomorphism « of o(A)~—P
onto @(A)~ which extends the mapping (4)P — ¢(4). We denote by «, the
isomorphism induced by « of the cohomology of (AP and 3»(A)~P having
coefficients in (A)~P with that of @(A) and ¢(A)~, respectively, having coeffi-
cients in @(A)~. Let g, (in ZX (WP, pA)~P)) be «y'(p). If there exist &,
(in C*7Y(p(A)P, p(A)~P)) and 7, (in Z(wA)~P, w(A)~P)) such that g, — A& =
Tolp(WP, let T (in ZX@A)~, ¢(A)7)) and & (in C; (@A), ¢(A)7)) be &y (T)
and oy (&), respectively. Since, also, o = a,(g,), it follows that ¢ — A& = 7|p(N),
proving the theorem. It is now sufficient to consider the case in which ¢ is the
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faithful representation 4 — w(A4A)P of % (one could even assume that 9 is given,
acting on a Hilbert space 9¢, in its universal representation, and ¢(4) = 4P
for 4 in ).

With ¢(4) = yp(4)P and ¢ replaced by g, let o, in ZJ(p(A), yp(A)~P) be

7 (0), where B is the isomorphism w(4)-—>p(4)P of p(A) onto y(A)P (the
identity isomorphism of o()~P being used in defining g,).

Since g, is bounded, using the properties of the universal representation [3;
pp- 181—182], A — (4 ,4,,...,4,) has an ultraweakly continuous extension
from (A) to p(A)~. The resulting mapping 4,,...,4d, —o0(4;,...,4,) is
multilinear from (W)~ Xp(WAY) X ... Xp(A) to yp(A)~P. Continuing, with successive
extensions, we construct, for each k (=1, ..., %), a mapping g,;, which is multi-
linear from ¢(A)=X ... Xp(A)y~"Xp(A)x ... XpA) (where the first k factors
are p(A)~ and the last » — k are (A)) into w(A)~P. Moreover, g, is ultra-
weakly continuous in its kth argument and extends and has the same bound as
0_1- For notational convenience, let o, be o, and o, be ¢, (= gi,;1). Then
o1 € Cx(p()~, p(A)P).

By showing, inductively, that

(AQlk)(Al EEEEE LR An+l) =0 5 Al LA Ak E’lp(?{)_ ? Ak+1 LR An+1 GW(%) b (Pk)
we will establish (P,,;) that o, € ZX(y()~, »(A)~P). Since g, € Z2(p(A), »(A)~P),
(Py) follows. Suppose (P, ;) is given. With 4,,..., 4, in »@)~ and
Apry oo, 4, In p(A), we have
‘ (Aow)(4y, ..., An+1) = A1Qlk(Az s e ey An+1)

n-+1 .

—Zz (—)]le(Al IR Aj—z ’ Aj—«lAj ’ Aj+1 PAREENEE An+1) (1)
=
+ (__)"+191k(A1 >ttty An)AnJ,—l .

By construction of ¢, and gy, dp—on(dy,. ... 4, ..., 4 1) =
on_1(dy, ..., 4,,...,4,.,) is ultraweakly continuous, as is each of the other
terms on the right side of (1) in its argument A,. Thus A4, — (doy)(Ay, ...,

A ,..., 4, is ultraweakly continuous on o(A)~. Now, (doy)(4;,...,4d.p1)
vanishes when 4, € (%), by inductive hypothesis, since (from (1)) it coincides
with (doy,_1)(Ay, ..., A.,1), in this case. The ultraweak density of o(A) in p(A)~
combined with the foregoing, yields (FP,). N

From [1; Theorem 3.4], there is a cochain & in C?~'(p(A)~, »(A)~P) such
that o, — A (= 7,) vanishes when any of its arguments lies in the centre of
pA)—. Let & (in Co7'(p(A)P, p(A)~P)) be By (5lp(A)). From [1; Lemma 3.2],
T, € NZ}(p(N)~, w(A)~P); so that

A4, P,...,AP)=7(4,,...,4)P =7(4,,...,4,),
for 4,,...,4, in pA) (recalling that 7,(4,,...,4,) €p(A)~P). Thus
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Balmlp ()] = T p(0P = Bul(@y — A8 lp()]
= Bulos — A& IP0)] = 00 — ABulEalp(0)] = 00 — 46 -

It follows that g, — A&, = 7,lw(MWP, with 7, taken as 7;|p(N)~P (€ Z}(wp(A)~P,
p(A)~P)).

The lemma which follows describes a canonical extension of a centre normalised
n-cochain on a von Neumann algebra to a centre normalised n-cochain on a C*-
algebra with type I von Neumann algebra closure.

Lemma 2.2. If R is a von Neumann algebra acting on a Hilbert space 9C, A
is a maximal abelion *-subalgebra of R', and S s the C*-algebra generated by
R and A, then each o in NCYR ,R) extends uniquely to an element o of
NCYS ,S8). The mapping, o—o, is linear and isometric; and Ap = Ap.

Proof. With < the lattice of projections in <A, and S, the set of all operators
of the form BT, + ...+ E,T,, where E,,... ,E, € and T,,..., T, €N ,S,
is a norm dense *-subalgebra of S. Given S;,...,S, in &, we may suppose
that

n

S =B T+ By Tomsy G=1 ...on) 2)
If ¢ € NCYS,S) then, since each E; , lies in the centre <4 of &,

m(l) m(n)
oSy, ..., 8,) = Z s Z O'(El,k(l)Tl,k(l) s e e En,k(n)Tn,k(n))

M)=1  Km=1
m(1) m(n)
= . Z El,k(l) S En,k(n)O'(Tl,k(l) R Tn,k(n)) .

& ):1. .Ic(n}:l
In particular, if ¢ satisfies the conclusions of the lemma, then

m{1) m(n)

oSy, ..., 8,) = z <. Z El,k(l) . 'En,k(n)Q(Tl,k(l) IR Tn,k(n)) . (3)
k(1) =1 h(n)=1
This equation determines o(S,,...,S,) uniquely whenever S;,...,8, €S
and the uniqueness of o (if it exists) now follows from its norm continuity, together
with norm density of S, in S.

In order to prove the existence of ¢, we show first that, for S,,..., 8, in S,
the right hand side of (3) depends only on S;,...,S, (but not on the particular
way in which these operators are represented in the form (2)). For this, it is sufficient
to show that the right hand side of (3) is zero if E; T} 1+ ... 4 E; wiyT} mi =0
for some j,1 <j <mn. By [2: Lemma 3.1.1], this last condition entails the

existence of operators C, ,(r,s=1,...,m(j)) in the centre € of “X such that
m(j) .
>C. . T,,=0 (s=1,...,m(j)), (4)
r=1
m(j)

ZlEj’“O"s:Ej" (r=1,...,m(3)). (5)
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Since o € NCHK ,K), it follows from (4) and (5) that

k(}z; E, k(])Q( Lk > - o> Tj,k(j) N AN ,k(n))
m(j) m()) )
= k(,%l gl B O s@T1 iy > -5 Tingy s+ -+ s T i)
m(}) m(,)
:ZIE (129 INTORREE Ok(])s k(J),...,Tn,k(,,))=0.

By operating on the left hand side of this chain of equations with K, . . . °

B i i—nEiir ity - - - Bu kmy summing over each of the variables k(1) ,....
Byj— 1, k(j+1),...,kn), and using the commutativity of the projections
E, . we deduce that

m(Y) m(n)

DI k(§=1El'k(l) oo B @My s oo s Tayaw) = 0

This shows that, if S;,...,8, in &, are represented as in (2), then the equation

m(l) m(n)

081, 8 = z < Z El,k(l) S En,k(n)Q(T1,k(1) s s Tn,k(n)) (6)

=1 k@)=l

defines, unambiguously, an element g,(S;,...,8,) of &, It is apparent that g,
is a multilinear mapping of (S,)* into S, and g, extends p since
oBy,...,R)=0R,.I,...,R,.I)=o(R,,...,R,) when R,,....,R, €K.

Our next objective is to prove that g, is bounded. For this, suppose that
8;,...,8, in S, are represented as in (2). There is an orthogonal family
{Fy,..., F,} of projections in & such that each E; , occurring in (2) is the sum

of a collection of F,/’s. Each §; can be expressed in the form
S;=FFRk ,+...+F.R ., (7)

with the R; ;s in “R; and, since F,,...,F, are pairwise orthogonal,
0(Sys .-+, S,) :kz Fro(Ry ..., R, ) (8)
=1

With @, the central carrier of F, in “K’, we can replace F, by F,Q, in (8).
Since o € NC? (K, K), we obtain

0o(S1, ..., 8,) =

TMS

Fro(@Byy 5 - -5 Qi) - (9)

Since F,,...,F, are orthogonal projections which commute with R (and thus
with each value of p), while the mapping @R — F,R is a *-isomorphism from
“RQ, onto “RF, (and is therefore isometric), it follows from (9) and (7) that
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lleo(Sy - - Sl = 11235 1Fyo(@uBy, ks - - -5 @By, Dl Slfill?f lloll 1QuBy, 4l - - - 1@k, il
= max ol 1F By ] - o - [F R, il = max ol 1FWSA - - - HEWS < Tl ISy -« - Sl -

Thus g, is a bounded multilinear mapping of (S,)" into S, and |l < |loll-
The reverse inequality is apparent; so |lo,f| = |l¢|l. Since &, is norm densein S, g,
extends by continuity to an element g of CS,S), and |l = o | = |l¢ll; the
linearity of the mapping o ¢ is evident.

We show next that ¢ € NCJ(S , S); thatis, o(S,, - .., S, B8, Sipv s 8) =
Bo(S,,...,8,) for all S;,...,8, in & and E in the centre <A of 5. Since
A is the norm closed linear span of & and S, isnorm densein &, it is sufficient,
by the continuity and multilinearity of p, to establish this last equation for the
case in which §,,...,8, €35, and E €% (whence, ¢ can be replaced by g,).
We may suppose that S;,...,8, are represented as in (7); the corresponding
expression for ES; is then EF\R; , + ...+ EF,R; ,, and the appropriate
equation of the form (6) yields

7

06(Sy 5+ .- ESJJSJH’ cees Sh) :ZIEFk@(RI,kr'-'>Rn,k) - EQO(Sla--wSz)-
k=

It remains to prove that Ao = @ With S,,..., S,, in &, represented as

in (7), the corresponding expression for 8;_,8; is F\.R; ; R; , + .. —{—Fm i1, mAY, me

Since ¢ extends g,, and F,,...,F, are pairwise orthogonal projections which
commute with “K (and hence with each value of p), it follows from (8) that

(A0)(Sos - -+, 8,) = Soeo(Sy5 -+, 8) + Zl(— 1Y04(S0 5+ -5 Sz s 8508y s Sa)

+ (F_ 1)n+1Q0(SO H ’ n—I)Sn

:klek{RO (R 1,k > » B, 1)

+ 21(_ 1)j9<R0 koo Rj_z,k s By, kR ]+1 kv B k)
j=

+ (— 1)n+19(R0 k> )Rn 1, k) n,k}

:kZIFk(A@)(Ro,k ) -Rn 9]

= (A0)( Sy s -+ 8,)

(where the last step results from the equation, corresponding to (8), for the element
Ao of NC™YR ,R)). The multilinear forms Ag and (4dp) on S™*! are bounded,
and take the same values on the dense subspace (S,)"*’; so, by continuity,

Ag = (do).
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CoroLLARY 2.3. With R, A and S satisfying the conditions of Lemma 2.2,
each ¢ in NZI(K,KR) extends uniquely to an element o of NZXS ,S).
Proof. If ¢ € NZ*(R,“R) then, by Lemma 2.2, o extends uniquely to an

element g of NC™S,S), and Ag = (dg) =0 = 0. Thus g € NZ'(S,S).

The possibility of extending a cocycle as in Lemma 2.2, »adjustings it and then
extending it to the (type I) weakoperator closure (of &) combined with the fact
[1; Theorem 4.4] that n-cocycles on type I von Neumann algebras cobound allows
us to prove:

TaeoREM 2.4. If “R is a von Newmann algebra acting on a Hilbert space 9
and o € ZX R ,K), there is a & in CHR, DB(I) such that o = AE.

Proof. From [1; Theorem 3.4]; there is a £ in COr YR ,K) such that
0 — A& (= g) E NZH(K ,K). With <{ a maximal abelian *-subalgebra of KR’
and & the C*-algebra generated by “K and <A, there is, by Corollary 2.3, a
(unique) o, in NZXS,S) extending ¢;. Theorem 2.1 provides a §& in
C? 1S ,8-) such that g, — A&, (= g;) has an extension g, in Z}S—, 7).

Since & contains both K and A, and <4 iz maximal abelian in K’
SR NA =A. Thus S—, having an abelian commutant, is of type I
From [1; Theorem 4.4], there is a & in C*~'(S~,S-) such that g, = A&, Let
7y be &|K; so that 7, € Cr"YR,S-) and Ay, = g,/ K. Let 7, be &|K; so
that 7, € CrY(R,S-). With o, taken as (R, 0, € ZH(R,S) c Zx(R,5).
Then o6, — Any = Ans. But g = 0| R = 0, = A(ny + n3) = ¢ — 4&.  Now
& € O?_I(CR > %) c O:_l(% s 5_)2 so that o = A(n, + 03 + &), with 5, + 93 + &
in Cr7'Y(R,S-). Choosing 7, + 1, + & as & completes the proof.

3. The hyperfinite case

In this section, we prove that the cohomology of a hyperfinite von Neumann
algebra with coefficients in that algebra vanishes. The result that cohomology of
uw.h.f. C*-algebras with coefficients in a dual module vanishes is established by
meaning techniques,.

TuroreM 3.1. If R is a hyperfinite von Newmann algebra H(7R ,R) = 0.

Proof. Suppose, first, that K’ is hyperfinite. From [5; Lemma 5], there is
a bounded projection m of 3(?(), the algebra of all bounded operators on the
Hilbert space ?¢ on which “R acts, onto X, having (among others) the property
that 7(A7'B) = An(T)B, for A and B in ‘K. With ¢ in Z}R,“X), Theorem
2.4 tells us that there is a & in C?7Y(R, B(V()) such that ¢ = A¢. If 5 is wo &
then 5 € 07 Y (R ,R), and, with 4;,...,4, in R,

n
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(An)(A,,...,A,,):Am(Az,...,An)—Z(—)fn(Al,...,Ajfz,AA A ,4,)
iz

A 1 Ay,
+ (—)"n(4,,...,4, D4,
=a[d&Ad,,....,A)] ==alo(d,,... , 4] =0(4,,...,4,).

Thus HY(R,K)=0 when R’ is hyperfinite.

From [6; Theorem 12.2], each von Neumann algebra can be represented in a
»standard» form in which, in particular, it is * anti-isomorphic to its commutant.
Since H2(R ,“K) is independent of the representation of X as a von Neumann
algebra, we may assume that “X is represented in this standard form. Then K’
is hyperfinite; and, from the preceding, H(K ,RK) = 0.

Bemark 3.2. There are other routes we could take to a proof of the preceding
theorem which would avoid [6]; but they refer to the »internaly properties of the
hyperfinite “X and have to be argued more closely. The use of 7= gives some
information not noted in the statement of Theorem 3.1; viz. HY(K,K) =0 if
R’ is hyperfinite. It is quite possible, though, that this occurs only when R is
hyperfinite.

In the next result, the dual module might be, for example, the von Neumann
algebra closure of the C*-algebra in a given representation.

TurEOREM 3.3. If a C*-algebra U is the norm closed linear span of an amenable
subgroup YV of its unitary group, and M is a two-sided dual U-module, then
HXU, My = 0.

Proof. From, [1; Lemma 3.3], there is a mean @ from [ (V, M) into M.
With o in ZJ(A, M), A,,..., 4, ; in A and V in V, define £&4,,...,4, 1)
to be ji(p), where ¢(V) = V*o(V ,4,,..., 4, ;). Since ¢ depends multilinearly
on the parameters A4,,...,4, , and j is linear, & is multilinear. Moreover

n—

16(Ay, - A I = Tla@] < llgll < lloll - 14all - - - 1dail5

so that [|& <|lol, and &€ C™}QL, IM).
We prove that ¢ = A& With W in YV, since (do)(V , W ,A,,..., 4, ;)=0
(in the notation of [1; Lemma 3.3]),

gw(V) = (VW)*(VW , 4,, ..., 4,
- W*V*[VQ(W’AI LA 7An—1) + Q(V i WAl s A2 LR An_,l)
— oV, W, 44y, Ay, ..., A, )+ ...

F (= DV . W, Ay, A, 5, A, 24, )+ (— V)" (VW 4,4, )4, .

Thus, from the properties of g [1; Lemma 3.3],

§dy,....4,1) = alp) = alew) = W*e(W, Ay ,..., 4, 1) + WA, 4y,..., 4,_1)
—EW , A4, Ay, .. A, ) (= D)EW LA, A, 5, A, WA, )
(=W L Ay, A, )AL ]
= W*oe(W,4y,...,4,_1) + W&d,,..., A4, ) — (AW ,A,,..., 4, )];
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and oW, 4y, ..., 4, )=UEW ., 4;,...,4,.,), (10)

for W in V. As U is the norm closed linear span of V' and both o and 4¢&
are multilinear and bounded; it follows from (10) that o = A&. Thus H}(A , M) = 0.

CoroLLARY 3.4. If U is an abelian or a w.h.f. C*-algebra, H}(N , M) =0 for
each two-sided dual A-module M.
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